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Abstract

Graphical User Interface (GUI) interaction,
which aims to develop an intelligent GUI agent
that executes user instructions to perform tasks
such as installing applications by controlling
digital devices, has gained significant atten-
tion due to its practical value. Although cur-
rent advanced multimodal large language mod-
els (LLMs) provide GUI agents with robust
perception and reasoning capabilities, they of-
ten struggle with the precise localization of
small elements. To tackle this problem, we
propose INREACT, a multimodal GUI agent
framework that unifies observing, thinking, and
acting for precise and interpretable decision-
making. It is trained via a two-stage process:
curriculum learning to progressively build per-
ception, grounding, and reasoning abilities,
followed by reinforcement learning to refine
pixel-level grounding with an outcome-based
reward. We introduce a rule-based reward func-
tion that jointly optimizes action-type selection
and pixel-level localization accuracy. Experi-
mental results on multiple datasets demonstrate
the superiority of INREACT in both grounding
and navigation tasks.

1 Introduction

Graphical User Interface (GUI) interaction refers
to a class of sequential decision-making tasks in
which agents interpret user instructions and manip-
ulate digital interfaces, including PCs and mobile
devices, to accomplish specific goals. These inter-
actions typically involve executing low-level opera-
tions like Click, Type, or Scroll in the correct order
to complete complex tasks, such as searching for
information. A capable GUI agent must possess
two core abilities: visual observation and reasoning.
Observation is particularly critical in GUI environ-
ments like PCs and mobile devices, where visual

*Equal Contribution
†Corresponding author

Figure 1: Overview of the INREACT interaction

components are often densely packed and visu-
ally similar, making precise localization challeng-
ing. Meanwhile, reasoning is essential for complex,
goal-directed interactions that involve sequential
decision-making. Unlike single-step tasks, GUI in-
teraction requires agents to consider both interface
states and past actions. With the emergence of pow-
erful multimodal large language models (MLLMs)
(Wang et al., 2024c; Bai et al., 2025; Chen et al.,
2023; Luo et al., 2024), recent approaches have
enabled screenshot-based GUI control without re-
lying on structured metadata such as HTML or
accessibility trees (Zhang et al., 2025; Wang et al.,
2024b). However, despite these advances, existing
GUI agents still struggle with accurate grounding
and coherent reasoning in complex, real-world sce-
narios.

To address the challenges of imprecise ground-
ing and weak multi-step reasoning, recent efforts
have focused on training MLLM-based GUI agents
via supervised fine-tuning (SFT) or reinforcement
learning (RL). In SFT, models are trained on paired
GUI-action datasets to align visual observations
with user instructions. Some approaches (Hong
et al., 2024; Cheng et al., 2024; Lin et al., 2024;
Li et al., 2025a) enhance SFT by incorporating in-
struction tuning, vision-language pretraining, or
synthetic data generation to boost coverage. How-
ever, these strategies commonly adopt a flat opti-
mization objective, lacking curriculum or structural
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guidance, which limits the model’s ability to pro-
gressively acquire complex capabilities. In contrast,
reinforcement learning introduces outcome-driven
optimization through environment feedback. Some
methods (Lai et al., 2024; Liu et al., 2024) rely on
sparse success signals to guide multi-step task com-
pletion. Despite this, many RL strategies remain
coarse and fail to capture pixel-level grounding pre-
cision. Moreover, most RL pipelines lack strong
initialization or structured learning stages, often
resulting in unstable policies and inconsistent be-
haviors.

In this work, we propose INREACT, a struc-
tured training framework for GUI agents that
combines curriculum learning with reinforcement
learning. The curriculum learning stage is de-
signed to systematically build core agent capabili-
ties—including perception, grounding, and reason-
ing through a staged learning process of increasing
complexity. Furthermore, we introduce a reinforce-
ment learning strategy with rule-based reward func-
tions that jointly considers action-type correctness
and distance-aware spatial accuracy, enabling more
precise and reliable interactions in complex GUI
environments.

Our contributions are summarized as follows:
• We propose a novel multimodal GUI agent frame-

work, called INREACT, which synergizes ob-
serving, thinking, and acting to make more inter-
pretable and goal-directed decisions when han-
dling complex GUI navigation tasks.

• INREACT is trained through a two-stage training
framework, including a curriculum-based super-
vised fine-tuning stage to progressively acquire
perception, grounding, and reasoning capabilities
and a reinforcement learning stage that reinforces
grounding precision with an outcome-based re-
ward to encourage accurate and consistent action
predictions.

• Experimental results on four datasets in
grounding and navigation tasks show that
INREACT outperforms existing methods and
exhibits promising generalization. Our code
will be released via https://github.com/
wangyuanlei30/InReAct.

2 Related Work

2.1 GUI Agents

GUI agents allow models to interact with software
interfaces via visual inputs and simulated actions.
Early works like CogAgent (Hong et al., 2024)

introduced MLLMs for GUI tasks. Some meth-
ods leverage general-purpose models with prompt
engineering (e.g., AppAgent (Zhang et al., 2025),
Mobile-Agent (Wang et al., 2024b)), while others
fine-tune open-source models on GUI-specific data
(e.g., UGround (Gou et al., 2025), ShowUI (Lin
et al., 2024)). Recent work like UI-TARS (Qin
et al., 2025) and AGUVIS (Xu et al., 2024) com-
bines GUI pretraining with reasoning fine-tuning.
Most rely on single-stage supervised fine-tuning,
which requires large-scale data and often struggles
with generalization, highlighting the need for more
structured learning approaches.

2.2 Curriculum Learning

Curriculum learning (Wang et al., 2022) is a train-
ing strategy where models are exposed to tasks in
increasing order of difficulty, mimicking human
learning. It has shown strong effectiveness across
NLP and vision tasks by improving learning sta-
bility and generalization. Recent works have ap-
plied this idea to large-scale models: AutoGLM
(Liu et al., 2024) and AutoWebGLM (Lai et al.,
2024), for example, design task curricula to en-
hance model robustness in web navigation tasks. In
the context of instruction tuning and agent learning,
curriculum learning helps models acquire basic ca-
pabilities before handling complex reasoning or
planning, offering a structured alternative to flat
fine-tuning.

2.3 Rule-Based Reinforcement Learning

Rule-based reinforcement learning has emerged
as a scalable alternative to traditional supervised
fine-tuning by optimizing models with predefined
and verifiable reward functions. Early works such
as DeepSeek-R1 (Guo et al., 2025) and o1 (Jaech
et al., 2024) applied RFT to language tasks, includ-
ing mathematical reasoning (Shao et al., 2024) and
code generation, where correctness can be evalu-
ated with rule-based signals. More recent studies
(Shen et al., 2025; Liu et al., 2025c; Chen et al.,
2025; Wang et al., 2024a) extend this paradigm to
multimodal models by designing task-specific re-
wards—such as Intersection-over-Union (IoU) for
image grounding and symbolic consistency checks
for classification. Building on this line of research,
works like UI-R1 (Lu et al., 2025) and GUI-R1
(Luo et al., 2025) have further explored applying
rule-based RL to GUI agents, typically leveraging
binary hit-or-miss rewards for GUI grounding.
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Figure 2: The overall framework of INREACT

3 Method

Given a GUI screenshot S, a user instruction
G and the previous interaction history A<t at
each time step t, the goal of the agent is to
generate a sequence of executable actions A =
{a1, a2, . . . , aT }, where action at at time step t is
determined based on G, observation of the current
screenshot environment Ot, and previous actions
sequence A<t = [a1, a2, ..., at−1].
• State Space. At each time step t, the envi-

ronment state is represented by a GUI screen-
shot st, which captures the current visual inter-
face after executing the previous action. The
agent’s observation Ot includes the screenshot
St, the user instruction G, and the action his-
tory A<t = {a1, ..., at−1}. This combination
provides both static semantic goals and dynamic
context necessary for decision-making.

• Action Space. We define an action as a
structured function call in the form at =
(typet, argst), where type specifies the operation
(e.g., click, scroll, input) and args provides
necessary arguments such as coordinates, text,
or direction. The environment executes actions
parsed from the agent’s JSON-style outputs. A
full specification of supported actions is provided
in Table 1.

3.1 GUI Agent Workflow

To guide the agent to continually interact with
the environment and complete multi-step complex

Action Type Parameters

click,tap,hover,select (x, y)
swipe,select_text (x1, y1, x2, y2)

scroll direction
input text

home,back,enter None

Table 1: Action types and their parameters

tasks. Following ReAct (Yao et al., 2023), we con-
struct our agent framework through synergizing
observing, thinking and acting in GUI controlling
process for agent.

Observation Phase. Based on a visual screen-
shot St of the GUI, an user instruction G and the
previous interaction history A<t at each time step t,
the agent first generates a natural language observa-
tion dt describing key interface elements and their
relevance to the task instead of directly generating
action by:

dt = F(Ot) = F(St, G,A<t) (1)

Thinking Phase. In the thinking phase, the gen-
erated observation dt is appended to the original
input Ot = {St, G,A<t} to construct the further
input. Then, we feed the updated input to the agent
for generating internal reasoning to produce a task-
oriented thinking ht by:

ht = F(Ot, dt) (2)
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Acting Phase. Similarly, the input in the final
action phase is constructed by concatenating the
generated thinking ht with the previous input. Sub-
sequently, we feed the modified input to the agent
to generate executable actions by

at = F(Ot, dt, ht) = (typet, argst) (3)

The action is then executed in the environment,
resulting in a transition to the next state St+1.

3.2 Inspire-Then-Reinforce Training
To progressively enhance the reasoning and control
capabilities of GUI agents, we propose an inspire-
then-reinforce two-stage training paradigm, as il-
lustrated in Figure 2.

In Stage 1, we introduce a curriculum learn-
ing strategy that progressively builds the model’s
perception, grounding, and reasoning capabilities
through supervised fine-tuning. By organizing
training tasks from simple to complex, the model
first learns to understand GUI layouts, then local-
ize targets, and ultimately reason over multi-step
goals.

In Stage 2, we perform reinforcement learning
to improve action accuracy and grounding robust-
ness. Using a GRPO-based optimization frame-
work, we incorporate a task-specific reward func-
tion that evaluates both action-type correctness and
spatial precision, enabling the model to generate
reliable actions in dense and high-resolution GUI
environments.

3.2.1 Stage 1: Curriculum Learning
Drawing inspiration from human learning, we or-
ganize agent training into three progressive stages:
perception, grounding, and reasoning. Each stage
targets a specific skill and increases in task com-
plexity, forming a curriculum learning framework
that guides the model from basic comprehension to
advanced planning.

Specifically, we adopt supervised fine-tuning and
have the same training objective that minimizes the
sum of negative log-likelihood loss averaged over
tokens in each step:

L(y, ŷ) = − 1

L

L∑

l=1

ŷl log

(
exp (yl)∑l
i exp (yi)

)
, (4)

where L is the max length of output sequence, ŷl
and yl denote the l-th token in the groundtruth se-
quence ŷ and generation sequence y, respectively.

Learning for Perception The first stage of the
curriculum aims to build the model’s visual and
semantic understanding of GUI layouts. This foun-
dational perception equips the agent with spatial
awareness and interface comprehension, essential
for later grounding and reasoning. Specifically, we
decompose it into two perception-oriented tasks:

i. GUI-based Question Answering. Given a
screenshot s and question q, the model generates
an answer a: Mqa(s, q) → a, enhancing spatial
attention and element recognition.

ii. Interface Description Generation. Given
s, the model produces a structured description d:
Mdesc(s) → d, fostering global layout and seman-
tic understanding. The training loss for this stage
is computed as:

Lperception = L(a, â) + L(d, d̂), (5)

where ŝ and d̂ denote the ground-truth answers and
interface descriptions, respectively.

Learning for Grounding The second stage of
the curriculum focuses on grounding user instruc-
tions to visual actions, a core capability for operat-
ing in GUI environments. The model must under-
stand what the user wants and accurately identify
the corresponding interface region for execution.
We similarly decompose it into two complementary
grounding tasks:

i. Instruction-to-Coordinate. Given a GUI
screenshot s and instruction g, the model predicts
the target coordinate c: Minst2coord(s, g) → c. This
task aligns user intent with precise UI locations.

ii. Coordinate-to-Description. Given s
and a coordinate c, the model generates a de-
scription d of the corresponding UI element:
Mcoord2desc(s, c) → d, reinforcing spatial-
semantic understanding. The loss function for this
stage is defined as:

Lgrounding = L(c, ĉ) + L(d, d̂), (6)

where ĉ and d̂ denote the ground-truth coordinate
and description, respectively.

Learning for Reasoning The third stage focuses
on high-level reasoning and multi-step decision-
making, where the model explicitly follows an
observe-think-act process instead of making one-
step predictions. We introduce the following two
components to support structured reasoning:

i. Observation Chain. Given a screenshot x and
instruction g, the model generates an observation o
to identify relevant UI regions: Mobs(x, g) → o.
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ii. Reasoning Chain. Conditioned on o and g,
the model produces a reasoning trace r to guide
decision-making: Mreason(o, g) → r.

We define the training loss of this stage as fol-
lows:

Lreasoning = L(o, ô) + L(r, r̂), (7)

where ô and r̂ denote the ground-truth observation
and reasoning trace.

3.2.2 Stage 2: Reinforcement Learning
Although supervised fine-tuning provides a strong
initialization, models often suffer from fine-grained
prediction errors, especially in dense or high-
resolution GUIs where small pixel-level deviations
can lead to task failure. To address this, we adopt
GRPO Reinforcement fine-tuning.

A critical component of our approach is the de-
sign of the reward function. While prior works like
UI-R1 (Lu et al., 2025) and GUI-R1 (Luo et al.,
2025) also leverage rule-based reinforcement learn-
ing for GUI agents, their reward mechanisms for
localization typically rely on a coarse, binary sig-
nal (i.e., whether the predicted point falls within
the target’s bounding box). Such a reward, while
useful for confirming task success, provides limited
gradient for improving fine-grained precision. To
overcome this, we introduce a task-specific reward
function that better captures the dual objectives of
action correctness and spatial precision, directly
encouraging the model to enhance its pixel-level
accuracy.

Reward Modeling The reward function serves as
the primary training signal in reinforcement learn-
ing, directly guiding the model’s optimization tra-
jectory. To support fine-grained policy improve-
ment in GUI environments, we design a rule-based
reward function tailored to the unique demands
of screen-based interaction. Unlike traditional RL
settings that rely on binary task success or coarse
region-level feedback, GUI tasks require both accu-
rate action selection and high-precision localization
of target elements. Specifically, our reward func-
tion comprises two components: (1) an action-type
reward(2) a distance-aware coordinate reward. This
composite design provides the model with dense,
informative feedback signals essential for precise
and interpretable GUI control, which is defined as:

R = RT +RD (8)

Regarding the action type reward component
RT, it provides a binary reward signal that eval-
uates whether the predicted action type T aligns
with the ground truth label T ′. This mechanism
offers a direct and effective evaluation framework
for action-type prediction tasks. The mathematical
formulation of this component is presented below:

RT =

{
1, if T ′ = T

0, otherwise
(9)

Additionally, the distance-aware reward RD mea-
sures spatial accuracy by combining two compo-
nents: (1) a binary reward for whether the predicted
point lies within the target bounding box, and (2) a
precision reward based on the normalized distance
to the box center. This encourages both correct
region prediction and fine-grained localization:

RD = Racc +Rdist (10)

i. Accuracy Reward. We assign a base reward
calculating whether the predicted point (x′, y′)
falls inside the ground-truth bounding box B =
[(x1, y1), (x2, y2)]:

Racc =

{
0.5, if (x′, y′) ∈ B

0, otherwise
(11)

ii. Precision Reward. If the point is within
the box, we compute the normalized Euclidean
distance d̂ from the predicted coordinate (x′, y′) to
the center of the target box (xc, yc):

(xc, yc) =

(
x1 + x2

2
,
y1 + y2

2

)
(12)

d̂ =

√
(x′ − xc)2 + (y′ − yc)2√
(x2 − x1)(y2 − y1)

(13)

We then define the precision reward based on
discrete distance intervals:

Rdist =





0.5, d̂ ≤ 0.1

0.3, 0.1 < d̂ ≤ 0.3

0.2, 0.3 < d̂ ≤ 0.5

0.0, d̂ > 0.5

(14)

To provide a clear and stepped gradient for pre-
cision improvement, we empirically determine the
thresholds and reward values for our reward formu-
lation. This design provides a continuous and infor-
mative learning signal that encourages the model
to both select the correct action type and localize it
precisely, promoting stable convergence and robust
behavior in dense GUI layouts.
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Method
Development Creative CAD Scientific Office OS Overall
Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg

GPT-4o (OpenAI et al., 2024) 1.3 0.0 0.7 1.0 0.0 0.6 2.0 0.0 1.5 2.1 0.0 1.2 1.1 0.0 0.9 0.0 0.0 0.0 1.3 0.0 0.8
ShowUI-2B (Lin et al., 2024) 16.9 1.4 9.4 9.1 0.0 5.3 2.5 0.0 1.9 13.2 7.3 10.6 15.3 7.5 13.5 10.3 2.2 6.6 10.8 2.6 7.7
AriaUI-3.9B (Yang et al., 2024) 16.2 0.0 8.4 23.7 2.1 14.7 7.6 1.6 6.1 27.1 6.4 18.1 20.3 1.9 16.1 4.7 0.0 2.6 17.1 2.0 11.3
OSAtlas-4B (Wu et al., 2024) 7.1 0.0 3.7 3.0 1.4 2.3 2.0 0.0 1.5 9.0 5.5 7.5 5.1 3.8 4.8 5.6 0.0 3.1 5.0 1.7 3.7
QwenVL-7B (Bai et al., 2023) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1
Qwen2-VL-7B (Wang et al., 2024c) 2.6 0.0 1.3 1.5 0.0 0.9 0.5 0.0 0.4 6.3 0.0 3.5 3.4 1.9 3.0 0.9 0.0 0.5 2.5 0.2 1.6
SeeClick-7B (Cheng et al., 2024) 0.6 0.0 0.3 1.0 0.0 0.6 2.5 0.0 1.9 3.5 0.0 2.0 1.1 0.0 0.9 2.8 0.0 1.5 1.8 0.0 1.1
CogAgent-18B (Hong et al., 2024) 14.9 0.7 8.0 9.6 0.0 5.6 7.1 3.1 6.1 22.2 1.8 13.4 13.0 0.0 10.0 5.6 0.0 3.1 12.0 0.8 7.7
UGround-7B (Gou et al., 2025) 26.6 2.1 14.7 27.3 2.8 17.0 14.2 1.6 11.1 31.9 2.7 19.3 31.6 11.3 27.0 17.8 0.0 9.7 25.0 2.8 16.5
OSAtlas-7B (Wu et al., 2024) 33.1 1.4 17.7 28.8 2.8 17.9 12.2 4.7 10.3 37.5 7.3 24.4 33.9 5.7 27.4 27.1 4.5 16.8 28.1 4.0 18.9

InReAct 35.7 1.4 19.0 33.3 2.1 20.2 13.2 1.6 10.7 41.7 10.0 27.9 42.4 3.8 33.5 23.4 1.1 17.3 31.4 3.3 20.7

Table 2: GUI grounding results on ScreenSpot-Pro dataset.

3.3 Inference Procedure

During inference, our agent adopts an interlaced
observe-think-action workflow that sequentially ex-
ecutes tasks by observing the interface, thinking
through the instruction, and predicting the next ac-
tion. Given the input Ot = (S,G,H), where S
is the GUI screenshot, G is the task instruction,
and A<t = {a1, ..., at−1} denotes the history of
executed actions, the model first generates an ob-
servation summary ôt, then infers a reasoning trace
r̂t conditioned on ôt and G, and finally predicts the
next action at = (T ′, x′, y′) based on both. This
process is repeated until task completion or a max-
imum number of steps is reached, enabling goal-
driven, interpretable decision-making in complex
GUI environments.

4 Experiment

4.1 Experiment Setup

Datasets We evaluate our model on two tasks:
GUI grounding and navigation.

For Grounding, we use ScreenSpot (Cheng
et al., 2024) and ScreenSpot-Pro (Li et al., 2025b).
ScreenSpot contains 1,272 samples across mobile,
desktop, and web platforms, focusing on common
interface elements. ScreenSpot-Pro includes 23
professional applications with high-resolution and
complex layouts, offering a more challenging eval-
uation.

For Navigation, we use: (i) Mind2Web (Deng
et al., 2023), a web-based dataset for evaluating
generalist agents that perform complex tasks via
language instructions. It includes 7,775 training
actions and three test splits (task, website, domain),
with aligned HTML and screenshots. (ii) Android-
Control (Li et al., 2024), a mobile dataset testing
multi-step task execution in realistic Android en-

Method
Mobile Desktop Web Average

Text Icon Text Icon Text Icon

GPT-4 (OpenAI, 2023) 22.6 24.5 20.2 11.8 9.2 8.8 16.7
GPT-4o (OpenAI et al., 2024) 20.2 24.9 21.1 23.6 12.2 7.8 18.1
Gemini-1.5-pro (Team, 2024) 76.2 54.1 65.5 39.2 52.2 32.0 53.2
Qwen2-VL-2B (Wang et al., 2024c) 24.2 10.0 1.4 9.3 8.7 2.41 9.3
Qwen2-VL-7B (Wang et al., 2024c) 61.3 39.3 52.0 45.0 33.0 21.8 42.9
CogAgent-18B (Hong et al., 2024) 67.0 24.0 74.2 20.0 70.4 28.6 47.4
Seeclick-7B (Cheng et al., 2024) 78.0 52.0 72.2 30.0 55.7 32.5 53.4
UGround-7B (Gou et al., 2025) 82.8 60.3 82.5 63.6 80.4 70.4 73.3
ShowUI-2B (Lin et al., 2024) 92.3 75.5 76.3 61.1 81.7 63.6 75.1
InfiGUIAgent-2B (Liu et al., 2025b) 88.6 74.7 85.6 65.0 79.1 64.6 76.3

InReAct 86.1 71.6 84.5 65.7 82.2 70.4 77.8

Table 3: GUI grounding results on ScreenSpot dataset.

vironments, emphasizing long-term planning and
state tracking.

See datasets details in appendix A.

Evaluation Metrics We use the metrics proposed
in the corresponding datasets as shown in Table 7.
Although they have different names, these metrics
are similar: GUI grounding tasks consistently mea-
sure the hit rate of predicted bounding boxes, while
GUI navigation tasks focus on single-step accuracy.

Click Accuracy. The proportion of test samples
where the predicted location falls in the ground
truth element’s bounding box.

Element Accuracy (Ele.Acc). Comparing the
selected element with all acceptable elements. For
vision-based methods, it is the same as Click Accu-
racy.

Operation F1 (Op.F1). Token-level F1 score
for the predicted operation.

Step Success Rate (Step SR) and Step Accu-
racy. The proportion of successful steps. A step
is regarded as successful only if both the selected
element and the predicted operation are correct.

Baselines We compare the performance of our
model with various baselines, including some
closed source large models such as GPT-4o (Ope-
nAI et al., 2024), Gemini-1.5-pro (Team, 2024)
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Method
Cross-Task Cross-Website Cross-Domain

Ele.Acc Op.F1 Step.SR Ele.Acc Op.F1 Step.SR Ele.Acc Op.F1 Step.SR

GPT-4 (OpenAI, 2023) 41.6 60.6 36.2 35.8 51.1 30.1 37.1 46.5 26.4
OmniParser (Lu et al., 2024) 42.4 87.6 39.4 41.0 84.8 36.5 45.5 85.7 42.0
Qwen2-VL-2B (Wang et al., 2024c) 37.7 86.4 33.2 36.0 79.2 27.6 36.3 81.8 30.7
ShowUI-2B (Lin et al., 2024) 39.9 88.6 37.2 41.6 83.5 35.1 39.4 86.8 35.2
SpiritSight-2B (Huang et al., 2025) 51.7 87.2 44.9 44.9 83.6 37.8 42.4 83.5 36.9
SeeClick-7B (Cheng et al., 2024) 28.3 87.0 25.5 21.4 80.6 16.4 23.2 84.8 20.8
CogAgent-18B (Hong et al., 2024) 22.4 53.0 17.6 18.4 42.4 13.4 20.6 42.0 15.5

InReAct 57.8 89.4 50.8 52.6 88.8 47.4 55.4 85.4 49.2

Table 4: GUI navigation results on Mind2web dataset.

Method Low-Level High-Level

Claude* (Anthropic, 2024) 19.4 12.5
GPT-4o (OpenAI et al., 2024) 19.4 20.8
Aria-UI-3.9B (Yang et al., 2024) 67.3 10.2
OS-Atlas-4B (Wu et al., 2024) 80.6 67.5
Aguvis-7B (Xu et al., 2024) 80.5 61.5

InReAct 83.1 68.1

Table 5: GUI navigation results on AndroidControl
dataset.

and Claude(Anthropic, 2024), as well as numer-
ous open-source GUI agents such as SpiritSight-
2B (Huang et al., 2025), AGUVIS-7B (Xu et al.,
2024), Uground (Gou et al., 2025), Aria-UI(Yang
et al., 2024), OSAtlas (Wu et al., 2024), ShowUI
(Lin et al., 2024), InfiGUIAgent (Liu et al.,
2025b), UGround (Gou et al., 2025), CogA-
gent (Hong et al., 2024), SeeClick (Cheng et al.,
2024), Qwen2-VL-2B, Qwen2-VL-7B (Wang et al.,
2024c).Implementation details refer to appendix B.

4.2 Overall Performance
GUI Grounding Evaluation The evaluation re-
sults on the ScreenSpot (Cheng et al., 2024) are
presented in Table 3. Our model achieves an av-
erage accuracy of 77.8%, outperforming all com-
peting baselines, including both open-source and
commercial GUI agents. In particular, Our model
surpasses strong 2B-level models such as ShowUI
(75.1%) and InfiGUIAgent (76.3%), and even out-
performs several significantly larger models such
as CogAgent (47.4%, 18B) and UGround (73.3%,
7B).

As in shown in table 2,on the more challeng-
ing ScreenSpot-Pro (Li et al., 2025b)dataset, our
method achieves an overall accuracy of 20.7%, rep-
resenting a substantial improvement under com-
plex, high-resolution desktop GUI environments.
This dataset covers a wide spectrum of profes-

sional software, including CAD tools, scientific
platforms, development IDEs, and creative appli-
cations, each demanding fine-grained grounding
of visually dense and domain-specific interfaces.
Despite the increased difficulty, our model consis-
tently outperforms previous strong baselines. It
exceeds ShowUI by 13.0% percentage points and
surpasses AriaUI by 9.4% points, demonstrating
particularly strong capabilities in GUI grounding

GUI Navigation Evaluation On Mind2Web
(Deng et al., 2023), the task requires agents to
perform realistic web navigation across diverse
websites. As shown in Table 4, InReAct achieves
strong performance across all three generaliza-
tion splits—cross-task, cross-website, and cross-
domain—outperforming previous methods in terms
of element grounding accuracy, operation-level F1,
and step-wise success rate. This indicates that
our model not only understands the semantics of
web elements but also makes consistent and inter-
pretable action decisions across varying environ-
ments. The consistent gains across generalization
splits demonstrate InReAct’s robustness in unseen
task goals and layouts.

On AndroidControl (Li et al., 2024), we evaluate
the model under two settings: Low-Level, which
focuses on simple, mostly single-step interactions
(e.g., tapping a button); and High-Level, which in-
volves complex, multi-step instructions with long-
horizon dependencies. As shown in Table 5, InRe-
Act achieves 83.1 on the Low-Level set and 68.1
on the High-Level set, outperforming all prior base-
lines. While strong results in Low-Level indicate
precise grounding and action formulation, the im-
provements in High-Level highlight the model’s
ability to plan and reason over multi-step interac-
tion sequences.
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4.3 Ablation Study

As summarized in Table 6, we conduct ablation
studies to assess the impact of the proposed strate-
gies in both curriculum learning (CL) and reinforce-
ment learning (RL) training stages. For Mind2Web
and AndroidControl, we only reported the results
on cross-task SR and High-level. There are several
notable observations as follows:

Curriculum Learning We examine the role of
each step in our curriculum learning framework.
Removing Step 1, where the model learns basic
GUI interactions, leads to a significant performance
drop, as the agent fails to acquire essential skills.
Similarly, omitting Steps 2 and 3, which introduce
grounding and reasoning tasks progressively, also
harms performance, showing their importance for
understanding and reasoning over GUI elements.
Furthermore, replacing curriculum learning with
multi-task training across all steps results in worse
performance, demonstrating that staged, gradual
training enhances learning and generalization more
effectively than joint training.

Reinforcement Learning To further evaluate
the effectiveness of the reinforcement learning
(RL) stage, we first replace it with a standard
supervised fine-tuning (SFT) setup. The re-
sults show that RL brings consistent performance
gains across all datasets. On the two navigation
datasets—Mind2Web and AndroidControl—RL
yields improvements of +5.1 and +4.3, respectively,
demonstrating its ability to produce more accurate
actions and more robust decision-making.

Furthermore, to specifically justify our reward
function design within the RL framework, we
compare our proposed piecewise reward function
against two alternatives: a binary (hit-or-miss) re-
ward, which provides an accuracy signal without
any dedicated precision component, similar to ap-
proaches in works like UI-R1 and GUI-R1, and a
continuous linear reward (defined as Rdist = 1− d̂,
where d̂ is the normalized distance to the target’s
center). This analysis, presented in Table 6, reveals
that the design of the reward signal plays an impor-
tant role. On ScreenSpot, our method (77.8) out-
performs both the linear (77.0) and binary (76.8)
baselines. On the more challenging ScreenSpot-
Pro dataset, our approach (20.7) also provides a
modest but consistent improvement over the linear
(20.3) and binary (19.8) rewards.

The advantage of our piecewise reward function

lies in two aspects. First, it delivers clearer learn-
ing signals by introducing reward “steps,” which
motivate the agent to cross precision thresholds
rather than being limited by diminishing returns
near the target. Second, it aligns more closely with
real-world GUI logic, where clicks have discrete
outcomes—successful or not—and central clicks
are inherently safer than edge clicks. This design
thus captures the practical structure of interaction
more faithfully than a simple linear function. It is
worth noting that our thresholds are chosen empiri-
cally and may not be optimal; further tuning is left
for future work.

Impact of Observation and Reasoning Compo-
nents The results, presented in Table 6, under-
score the importance of both components within
our observe-think-act cycle. Removing the think-
ing phase (w/o Thought) leads to a consistent and
significant performance drop across all four bench-
marks, with the most notable decreases observed
on the complex ScreenSpot-Pro (-2.5 points) and
AndroidControl (-2.3 points) datasets. This indi-
cates that the explicit reasoning step is crucial for
formulating effective plans and making robust de-
cisions in challenging environments.

Similarly, removing the observation phase (w/o
Observation) also consistently degrades perfor-
mance across all tested datasets, such as causing
a 1.8-point drop on ScreenSpot. An interesting
finding is that the performance degradation from
removing the thinking phase is more pronounced
than that from removing the observation phase on
the three more complex datasets. This suggests that
while both components are beneficial, the struc-
tured reasoning provided by the "Thinking" step is
arguably the most critical factor for the agent’s suc-
cess in complex scenarios. These findings strongly
justify the synergistic design of our InReAct frame-
work.

4.4 Case Study

To qualitatively assess the effectiveness of our pro-
posed curriculum learning and reinforcement learn-
ing strategies, we conduct a case study on the
ScreenSpot dataset. As illustrated in Figure 3, we
present two pairs of examples highlighting the con-
tributions of each training stage.

In Figure 3a, without curriculum learning, the
agent clicks on the text “Only draw with Apple Pen-
cil” instead of the adjacent switch, showing weak
perception and semantic grounding. In contrast,
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Method ScreenSpot ScreenSpot-Pro Mind2Web AndroidControl

InReAct 77.8 20.7 50.8 68.1

Stage 1: Curriculum Learning
- w/o Step 1 76.3 19.2 47.4 65.9
- w/o Step 2 68.6 10.8 37.8 57.4
- w/o Step 3 74.7 17.4 42.5 62.3
- w/o curriculum 75.4 19.5 48.5 66.4

Stage 2: Reinforcement Learning
- w/ Binary Reward 76.8 19.8 49.2 67.0
- w/ Linear Reward 77.0 20.3 50.2 67.3
- w/ SFT 76.2 16.8 45.7 63.8

Ablation on Agent Components
- w/o Observation 76.0 19.7 49.2 66.8
- w/o Thought 76.6 18.2 48.6 65.8

Table 6: Ablation study of INREACT. We evaluate the impact of different training stages, reward functions, and
core agent components. For Mind2Web, we report the Step SR on the cross-task split, while for AndroidControl,
we report results on the High-Level setting.

(a) ✗ Instruction:"Only
draw with apple pencil".
Without curriculum learn-
ing

(b) ✓ Instruction:"Only
draw with apple pencil".
InReAct achieves accurate
grounding

(c) ✗ Instruction:"Zoom
in". Without reinforcement
learning

(d) ✓ Instruction:"Zoom
in". InReAct achieves ac-
curate grounding

Figure 3: Case study on ScreenSpot dataset.

InReAct (Figure 3b) correctly targets the switch,
indicating better alignment between instructions
and interface elements.

In Figure 3c, without reinforcement learning, for
the instruction “Zoom in,” the predicted click point
is near the correct bounding box but slightly out-
side it, indicating general understanding but lack-
ing fine-grained precision. In contrast, as shown
in Figure 3d, InReAct achieves significantly more
accurate localization, clicking within the target re-

gion. This confirms that our reinforcement learning
stage enhances fine-grained control.

5 Conclusion

In this paper, we present INREACT, a multimodal
GUI agent framework that integrates observation,
reasoning, and action for complex GUI interactions.
It is trained in two stages: curriculum-learning to
build perception, grounding, and reasoning skills,
followed by reinforcement learning with a task-
specific reward that improves action correctness
and spatial precision.

We evaluate INREACT across four datasets:
ScreenSpot, ScreenSpot-Pro, Mind2Web, and An-
droidControl, and demonstrate consistent improve-
ments over prior methods. Our findings highlight
the effectiveness of combining structured learning
and outcome-driven optimization for enhancing
GUI agent performance, setting a new direction
for generalizable and interpretable vision-language
agents.
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Limitations

Limited Action Space Coverage Our current ac-
tion space, while sufficient for common GUI inter-
actions such as click, type, and scroll, does not fully
cover the diversity of real-world GUI operations.
Advanced actions like drag-and-drop, multi-touch
gestures, system-level controls, or context-menu
navigation are not well supported in our framework.
Extending the action space to include such capa-
bilities would be essential for achieving broader
applicability in real-world software environments.

Inference Speed and Efficiency Although In-
ReAct achieves strong performance on various
GUI tasks, its inference speed has room for
optimization. The structured reasoning pro-
cess—particularly the multi-step observation and
thinking phases—introduces additional computa-
tional overhead. This may affect the agent’s ability
to perform real-time or near-real-time interactions,
which is crucial for applications requiring fast re-
sponse times. Future work could explore model
compression, caching mechanisms, or streamlined
reasoning pipelines to improve efficiency.

Limited Handling of Dynamic Interfaces Our
experiments are primarily conducted on static in-
terfaces. However, real-world GUI applications
often involve dynamic content updates, such as
pop-up notifications, auto-refreshing elements, or
state transitions, that can disrupt perception and
decision-making. Our current framework lacks ex-
plicit mechanisms to detect, adapt to, or reason
about such changes over time. Incorporating tem-
poral modeling or environment change detection
would be a valuable direction for future research.
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A Datasets Details

We provide training data used in the curriculum
learning stage and reinforcement learning stage, as
well as statistical information for the four datasets
used in the experiment, as shown in Table 8 and
Table 7, respectively.

B Implementation Details

We build our GUI agent upon Qwen2-VL-2B-
Instruct (Wang et al., 2024c), a vision-language
model with strong general capabilities. It is worth
noting that we chose Qwen2-VL-2B instead of
Qwen’s latest series Qwen2.5-VL-3B (Bai et al.,
2025) because 2B is lighter, and most of the meth-
ods we compared used Qwen2-VL-2B as the base
model or larger parameter models before Qwen2-
VL. We validated the effectiveness of our proposed
method in a fairer situation. The training process
consists of two stages: Curriculum Learning (CL)
and Reinforcement Learning (RL). For Curricu-
lum Learning, we employ the LLaMA Factory
(Zheng et al., 2024) framework for one epoch at
each stage with the visual backbone frozen. We em-
ploy AdamW with a cosine annealing learning rate
scheduler, setting the initial learning rate to 1e-5
and batch size to 16. For Reinforcement Learning,
we use the R1-V (Chen et al., 2025) framework for
training over two epochs, setting the initial learning
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Datasets Platforms Task Metric # Test Samples History
?

ScreenSpot-Pro (Li et al., 2025b) Web, PC, Mobile Grounding clickAcc 1,272 ✗
ScreenSpot (Cheng et al., 2024) Web, PC, Mobile Grounding clickAcc 1,581 ✗
Mind2Web (Deng et al., 2023) Web Navigation Ele.Acc, Op.F1, Step SR 6,418 ✓

AndroidControl-High (Li et al., 2024) Mobile Navigation Step Accuracy 8,444 ✓
AndroidControl-Low (Li et al., 2024) Mobile Grounding Step Accuracy 8,444 ✗

Table 7: Statistics of GUI datasets.

Usage Source Number

CL

GUIChat(Chen et al., 2024) 40k
ScreenQA (Hsiao et al., 2022) 17k
MultiUI (Liu et al., 2025a) 50k
AutoGUI (Li et al., 2025a) 50k
SeeClick (Cheng et al., 2024) 100k
GUIEnv (Chen et al., 2024) 100k
Aguvis-stage2 (Xu et al., 2024) 35k

RL OmniAct (Kapoor et al., 2024) 2k

Total 394k

Table 8: Training data statistics from various sources.

rate to 1e-6 and batch size to 16. At each stage,
we utilize the strategies of DeepSpeed optimiza-
tion (Rajbhandari et al., 2020), BF16 format, and
gradient checkpointing to save GPU memory. All
training is conducted on 2*A100 GPU (80G).
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