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Abstract

Medical domain automated text generation is
an active area of research and development;
however, evaluating the clinical quality of gen-
erated reports remains a challenge, especially
in instances where domain-specific metrics are
lacking, e.g. histopathology. We propose
HARE (Histopathology Automated Report
Evaluation), a novel entity and relation centric
framework, composed of a benchmark dataset,
a named entity recognition (NER) model, a re-
lation extraction (RE) model, and a novel met-
ric, which prioritizes clinically relevant content
by aligning critical histopathology entities and
relations between reference and generated re-
ports. To develop the HARE benchmark, we
annotated 813 de-identified clinical diagnos-
tic histopathology reports and 652 histopathol-
ogy reports from The Cancer Genome Atlas
(TCGA) with domain-specific entities and rela-
tions. We fine-tuned GatorTronS, a domain-
adapted language model to develop HARE-
NER and HARE-RE which achieved the high-
est overall F1-score (0.915) among the tested
models. The proposed HARE metric outper-
formed traditional metrics including ROUGE
and Meteor, as well as radiology metrics such
as RadGraph-XL, with the highest correlation
and the best regression to expert evaluations
(higher than the second best method, GREEN,
a large language model based radiology report
evaluator, by Pearson r = 0.168, Spearman
ρ = 0.161, Kendall τ = 0.123, R2 = 0.176,
RMSE = 0.018). We release HARE, datasets,
and the models at https://github.com/knowlab/
HARE to foster advancements in histopathol-
ogy report generation, providing a robust frame-
work for improving the quality of reports.

1 Introduction

Medical report generation has become an increas-
ingly active area of research in clinical natural lan-
guage processing (NLP) with the goal of automat-
ing the creation of specialized clinical documents

(Xu et al., 2024; Liu et al., 2025). Among various
medical domains, radiology has witnessed the ear-
liest and most notable advancements in automated
report generation (Hyland et al., 2023; Nicolson
et al., 2023; Wu et al., 2024; Bannur et al., 2024).
This progress is partly attributed to the develop-
ment of domain-specific evaluation metrics that
prioritize clinical correctness (Smit et al., 2020;
Jain et al., 2021; Delbrouck et al., 2024; Zhao et al.,
2024). Unlike general-purpose metrics such as
BLEU and ROUGE, these specialized metrics as-
sess the accuracy of radiologically significant enti-
ties and findings, thereby offering a more clinically
meaningful measure of report quality (Lin, 2004;
Papineni et al., 2002; Zhao et al., 2024) and fa-
cilitating the development of accurate generative
models.

In contrast, the field of histopathology, which in-
volves the microscopic examination of tissue sam-
ples to diagnose diseases such as cancer, still relies
only on general-purpose lexical metrics for evalu-
ating automatically generated reports (Chen et al.,
2023; Guo et al., 2024; Tan et al., 2024; Chen et al.,
2024). Histopathology reports are semi-structured,
terminology-intensive documents that provide de-
tailed microscopic evaluations of tissue samples.
Such reports play a crucial role in disease diagno-
sis and guiding treatment decisions. Histopathol-
ogy reports encompass multiple sections, including
descriptions of anatomical sites, cellular morphol-
ogy, tumor classification, staging, further analyses
(e.g. immunohistochemistry (IHC) markers, spe-
cial stains, or in situ hybridization (ISH)), and a
final diagnosis/conclusion.

Figure 1 shows the difference between the word
embeddings of radiology reports (from MIMIC-
CXR (Johnson et al., 2019) and IU-Xray (Demner-
Fushman et al., 2016) and histopathology reports
(used in this study). Histopathology word embed-
ding has many areas that are not covered by radi-
ology word embeddings, making radiology report
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Figure 1: Scatter and density plot of word embed-
dings for radiology and histopathology reports. The
radiology reports are 1,000 randomly sampled reports
from MIMIC-CXR dataset and IU-X-ray dataset (John-
son et al., 2019; Demner-Fushman et al., 2016). The
histopathology reports are 1,000 randomly sampled re-
ports from both datasets used in this study. Reports
are embedded using a BERT-base model and reduced
to two dimensions using principal component analysis.
The density regions highlight where words from each
category are concentrated, with "Radiology" shown in
yellow and "Histopathology" in blue.

evaluation metrics unsuitable for histopathology
reports. Conventional lexical evaluation metrics
such as METEOR and BERTScore as well as clin-
ical relevance-based evaluation metrics designed
for radiology reports are insufficient for assessing
the quality of automatically generated histopathol-
ogy reports, as they fail to capture the nuanced
histopathological details essential for accurate diag-
nosis and patient management (Banerjee and Lavie,
2005; Zhang et al., 2019; Smit et al., 2020; Del-
brouck et al., 2024; Zhao et al., 2024).

This challenge is further compounded by the
scarcity of publicly available datasets for specif-
ically histopathology named entity recognition
(NER) and relation extraction (RE), which limits
the ability to train robust models tailored to the
complexities of histopathological language. There
is only one NER model and dataset for pathology
reports; however, these are not publicly available
(Zeng et al., 2023). This gap underscores the need
for an entity and relation centric evaluation met-
ric that can capture the unique characteristics of
histopathology reports.

To address this gap, we introduce HARE
(Histopathology Automated Report Evaluation): a
novel, entity-focused metric designed to assess the
clinical quality of generated histopathology reports.
In Figure 2, the process of computing the HARE

score is demonstrated. HARE captures domain-
specific entities (e.g., anatomical sites, IHC mark-
ers, descriptor and final diagnosis) and relation-
ships between the entities from both candidate and
reference reports and quantifies their alignment
via a cosine similarity measure (Rahutomo et al.,
2012). Our approach is grounded in a compre-
hensive annotation effort on 1,465 real-world diag-
nostic histopathology reports sourced from a large
teaching hospital and from The Cancer Genome
Atlas (TCGA) (Tomczak et al., 2015).

By emphasizing the presence and correctness of
domain-specific entities, HARE provides a more
clinically oriented benchmark than existing lexical
metrics. We validated its effectiveness by demon-
strating the higher correlation between HARE
scores and expert-derived evaluations of generated
reports compared with multiple other available met-
rics. By releasing both our annotated dataset and
the final trained models (which we call HARE-
NER and HARE-RE), we aim to encourage further
research in histopathology NLP and to improve the
clinical utility and reliability of automated report-
generation systems.

The primary contributions of this paper are as
follows:

1. Introduction of a New Metric (HARE): We
propose a domain-specific evaluation metric
for histopathology report generation that fo-
cuses on the detection and alignment of sig-
nificant histopathology entities. To our knowl-
edge, it is the first dedicated metric for this
purpose.

2. Histopathology Score Dataset: We collect
and provide expert histopathologist scores for
automatically-generated reports, demonstrat-
ing the real-world validity of HARE metric.

3. HARE-NER and HARE-RE: We develop a
NER model and a RE model specialized in
histopathology, capable of recognizing and
relating critical domain-specific entities such
as IHC markers, anatomical sites and descrip-
tor (for final diagnosis), filling a gap where
there is no publicly available histopathology-
focused NER model and RE model.

4. Open Source: We will release (1) the anno-
tated dataset, (2) the final trained NER model,
RE model, as well as the alignment model,
and (3) HARE score computation code to
facilitate further research and development
in both NER and report generation in the
histopathology domain.
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Figure 2: Illustration of the process of computing the HARE score, a novel entity and relation centric metric for
evaluating histopathology report generation.

2 Related Work

While several evaluation metrics have been pro-
posed for radiology, the field of histopathology
remains underexplored. Two most recent notable
contributions in radiology emphasize the design of
domain-specific metrics that capture clinical sig-
nificance: RadGraph-XL and RaTEScore (Jain
et al., 2021; Zhao et al., 2024).

2.1 RadGraph-XL

RadGraph-XL (Delbrouck et al., 2024) is a large-
scale, expert-annotated dataset created for extract-
ing clinical entities and relations from radiology
reports. Building upon its predecessor, RadGraph-
1.0 (Jain et al., 2021), RadGraph-XL expands anno-
tations to cover multiple anatomy-modality pairs,
including chest CT, abdomen/pelvis CT, and brain
MRI, in addition to existing chest X-ray data. The
dataset consists of over 2,300 reports annotated
with 410,000 entities and relations, significantly
enhancing its scale and diversity.

RadGraph-XL underscores the importance of
clinically relevant entities and relationships in
domain-specific metrics. This principle directly
informs our work, as we extend it to the histopathol-
ogy domain by focusing on uniquely critical enti-
ties such as features of the histopathological report
including pathological diagnosis and IHC marker
data.

2.2 RaTEScore

RaTEScore (Zhao et al., 2024) is a domain-
specific evaluation metric designed to assess the

quality of radiology report generation. Unlike
general-purpose metrics such as BLEU or ROUGE,
RaTEScore prioritizes clinical accuracy through
entity-level assessments. It employs a NER module
to extract key medical entities (e.g., anatomy, ab-
normalities, diseases) and a synonym disambigua-
tion encoding module to address challenges such as
medical synonymy and negation. The final metric
is computed using the cosine similarity of entity
embeddings, with adjustments made to reflect the
clinical relevance of specific entity types.

To support its development, RaTEScore intro-
duced two foundational resources:

1. RaTE-NER: A large-scale dataset for med-
ical NER, covering nine imaging modalities
and 22 anatomical regions.

2. RaTE-Eval: A benchmark for evaluating met-
rics, including sentence- and paragraph-level
human ratings, as well as comparisons involv-
ing synthetic reports.

RaTEScore demonstrated superior alignment
with human preferences, achieving the highest cor-
relation scores in evaluations on public datasets
such as ReXVal and the RaTE-Eval benchmark. In-
spired by RaTEScore’s methodology, our proposed
HARE metric adapts the principles of entity recog-
nition and embedding similarity to the histopathol-
ogy domain, addressing unique challenges such
as the interpretation of pathological diagnosis and
IHC findings.
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2.3 Limitations in Existing Metrics

Although RadGraph-XL and RaTEScore have sig-
nificantly advanced the evaluation of radiology
reports, their applicability is limited to specific
modalities (e.g., chest X-rays) and radiological con-
texts. They do not address the unique linguistic
and clinical knowledge of histopathology, which
involve detailed morphological assessments and
IHC findings.

HARE addresses these limitations by introduc-
ing an entity-aware evaluation framework tailored
specifically to the histopathology domain. By em-
phasizing the detection and alignment of domain-
specific entities, HARE provides a clinically rel-
evant metric to assess the quality of generated
histopathology reports.

3 Methods

In this section, we describe the development of
HARE (Histopathology Automated Report Eval-
uation), a domain-specific evaluation metric de-
signed to assess the clinical quality of generated
histopathology reports. Our methodology involves
dataset preparation and annotation, NER model and
RE model training, and the design of the HARE
metric.

3.1 Dataset Preparation and Annotation

We curated two datasets to support the development
of HARE: reports collected from a hospital and
publicly available reports from TCGA.

3.1.1 Hospital Dataset

We collected 813 fully de-identified/anonymized
histopathology reports from the pathology depart-
ment of a large teaching hospital. We ensured
that the reports were free of any identifiable data
through the use of Stanford AIMI’s deidentifica-
tion model and by manual review and redaction
of identifiers by three histopathologists (Chambon
et al., 2022). The reports were from cases across a
range of tissue types and diagnoses with a partial
focus on cases with lymphoma, breast cancer and
cases in which several IHC markers were utilized
as part of the diagnostic process. The reports were
annotated by a junior histopathologist (with input
from a senior histopathologist for clarification of
challenging cases) using the Inception annotation
tool (Klie et al., 2018). The annotations focused on
histopathology-specific entities, including:

• Anatomical Site: Entities describing specific
tissue regions or locations, such as breast,
lung, kidney, lymph node etc.

• Immunohistochemistry (IHC) Markers:
The presence of immunohistochemical mark-
ers such as CK20, CDX2, ER, PR, Ki-67.

• Pathological diagnosis: The pathological di-
agnosis, such as classical Hodgkin lymphoma.

• Diagnosis Descriptor: Provides descriptive
characteristics of the pathological diagnosis
e.g., “raises the possibility of”.

• IHC Modifier: Used to modify immuno-
histochemical annotations, e.g., “patchy” or
“strong”.

The relationships annotated were:
• IHC Markers - IHC Modifier
• Diagnosis - Diagnosis Descriptor

Type Hospital TCGA
IHC Markers 6,628 119
IHC Modifier 1,339 173
Pathological Diagnosis 885 882
Anatomical Site 747 794
Diagnosis Descriptor 247 475
Relations 1,745 653

Table 1: Entity and Relation annotation statistics for the
Hospital and TCGA datasets.

3.1.2 TCGA Dataset
To increase diversity, we further annotated 652
publicly available histopathology reports from the
previously published HistGen training and eval-
uation dataset, which is originally sourced from
The Cancer Genome Atlas (TCGA) (Guo et al.,
2024; Tomczak et al., 2015). The annotation was
done in the same manner as the Hospital dataset
but using the label studio as the annotation tool
(Tkachenko et al., 2020-2025). We extracted sen-
tences with histopathological descriptions, specifi-
cally IHC markers and final diagnosis characteris-
tics. The breakdown of the number of annotations
for the Hospital and TCGA datasets are summa-
rized in table 1.

3.1.3 Annotator description
All annotations were performed by practicing
physicians with formal training and accreditation
in histopathology (at different stages of progres-
sion through the national pathology examination
board). The two junior pathologists had 5 and 7
years of histopathology experience, alongside 13
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and 12 years of clinical medical practice, respec-
tively. The senior pathologist was board-certified,
with 7 years of histopathology experience and 18
years of medical practice. Before initiating the an-
notation process, all annotators met to establish and
agree on a standardized annotation protocol.

3.2 HARE-NER and HARE-RE Training

General Domain Model Size
BERT(Devlin, 2018) 110M 340M
DeBERTa-v3(He et al., 2021) 70M 435M
Biomedical Domain Model Size
PathologyBERT(Santos et al.,
2023)

110M

BiomedBERT(Tinn et al., 2021) 110M 340M
SapBERT(Liu et al., 2020) 110M
GatorTronS(Yang et al., 2022) 345M

Table 2: Models tested for fine-tuning. The models
are sorted in the order of size. Models with two sizes
indicate different pretrained model variants (e.g., BERT-
base vs. BERT-large).

As shown in Table 2, we experimented with
several transformer-based architectures, includ-
ing PathologyBERT (Santos et al., 2023) and
GatorTronS (Yang et al., 2022), which are pre-
trained on clinical corpora, and BiomedBERT
(Tinn et al., 2021) which was trained with PubMed
articles as well as general domain models (BERT
(Devlin, 2018) and DeBERTa (He et al., 2021) mod-
els). PathologyBERT is the only publicly available
model that is trained with pathology reports for
document classification specifically for breast can-
cer. SapBERT (Liu et al., 2020) is also included as
it was further trained with BiomedBERT model for
entity alignment to Unified Medical Language Sys-
tem (UMLS), a detailed and widely used ontology
(National Library of Medicine (US), 2024).

These models were fine-tuned using our an-
notated dataset for both NER and RE. For the
NER task, we trained a token classification model
based on the pre-trained encoder to recognize
histopathology-specific entities. For the RE task,
we trained a sequence classification model with
entity markers (E1 and E2) based on the same pre-
trained encoders to capture relationships between
extracted entities. E1 and E2 are placeholder tokens
used to mark the two extracted entities involved in
a candidate relation pair (they are abbreviations
for entity 1 and entity 2, respectively). These are
passed to the relation extraction model, which clas-

sifies the relation type via a sequence classification
objective.

The annotated reports were split into sentences,
and any sentence longer than 512 tokens was split
during preprocessing to accommodate model in-
put constraints. All models were implemented us-
ing the HuggingFace Transformers library (Wolf,
2019). Training was conducted on an NVIDIA
A5000 GPU. For both NER and RE, we used an
AdamW optimizer with a learning rate of 5× 10−5

and a batch size of 4 for 2 epochs. Evaluation was
performed using standard metrics, F1-score, for
both tasks, with 10% of the data as a hold-out test
set.

For relation extraction, the dataset required ex-
plicit construction of entity pairs. All positive sam-
ples (annotated entity relations) and an equal num-
ber of randomly sampled negative pairs were used
to construct the training split. For the test split,
three times as many negative samples as positive
samples were sampled to ensure robust evaluation.
The relation extraction model was evaluated using
gold-standard entities, not predicted ones.

Details of the train and test splits are shown in
Table 3. The best-performing models for NER and
RE were selected as the backbone for extracting
entities and relationships within the HARE metric.

Split Samples Tokens
NER-Train 2,181 127,553
NER-Test 243 13,855
Relation-Train 5,014 311,058
Relation-Test 1,068 66,769

Table 3: Statistics of the train and test datasets used for
NER and RE tasks. Samples represents the number of
samples and Tokens the total tokens (word-piece).

3.3 Design of the HARE Metric
The HARE metric evaluates the quality of gener-
ated histopathology reports by assessing both the
alignment of clinically relevant entities and the
relationships between them in the reference and
candidate reports.

3.3.1 Entity and Relation Extraction
Entities are extracted from both reference and can-
didate reports using the trained HARE-NER model.
For each token, the model outputs a probability
distribution over entity classes; only entities with
confidence scores above a threshold of 0.7 are re-
tained, ensuring that uncertain predictions are ex-
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cluded. Relations between recognized entities are
then identified using the trained HARE-RE model,
which predicts relation types for all candidate entity
pairs. The same confidence threshold is applied to
relation predictions to retain only high-confidence
relations.

3.3.2 Entity Embedding and Alignment
Extracted entities are embedded in a high-
dimensional space using contextual representations
from GatorTronS, further fine-tuned with a UMLS-
based SapBERT approach to ensure semantic align-
ment of similar entities (e.g., lymphovascular inva-
sion and vascular invasion). Cosine similarity is
computed between all entity pairs from reference
and candidate reports. For each entity, the maxi-
mum cosine similarity with entities in the other set
is calculated.

3.3.3 Scoring
The HARE metric reports both entity- and relation-
level alignment between candidate and reference
reports. For entities, precision, recall, and F1-score
are computed as follows:

Recalle =
1

|Eref|
∑

eref∈Eref

max
ecand∈Ecand

S(eref, ecand)

Precisione =
1

|Ecand|
∑

ecand∈Ecand

max
eref∈Eref

S(ecand, eref)

where Eref and Ecand are the sets of embeddings
for reference and candidate entities, and S(u,v) is
the cosine similarity between embeddings u and v.

The F1-score for NER is then calculated as the
harmonic mean of precision and recall:

F1e = 2 · Precisione · Recalle
Precisione + Recalle

Relation extraction performance is quantified us-
ing the standard F1-score, computed by comparing
the set of extracted relations (entity pairs and their
predicted relation types) in the candidate report
to those in the reference. Precision and recall are
calculated based on the overlap of predicted and
reference relations, and the relation F1-score is re-
ported as:

F1r = 2 · Precisionr · Recallr
Precisionr + Recallr

To obtain a comprehensive assessment, the final
HARE score is defined as the sum of the entity and
relation F1-scores:

HARE Score = F1e + F1r

This ensures that both precision and recall are
considered equally, providing a balanced measure
of the alignment between ground truth and pre-
dicted entities. A higher HARE score indicates
better alignment, reflecting both accurate and com-
prehensive entity matching.

3.4 Validation of the HARE Metric

To validate HARE, we conducted an expert evalua-
tion of machine-generated histopathology reports.
We generated reports using GPT-4o and GPT-4o-
mini using whole slide images (WSI) downloaded
from TCGA (Hurst et al., 2024). Due to the volume
of the images, we processed to lower resolution and
resized the image to 1024 by 1024 pixels. In to-
tal, 75 randomly selected images were downloaded
and used for generating reports. For each image,
eight sets of reports were generated with different
levels of specimen site information provided. In to-
tal, 600 reports were compared to the ground truth
reports. Experts compared generated reports to
ground truth (original) reports and assigned scores
based on diagnostic accuracy and histopathologi-
cal detail to ensure an objective evaluation of the
model’s performance in generating histopathology
reports from WSI.

The following is the scoring system and the ra-
tionale for each score level:

• Scores 5 (Perfect match with ground truth):
This score is assigned to reports that are iden-
tical to the reference report in terms of both
diagnostic accuracy and histopathological de-
scriptions.

• Scores 4 (Perfect match diagnosis with at
least one wrong description): This score is
assigned to reports that correctly identify the
diagnosis, but contain at least one minor er-
ror in histopathological descriptions. These
errors may involve inaccurate terminology or
missing morphological features. Although
these reports provide a reliable diagnosis, an
incomplete or incorrect description reduces
their overall quality.

• Scores 3 (Correct diagnosis): This score is
assigned to reports that accurately determine
the correct diagnosis but do not provide any
of the detailed histopathological descriptions
in the ground truth.

• Scores 2 (Broadly correct diagnosis): This
score is assigned when reports correctly iden-
tify the general disease category but do not
specify the exact diagnosis. For example, a
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report may correctly classify a tumor as ma-
lignant but does not differentiate between spe-
cific subtypes. These reports provide a useful
but incomplete diagnosis, which limits their
clinical applicability.

• Scores 1 (Incorrect diagnosis with some of
the histopathological descriptions match-
ing the ground truth): This score is assigned
when the report fails to provide the correct
diagnosis but includes histopathological de-
scriptions that align with the reference report.
While some microscopic features are correctly
described, the overall diagnostic conclusion
is incorrect, greatly reducing the clinical relia-
bility and utility of the report.

• Scores 0 (Incorrect diagnosis with no
histopathological descriptions matching
with ground truth ): This score is assigned to
reports that provide neither a correct diagno-
sis nor any histopathological descriptions that
align with the ground truth. These reports fail
to recognize key pathological features and do
not contribute to an accurate clinical assess-
ment, making them completely unreliable.

Histopathology reports are inherently complex
and exhibit significant variability in writing styles
across institutions and individual histopathologists,
particularly in the microscopic description section.
This variability introduces heterogeneity in report
structure, making it challenging for models to learn
consistent diagnostic patterns. Despite these dif-
ferences, histopathologists generally reach a con-
sensus on the final diagnosis, which carries the
most clinical significance. Therefore, our evalua-
tion places greater emphasis on the model’s ability
to generate correct diagnoses rather than the accu-
racy of microscopic descriptions.

3.4.1 Metric Comparison
HARE scores were compared to expert scores us-
ing Pearson’s correlation coefficient, Spearman’s
correlation coefficient, and Kendall’s τ . We pro-
vide p-values for each correlation value. Addi-
tionally, we benchmarked the metric against tra-
ditional lexical metrics (BLEU, ROUGE, ME-
TEOR, BERTScore) and radiology-specific met-
rics (RadGraph-XL, RaTEScore, GREEN) (Pap-
ineni et al., 2002; Lin, 2004; Banerjee and Lavie,
2005; Zhang et al., 2019; Delbrouck et al., 2024;
Zhao et al., 2024; Ostmeier et al., 2024). We used
only the single overall score for metrics such as
BLEU, RadGraph-XL, and GREEN to compare

our method with a state-of-the-art LLM-based eval-
uator for radiology reports. We also used GPT-4.1
as a judge to give a score of 0-5 based on the expert
evaluation scheme for the candidate report based
on the ground truth report (Hurst et al., 2024). The
prompt used for this analysis can be found at the
appendix Figure 7. We also performed regression
analysis and provided R2 and RMSE values to as-
sess the predictive utility of each metric against
expert scores. For all the metric comparison, we
normalized the automated metric scores to a 0-1
scale and expert evaluation scores (originally 0–5)
also normalized to 0-1.

4 Results and Discussion

4.1 Model Selection: GatorTronS

Model NER RE Overall
PathologyBERT 0.771 0.798 0.785
BERT-base 0.833 0.798 0.816
BERT-large 0.825 0.798 0.811
DeBERTa-large 0.841 0.798 0.820
BiomedBERT-large 0.843 0.798 0.820
DeBERTa-xsmall 0.794 0.962 0.878
SapBERT 0.835 0.970 0.903
BiomedBERT-base 0.844 0.962 0.903
GatorTronS 0.854 0.977 0.915

Table 4: Model selection results based on NER and RE
F1-scores on the test set. Models are sorted by Overall
F1-score.

Our experiments demonstrated that GatorTronS
outperforms other models, both general-purpose
and biomedical, in extracting entities and rela-
tions from histopathology reports. As shown in
Table 4, GatorTronS achieved the highest over-
all score (0.915) with NER F1 (0.854) and RE
F1-score (0.977), surpassing the next-best model,
BiomedBERT-base (Overall F1 = 0.903, NER F1
= 0.844, RE F1 = 0.962). Notably, models with
an RE F1 of 0.798 failed to identify any relations
for all test inputs, highlighting a limitation of these
architectures in this domain.

This result underscores the efficacy of
GatorTronS in addressing the complexities
inherent in histopathology text. Its extensive pre-
training on large-scale synthetic clinical corpora
provides it with a comprehensive understanding
of domain-specific language, abbreviations, and
nuanced terminology. This ability is particularly
critical in histopathology, where specialized
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Score Count
0 369
1 71
2 90
3 62
4 8
5 0

Table 5: Distribution of expert evaluation scores for
generated histopathology reports. Scores represent the
degree of alignment with the reference reports, with
higher scores indicating better alignment.

expressions describing tissue morphology and
disease subtypes are prevalent.

An additional factor contributing to
GatorTronS’s superior performance is its
model size. As the largest model among the
biomedical models tested, GatorTronS benefits
from greater representational capacity, enabling
it to capture complex relationships in text more
effectively.

4.2 Majority of Generated Reports Lack
Clinical Alignment

Despite advances in text generation methods, ex-
pert evaluations reveal a significant misalignment
between system-generated reports and clinical re-
quirements. As shown in Table 5, 369 out of 600
generated reports (61.5%) received a score of 0 and
71 reports received a score of 1 (11.8%), indicating
73.3% of the reports had an incorrect diagnosis.
Only eight reports attained a score of 4, while none
achieved the perfect score of 5. Scores with par-
tially correct diagnosis, broadly correct diagnosis,
and correct diagnosis (Score 2, 3, and 4) accounted
for 160 reports (26.7%). When we compared the
HARE and other scores to expert scores, we ex-
cluded reports with 0 scores to have more balanced
representation of the scores. Reports often lacked
diagnostic conclusions or included incorrect ter-
minology, while others failed to capture essential
histological findings. The scarcity of high-quality
outputs underscores the challenge in generating
nuanced and diagnostically accurate narratives. Er-
rors in final diagnosis are particularly concerning
as they can have significant clinical implications.
These findings highlight a significant limitation in
the diagnostic accuracy of the generative model
utilized, with a substantial proportion of reports
failing to predict reliable pathological interpreta-
tions.

The high percentage of incorrect diagnoses and
the lack of accurate microscopic descriptions can
be attributed to several factors. One major limi-
tation can be the use of a single, low-resolution
WSI, which could restrict the model’s ability to
discern detailed morphological features essential
for histopathological evaluation. Histopatholo-
gists analyze WSIs at multiple magnification lev-
els (low-power magnification for architectural pat-
terns, high-power for cellular details such as nu-
clear atypia, and mitotic figures), which is crucial to
make an accurate pathological diagnosis. This lim-
itation can hinder the model’s capacity to generate
precise microscopic descriptions and accurately dif-
ferentiate pathological entities. Furthermore, only
one WSI was provided per case, whilst in most
cases multiple WSIs were utilized as part of the
actual diagnostic process to generate the ground
truth report. Finally, critical contextual information
(e.g., clinical history or anatomical site informa-
tion) was not provided all the time. Notably, a sub-
set of reports that included primary specimen site
information demonstrated a slight improvement,
achieving higher scores. This suggests that while
the performance of current multimodal LLMs such
as GPT-4o, is limited, when provided with addi-
tional clinical and anatomical context, the model’s
diagnostic reliability can sometimes be acceptable.

4.3 HARE Outperforms Existing Metrics in
Capturing Clinical Relevance

Table 6 summarizes the performance of all evalua-
tion metrics against expert pathologist scores using
multiple statistical measures. HARE achieved the
highest Pearson correlation (0.606), Spearman cor-
relation (0.643) and Kendall τ (0.533), all with
strong statistical significance. HARE also demon-
strated the highest coefficient of determination
(R2 = 0.368) and the lowest root mean squared
error (RMSE = 0.134), indicating both high align-
ment and predictive accuracy with respect to expert
score.

These results surpass those of GREEN, the next-
best metric, which leverages a large language
model (RadLlama2-7b) as an evaluator. Moreover,
HARE is significantly more computationally effi-
cient: on 600 candidate reports, GREEN required
2 hours and 2 minutes for evaluation, while HARE
completed the same analysis in 192 seconds on an
A5000 24GB GPU. This efficiency, combined with
robust performance, underscores HARE’s practical
viability and interpretability as an evaluation metric
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Method r r p-val ρ ρ p-val τ τ p-val R2 RMSE
ROUGE-L 0.048 0.470 0.030 0.647 0.025 0.616 0.002 0.169
BLEU 0.077 0.241 0.106 0.108 0.099 0.107 0.006 0.168
GPT-4.1 0.177 0.007 0.173 0.008 0.146 0.008 0.031 0.166
BERTScore 0.203 0.002 0.180 0.006 0.141 0.005 0.041 0.165
METEOR 0.265 4.51e-05 0.179 0.006 0.136 0.007 0.070 0.163
RaTEScore 0.372 5.36e-09 0.350 4.81e-08 0.276 4.60e-08 0.138 0.157
RadGraph-XL 0.427 1.22e-11 0.425 1.43e-11 0.351 8.51e-11 0.182 0.153
GREEN 0.438 2.90e-12 0.482 7.58e-15 0.410 2.18e-13 0.192 0.152
HARE (Ours) 0.606 1.39e-24 0.643 2.62e-28 0.533 1.51e-24 0.368 0.134

Table 6: Comparison of evaluation methods based on Pearson correlation (r), Spearman (ρ), and Kendall’s τ with
their p-values, and regression performance (R2 and RMSE). Methods are sorted by Pearson correlation r.

for histopathology report generation.

HARE significantly outperforms GPT-4.1 used
as a judge in correlation with expert ratings. While
GPT-4.1 is not appropriate for real clinical eval-
uation pipelines due to its proprietary nature and
privacy constraints, our result confirms the superior
performance of a domain specific report quality
evaluator over an LLM based evaluator.

In contrast, although they are widely used in
histopathology report evaluation, lexical metrics
such as ROUGE-L (r = 0.048, ρ = 0.030,
τ = 0.025) and BLEU (r = 0.078, ρ = 0.106,
τ = 0.099) showed minimal correlation and high
RMSE, further underscoring their inability to as-
sess clinically relevant content in histopathology.

HARE’s effectiveness originates from its focus
on histopathology entity-level alignment, which
ensures that key clinical features, such as patholog-
ical diagnosis, are appropriately prioritized. Unlike
traditional lexical metrics, HARE incorporates se-
mantic similarity measures tailored to pathology-
specific terminology by incorporating descriptor
and modifier entities, making it robust to linguistic
variations. By capturing both semantic and clini-
cal correctness, HARE offers a more accurate and
reliable evaluation of generated histopathology re-
ports.

The implications of HARE’s performance are
significant. Its strong correlation with expert evalu-
ations indicates that it is a reliable proxy for clini-
cal relevance and accuracy of the generated reports.
HARE can guide iterative improvements in report
generation models, ensuring that future systems
better align with clinical requirements.

5 Conclusion

In this work, we proposed HARE, a novel entity
and relation centric evaluation metric specifically
designed to assess the clinical quality of machine-
generated histopathology reports. HARE addresses
the critical gap in domain-specific evaluation by
prioritizing clinical relevance. HARE effectively
aligns with expert evaluations, outperforming ex-
isting metrics such as ROUGE and RaTEScore.

Our findings reveal that even proprietary mul-
timodal large language models, such as GPT-4o,
struggle to produce clinically accurate histopathol-
ogy reports. Although we have not tested a compre-
hensive list of models trained for histopathology
reports such as HistGen and WsiCaption, HARE
can be a robust framework for evaluating these
models (Guo et al., 2024; Chen et al., 2024). In
the future, we will include histopathology reports
specific models for creating the human evalua-
tion dataset as well as extend HARE models to
a joint NER+RE model to further improve the per-
formance and utility.

HARE’s superior performance underscores the
importance of domain-specific evaluation metrics
in bridging the gap between automated report
generation and clinical expectations. By making
HARE publicly available, along with the annota-
tions and models, we aim to facilitate advance-
ments in both report generation and evaluation
methodologies in histopathology and related fields.

Limitation

Scope of clinical entities and relations: The cur-
rent implementation of HARE primarily addresses
a set of core histopathology entities and relatively
simple binary relations. More nuanced or higher-
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order clinical relationships, as well as rare or emerg-
ing entity types, remain underrepresented. Expand-
ing both the entity and relation taxonomies to better
reflect the complexity of real-world histopathol-
ogy reporting is an important and interesting future
work we plan to explore.

Negation and uncertainty handling: While
HARE captures explicit clinical entities, it does
not yet explicitly handle negation or uncertainty
(e.g., “no evidence of malignancy,” “cannot rule
out invasion”). These linguistic phenomena are
important for accurate clinical interpretation and
could be incorporated into future extensions of the
metric.

Breadth of expert evaluation models: For the
generation of reports used in the expert evaluation,
we utilized only two closed source models, GPT-4o
and GPT-4o-mini. As the primary scope of this
work was the development of the evaluation metric,
a broader evaluation across more generative models
remains to be explored in future work.

Broader Impacts and Ethics Statement

Histopathology reports used in this work were pro-
vided via a study registered with, and approved by,
the NHS Health Research Authority (references
293404 and 23/LO/0253). All histopathology re-
ports were fully de-identified to protect patient pri-
vacy and ensure compliance with ethical standards.
No personally identifiable information was used
in the development of the HARE framework. Our
work does not raise any major ethical concerns.
HARE is designed for evaluation and research pur-
poses only and is not intended for direct use in
clinical decision-making.

While HARE provides a reliable metric for eval-
uating the quality of generated histopathology re-
ports, it does not address potential biases or hallu-
cinations in the underlying text generation models.
Therefore, any use of automated text generation
systems in clinical workflows should include rig-
orous human oversight to mitigate risks, such as
incorrect diagnoses or misleading conclusions.
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Appendix

A Word cloud representations of
radiology and histopathology reports

Figure 3: Word clouds of radiology reports. The radiol-
ogy reports are 1,000 randomly sampled reports from
MIMIC-CXR dataset and IU-X-ray dataset (Johnson
et al., 2019; Demner-Fushman et al., 2016). The size
of each word represents its relative frequency in the
corresponding category.

Figure 4: Word clouds of histopathology reports. The
histopathology reports are 1,000 randomly sampled re-
ports from our datasets. The size of each word repre-
sents its relative frequency in the corresponding cate-
gory.

These visualizations provide insight into the
linguistic differences between radiology and
histopathology reports, highlighting the special-
ized vocabulary and diagnostic focus within each
domain. Larger words represent higher relative
frequency. The word cloud visualization for radi-
ology reports highlights key terms such as "pleu-
ral effusion", "pneumothorax", "cardiopulmonary"
and "atelectasis", indicating these are more com-
mon findings and diagnostic terminology used in
radiology (see Figure 3). Figure 4 illustrates a
word cloud generated from 1,000 randomly sam-
pled histopathology reports from our datasets. Fre-
quent occurring terms such as "tumor", "lymph
node", "B cell", "negative", "biopsy", and "stain-
ing", reflect key features and diagnostic language

used in histopathology reports. Compared to radi-
ology reports, histopathology reports exhibit more
granular terminology related to cellular morphol-
ogy and pathology-specific descriptors.

B Report Examples

We provide example annotated histopathology re-
ports from both the Hospital and TCGA datasets.
These examples illustrate not only the complex-
ity and diversity of histopathology reporting, but
also the breadth of clinically significant entities and
inter-entity relationships captured by our annota-
tion schema. Key entity types include pathological
diagnosis, anatomical site, histological findings,
immunohistochemistry markers, descriptors, and
modifiers.

In addition to highlighting individual entities,
these examples also depict the relationships be-
tween entities, such as associations between
anatomical sites and diagnostic findings, or be-
tween immunohistochemistry results and corre-
sponding pathological diagnoses. Modeling both
entity-level information and their relationships is
essential for accurately representing the clinical rea-
soning process in histopathology and for evaluating
the fidelity of automated report generation.

Visualizing these examples demonstrates the
level of annotation granularity and relational struc-
ture necessary for effective evaluation, and serves
as a benchmark for downstream clinical NLP appli-
cations in entity recognition and relation extraction.

C Empirical anslysis of NER and RE
errors

To empirically assess the impact of errors in NER
and RE, we conducted an ablation study evaluat-
ing several variants of the HARE metric under dif-
ferent entity and relation confidence thresholding
schemes. Specifically, we compared:

1. HARE_ERROR: HARE applied using only
low-confidence (i.e., likely incorrect) NER
and RE outputs by inverting the threshold

2. HARE_No_Threshold: HARE applied with
no confidence threshold, including all pre-
dicted entities and relations

3. HARE_0.7_Threshold: our default approach,
which applies a confidence threshold of 0.7 to
retain only high-confidence entities and rela-
tions

Table 7 presents the results. The
HARE_ERROR variant demonstrates very
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Core biopsies from left level 4 neck lymph node : Classical Hodgkin lymphoma. Supplementary report to follow. Sections show core 

biopsies of a lymph node in which the normal architecture is partially effaced by a mixed infiltrate comprising lymphocytes , histiocytes 

and numerous large atypical cells. The atypical cells have prominent nucleoli and many are multinucleated. There is no necrosis and no 

granulomas are seen. Immunohistochemical staining shows the large atypical cells are strongly positive for CD30 with Golgi 

accentuation. There is also weak positive staining for CD15 and Pax5 . There is no staining for CD20 , CD79a and ALK. CD3 

staining shows the majority of the lymphocytes in the background are medium-sized T-cells. Staining for EBERish is pending. 

Overall the morphological and immunohistochemical features are those of a classical Hodgkin lymphoma. Additional 

immunohistochemical staining shows the large atypical cells are EBERish positive. 

Pathological Diagnosis Anatomical Site Diagnosis Descriptor IHC Modifier Immunohistochemistry

Figure 5: Example of an annotated histopathology report from the Hospital Dataset. The report details a diagnosis of
classical Hodgkin lymphoma in a lymph node, with corresponding entity-level annotations highlighting pathological
diagnosis, anatomical site, immunohistochemical findings, and key descriptors.

Diagnosis: Left kidney, partial nephrectomy due to a 5.1cm unifocal renal cell carcinoma, chromophobe type, Fuhrman grade 3/4. 

No sarcomatoid features identified, and no extra-capsular invasion. Light microscope examination shows solid sheets of eosinophilic and 

clear cells with focal punched-out perinuclear clearing, consistent with the diagnosis of chromophobe carcinoma. Immunostains show 

reactivity for CK7, no reactivity for c-Kit or RCC, supporting a diagnosis of chromophobe carcinoma. 

Pathological Diagnosis Anatomical Site Diagnosis Descriptor IHC Modifier Immunohistochemistry

Figure 6: Example of an annotated histopathology report from the TCGA Dataset. The report presents a case of
left kidney partial nephrectomy for chromophobe renal cell carcinoma, with entity annotations for pathological
diagnosis, anatomical site, diagnostic descriptors, immunohistochemistry markers, and modifiers.

Method r r p-val ρ ρ p-val τ τ p-val R2 RMSE
HARE_ERROR 0.026 0.693 -0.005 0.942 -0.005 0.934 0.001 0.169
HARE_No_Threshold 0.567 4.89e-21 0.629 7.86e-27 0.513 4.00e-24 0.321 0.139
HARE_0.7_Threshold 0.606 1.39e-24 0.643 2.62e-28 0.533 1.51e-24 0.368 0.134

Table 7: Comparison of evaluation methods based on Pearson correlation (r), Spearman (ρ), and Kendall’s τ
with their p-values, and regression performance (R2 and RMSE). Methods are sorted by Pearson correlation r.
HARE_ERROR is the one with inverted confidence threshold. HARE_No_Threshold is the one without threshold.
HARE_0.7_Threshold is our method.
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poor correlation with expert scores across all
statistical measures, underscoring the critical im-
portance of accurate entity recognition and relation
extraction. Removing the threshold altogether
(HARE_No_Threshold) moderately improves
performance but still underperforms relative to
our approach. The HARE_0.7_Threshold, our
approach, achieves the highest correlation and
lowest RMSE, validating our choice of threshold
and the metric’s design, which effectively mitigates
the impact of noisy or uncertain predictions.

These findings highlight that HARE’s strong
correlation with expert assessments depends crit-
ically on accurate entity recognition and relation
extraction. It also shows that the chosen confidence
thresholding scheme is a key mechanism for main-
taining robustness to NER and RE errors.

D GPT4.1 Prompt

We designed the prompt for GPT4.1 analysis for
the expert evaluation of the machine-generated
histopathology reports 7.
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Prompt for GPT-4.1

Act as a histopathologist.
Review the following candidate report’s similarity score to the ground truth report. Just report the
numerical score.
The following is the scoring system and the rationale for each score level:
- Scores 5 (Perfect match with ground truth): This score is assigned to reports that are identical to the
reference report in terms of both diagnostic accuracy and histopathological descriptions.
- Scores 4 (Perfect match diagnosis with at least one wrong description): This score is assigned to
reports that correctly identify the diagnosis, but contain at least one minor error in histopathological
descriptions. These errors may involve inaccurate terminology or missing morphological features.
Although these reports provide a reliable diagnosis, an incomplete or incorrect description reduces
their overall quality.
- Scores 3 (Correct diagnosis): This score is assigned to reports that accurately determine the correct
diagnosis but do not provide any of the detailed histopathological descriptions in the ground truth.
- Scores 2 (Broadly correct diagnosis): This score is assigned when reports correctly identify the
general disease category but do not specify the exact diagnosis. For example, a report may correctly
classify a tumor as malignant but does not differentiate between specific subtypes. These reports
provide a useful but incomplete diagnosis, which limits their clinical applicability.
- Scores 1 (Incorrect diagnosis with some of the histopathological descriptions matching the ground
truth): This score is assigned when the report fails to provide the correct diagnosis but includes
practical histopathological descriptions that align with the reference report. While some microscopic
features are correctly described, the overall diagnostic conclusion is incorrect, greatly reducing the
clinical reliability and utility of the report.
- Scores 0 (Incorrect diagnosis with no histopathological descriptions matching with ground truth):
This score is assigned to reports that provide neither a correct diagnosis nor any histopathological
descriptions that align with the ground truth. These reports fail to recognize key pathological features
and do not contribute to an accurate clinical assessment, making them completely unreliable.

Ground Truth : {Ground Truth Report}
Candidate Report: {Candidate Report}

Figure 7: Prompt templates used for GPT-4.1 analysis.
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