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Abstract

The growing capabilities of Large Language
Models (LLMs) show significant potential to
enhance healthcare by assisting medical re-
searchers and physicians. However, their re-
liance on static training data is a major risk
when medical recommendations evolve with
new research and developments. When LL.Ms
memorize outdated medical knowledge, they
can provide harmful advice or fail at clinical
reasoning tasks. To investigate this problem,
we introduce two novel question-answering
(QA) datasets derived from systematic reviews:
MedRevQA (16,501 QA pairs covering general
biomedical knowledge) and MedChangeQA (a
subset of 512 QA pairs where medical consen-
sus has changed over time). Our evaluation
of eight prominent LLMs on the datasets re-
veals consistent reliance on outdated knowl-
edge across all models. We additionally an-
alyze the influence of obsolete pre-training
data and training strategies to explain this phe-
nomenon and propose future directions for mit-
igation, laying the groundwork for developing
more current and reliable medical Al systems.

1 Introduction

The advent of pre-trained Large Language Mod-
els (LLMs) has revolutionized the field of Natural
Language Processing (NLP) (Naveed et al., 2025).
One of their most promising application domains is
healthcare, where they hold the potential to democ-
ratize access to health services and assist in crucial
clinical workflows (Thirunavukarasu et al., 2023;
Ayers et al., 2023; Liu et al., 2025).

LLMs are trained to predict the next token on
massive amounts of text data, which results in
deeply encoding a lot of knowledge in their weights
(Dhingra et al., 2022; Chang et al., 2024). Recent
studies suggest that LLMs encode clinical knowl-
edge effectively (Singhal et al., 2023; Zhang et al.,
2025), by being trained on medical texts like pa-
tient records and clinical guidelines. The model’s
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Figure 1: Average F1 scores of five LLMs on medical
questions originating from different years in our dataset.
The performance decline as questions get more recent
points to stronger memorization of older knowledge.

ability to recall specific facts from this data is often
referred to as memorization (Carlini et al., 2022).
World knowledge quickly evolves in dynamic
domains like entertainment or politics. However,
this also happens with scientific knowledge. In
medicine, new high-quality evidence constantly
emerges, rendering previous recommendations ob-
solete (Hodder et al., 2024). Consequently, the
knowledge memorized by an LLM at its training
time can become outdated, as they struggle to keep
up with the evolving world knowledge (Zhang et al.,
2023). This is a major safety concern, as it can
lead to LL.Ms providing consumers with incorrect
health advice (Li et al., 2023; Ong et al., 2024) or
fail in clinical settings when using flawed facts in
their reasoning (Hager et al., 2024). Even when
augmented with retrieved up-to-date information,
LLMs can reject it and resort to internal knowledge
in so-called knowledge conflicts (Xu et al., 2024).
While recent work has explored the memoriza-
tion of outdated knowledge in the encyclopedic do-
main (Vu et al., 2024; ChenghaoZhu et al., 2025),
the temporal decay of medical knowledge has been
less explored. To address this critical gap, we con-
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struct new datasets and use them to evaluate mem-
orization of outdated medical knowledge:

¢ We introduce MedRevQA, a new dataset of
16,501 QA pairs from medical systematic re-
views; and MedChangeQA, a subset of 512
pairs where answers have changed over time.

* We benchmark eight LLMs on our datasets,
demonstrating that all models exhibit memo-
rization of outdated medical information.

* We provide in-depth analysis, including trac-
ing outdated knowledge to the training data,
and discuss promising mitigation strategies.

The datasets and code are publicly available.'

2 Related Work

NLP has a wide array of applications to the biomed-
ical field (Wang et al., 2023) and LLMs have shown
great potential in various medical tasks and clinical
applications (Thirunavukarasu et al., 2023). A pop-
ular task within NLP for healthcare is biomedical
question answering (BQA) (Jin et al., 2022; Nen-
tidis et al., 2024). BQA is seen as a good proxy for
evaluating how well LLMs encode and recall medi-
cal knowledge (Subramanian et al., 2024; Singhal
et al., 2023, 2025) — therefore, we use it as our
main task. The most similar QA dataset in con-
struction is MedREQAL (Vladika et al., 2024b),
but we majorly expand the scope and the purpose.

Recent work has explored how to measure mem-
orized training examples in LLMs (Jagielski et al.,
2023; Maini et al., 2024; Kassem et al., 2025). Sim-
ilarly, temporal QA datasets have been constructed
to investigate quickly changing knowledge, mostly
focusing on the general, encyclopedic domain (Ka-
sai et al., 2023; Vu et al., 2024; Li et al., 2024).

To the best of our knowledge, we introduce the
first QA dataset focusing on knowledge change
specifically for the medical domain and the first
investigation of how much outdated medical knowl-
edge popular LLLMs encode.

3 Dataset

Systematic Literature Reviews (SLRs). Our
dateset is constructed from medical SLRs, stud-
ies which aim to bring evidence together to answer
a pre-defined research question. This involves the
identification of primary research relevant to the

"https://github.com/jvladika/MedChange

Question: Does long-term antibiotic use help prevent
recurrent urinary tract infections in children?

Conclusion: Long-term antibiotics may reduce the
risk of repeat symptomatic UTI in children who have had
one or more previous UTIs but the benefit may be small
and must be considered together with the increased risk
of microbial resistance. (...) [Williams, 2019]

Verdict: Supported

Question: Does long-term antibiotic use help prevent
recurrent urinary tract infections in children?

Conclusion: Large, properly randomised, double
blinded studies are needed to determine the efficacy of
long-term antibiotics for the prevention of UTI in suscep-
tible children. (...) [Williams, 2011]

Verdict: Not Enough Information

Table 1: Example of two instances from our dataset,
showing how the verdict changed through time as new,
higher quality evidence was discovered.

question, the critical appraisal of this research, and
the synthesis of the findings (Kolaski et al., 2023).
SLRs are considered the highest quality evidence in
the medical "hierarchy of evidence" (Wallace et al.,
2022). We use SLRs to construct a QA dataset
because their clear structure and strict criteria used
for decisions make them a well-suited proxy for
evaluating the state of encoded medical knowledge.
We use the SLRs from Cochrane Collaboration
(Cumpston et al., 2022), which is the most well-
known international organization specializing in
the construction of SLRs. Many Cochrane SLRs
are updated as new evidence for a question arises.

Dataset Construction. PubMed, the largest
database of medical publications (White, 2020),
contains all the Cochrane systematic review ab-
stracts from 2000 to 2024 (until January 2024,
when we scraped). We built a Python scraping
script using BeautifulSoup and scraped all the
Cochrane SLR abstracts.” Every SLR in the dataset
consists of the same sections: Background, Ob-
Jectives, Search methods, Selection criteria, Data
collection and analysis, Main results, and Authors’
conclusions. Our final QA dataset consists of ques-
tions and labels. We used gpt-40-mini-2024-07-18
to semi-automatically construct the questions and
labels, by providing it with the full SLR abstract.
Questions were derived from the Objectives sec-
tion, by rewriting them to the interrogative form.
Labels originate from the Authors’ conclusions sec-

2https ://pubmed.ncbi.nlm.nih.gov/?term=
%22Cochrane+Database+syst+rev%22%5BJournal%5D
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tion — the LLM selects one of the labels Supported,
Refuted, or Not Enough Information (NEI), as the
final label. These labels align with common labels
in other medical QA and fact-checking datasets
(Glockner et al., 2024b; Vladika et al., 2024a). In
total, this dataset has 16,501 QA pairs, spanning vir-
tually all medical disciplines and covering a wide
array of important biomedical questions for bench-
marking. We call this dataset MedRevQA.

Changed Knowledge. Our dataset consists of
16,501 SLR records. Out of those, 12,122 are
unique SLRs that have never had an update. The
remaining 4379 SLRs constitute 1535 groups (with
a minimum of 2 SLRs in a group, a maximum of 9,
and a mean of 2.85) that researched the same ques-
tion. This means there are 1535 research questions
that have had multiple SLR iterations written about
them. Out of 1535, 512 have had a verdict change
over time, meaning that the authors changed the
conclusion of the investigated research question in
a follow-up SLR study, when they acquired updated
evidence from research. This follows findings from
medical research studies that have shown how 20
to 30% of Cochrane reviews change their conclu-
sions throughout time (Hughes et al., 2012; Babié
et al., 2022). We consolidate these questions with
changed verdicts into the MedChangeQA dataset
and collect all their verdicts through different itera-
tions. MedChangeQA has questions, latest label,
and (the most recent) outdated label for those stud-
ies where the label changed.

Annotation Quality. Two annotators, one who
is our in-house physician from the university clinic
and another an author with a background in biomed-
ical engineering, evaluated a random subset of 100
examples for the correctness of generated ques-
tions and verdicts. They found 95% of questions
and 92% of labels to be correct. We deem this to
be relatively high, since even the human annotation
process is imperfect (Klie et al., 2023), with errors
due to incorrect problem understanding or loss of
concentration. A common source of label errors
was conflating Refuted and NEI labels. On the
other hand, all 512 labels in MedChangeQA were
manually checked and corrected by the two anno-
tators. Therefore, MedRevQA has silver labels,
while MedChangeQA has gold labels.

Dataset Description. In total, MedRevQA has
16,501 questions, of which 6499 are Supported,
3124 are Refuted, and for 6878 there is Not enough

information. In MedChangeQA, for the 512 ques-
tions with changed verdicts, the newest labels have
a 221/131/160 ratio for S/R/NEI, and the outdated
labels are at 152/123/237 for S/R/NEI, showing
how the most common change is from not having
enough information to becoming supported or re-
futed by relevant research. Still, some questions
can go from support/refute to inconclusive findings
with more research (see an example in Table 8).

4 Experimental Setup

The experiments consisted of instructing the LLMs
to predict one of the three labels (S/R/NEI), given
the medical question as input. No additional con-
text was provided, as the goal is to evaluate their
internal knowledge and memorization. The mod-
els also explained their output. For evaluation, we
extract the predicted label and compare it to ground-
truth labels from the dataset, using the (macro-
averaged) precision, recall, and F1 scores.

We test multiple LLMs, starting with GPT-
40 (2024-08-06), as the most popular propri-
etary LLM. We also benchmark four open-weights
LLMs: Mistral 24B, Llama 3.3 (70B), Qwen 2.5
(7B), DeepSeek-V3 (685B); and finally the fully
open-source OLMo 2 (13B). See Appendix B for a
summary of public info on their pre-training data.

To compare general-purpose LLLMs to domain-
specific ones, we also benchmark the performance
of PMC-LLaMa 13B (Wu et al., 2023), an exten-
sion of Llama 2, and BioMistral 7B (Labrak et al.,
2024), an extension of Mistral-v0.2; both further
pre-trained on biomedical research papers.

All prompts can be found in Table 6. GPT 40
was prompted through the OpenAl API. The four
general-purpose models were prompted via the API
of Together Al. Two biomedical LLMs were run lo-
cally (in an 8-bit quantized version) on one Nvidia
V100 GPU with 16 GB VRAM, for two computa-
tion hours. The token limit was set to 512 and the
temperature to 0 to maximize deterministic outputs.

5 Results

Experiment Rounds. We first test (a) the full
dataset, MedRevQA. We also did two experiments
on MedChangeQA, first with (b) outdated labels as
ground truth, then with (c) latest labels as ground
truth. We use the difference between the scores of
(b) and (c) as a proxy to show the extent of outdated
medical knowledge in LLMs. Final results are
systematized in Table 2, measured by macro P, R,
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(a) Full Dataset (16.5k)

Changed Knowledge Dataset (512)

Release (b) Outdated Lab. | (c) Latest Labels 1 F1 Outdated

Date P R F1 P R F1 P R F1 diff. | Answers
GPT-40 2024-05-13 | 52.6  45.1 42.9 455 389 34.1 352 345 31.1 | -3.0 39.4%
Mistral 24B 2025-01-30 | 50.6 46.3 45.7 382 376 339 | 369 355 337 | -02 38.7%
Llama 3.3 70B | 2024-12-06 | 52.7 459 39.3 389 366 267 | 428 393 341 | +74 32.2%
Qwen 2.57B 2024-09-19 | 46.4 423 38.7 426 37.1 308 | 27.1 308 260 | -4.8 35.4%
Deepseek V3 2024-12-26 | 56.2 46.2 43.8 432 386 339 | 402 351 322 -1.7 40.6%
OLMo 2 13B 2024-11-24 | 43.5 425 37.9 362 353 293 | 355 357 332 | 429 32.0%
PMC-Lm 13B | 2023-08-28 | 39.5 37.6 36.5 419 398 359 | 345 343 331 | -2.8 37.3%
BioMistral 7B | 2024-02-19 | 41.2 41.5 40.9 36.8 372 363 | 354 355 353 | -15 37.1%

Table 2: Final results of eight LLMs, measured by macro Precision (P), Recall (R), and F1. Experiments include (a)
the full dataset; and the changed knowledge dataset, using (b) outdated labels and (c) latest labels as ground truth,
respectively. The final column is the percentage of answers in (b) where an outdated label was predicted.

and F1. The last column shows the percentage
of answers in the 3rd experiment (c) where the
outdated label was predicted (and not the correct
latest label or an incorrect label altogether).

Performance. On the full dataset, Mistral exhib-
ited the best R and F1, showing it has the best
overview of the overall medical knowledge land-
scape. Precision was the highest in Deepseek-V3.
Nevertheless, none of the models has a very high
performance, pointing to the challenging nature of
MedRevQA as a general biomedical QA testbed.

When it comes to outdated knowledge, Llama
3.3 had the highest degree of the latest knowledge
as compared to the outdated labels (+7.4), while
OLMo also had a positive difference (+2.9). Mis-
tral showed an almost identical performance, while
GPT, Qwen, DeepSeek, and PMC-Llama all strug-
gled. Qwen was also the smallest and least capable
model, which could explain low scores in general
and low awareness of recent knowledge.

An example of outdated and incorrect knowl-
edge is shown in Table 7 in Appendix. Additionally,
Figure 1/4 shows how the average F1 across LLMs
on questions from different years on MedRevQA
declines in more recent years, as all post-2016 av-
erage scores are lower than any beforehand. A
similar drop in LLM performance on more recent
medical questions was found by Park et al. (2025).

6 Discussion and Analysis

Pre-training Data. Most popular LLMs do not
fully disclose their pre-training data, making it diffi-
cult to assert if concrete medical studies were mem-
orized. Still, recent studies demonstrated empiri-
cally the presence of memorized medical datasets
(Gallifant et al., 2024; Yang et al., 2024). We also
saw a tendency of models to explicitly mention spe-
cific studies in their answers, including Cochrane

reviews, many of which were decade-old (see Table
8), thus displaying outdated memorized knowledge
(see Table 4). We outline pre-training corpora of
used LL.Ms in Appendix B, and for the fully open
OLMo, we show the presence of all used SLRs
in its pre-training corpus, with earlier ones being
more prevalent (Figure 2).

Inspection of OLMo. OLMo 2 (OLMo et al.,
2025) is trained on the Dolma corpus (Soldaini
et al., 2024), a fully open dataset containing around
3 trillion tokens. It contains the peS20 (Soldaini
and Lo, 2023) and S20RC (Lo et al., 2020) cor-
pora that constitute the academic knowledge base
Semantic Scholar. This database also indexes all of
Cochrane’s systematic literature reviews.®> There-
fore, we can with high certainty say that the OLMo
models have seen Cochrane’s SLRs during its pre-
training. Other than in the two academic corpora,
there is a wide presence of these SLRs in other parts
of the dataset, especially various online websites
found in Common Crawl (Dodge et al., 2021).

Mentions of SLR titles from different years
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Figure 2: N-gram counts per the year of studies in
Dolma, the pre-training corpus of OLMo.

We used Infini-gram (Liu et al., 2024), an n-

3https ://www.semanticscholar.org/venue?name=
Cochrane%20Database%200f%20Systematic%20Reviews
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gram language model that can be used to query
Dolma and other pre-training corpora,* to inspect
the presence of Cochrane’s SLRs. Searching for
"Cochrane Database of Systematic Reviews" (the
exact journal name, case-sensitive) returns 144,493
hits for Dolma v1.7 (used for OLMo 2). Addition-
ally, we queried the title of each of the SLR studies
found in MedRevQA and report on the mean and
median amount of n-gram counts per year in Figure
2. The mean and median almost steadily decrease
over years, meaning that the most mentioned and
discussed studies are the earliest ones since they
have had more time to spread throughout the web.
The higher frequency of mentions can lead to to
stronger encoding of outdated knowledge in LLM:s.

Mentions of Specific Studies In Table 4, we
show the number of mentions of some common
terms referring to specific medical studies (such as
systematic review, meta-analysis, journal), across
all LLM answers on MedRevQA questions. This
shows how models tend to cite specific studies
when providing some of their answers, which is
useful for source attribution, but becomes prob-
lematic when the referred studies are outdated and
deprecated. It is notable how GPT overwhelm-
ingly resorted to using general phrasing such as
"studies have shown a positive effect..." without
specifying what studies exactly it is referring to.
This likely comes from its final alignment and
preference-learning phase, where a particular an-
swering style is learned.

Potential Explanations. We hypothesize some
reasons for the presence of strongly encoded out-
dated knowledge. Firstly, older scientific findings
have been around for a longer time and have already
permeated the Internet, news, follow-up studies,
and are present in pre-training corpora. Addition-
ally, scientific findings are often misrepresented
online (Glockner et al., 2024a; Wiihrl et al., 2024),
so faulty medical knowledge could get encoded.
Secondly, LLM memorization rate has been cor-
related in past work with various training parame-
ters, such as learning rate (Tirumala et al., 2022),
model size (Biderman et al., 2023), or frequency
of appearance in training data (Carlini et al., 2023).
Therefore, it is possible that Llama had the highest
data quality and more weight during training put
on more recent text, leading to less outdated knowl-
edge. Finally, the cutoff of all models is 2023, and

4https://huggingface.co/spaces/liujch1998/
infini-gram

the vast majority of "latest labels" are from before
2023 (see Figure 3). Cutoff could explain the drop
in 2023/2024 (Figure 1) but not earlier years.

800 4
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400

Question Count

200

Year of "Latest Label"

Figure 3: Distribution of the year of "Latest Label" —
the label of the most recent study for a given question

Future Directions. One way to overcome out-
dated knowledge is using retrieval-augmented gen-
eration (RAG). We show in Appendix A how a
simple retrieval strategy (with the first PubMed
result added to prompt) can already bring improve-
ments. Still, LLMs can hallucinate extra informa-
tion even in RAG settings (Adlakha et al., 2024) or
not follow the provided references (Liu et al., 2023).
Therefore, advanced RAG techniques are needed
(Yu et al., 2024), including filtering and re-ranking
of retrieved evidence by recency and source qual-
ity. Future work could also investigate more nu-
anced labels or long-form answer generation with
explanations. Other promising directions for miti-
gation of memorized knowledge include: resolving
knowledge conflicts (Wang et al., 2024b), machine
unlearning (Yao et al., 2024; Gao et al., 2025),
knowledge editing (Wang et al., 2024a; Jiang et al.,
2024), and continual learning (Shi et al., 2024).

7 Conclusion

We introduce two new QA datasets constructed
from rigorous biomedical SLRs for benchmarking
the general biomedical knowledge of LLMs. With
a subset of 512 questions where the answer (ver-
dict) changed over the years, we showcase how
eight popular LLMs fare better on older medical
knowledge and encode a considerable amount of
outdated knowledge labels, which can hinder their
usability in healthcare settings, including helping
physicians, researchers, and patients. We outline
future work directions and hope our datasets will
serve as a challenging testbed for tackling the LLM
memorization of outdated knowledge.
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Limitations

Most of the MedRevQA dataset introduced in
this study was constructed semi-automatically, by
scraping the content and using an LLM to generate
the question and label. It is possible that some of
the generated questions and labels are imperfect.
Our manual analysis of 100 randomly selected in-
stances showed that the performance is 92-95%
correct, for labels and questions, respectively. We
considered this to be a good enough performance,
considering that even human annotation is not al-
ways perfect. MedRevQA should be interpreted as
having silver labels and used as such.

We use the difference in F1 scores between the
predicted labels when using "outdated labels" and
"latest labels" as ground truth, as a proxy for eval-
uating the degree of encoded outdated medical
knowledge. This is not a perfect measure since
it is possible that the LLM predicted an incorrect
label due to some logical error or misinterpreting
the question. Still, our manual inspection of a
large number of generated labels and explanations
showed that outdated references were indeed the
most common explanation for the label mispredic-
tion, and models often referred to old SLRs and
meta-analyses, dating back many years.

Given the quickly evolving landscape of new
LLMs, some of the LLMs we evaluate can get
outdated and deprecated quickly. Additionally, we
do not test all the relevant models since some were
not available or computationally too expensive for
us to run. Due to a lack of resources, our study also
lacks a deeper human evaluation of the generated
model labels with medical experts, which could
have given a more rigorous evaluation.

Ethics Statement

The work presented in this study focuses on the
sensitive fields of healthcare and medical AI. We
predict answers to questions in a zero-shot setting
to uncover their internal encoded medical knowl-
edge for research purposes, but this is not suitable
for end users or patients. Some responses can in-
clude inaccuracies and misleading medical advice,
which should be critically evaluated and verified
with reliable sources or medical professionals.

The original text of Cochrane’s systematic lit-
erature review abstracts belongs to the Cochrane
Collaboration. We will release only the generated
questions and label pairs under an open license,
and respect the copyright of Cochrane’s work.
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A Simple RAG Improvement

Common ways to address the outdated knowledge
with knowledge editing include continual learning
methods and external search augmentation. We do
a simple experiment using a retrieval-augmented
method. For each of the 512 questions in Med-
ChangeQA, we query the PubMed API and take
the abstract of the Top 1 result, and append it to the
main prompt as an additional context. Results are
shown in Table 3. This improves the F1 scores by a
margin of 3—16 and partially closes the gap, but still
leaves a lot of room for improvement. This serves
as a simple demonstration of one way to address
the outdated knowledge — future work could focus
on retrieving more documents, using structured and
focused search queries (like searching for SLRs),
semantic search, graph RAG, learning to re-rank
and avoid conflicts, etc. Additionally, methods of
continual learning and fine-tuning could be used,
with MedChangeQA serving as a testbed to mea-
sure the rate of success of the proposed techniques.

P R F1 | Improv. F1
GPT 40 434 402 398 +8.7
Mistral 475 415 39.6 +5.9
Llama 3.3 | 44.1 423 3838 +4.7
Qwen 433 437 422 +16.2
Deepseek | 40.7 393 354 +3.2

Table 3: Performance improvements with the abstract
of the top PubMed paper included in prompt.

B Pre-Training Data of LLMs

This section provides an overview of what is pub-
licly known about pre-training data for the used
LLMs, as reported in their technical reports or offi-
cial documentation:

* Llama 3.3: Pretrained on approximately 15
trillion tokens of data sourced from publicly
available online sources. The exact compo-
sition and breakdown of the dataset are not
detailed, but Meta emphasizes that the data is
"a new mix" of public internet data. The data
cutoff for pretraining is December 2023.

» Mistral 24B The official technical report and
available documentation do not provide ex-
plicit details about the pre-training corpus for
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Mistral 24B. However, Mistral’s models are
generally known to be trained on large-scale,
diverse datasets, often including filtered web
data, code, and other standard sources, but no
specifics are publicly disclosed for the 24B
version in the sources provided.

GPT 4o It was trained on data up to October
2023, sourced from a "wide variety of mate-
rials," including: (a) publicly available data
(web pages, ML datasets, common crawls),
(b) proprietary data (obtained via data partner-
ships, e.g., paywalled content, archives, meta-
data), (c) key dataset components (web data,
code and math data, multimodal data). The
dataset underwent safety filtering to remove
harmful content, personal information, and
explicit material. OpenAl does not provide a
detailed breakdown of dataset proportions or
specific sources.

Qwen 2.5 It was trained on up to 18 trillion
tokens of data. The dataset is described as
"large-scale" and "high-quality," but the tech-
nical report does not specify the exact sources.
The data is designed to provide a strong foun-
dation for common sense, expert knowledge,
and reasoning. Qwen 2.5 also supports mul-
tilingual capabilities across more than 29 lan-
guages.

DeepSeek V3 It was trained on 14.8 trillion
tokens of "diverse and high-quality" data. The
dataset construction focused on: an increased
ratio of mathematical and programming sam-
ples, multilingual coverage, and a data pro-
cessing pipeline optimized for diversity and
minimal redundancy. The technical report
does not provide a granular breakdown of data
sources but highlights the focus on math, code,
and multilingual content.

OLMo 2 is trained on the Dolma corpus (Sol-
daini et al., 2024), a fully open dataset con-
taining around 3 trillion tokens. This is a high-
level breakdown of the composition of the
pre-training corpus: Common Crawl (2,479
billion tokens), GitHub (411 billion tokens),
Reddit (89 billion tokens), Semantic Scholar
(70 billion tokens), Project Gutenberg (6.0 bil-
lion tokens), Wikipedia and Wikibooks (4.3
billion tokens).



« PMC-Llama and BioMistral use the base
models of Llama and Mistral as described
before, but were then further pre-trained on
abstracts of biomedical publications from
PubMed and full publications from PubMed
Central. As described in our paper, PubMed
contains all the abstracts of Cochrane system-
atic reviews, which means all the Cochrane
SLRs from our dataset were a part of training.

C Mentions of Common Terms

Table 4 show the count of how many times were
some common terms mentioned in answers of the
eight evaluated LLMs to 16,501 questions from
the MedRevQA dataset. These terms include those
that signal a mention of specific studies used as
a reference for the answer, such as systematic re-
view, meta-analysis, journal, or Cochrane since
that is the publishing organization, from which
our questions and labels originate. We also in-
cluded the generic term studies, which is often
mentioned in those answers that do not refer to
specific studies but only give a general statement
such as "Many studies have shown that...". The
use of this generic term was especially common in
GPT-40, which mentioned specific studies the least.
The two biomedical LLMs, BioMistral and PMC-
Llama, which were further pre-trained on full texts
of biomedical publications from PubMed Central,
also tended to cite specific studies the most.

D Prompts and Examples

This Appendix section provides additional material
for the study, including the model prompts in full
length (Tables 5 and 6) and example questions and
model answers (Tables 7 and 8). Figure 4 shows a
larger version of the plot of the average F1 score
for tested LLMs on questions over the years.
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Llama 3.3 Mistral GPT-40 Qwen2.5 Deepseek OLMo2 BioMistral PMC-L
"Cochrane" 51 783 2 629 901 283 2067 2344
"systematic 221 1664 623 3194 3046 531 3990 4956
review"
"meta-analysis" 844 3511 714 4180 2776 981 4253 4618
"journal” 53 689 7 4620 448 196 574 624
"studies” 7024 12419 13493 12516 13421 6615 7598 9720

Table 4: Number of answers (out of 16,501) from each tested LLM where the respective terms were mentioned.
This shows the tendency to refer to and cite relevant medical studies that were memorized during pre-training. Two
biomedical models, which were pre-trained on biomedical publications, also refer to specific studies the most.

Use Case Prompt Content
Question & Label SYSTEM: You’re a helpful assistant. Your task is to help with generating questions
generation and labels in the medical and clinical domain.

USER You will be given an excerpt of an abstract of a clinical systematic review.
Based on the given background, objectives, and author’s conclusions, generate
only ONE SINGLE question, answerable with yes/no/uncertain, that sums up the
main medical objective that was investigated. Please keep the question short and
general and use the "Objectives" section to construct the question. The question
should be about a general medical hypothesis, not about this specific review.
Afterwards, please also give a label for the author’s conclusions. The label tries
to answer the objective by looking at the conclusion. The label may be ONLY
from one of the following three: (1) SUPPORTED; (2) REFUTED; (3) NOT
ENOUGH INFORMATION. Do not try to make up a new label. Please only
select the third label if not enough evidence was found to reach a verdict, not if
the certainty of the conclusion is low! Please aim to predict "SUPPORTED" or
"REFUTED" even if the certainty of these conclusions by the authors is low or
moderate.

Please structure the output in two lines, as:

QUESTION: (question)

LABEL: (label)

The documents begins now.

Table 5: Overview of applied prompts for data generation and annotation.
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Model Prompt

PMC-LLaMa Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.
### Instruction: Based on your best current knowledge, please answer the
following medical question. If you think there is not enough evidence to answer,
then say so. Please answer the question with "SUPPORTED" or "REFUTED"
or "NOT ENOUGH INFORMATION". Briefly explain your answer.
### Input: {question}
### Response:

BioMistral <s>[INST] Based on your knowledge, please answer this clinical question only
with SUPPORTED (if the question is supported by the clinical research) or
REFUTED (if the hypothesis is refuted by the current clinical research) or NOT
ENOUGH INFORMATION (if there is insufficient evidence for the question in
current research). Please give your output in form of LABEL: (label) . Briefly
explain your answer.
QUESTION: {question}
[/INST]

Mistral 24B, SYSTEM You are an Al assistant helping answer clinical and medical questions

Llama 3.3, GPT- based on your best knowledge.

40, Qwen 2.5, AGENT Please answer this clinical question only with SUPPORTED (if the

DeepSeek-V3 question is supported by the clinical research) or REFUTED (if the hypothesis
is refuted by the current clinical research) or NOT ENOUGH INFORMATION
(if there is insufficient evidence for the question in current research). Please
give your output in form of LABEL: (label) . Briefly explain your answer.
QUESTION: {question}

Table 6: Prompts used for each of the LLMs in experiments.

Question Is routine malaria chemoprophylaxis beneficial for people with sickle cell disease in malaria-endemic
areas?

Conclusion (...) It is beneficial to give routine malaria chemoprophylaxis in sickle cell disease in areas where malaria
(Latest) is endemic. (Oniyangi, 2019) [label: Supported]

Conclusion (...) There is very little direct evidence to support or refute giving routine chemoprophylaxis in sickle cell
(Outdated) disease in areas where malaria is endemic. (Oniyangi, 2006) [label: Not Enough Information]

GPT-4o Routine malaria chemoprophylaxis is beneficial for people with sickle cell disease in malaria-endemic
areas. Clinical research indicates that individuals with sickle cell disease are at increased risk for severe
malaria and its complications. Chemoprophylaxis can reduce the incidence of malaria and its associated
morbidity in this vulnerable population, thereby improving health outcomes. [predicted: Supported]

Llama 3.3 Current clinical research suggests that routine malaria chemoprophylaxis is not recommended for people
with sickle cell disease in malaria-endemic areas, as the risks associated with long-term prophylaxis may
outweigh the benefits, and other preventive measures such as insecticide-treated bed nets and prompt
treatment of malaria episodes are preferred. [predicted: Refuted]

Mistral 24B  Routine malaria chemoprophylaxis is generally recommended for people with sickle cell disease living in
malaria-endemic areas. This is supported by clinical research indicating that malaria infections can trigger
sickle cell crises and other complications. Chemoprophylaxis helps reduce the risk of malaria, thereby
decreasing the frequency of these crises and improving overall health outcomes. [predicted: Supported]

Table 7: Example of a question and two labels, one outdated and one recent from our dataset. Answers show how
GPT and Mistral capture the latest and up-to-date knowledge for this question, while Llama predicted incorrect and
outdated recommendations.
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Question Do probiotics reduce the risk of necrotising enterocolitis in very preterm or low birth weight infants?

Conclusion Enteral supplementation of probiotics prevents severe NEC and all cause mortality in preterm infants. Our
(Outdated) updated review of available evidence strongly supports a change in practice. (...) (AlFaleh et al., 2014)
[label: Supported]

Conclusion Given the low to moderate certainty of evidence for the effects of probiotic supplements on the risk of NEC

(Latest) and associated morbidity and mortality for very preterm or VLBW infants, and particularly for extremely
preterm or ELBW infants, there is a need for further large, high-quality trials to provide evidence of
sufficient validity and applicability to inform policy and practice. (Sharif et al., 2023) [label: Not Enough
Information]

Mistral 24B  Several clinical studies and meta-analyses have shown that probiotic supplementation in very preterm or
low birth weight infants can reduce the risk of necrotizing enterocolitis (NEC). A Cochrane review from
2014 has supported this finding, indicating that probiotics can be beneficial in preventing NEC in this
vulnerable population. [predicted: Supported]

Table 8: Example of a study objective that had the Supported label in its 2014 version and an updated Not enough
information label in its 2023 version. Mistral cited the more than decade-old study to supports its answer.
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Figure 4: Larger version of the previous figure (Fig. 1): Average F1-Macro performance for questions originating
from each year in the dataset across five LLMs, showing decline in more recent years.
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