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Abstract

The performance of pre-trained Large Lan-
guage Models (LLMs) is often sensitive to nu-
ances in prompt templates, requiring careful
prompt engineering, adding costs in terms of
computing and human effort. In this study,
we present experiments encompassing multi-
ple LLMs variants of varying sizes aimed at
probing their preference with different prompts.
Through experiments on Question Answering,
we show prompt preference consistency across
LLMs of different sizes. We also show that
this consistency extends to other tasks, such as
Natural Language Inference. Utilizing this con-
sistency, we propose a method to use a smaller
model to select effective prompt templates for
a larger model. We show that our method sub-
stantially reduces the cost of prompt engineer-
ing while consistently matching performance
with optimal prompts among candidates. More
importantly, our experiment shows the efficacy
of our strategy across fourteen LLMs and its
applicability to a broad range of NLP tasks,
highlighting its robustness’.

1 Introduction

Recent research (Wei et al., 2022; Reynolds and
McDonell, 2021; Fernando et al., 2023; Nye et al.,
2021; Wang et al., 2022; Zhou et al., 2022; Wang
et al.,, 2023a; Arora et al.,, 2022) has demon-
strated that prompting is crucial to the downstream
performance of foundation LLMs, requiring effi-
ciently prompt engineering for practical applica-
tions. While manually crafted prompts (Reynolds
and McDonell, 2021) have been widely used, Shin
et al. (2020) introduced an automated method for
creating prompts for various tasks using a gradient-
guided search. However, the method requires iter-
ative refinement for the prompts, which would be
prohibitively expensive for current LLMs. Also,
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their assumption of access to LLM logit outputs is
invalid for black-box LLMs. With the advancement
of LLMs, Zhou et al. (2022), Kazemi et al. (2022),
and White et al. (2023) have leveraged LLMs to
generate instruction candidates and have selected
prompts by optimizing a chosen score function.
These methods require calculating the score across
all candidate prompts using large-sized LLMs to
reach optimal performance for each task, which
is also computationally expensive. What is worse,
the rapid evolution of LL.Ms also might appear to
pose challenges in efficiently updating the prompt
template selections for new emerging LLMs.

To ascertain whether LLMs of different sizes ex-
hibit similar preferences for various prompts, we
introduce a series of experiments by generating
multiple natural language prompts for Question
Answering (QA) and then extends to Natural Lan-
guage Inference (NLI) tasks. We evaluate these
prompts across a range of LLMs of varying sizes.
Our studies prove that various LLMs consistently
select identical optimal prompts from the pool of
candidate prompts.

Based on our findings, we exploit the prompt
preferences of smaller models as proxies to that of
larger models. With smaller models, it is less com-
putationally expensive to gain knowledge of their
prompt preference. We propose a Small-to-large
Prompt Prediction (S2LPP) approach, leveraging
smaller models to identify optimal prompt tem-
plates from automatically generated prompt candi-
dates for larger target models. This approach would
help to reduce the deployment cost of LLMs, espe-
cially when faced with diverse and dynamic sets of
open-domain knowledge. We show the effective-
ness of the S2LPP approach on open-domain QA
and NLI across fourteen LLMs of varying sizes,
and further extend it to broader NLP tasks such
as retrieval-augmented generation and arithmetic
reasoning, showcasing its robustness and general-
izability. The main contributions of this paper can
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be summarized as follows:

(a) We provide evidence to present the consis-
tency of prompt preference across LLMs of differ-
ent sizes.

(b) Utilizing the observed consistency, we pro-
pose a lightweight, automatic strategy to leverage
small LMs to select optimal prompt templates for
larger LLMs.

(c) Through evaluation of QA and NLI tasks,
we show that our approach outperforms the base-
lines and effectively reduces computational costs of
prompt engineering while consistently maintaining
high performance in larger target models.

2 Background

The performance of contemporary LLMs heavily
depends on the forms and nuances present in the
natural language prompts they are given (Jiang
etal.,2022; Jinet al., 2021; Zhang et al., 2023; Shin
et al., 2020; Arora et al., 2022). However, owing to
the black-box nature of LLMs, their prompt prefer-
ence is also underexplained and sometimes depen-
dent on nuanced variations (Webson and Pavlick,
2021; Lin, 2024; Kassner and Schiitze, 2020; Shin
et al., 2020), requiring extensive prompt engineer-
ing to achieve optimal performance for each task.

Prompt Engineering: Research on manually de-
signed prompts (Brown et al., 2020; Reynolds
and McDonell, 2021; Ouyang et al., 2022) high-
lights the essential role of expert involvement
in manual prompting processes, which is time-
consuming and expensive. In addition to manu-
ally designed prompts, automatically generated
prompts for LLMs have also been explored. Shin
et al. (2020) introduced AutoPrompt, a method
that employs gradient-guided search to automati-
cally generate prompts. Kazemi et al. (2022); Do
et al. (2025) propose a backward selection method
for optimizing prompts, while Yang et al. (2023)
present a framework utilizing LLMs as optimizers
for prompt training, demonstrating improvements
over manually crafted prompts. However, training
the optimal prompt using large-sized LLMs across
diverse tasks involves extensive computation, mak-
ing the approaches costly and unstable when gen-
eralizing to out-of-domain scenarios (Theophilou
et al., 2023; Zhao et al., 2021) .

Prompt Consistency: Prompt consistency has
long been an important topic in the NLP research.
Si et al. (2022) find that certain prompts maintain

consistent performance across different sizes of the
GPT-3 model. Wang et al. (2024a) discover that
some prompts can yield similar performance across
models in the biomedical domain. Additionally, Li
et al. (2025) reported that different LLMs exhibit
consistent preference of templates in code gener-
ation. On the other hand, Voronov et al. (2024)
argue that rigid and structured prompt templates
perform inconsistently across different models in
in-context learning. However, their work focused
on analyzing consistency among rigid and struc-
tured templates. In contrast, our work studies or-
ganic natural language prompt templates, address-
ing a broader and more common scenario in NLP
research. Similarly, Mizrahi et al. (2024) show that
LLMs are sensitive to prompt variations, with even
minor differences in template wording leading to
noticeable performance changes. Building on these
insights, our study examines whether, despite such
sensitivity, LL.Ms still tend to converge on the same
optimal prompt when selecting from a set of natural
language alternatives.

In this work, we set up a series of experiments to
demonstrate the consistency of prompt preference
across LLMs. We present the findings from our
analyses in §3, and propose a lightweight approach
to leverage these findings for various tasks in §4.

3 Consistency of Prompt Preferences
across Different Model Sizes

In this section, we analyze consistency in prompt
preference among LLMs of varying sizes. We set
up a series of experiments on two tasks: open-
domain QA (§3.1) and NLI (§3.2), respectively,
which pose challenges to the current state-of-the-
art LLMs. First, we collect multiple natural lan-
guage prompt templates for QA and NLI. Then,
we evaluate these prompts across LLMs of varying
sizes, comparing their performance to determine
whether models from the same family, despite dif-
ferences in scale, exhibit similar preferences for
the best-performing prompt.

Models: In our experiments, we evaluate multi-
ple prompt templates on DeepSeek-R1 (DeepSeek-
Al et al., 2025), LLaMA-2-chat (Touvron et al.,
2023), LLaMA-3-instruct (Al@Meta, 2024), and
Vicuna (Zheng et al., 2023) model families, using
models of varying sizes within each family.
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Datasets  Task Samples Prompt source

Num of relations Num of prompts

prompt description

Google-RE QA 5.5k auto-generated 3 10 per relation A natural question to describe a relation, like PlaceOfBirth.
T-REX QA 31k auto-generated 41 10 per relation e.g. “What is the birthplace of [X]?”
Levy/Holt NLI 1.8k manual-generated 1 5 A binary question to judge if [premise] entails [hypothesis].

e.g. “If Google bought Youtube, then Google owns Youtube”

Table 1: Details of the test sets. For QA, Google-RE includes 3 relations, and T-REX encompasses 41 relations,
each with 10 automatically generated prompt templates per relation. For NLI, the Levy/Holt dataset consists of 1

relation with 5 manually crafted prompts.

3.1 Task 1: Open-domain QA

Datasets: For open-domain QA, we experiment
with two open-domain QA datasets: Google-
RE (Petroni et al., 2019) and T-REX (Elsahar
et al., 2018). The Google-RE dataset is metic-
ulously curated from the Wikipedia knowledge
base? and comprises 5.5K meticulously extracted
facts structured in the form of relation triples
([X], relation, [Y]). This corpus contains three
distinct relations: PlaceOfBirth, PlaceOfDeath,
and DateOfBirth. In a similar data format to
Google-RE, the T-REX dataset contains knowledge
sourced from a subset of Wikidata (VrandecCi¢ and
Krotzsch, 2014) with 41 relations, and it subsam-
ples at most 1000 triples per relation.

Prompt Candidates: We automatically gener-
ate prompt templates for QA. Here, we input each
relation from the test set into ChatGPT (OpenAl,
2022) and generate 10 distinct natural question
prompts per relation. For instance, the prompt
“What is the birthplace of [X]?” is employed for the
PlaceOfBirth relation. These prompts are then
filled with the facts to generate relevant questions
for analysis and evaluation.

3.2 Task 2: Natutral Language Inference

Dataset: In our NLI experiments, we select the
Levy/Holt (Levy and Dagan, 2016; Holt, 2019)
dataset as our test set. The Levy/Holt dataset com-
prises premise-hypothesis pairs structured in a spe-
cific task format: <premise, hypothesis, label>.
Each premise and hypothesis is also structured as
a relation triple, containing a single predicate with
two entity arguments, wherein identical entities are
present in both the premise and the hypothesis. A
distinctive feature of the Levy/Holt dataset is the in-
clusion of inverse pairs for all premise-hypothesis-
label entailments. Following prior work (Mckenna
et al., 2023; Cheng et al., 2023; Chen et al., 2022),
we study the challenging directional subset, where
the entailments hold in one direction but not both.

2https://dumps.wikimedia.org/enwiki

Prompt Candidates: We employ the same
prompts utilized in prior work (Mckenna et al.,
2023) for evaluation, consisting of five natural ques-
tion prompts crafted by human experts. We present
the manually crafted prompts in Appendix B and
the detailed experimental settings in Table 1.

3.3 Maetrics

Accuracy: For open-domain QA tasks, we con-
sider a response from an LLM to be correct if it
contains the target entities. This approach allows
us to calculate accuracy. For NLI tasks, we use
the hypothesis-premise pairs from the Levy/Holt
dataset as binary questions for the LLMs and sub-
sequently calculate the accuracy.

Proportion of Optimal-Prompt Matches: In
QA and NLI, we take the prompt that achieves
the highest accuracy as the optimal-prompt, and
we introduce the Proportion of Optimal-Prompt
Matches (POPM) as the metric to measure the ra-
tio of optimal-prompt matches between pairs of
LLMs X and Y. For each relation in each dataset,
if model X and model Y share the same optimal
prompt template, we count it as 1. The POPM
metric is then calculated by dividing the number of
matched relations by the total number of relations.

3.4 Findings

In open-domain QA task, Figure 1 compares the
performance of LLMs of different sizes across a
spectrum of generated prompts, spanning all the
relations present within the Google-RE. The re-
sults indicate that, despite differences in model
size, LLLMs within the same family consistently
achieve the highest accuracy with the same prompts
(For LLaMA-3, P yields the best performance for
PlaceOfBirth, Py for PlaceOfDeath and P35 for
DateOfBirth)3, as depicted by the solid bar in the
image. Additionally, as shown in Appendix D, we
observe the same consistency in LLaMA-2 and Vi-

3A different set of prompt templates is generated as nat-
ural questions for each relation, so prompt indices are not
comparable across different relations.
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Figure 1: Accuracy of different prompts across LLaMA-3 and DeepSeek-R1 models on Google-RE. The x-axis
represents the various prompts being evaluated. The solid bar indicate the optimal prompt for each respective LLMs.

Levy/Holt Models Datasets

Google-RE TREX Levy/Holt
ol LLaMA-2-7B 100% (3/3)  70.7% (29/41)  100% (1/1)
LLaMA-2-13B 100% (3/3)  75.6% (31/41) 100% (1/1)

Vicuna-7B 100% (3/3) 78.0% (32/41) 0% (0/1)
Vicuna-13B 100% (3/3)  87.8% (36/41) 100% (1/1)
Vicuna-33B 34% (1/3)  68.3% (28/41)  100% (1/1)
p0 p1 p2 p3 p4 LLaMA-3-8B 34% (1/3)  61.0% (25/41) 100% (1/1)
. W LLaMA-3-70B  34% (1/3)  68.3% (28/41) 100% (1/1)
DeepSeek-R1-8B  67% (2/3)  73.2% (30/41) 100% (1/1)
(a) Accuarcy of prompts across LLaMA-3 of DeepSeek-R1-70B  67% (2/3)  78.0% (32/41) 100% (1/1)

different sizes.

Table 2: This table presents the POPM scores across
Levy/Holt various LLMs in comparison to GPT-3.5. The table
also presents the number of optimal-prompt-matched
. relations relative to the total number of relations.

dividual relations in T-REX to Appendix C and
- L L L L Appendix E, where results are consistent.

S oo L In NLI tasks, as demonstrated in Figure 2, our
findings are also consistent in NLI tasks. Various
sizes of LLaMA-3 models exhibit identical prompt
preferences, achieving the highest accuracy with
Figure 2: The figure illustrates the accuracy of differ-  the same prompt, Py. In the DeepSeek-R1 series
ent prompts across LLaMA-3 and DeepSeek models of  models, the Py is still the optimal prompt.
varying sizes on the directional Levy/Holt (NLI task). Furthermore, we present our findings across dif-

Th? x-axis represents the various cagdidate Prompis,  forent model families with the POPM scores in

while the solid bar represents the optimal prompt for . .

cach LLM. Table 2, where we observe a consistently high ra-
tio of optimal prompt overlaps between different
model families.

cuna model families. These findings suggest that These findings demonstrate a consistent prefer-

models of different sizes within the same LLM  ence for prompt template selection across LLMs of

family exhibit consistent prompt preferences in QA varying sizes within the same model family. No-

tasks. Due to presentation constraints, we leave  tably, the prompts that perform optimally in smaller

the optimal prompts and their performance for in- models demonstrate effectiveness even when ap-
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Small-to-Large Prompt Prediction Step 2. Select template using small LMs Step 3. Evaluate on large LMs

Selection

Target

Step 1. Generate candidate prompt templates Models Models
<[X], Place-of -Birth,[Y]> @_:D Selected prompt @
* What is the birthplace of —
[x1? A :
—_— « Where was [X] born? » ' What is ""‘e[;]‘;thpla“e °f L, m C;:f)::’:lia
s In wich city was [X] born? )
B 7
«Steve Jobs, Place-of-Birth,[Y]> e

Figure 3: The workflow of S2LPP on open-domain QA: Step 1: For each relation, we utilize the prompt-generation
model to produce top-k candidate prompts. Step 2: We employ the small Selection Model to discern the optimal
prompt from candidates. Step 3: We use the selected prompt to ask questions. Subsequently, we employ the Target

Model to provide responses to these questions.

plied to larger models. Furthermore, the observed
high ratio of overlaps across different LLM families
indicate that it is possible to utilize smaller models
from different families to approximate the prompt
preference of larger models, and prompt the larger
models with approximated optimal prompts at in-
ference time, to reach near-optimal performance
on unseen tasks at minimal computational cost.

4 Small-to-large Prompt Prediction

The previous experiments in §3 have shown the ex-
istence of consistency in prompt preference among
various sizes of LLMs. In this section, we exploit
this consistency to reduce the development cost of
LLMs in NLP applications.

We propose the Small-to-Large Prompt
Prediction (S2LPP) method, leveraging this
consistency to automatically generate and select
high-performing prompts for new, unseen open-
domain knowledge in a computationally efficient
manner. We evaluate S2LPP on open-domain
QA and NLI tasks and extend the pipeline to a
wider range of NLP applications, including using
smaller LLMs for retrieved document selection in
open-domain QA and for Chain-of-Thought (CoT)
prompt selection in arithmetic reasoning tasks.

4.1 Method

The S2LPP framework primarily comprises three
steps: prompt generation, prompt selection, and
prediction with large target models. We illustrate
an example workflow of S2LPP in Figure 3.

Prompt generation: A prompt-generation model
is used to generate a set of candidate natural lan-
guage prompt templates.

Prompt selection: Prompt selection is the cru-
cial step in the S2LPP pipeline. By leveraging

the consistency of prompt preference, we utilize
smaller LMs as the prompt-selection models to
assess each prompt by its performance on a few
examples to efficiently select the prompts with the
best performance.

Predict with Target Model:  After we compute
the performance of each prompt in the above men-
tioned step, we select the prompt with the highest
score and use it in the following evaluation. To be
more specific, we integrate test examples into the
prompt template to form natural queries. Then, we
input these queries into the target larger model and
employ their responses as answers.

4.2 Experimental Setup

Aligned with the experiments in §3, we apply our
method to both open-domain QA and NLI tasks.
For open-domain QA, in the prompt-generation
step, we utilize ChatGPT to generate 10 candidate
prompts* specific to the relations sourced from
the Wikidata knowledge base, with temperature
fixed at 0. We computed pairwise ROUGE scores
among the generated prompts, with a maximum
below 0.35 and an average of 0.27, confirming
their high diversity compared to prior work (Wang
et al., 2023b, 2024b). To enforce this, any new
prompt with a ROUGE score above 0.35 against
existing candidates is discarded. These prompts
are generated as a specific natural prompt template,
such as “What is the birthplace of [X]?" for the
Wikidata relation PlaceOfBirth. Subsequently,
entities sourced from the knowledge base are filled
into the prompts, transforming them into natural
questions posed to prompt-selection models. In the

*For open-domain QA, the prompts are sentence-level,
averaging 6.9 tokens in length, with roughly 83.3% of the
tokens coming from the template portion.
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prompt-selection step, we employ fourteen widely-
used LLMs of varying sizes as the prompt selection
models. In the predict with target model step, we
use the GPT-3.5 model as the target model to as-
sess whether the selected prompts enhance their
performance.

For the NLI task, we similarly use ChatGPT to
automatically generate 10 natural language ques-
tions as candidates, as presented in Appendix C and
then populate these templates with the correspond-
ing hypotheses and premises in the dataset. Note
that we do not use the manual prompt templates
from the analysis above (§3.2) to avoid human la-
bor in our proposed approach.

4.2.1 Models

Besides LLaMA-3, DeepSeek-R1, LLaMA-2 and
Vicuna series LLMs, we also include additional
LLMs such as Mistral (Jiang et al., 2023), Stable-
Beluga (Mahan et al.) and falcon (Almazrouei
et al., 2023) series models as prompt selection-
models for a more in-depth analysis.

4.2.2 Datasets

For QA tasks, we curate a sample of 41 relations
sourced from Wikidata, consistent with those in
the Google-RE and T-REX datasets. For NLI tasks,
we again utilize the directional Levy/Holt dataset,
which consists of premise-hypothesis pairs.

Development Set: In our experiment, the first
100 samples of the QA task datasets (Google-RE
and T-REX) are designated as the development set,
where the prompt-selection models are utilized to
identify the optimal prompt. For NLI tasks, we
directly select 100 samples from the Levy/Holt
development set.

Test Set:  With the exception of the selected 100
samples from the Google-RE and T-REX datasets
used as development sets, we utilized the remaining
subset as the test set.

4.2.3 Baselines

First-generated Prompts: This baseline uses the
first generated prompt from the set of 10 generated
candidates since the first prompt also tends to be
the most favored prompt.

Average scores among prompts: We compute
the mean accuracy across the candidates to measure
the overall performance of all generated prompts.
This methodology allows us to compare the quality

Datatsets

Models Google RE TREX Levy/Holt
Prompt firsi—generated 19.26 64.61 54.95
Promptayerage 17.11 61.94 56.98
Prompt,,anual 23.0 61.10 56.76
Prompt-selection Model (ours) 26.06 67.63 58.74
Prompt,;qce (upper bound) 27.81 71.30 64.0

Table 3: Accuracy scores achieved using LLaMA-2-
7B as the prompt-selection model on QA and NLI
tasks. We compare with the first-generated prompt
(Prompt ¢;yst—generated), average scores among all
prompts (Promptgyerqage) and the manual prompts
(Prompt,,qnuai)- Oracle prompt denotes the best-
performing prompt on the target model.

of our selected prompts against the average perfor-
mance level among all prompts.

Manual Prompts: For each relation in each task,
we take the manually-crafted prompt templates
from prior work (Cheng et al., 2023; Mckenna et al.,
2023; Schmitt and Schiitze, 2021).

Oracle Prompts: We conduct prompt selection
with the target model itself (GPT-3.5) and identi-
fied the optimal prompt from the development set
as the oracle prompt, which is also the upper bound
among all generated candidate prompts. This up-
per bound serves as a reference point against which
to assess the performance gaps between our ap-
proaches and the pinnacle of performance.

4.3 Evaluation Metrics

Utilizing the target models to identify the oracle
prompt can achieve the upper bound of perfor-
mance among all candidates, but this process is
expensive to train. Our prompt selection strategy
aims to match this upper-bound performance while
incurring lower costs.

In addition to accuracy, we introduce a metric
to measure the efficacy of the selected prompts
against the upper bound: Recovery Rate of Perfor-
mance (RRoP). This metric demonstrates the pro-
portion that we can recover from the performance
of oracle prompts using our selected prompts. The
RRoP is defined as follows:

Acc(pts)

where ptg and pto denote the selected and oracle
prompts, respectively, and Acc(-) represents the
accuracy of a prompt.
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Target Models

StableBeluga R - = " Deepseek- | Falcon3- [StableBeluga . - _ Vicuna- | LLama2- |Deepseek-| LLama3-
7B LLama2-7B | Vicuna-7B ’ LLama3-8B 8B 108 138 LLama2-13B| Vicuna-13B 238 708 70B 708
StableBeluga 47.97% 81.11% 66.66% 81.60% 40.28% 85.27% 37.27% 61.33% 89.69% 72.90%
-78

88.16% 82.97% 83.29% 84.48%

70.55% 8547% 80.34%

Llama2-7B

" 88.46% 87.31% 7741% 74.96% 81.06% 72.05% 71.05% 88.59%
Vicuna-7B
58.45% 84.950 72.62% 80.98% 84.61% 64.42% 8553k 74.43% 79.77%
LLama3-8B
Deepseek- 67.20% 82.56% 68.79% 77.43% 51.39% 57.27% 55.92% 69.80%
llama-8B
Falcon3-10B 89.21% 65.86% 86.26% 72.36% 89.41% 70.58% T041% 63.04% 83.00%
Selectiorn 58 45% 84,950 72.62% 80.98% 84.61% 64.42% 8553k 74.43% 85.15% 79.77%
Models -138
LLama2-13B 81.35% 7427% 87.20% 85.61%
Vicuna-13B 86.14% 81.21% 70.80% 65.39% 59.34% T3.4TH
" 77.78% 72.97% 60.64% 78.64% 89.20% 83.04% 87.39% 85.58%
Vicuna-33B
LLama2-70B 75.21% 84.51% 89.47% 66.20% 86.97% 86.46% 89.29%
Deepseek- 88.16% 82.97% 83.29% 84.48% 70.55% 85.47% 80.34%
llama-70B
77.78% T2.97% 60.64% 78.64% 83.04% 87.39% 85.58%

LLama3-70B

Figure 4: The Recovery Rate of Performance (RRoP) across various LLMs on QA tasks. RRoP scores exceeding
70% are highlighted in red.

the effect of various sizes and families of smaller
» models in the prompt-selection process, shown
N in Figure 5. As depicted all LLMs utilized in
. the prompt-selection stage outperform the base-
o lines. Interestingly, some smaller models outper-
form their medium and larger versions in the selec-

‘ —— UpperBound - - - baseline (1 generated prompt)

© 1% 1° 20 o o © 30 a0 2O o0 © 0P Lo® 3 : 3
o TS I S tion process, possibly because larger LLMs from
)\ [N b e’ B o <2 . oy . .« .
5 Py o © different families are trained on more additional

diverse corpora, leading to discrepancies with the

Figure 5: Accuracy of different models in the prompt
target large model.

selection step for QA. The green column represents the
baseline using the first-generated prompt, while the red
column illustrates the accuracy with the oracle prompt,
which is the upper bound of the target model (GPT-3.5).

Recovery Rate of Performance across Various
LLMs: Figure 4 demonstrates the RRoP scores.
The results show that most selection models can
recover a high proportion of the performance
achieved by using oracle prompts, approaching the

4.4 Results

Performance of Selection Model: Table 3

compares our small-sized LLM-selected prompts
against various baselines. Here, we use the
LLaMA-2-7B as the smaller model. Our approach
outperforms baselines, demonstrating superior per-
formance even when compared to manually crafted
prompts. Furthermore, our methods exhibit min-
imal deviation from the upper bound, providing
evidence that the prompts selected using small-size
LMs are also performant with target models. The
results highlight the efficacy of employing small-
size LMs in open-domain QA and NLI tasks to op-
timize computational costs. We also observed that
the accuracy of open-domain QA is limited across
all prompts, which is attributed to the sparsity of
exact matches. We conjecture that performance im-
provements can be achieved by using entailments
for this task (Cheng et al., 2023).

Performance across Various Selection-Models:
We conducted additional experiments to analyze

upper bound with lower computing costs. This
suggests that, in addition to GPT models, other
language models can also be effectively utilized
as target models. It highlights the RRoP scores
achieved when using different selection and target
models separately, demonstrating the efficacy of
applying these approaches to new LLM families.

4.5 Extend to Broader NLP Applications

The core of the S2LPP approach is leveraging the
consistency of prompt preference to enable effi-
cient prompt selection using smaller LLMs, open-
ing up the possibility to extend the pipeline to a
broader range of NLP tasks. We further utilize
this consistency in more applications, including
using smaller LLMs to select relevant contexts
for Retrieval-Augmented Generation (RAG) and to
select Chain-of-Thought (CoT) prompts for arith-
metic reasoning tasks.
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Google-RE

Context first—paragraph 45.21
ConteXtDeepSeek—SB (ours) 61.90
Contethhole—documentS 66.82

Table 4: Accuracy across different context settings on
the Google-RE dataset. We use DeepSeek-R1-8B to
select the most relevant paragraph as context and com-
pare its performance against using the first paragraph
of the retrieved documents ( f;rst—paragraph) and using
the whole document (hoie—document) as context.

GSM8K
AutomateCoT¢gpr 79.81
AutomateCoT;stra1—78 77.61
ours  AutomateCoTgeepseck—8B 79.37
AutomateCoTjuma3—sB 78.75

Table 5: Accuracy scores of AutomateCoT using differ-
ent generation and selection models. AutomateCoTg pr
refers to the CoT prompts from Shum et al. (2023),
where GPT-2 is used for both prompt generation
and selection. Our approach uses DeepSeek-8B for
prompt generation and small-sized LLMs (Mistral-7B,
DeepSeek-8B, LLaMA3-8B) for prompt selection.

Context Selection with Small LLMs for RAG:
We evaluate the efficiency of using small-sized
LLMs to select relevant contexts from retrieved
documents for RAG. For each question in the
Google-RE dataset, we retrieve 10 candidate docu-
ments using the Google Search API and then em-
ploy small-sized LLMs, DeepSeek-R1-8B to select
the most relevant paragraphs as context from these
candidates. The selected paragraph is then concate-
nated with the question and passed to GPT-3.5 to
generate the final answer.

As shown in Table 4, using DeepSeek-R1-8B
to select context from retrieved documents yields
accuracy that is slightly lower than using the whole
retrieved documents (long context) when evalu-
ated with GPT-3.5, while saving computing costs".
This demonstrates that different LLMs exhibit con-
sistency in their preference for retrieved contexts,
aligning with our findings on prompt preference
consistency, and further supports the effectiveness
of applying this approach to RAG.

CoT Prompts Selection with Small LLMs for
Arithmetic Reasoning: Shum et al. (2023) pro-
pose a two-step pipeline, AutomateCoT, for gener-

>In our experiments, the average length of the selected
context is 82 tokens, compared to 1000 tokens for the full
documents.

ating CoT prompts: (1) using the GPT-2 (davinci-
002) model to automatically generate a pool of CoT
examples, and (2) selecting the optimal combina-
tion of examples from this pool using a selection
model trained on devlopment set via reinforcement
learning, guided by performance from GPT-2. The
selected CoT examples combination are then used
as few-shot examples during evaluation.

In our experiments, we follow the same experi-
mental setup but substitute the GPT-2 model with
smaller LLMs. For the CoT examples genera-
tion step, we use DeepSeek-R1-8B to automati-
cally create a pool of candidate examples. In the
selection step, we randomly generate 100 candi-
date combinations and employ small LLMs, in-
cluding DeepSeek-R1-8B, LLaMA-3-8B-Instruct,
and Mistral-7B, to select the optimal combination
by their performance. Evaluation is performed on
GPT-3.5 using the GSMS8K (Cobbe et al., 2021)
arithmetic reasoning dataset, following the same
test set as used in Shum et al. (2023).

As shown in Table 5, small-sized LLMs used
for CoT prompt generation and selection achieve
accuracy comparable to GPT-2, while our method
reduces the computational cost of prompt selection
by 60% compared to the baseline. The comparable
performance further suggests that prompt prefer-
ence consistency can be effectively leveraged not
only for prompt selection but also for generation.

5 General Discussion

The common factor across the set of models is
the similarity in the distributions of their pre-
training corpora, so we conjecture that this prompt-
preference consistency originates from the pre-
training and that the prompt templates best aligned
with the pre-training distribution would prevail.
This also explains the differences between the find-
ing in Voronov et al. (2024) and us, where they
used rigid templates, and we used organic, natural
language prompts, which more closely resemble
the pre-training conditions of various LLMs.

The S2LPP approach demonstrates the efficacy
of exploiting the consistency of prompt preference
and offers an efficient method for prompt selection
using small-sized models, which can complement
SOTA prompt generation methods. Additionally,
the prompt-selection models can be seamlessly up-
dated with newly released LLMs. With the as-
sumption that this prompt preference consistency
originates from pre-training, the prompts selected
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by previous prompt-selection models could be per-
formant with newly released target LLMs as well.

6 Conclusion

Across several major LLM families and experimen-
tal settings, we have demonstrated the consistency
of prompt preference across LLMs on the QA and
NLI tasks, providing significant potential for appli-
cations. Our work represent a finding that LLMs
from the same model family, regardless of size, ex-
hibit similar preferences across different prompts.
Based on this finding, we further propose a
lightweight approach to utilize the consistency
of prompt preference for open-domain questions
involving new, unseen knowledge, by exploiting
smaller models to select highly performant prompts
at minimal cost in computation. We validate the
efficacy of the approach in QA and NLI. Experi-
ments demonstrate that the prompt templates se-
lected with our strategy outperform baselines. Our
methods also possess a strong capability to recover
the performance of oracle prompts with signifi-
cantly lower costs in the prompt selection steps. We
further present the generalizability of our method
to a broader range of NLP tasks. Deeper investi-
gations into the source of this consistency will be
important directions for our future work.
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Limitations

In this work, we demonstrate the consistency of
prompt preferences across LLMs and their exploita-
tion in natural language tasks. However, our ap-
proach still has some limitations. In S2LPP, al-
though we leverage this consistency by using small
models in the prompt selection step, we still rely
on powerful LLMs to generate candidates. Further
research is required in order to explore the potential
of using smaller models to generate these prompts
for QA. Additionally, due to the limited computa-
tional resources and the high cost for evaluation on
a wide range of models, we only utilize GPT-3.5
as the target model in the QA, NLI, RAG and arith-
metic reasoning tasks. We plan to experiment with
more open-sourced large target LLMs.
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A Computational Cost

In our experiments, we allocate resources equiv-
alent to 4 GPUs (NVIDIA V100) for prompt-
selection steps. For each relation sourced from
Wikipedia, the process of selecting the optimal
prompt among 10 candidates using small-size
LLMs (LLaMA-2-7B, Vicuna-7B, StableBeluga-
7B, Mistral-7B, and Falcon-7B) requires approx-
imately 10 minutes, and it will cost about 30
minutes with medium-size LLMs (LLaMA-2-13B,
StableBeluga-13B, Vicuna-13B). In contrast to uti-
lizing large-size LLMs to achieve the upper bound
prompt, our approaches facilitate significant sav-
ings in computational resources while maintaining
performance levels with minimal gaps.

B Manually Crafted Prompt in NLI

As discussed in §3, to determine the consistency of
prompt preferences in NLI, we utilize five manu-
ally crafted prompt templates used in prior works
(Mckenna et al., 2023). These prompts are metic-
ulously chosen for their clarity and conciseness,
which also consider the prompt templates used in
bias-related research on LMs (Schmitt and Schiitze,
2021) for textual entailment. We present the manu-
ally crafted prompt templates below and highlight
the best-performed prompt template on the target
model, GPT-3.5, in bold.

1. prompty: “If [premise], then [hypothesis].”
2. prompt;: “[P], so [H].”

3. prompts: “[P] entails [H]”

4. prompts: “[P], which means that [H].”

5. prompty: "[H], because [P]."

The promptgy outperforms another prompt template
in GPT-3.5 and LLaMA-7B, LLaMA-13B, and
Vicuna-13B models. The prompty achieves the
second highest accuracy among other templates on
Vicuna-7B, where the optimal prompt is prompts.

C Automatically Generated Prompt
Templates from ChatGPT

As discussed in §4, we introduce the S2LPP ap-
proach, which selects the automatically generated
prompt templates using small LMs. Our method
uses ChatGPT to generate 10 candidates for open-
domain QA and NLI separately. The ten generated
prompt templates used in our experiments for NLI
tasks are presented below:

1. prompty: “Can [H] be inferred from [P]?”
2. prompt;: “Does [P] entail [H]?”
3. prompty: “Is it true that [P] leads to [H]?”

4. prompts: “Is [H] a necessary consequence of
[P1?”

5. prompty: “Do we conclude [H] from [P]?”

6. prompts: “If [P] is true, must [H] also be

true?”’

7. promptg: “Does the truth of [P] guarantee the
truth of [H]?”

8. prompt;: “Is [H] a logical consequence of
[P1?”

9. promptg: “Can we derive [H] from [P]?”
10. promptg: “Is [H] implied by [P]?”

We also present the generated prompt templates
for open-domain QA in Table 6. In this table,
the optimal prompt templates for the target model,
GPT-3.5, are highlighted in bold.

D Consistency across Different Models

Besides the LLaMA-3 and DeepSeek-R1 models,
we compare the performance of more LLMs across
a spectrum of generated prompts in Figure 6, span-
ning all the relations present within the Google-
RE. The results indicate that, with the exception
of LLaMA-2 70B on PlaceOfBirth, LLMs within
the same family consistently achieve the highest
accuracy with the same prompts, regardless of dif-
ferences in model size.

E Consistency on T-REX

We present our consistency analysis experiments
on the T-REX dataset, discussed in §3, in table 7. In
this experiment, we use the best-performing prompt
on GPT-3.5 as the reference label to determine if
other models share the same optimal prompt. In the
table 7, we highlight the matches and mismatches
in blue and red color, respectively.

F Maetrics on open-domain QA

In our experiment settings, discussed in §3.3, we
utilize the accuracy in our experimental metrics.
Note that previous works (Petroni et al., 2019) on
Google-RE and T-REX use Precision@1 as the
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Relations prompt id Prompt Templates

Po "What is the birthplace of [X]?",

P1 "Where was [X] born?",

P2 ""In which city or town was [X] born?"',

P3 "What is the native place of [X]?",
PlaceOfBirth P4 "Could you provide the birth location of [X]?",

Ps "From where does [X] originate?",

Pé "What is the hometown of [X]?",

p7 "Where did [X] come into the world?",

ps "What is the birth country of [X]?",

P9 "Can you tell me the exact location where [X] was born?"

Po "Where did [X] pass away?",

P1 "What was the location of [X]’s death?",

P2 "In which city or town did [X] breathe their last?'',

P3 "Can you provide the place where [X] died?",

P4 "What is the final resting place of [X]?",
PlaceOfDeath Ps "Where was [X] when they passed away?",

Ps "What was the location of [X]’s demise?",

p7 "Could you tell me where [X] met their end?",

ps "Where did [X] take their last breath?",

Po "What was the place of departure for [X]?"

Po "When was [X] born?",

pP1 "What is the birth date of [X]?",

P2 "Can you provide the date of birth for [X]?",

P3 "When did [X] come into the world?",

P4 "What day and month was [X] born?",
DateOfBirth Ps "When did [X] celebrate their birthday?",

Ps "What is [X]’s birth year?",

p7 "Can you tell me the exact date when [X] was born?",

Ps ""When did [X] first open their eyes to the world?",

Po "What is [X]’s date of birth according to records?"

Table 6: The table presents the generated prompts for various relations in the Google-RE dataset. The optimal
prompt templates for the target model, GPT-3.5, are highlighted in bold.
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Relations The optimal prompts across models

Relation Name Relation ID LLaMA-2-7B LLaMA-2-13B Vicuna-7B  Vicuna-13B | GPT-3.5
place of birth P19 P2 p2 P2 p2 P2
place of death P20 p2 p2 P2 P2 p2

subclass of P279 P3 p3 ps ps Ps
official language P37 p1 P1 p1 p1 P1
position played on team P413 Po Po Po Po Po
original network P449 Po Po Po Po Po
shares border with P47 ps ps ps ps p3
named after P138 Po Ps Ps Ps Ps
original language of film or TV show P364 p1 p1 p1 p1 P1
member of sports team P54 Po Po Po Po Po
member of P463 P1 p1 pP1 p1 p1

field of work P101 P6 p2 p2 p2 Po
occupation P106 p3 P4 P2 p2 P2

has part P527 pl Po p3 Po Po
diplomatic relation P530 Po Po Po Po Po
manufacturer P176 p3 p3 pl pl Po
country of citizenship P27 p3 P3 P3 pP3 P3
language of work or name P407 Po Po Po Po Po
is located in continent P30 Po Po Po Po Po
developed by P178 Po Po p1 p1 p1
capital of P1376 pl Po Po Po p2
located in P131 Pe Ps Ps Ps Pe

used to communicate in P1412 Po Po Po Po Po
work for P108 P1 P1 p1 p1 P1

play P136 P6 s pl p3 p3

position held P39 p2 p2 P2 P2 p2
record label P264 P2 p2 P2 p2 P2
location P276 Po p2 Po Po Po

work location P937 p3 pP3 p3 p3 P3
religion P140 Po Po Po Po Po

play music type P1303 p1 p1 p1 p1 p1
owned by P127 Po Po Po Po Po

native language P103 P2 p2 p2 p2 p2
twinned administrative body P190 p2 P2 p2 p2 P2
legal term in P1001 p2 P2 Po Po P4
instance of P31 Po Po Po Po Po
country of origin P495 Ps Ps Ps Ps ps
headquarters location P159 Po p2 Po p2 P2
capital P36 Po Po p2 Po Po

location of formation P740 P2 p2 p2 p2 p2
part of P361 Po Po Po Po Po

Counts of Matches 29 31 32 36 -

Table 7: This table presents the optimal prompt template matches in the T-REX dataset. We use the best-performing
prompt on GPT-3.5 as the reference label. If other models select the same prompt as their optimal prompt, it is
counted as a match, indicated in blue. Conversely, mismatches are indicated in red.
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Place Of Birth Place Of Death Date Of Birth

30 307 30
25 25 25
20 20 20
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(a) Accuracy of various prompt templates across Vicuna models with different sizes.

% Place Of Birth 30 Place Of Death 0. Date Of Birth
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(b) Accuracy of various prompt templates across StableBeluga models with different sizes.
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(c) Accuracy of various prompt templates across LLaMA-2 models with different sizes.

Figure 6: The figure illustrates the accuracy of different prompts across Vicuna, StableBeluga and LLaMA-2-chat
on Google-RE. The x-axis represents the various prompts being evaluated. The solid bar indicate the optimal prompt
for each respective LLMs.

metric, which is equivalent to the accuracy used in
our work. In this task, the LLMs provide a single
response as the answer for each question. Conse-
quently, the score is the same, which is determined
by the ratio of correct answers to the total number
of questions.
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