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Abstract

Understanding event relationships is critical for
tasks such as narrative comprehension, infor-
mation extraction, and reasoning in natural lan-
guage processing. Despite the remarkable ad-
vancements of large language models (LLMs)
across diverse NLP tasks, current studies have
not systematically evaluated their ability to cap-
ture the complexities of event relations. To this
end, we aim to assess LLMs on event relation-
ship extraction (ERE) by designing the bench-
mark EventRelBench. EventRelBench com-
prises 35K diverse event relation questions cov-
ering four key categories—coreference, tem-
poral, causal, and supersub relations. These
questions are provided at two levels of granular-
ity: document-level and sentence-level. Exten-
sive experiments on different sizes and types
of LLMs show that existing LL.Ms still fall
short in accurately extracting and understand-
ing event relationships. To address this gap,
we introduce EventRellnst, a 48K instruction
fine-tuning dataset in the event relation extrac-
tion domain. Experimental results not only
highlight the shortcomings of current general-
purpose LLMs in extracting event relationships
but also demonstrate the effectiveness of Even-
tRellnst. !

1 Introduction

Event relations are crucial for numerous down-
stream NLP applications, including narrative com-
prehension, information extraction, question an-
swering, and commonsense reasoning (Chaturvedi
et al., 2017; Zhou et al., 2019; Ning et al., 2020;
Li et al.,, 2021; Zhang et al., 2021; Han et al.,
2021; Zhuang et al., 2023). Event relation ex-
traction (ERE) facilitates the construction of struc-
tured event graphs and the inference of implicit
dependencies among events. While early work
on event relation extraction relied on feature-
engineered classifiers and structured prediction

! *Corresponding author.

A User

Input document:

S1: On Tuesday, there was a typhoon-strength (1:storm) in Japan.
S2: One man got (2:killed) and thousands of people were left stranded.

S3: Police said an 81-year-old man (3:died) in central Toyama when the wind
blew over a shed, trapping him underneath.

S4: Later this afternoon, with the agency warning of possible tornadoes, Japan
Airlines (4:canceled) 230 domestic flights, (5:affecting) 31,600 passengers.

Coreference Relation: (2: killed) —— Coreference —> (3:died)
Temporal Relation: (2: killed) —— Before —> (5:affecting)
Causal Relation: (1:storm) —— Cause —> (4.:canceled)
Supersub Relation: (1:storm) —— Supersub —> (3 :died)

Figure 1: An Example of LLM predicting four event
relationships (Coreference, Temporal, Causal, and
Supersub) in the given document.

frameworks (Han et al., 2019; Wen and Ji, 2021;
Hwang et al., 2022; Tan et al., 2023; Gong and
Hu, 2025), the advent of large language models
(LLMs) has opened new opportunities for captur-
ing rich contextual cues and implicit knowledge.
Recent LLMs (Ouyang et al., 2022; Touvron et al.,
2023; Achiam et al., 2023; Zhao et al., 2023; Jiang
et al., 2023; Fang et al., 2023; Grattafiori et al.,
2024; Team et al., 2025) have demonstrated impres-
sive zero-shot and few-shot performance across
a wide spectrum of benchmarks. These bench-
marks range from reasoning-oriented tasks such
as GSMS8K (Cobbe et al., 2021) to knowledge-
intensive challenges like factual question answer-
ing (Pan et al., 2023; Hu et al., 2024).

However, systematic evaluation of LLMs’ capac-
ity to understand and extract complex event rela-
tionships remains lacking. Existing LLM bench-
marks typically focus on individual relation types
in isolation (e.g., temporal relation) or operate at a
single granularity (e.g., sentence-level). This leaves
open questions about LLMs’ capacity to compre-
hend event relations across diverse categories and
text scopes. Without a unified evaluation bench-
mark, it is difficult to pinpoint specific weaknesses
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of general-purpose LLMs or to develop targeted
solutions.

To bridge this gap, we introduce EventRel-
Bench, a comprehensive benchmark designed
to evaluate LLMs on four crucial event rela-
tion categories—temporal, causal, coreference,
and supersub. EventRelBench consists of 35k
multiple-choice questions drawn from diverse do-
mains, ensuring rich variety in linguistic construc-
tions and knowledge demands. Two granularity
levels are included: document-level and sentence-
level.

As shown in Figure 1, LLM predicts four event
relationships in the given document. Event(2:
killed) has a coreference event relationship with
event(3: died). Event(2: killed) and event(5:
affecting) have a temporal relationship of "be-
fore". Event(1: storm) has a causal relationship
of "cause" with event(4: canceled). The subevent
of event(1: storm) is event(3: died).

Through extensive experiments on EventRel-
Bench with several open-source and leading
limited-access LLMs, we have observed several
key findings: 1) Existing LLMs exhibit poor per-
formance on event relation extraction tasks, with
some models (e.g., AquilaChat-7B and Gemma-
7B-IT (Team et al., 2024)) even underperforming
random guessing, highlighting substantial poten-
tial for improvement. 2) LLMs perform better on
document-level tasks than on sentence-level tasks.
This contrasts with the typical behavior observed
in conventional models. We believe this may be
attributed to the ability of LLMs to better capture
and understand contextual information over long
distances. 3) Performance varies markedly across
LLMs for different event relation extraction tasks,
reflecting each model’s distinct strengths and limi-
tations.

Motivated by observed shortcomings, we further
introduce EventRellnst, a 48K example instruc-
tion fine-tuning dataset tailored to the event relation
extraction task. EventRellnst converts domain-
specific data into explicit instruction—response
pairs. This format enables models to better grasp
the distinct demands of each relation type and the
corresponding contextual granularity. Our experi-
ments show that fine-tuning with EventRelInst can
lead to significant performance gains compared to
benchmark models. This outcome validates the
effectiveness and potential of EventRellnst.

In summary, our main contributions are as fol-
lows:

* We introduce EventRelBench, an English
large-scale, multi-category benchmark for
event-relation extraction, covering temporal,
causal, coreference, and supersub relations at
both the sentence and document levels.

* We present EventRellnst, an instruction fine-
tuning dataset of 48K examples specifically
designed for the event-relation extraction task.
It substantially enhances LLMs’ ability to un-
derstand and distinguish complex event rela-
tionships.

» Extensive experimental results reveal that (a)
general-purpose LLMs exhibit clear limita-
tions on EventRelBench; and (b) instruction
fine-tuning with EventRellInst produces sub-
stantial performance improvements in open-
source LLMs.

2 Related Work

2.1 Event Relation Extraction

Event relation extraction constitutes a fundamental
information extraction task that underpins various
downstream applications (Zhang et al., 2020). Nu-
merous studies have been conducted on event re-
lation extraction tasks, covering a variety of event
relation types, including coreference relations (Lu
et al., 2022; Ahmed et al., 2024), temporal rela-
tions (Wang et al., 2020; Zhou et al., 2021; Yuan
etal., 2023; Tan et al., 2024), causal relations (Chen
et al., 2022, 2023; Man et al., 2024), and supersub
relations (Wang et al., 2021; Wu et al., 2024).

Recent work has begun to explore how to lever-
age the capabilities of large language models for
event relation extraction tasks (Wang et al., 2022b;
Gao et al., 2023; Huang et al., 2023a; Ma et al.,
2023; Qiu et al., 2023; Chen et al., 2024a; Yuan
et al., 2024; Hu et al., 2025). These pioneering
efforts have employed a range of strategies to adapt
LLM:s for the event relation extraction task.

2.2 Benchmarks for Large Language Models

The advent of LLMs has highlighted the critical
need for systematic benchmarking frameworks to
enable standardized capability evaluation. Exist-
ing benchmarks can be broadly categorized into
two types. 1) General-knowledge and reasoning
benchmarks, such as the MMLU (Hendrycks et al.,
2021a), employ multiple-choice questions drawn
from real-world examinations and academic litera-
ture, covering a wide array of subject areas. 2)
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Task Sources Nums
Coreference Relation EventStoryLine, ECB+ 8,617
Temporal Relation MATRES, TCR, Causal-TimeBank 8,953
Causal Relation MAVEN-ERE, EventStoryLine 8,208
Supersub Relation HiEve, MAVEN-ERE 8,960

Table 1: Statistics of EventRelBenchmark

There are specialized benchmarks designed for
multilingual evaluation, including those targeting
non-English languages (Huang et al., 2023b) as
well as bilingual settings (Zhong et al., 2024).
HELM (Liang et al., 2022) utilizes seven metrics
across forty-two tasks to evaluate LL.Ms, examin-
ing dimensions ranging from accuracy to robust-
ness. BIG-bench (Srivastava et al., 2022) eval-
uates large language models across 204 diverse
tasks spanning domains such as linguistics, soft-
ware engineering, and beyond. CELLO (Chen
et al., 2024b) evaluates large vision-language mod-
els’ (LVLMs) causal reasoning capabilities through
12 structured tasks grounded in visual scenes.
MMLongBench-Doc (Ma et al., 2024) evaluates
LVLMs’ long-context document understanding
through 1,062 expert-annotated questions requiring
evidence from five modalities (text, image, chart,
table, layout). In the domain of program synthesis,
MBPP (Austin et al., 2021) and HumanEva (Chen
et al., 2021) assess functional correctness by gener-
ating programs from natural language docstrings.
Our benchmark mainly focuses on evaluating the
capacity of LLMs to understand and extract com-
plex event relationships.

3 Benchmark Construction

3.1 Tasks

To systematically evaluate the ability of LLMs to
understand and extract event relations, we focus on
four types of event relations and carefully select
raw data from diverse sources, as summarized in
Table 1.

Event Coreference Relation occurs when mul-
tiple event mentions within a text denote the same
event instance. In essence, if different phrases or
sentences describe the same underlying occurrence,
those mentions are considered coreferential and
grouped into an event cluster. We selected event
coreference relations from the ECB+ (Cybulska
and Vossen, 2014) and EventStoryLine (Caselli and
Vossen, 2017) datasets. ECB+ comprises 982 news
articles across 43 event topics. Human annotators

identified event mentions within each article and
labeled their actions, temporal expressions, loca-
tions, and participant roles. They then linked these
annotated mentions into both intra-document and
cross-document coreference chains. On average,
each event topic has 11 article instances. EventSto-
ryLine annotators identify coreferential chains of
event mentions both within and across documents
according to the ECB+ guidelines. Two event men-
tions are considered coreferential if they describe
the same action component and share participants,
temporal anchors, and locations. Detailed statis-
tics of event coreference relationships in EventRel-
Bench are shown in Appendix A.

Event Temporal Relation refers to the tempo-
ral ordering of events based on their occurrence in
time. In this paper, we consider four key temporal
relations: BEFORE: if event A happened before
event B. AFTER: if event A happened after event
B. EQUAL.: if event A and event B happen at the
same time. VAGUE: if event A and event B can-
not determine the temporal ordering. We selected
event temporal relations from the MATRES (Ning
etal.,2018b), TCR (Ning et al., 2018a), and Causal-
TimeBank (Mirza et al., 2014) datasets. MATRES
comprises annotations over 36 TimeBank-Dense
documents, collected via a two-step annotation
pipeline, and encompasses approximately 1.8K
start-point temporal relations. This dataset thus
serves as a high-quality, reproducible resource for
temporal relation extraction research. TCR em-
ploys the same annotation scheme as MATRES
but is limited by a much smaller dataset. Causal-
TimeBank comprises 184 documents and 6,813
annotated events. It was created by annotating
event relations within the TempEval-3 corpus. De-
tailed statistics of event temporal relationships in
EventRelBench are shown in Appendix A.

Event Causal Relation describes scenarios in
which one event (the cause) influences the occur-
rence of another event (the effect). These rela-
tions can be categorized into two types: CAUSE:
the effect event inevitably follows from the cause
event. CAUSED_BY: the effect event is un-
derstood as resulting from the preceding cause
event. We selected event causal relations from the
MAVEN-ERE (Wang et al., 2022a) and EventStory-
Line (Caselli and Vossen, 2017) datasets. MAVEN-
ERE is a uniformly annotated English event re-
lation dataset that covers 4,480 Wikipedia arti-
cles and comprises over one million event rela-
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tions. These relations were produced through a
multi-stage, refined annotation process and orga-
nized using an innovative timeline-sorting scheme.
EventStoryLine is a dataset centered on event an-
notation within the news corpus. It contains pairs
of causally related events, making it well-suited
for modeling event causal chains and extracting
meaningful causal relationships between events.
Detailed statistics of event causal relationships in
EventRelBench are shown in Appendix A.

Event Supersub Relation refers to instances
where one event (the subevent) constitutes a com-
ponent or a smaller part of another event (the su-
perevent). Understanding such relations is crucial
for revealing the hierarchical structure of events
within the given text. We selected event super-
sub relations from the HiEve (Glavas et al., 2014)
and MAVEN-ERE (Wang et al., 2022a). HiEve is
a hierarchically structured event dataset for news
texts. It comprises 100 articles, totaling 1,354 sen-
tences and 33,273 annotated tokens. On average,
each document contains approximately 32 event
mentions. The overall inter-annotator agreement,
measured by F-score, is 69%. MAVEN-ERE con-
tains 15,841 supersub relationships, providing a
large-scale, high-quality resource for event hierar-
chy analysis and multi-level narrative understand-
ing. Detailed statistics of event supersub relation-
ships in EventRelBench are shown in Appendix
A.

3.2 Annotation and Quality Control

Multiple-choice questions provide a practical
means of evaluating the complex capabilities
of LLMs. Key benchmarks, such as the
ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2021a),
and TruthfulQA (Lin et al., 2022), all employ
multiple-choice formats. These benchmarks target
distinct aspects of model proficiency. For instance,
ARC presents challenging science questions; Hel-
laSwag evaluates commonsense reasoning; MMLU
assesses the breadth and depth of LLM’s factual
and conceptual knowledge; and Truthful QA gauges
a model’s tendency to replicate human falsehoods.
Furthermore, universal metrics for assessing over-
all output quality are currently lacking (Sai et al.,
2022), and multiple-choice benchmarks help mit-
igate this limitation by providing clear, accuracy-
based assessments (Hendrycks et al., 2021b). More-
over, prior work has demonstrated that LLMs ex-

hibit reliable calibration in multiple-choice set-
tings (Kadavath et al., 2022). However, there are
also studies (Zheng et al., 2023) showing that there
are systematic biases in answer letter preferences
and order effects. Consequently, we also adopt
multiple-choice questions as a straightforward yet
effective proxy for evaluating LLMs’ performance.

A total of eight annotators participated in the
annotation process. We ask annotators to add ques-
tions after the original corpus without distorting the
semantics and provide correct labels for the ques-
tions. Following the annotation of the correct an-
swer for each question, we employed a systematic
process to generate plausible yet incorrect options
to complete the multiple-choice question format.
This process was tailored to each relation type to
ensure meaningful and challenging choices. The
detailed annotation process is in the appendix B.
By converting the original corpus into questions,
the Question-Answering approach can more effec-
tively evaluate the ability of LL.Ms to understand
event relationships. Annotators were compensated
based on both the quantity and quality of their an-
notations.

To ensure the quality of the annotated ques-
tions, we implemented a two-fold validation strat-
egy. First, the two authors of this paper acted as
meta-reviewers, randomly sampling 100 questions
for each of the four event relation types in Even-
tRelBench. They manually verified the correctness
of the assigned labels, achieving an average label
accuracy of 91.7% across the 800 sampled ques-
tions. Second, we assessed inter-annotator agree-
ment (IAA) by dividing the eight annotators into
two groups. Each group re-annotated a random
set of 400 questions originally annotated by the
other group. The resulting IAA was 82.8%. The
IAA, measured by Cohen’s Kappa, is 75.6%. These
results collectively demonstrate that the labels in
EventRelBench are of good quality.

4 Methodology
4.1 Models

To provide a comprehensive view of the status of
LLMs’ ability to understand event relationships,
we evaluate 10 publicly accessible LLMs. These
models have undergone the three distinct training
phases of pretraining, instruction tuning, and rein-
forcement learning (Ouyang et al., 2022), covering
multiple organizations and a diverse range of model
sizes. The detailed description is provided in Ap-
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You will be given a question.

| You should answer whether it is A, B, C or D.
Question: She left the office before the storm |
| hit the city. What is the temporal relationship |
| between ‘left’ and ‘hit'? |
| Options: A. before, B. after, C. equal, D.
vague |

| Here are some examples:

| and 'plummeted'?

vague
. s - | Answer: B. after
“You will be given a question. M

| Question: She left the office before the storm |
hit the city. What is the temporal relationship
| between ‘left’ and *hit'? Let's think step by

the storm

| between ‘left’ and ‘hit'?

| step. I | Options: A. before, B. after, C. equal, D.
| Options: A. before, B. after, C. equal, D. I vague

\ vague y \ Answer:

@svleri 7777777777 AN

"Zero-shot 2 Few-shot
[ You will be given a question. | [ o o o L

| Question: The company announced layoffs I | Question: The moment the fire alarm activated, the building's
after profits plummeted. What is the
| temporal relationship between 'announced'

| Options: A. before, B. after, C. equal, D.

| You should answer whetheritisA, B, CorD. | | Question: She left the office before

| hit the city. What is the temporal relationship

- \ ﬁew-@gt withCoT \
N N You will be given a question. N

/ You should answer whether itis A, B, C or D. \

/ You should answer whether it is A, B, C or D. \
| Here are some examples:

|
emergency lights triggered simultaneously. What is the temporal ‘
I relationship between 'activated' and ‘triggered'? |
| Options: A. before, B. after, C. equal, D. vague |
| Answer: The sentence states that the emergency lights triggered |
'simultaneously’ with the fire alarm activating. The phrase 'the
| moment ... activated', combined with 'simultaneously', explicitly |
| indicates concurrent timing, eliminating ambiguity. Thus, the |
| temporal relationship is C (equal). |
| Question: She left the office before the storm |
| hit the city. What is the temporal relationship |
| between ‘left’ and ‘hit'?

)\ Options: A. before, B. after, C. equal, D. vague !
/ \A\nswer: Y
NN —~

Figure 2: Illustration of prompts using four different settings. (Zero-shot, Zero-shot with CoT, Few-shot, Few-shot

with CoT)
pendix C.

4.2 Prompt Strategy

As illustrated in Figure 2, we employ four types
of prompts to elicit event relation judgments from
LLMs: zero-shot, zero-shot with chain-of-thought
(CoT) (Kojima et al., 2022), few-shot, and few-
shot with CoT (Wei et al., 2022). First, we supply
each model with a task instruction defining the
classification schema, denoted as M: “You will
be given a question. You should answer whether it
is A (before), B (after), C (equal), or D (vague).”
This instruction establishes both the expected input
format and the outputs. For any input X', we then
obtain a label ) from the LLMs F: Y = F (X,
M.

Zero-Shot Prompt In the zero-shot setting, the
model generates Y based solely on X and M. For
example, given X': “She left the office before the
storm hit the city. What is the temporal relationship
between ‘left’ and ‘hit’?”, the model should directly
generate the answer “A (before)”.

Zero-Shot with CoT To encourage explicit rea-
soning, we append “Let’s think step by step” (Ko-
jima et al., 2022) to the prompt. This two-stage
formulation prompts the model to decompose its
thought process.

Few-Shot Prompt In the few-shot setting, we
precede X with four examples question answer
pairs. This can help the model understand the input
and output formats.

Few-Shot with CoT Here, each example in-
cludes a brief reasoning scaffold. As depicted in
Figure 2, for X': “The company announced layoffs
after profits plummeted. What is the temporal rela-
tionship between ‘announced’ and ‘plummeted’?”

Our reasoning approach entails first identifying
the key noun phrases in the events, “the company”
(subject of “announced’) and “profits” (subject of
“plummeted”), to clarify who or what is involved
in each event. We then focus on the modifying
elements, such as the temporal connector “after,”
which directly governs the relationship between
the two verbs. In this sentence, “after” modifies
the verb “announced,” specifying that the action
of announcing happened subsequent to the action
of plummeting. Therefore, the temporal sequence
is unambiguous: “plummeted” occurred first, fol-
lowed by “announced”. Therefore, the answer is B
(after).

Dataset Construction When constructing the in-
struction fine-tuning dataset, we introduced new
news sources while keeping the samples from Even-
tRelBenchmark non-overlapping, and combined
strict deduplication and manual annotation. The
specific process is as follows: 1) Data source and
preliminary screening: In addition to the multiple
datasets used in building EventRelBenchmark, a
small amount of public news corpus was collected
to enrich the field and style. All sentences that
are exactly the same as those in Benchmark are re-
moved to ensure that the samples are not repeated.
2) Semantic Deduplication: For the remaining can-
didate samples, use Sentence-BERT (Reimers and
Gurevych, 2019) to encode the sentences into vec-
tors, and calculate the average cosine similarity
with all Benchmark samples respectively; Only
news and public data samples with a cosine simi-
larity of < 0.7 with any Benchmark sample are re-
tained to prevent high similarity overlap. 3) Dataset
size: Finally, about 48,000 high-quality instruction
samples were obtained, and the detailed statistical
data are shown in Appendix D. The class distribu-
tion in EventRellnst reflects the true frequencies
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in our source corpus and annotation process. We
mitigate potential imbalance effects through macro
F3 evaluation.

Each instruction example follows a specific for-
mat. First, it provides a text explaining the task
requirements, such as "You will be asked a ques-
tion. You should answer it as A, B, C, or D" for
a four-choice task, or "You should answer it as A
or B" for a two-choice task. Next, the example
presents a context sentence containing two events
to be analyzed. It’s important to note that the spe-
cific form of the question varies depending on the
type of relationship being examined. Correspond-
ingly, the options provided are also a specific set of
relationships: for example, temporal relationships
correspond to four options: A, B, C, and D, while
other relationships correspond to two options: A
and B. Finally, each example is accompanied by the
correct "gold standard" answer, which also follows
the format of A-D for temporal relationships and
A-B for other relationships. A specific example is
as follows:

Instruction: You will be given a question. You
should answer whether it is A, B, C or D.

Context: “Another cousin Georgina Cid said
Elian father had intended to flee Cuba himself but
was being coerced by the Castro government to stay
and make certain statements. What is the temporal
relationship between ’said’ and ’intended’?”

Options: A. before B. after C. equal D. vague

Gold Label: B

Fine-tuning on EventRellnst We conducted
LoRA (Low-Rank Adaptation) (Hu et al., 2022)
fine-tuning of five mainstream open-source LLMs:
Llama-3-8B and the Qwen-2.5 series (7B, 3B,
1.5B, and 0.5B) on EventRellnst instruction-tuning
dataset in order to systematically assess its general-
ity and effectiveness across model scales. Specifi-
cally, we injected rank-8 adapters with a scaling fac-
tor of 16 into the query and key projection matrices
of each model’s self-attention layers, initializing
all LoRA weights with He normal sampling. All
experiments were executed under a unified Deep-
Speed Zero-2 configuration. Core hyperparame-
ters were held constant across models: an effective
batch size of 128 (via gradient accumulation), a
linear warmup of 500 steps to a peak learning rate
of 1 x 1075 followed by cosine decay to 1 x 1076,
weight decay of 0.1, Adam 85 = 0.95, gradient
clipping with a maximum norm of 1.0, a maximum
sequence length of 600 tokens, and bf16 precision.

Experimental results show that using the EventRe-
lInst dataset for instruction tuning can significantly
improve the event relation extraction performance
of model configurations of different sizes.

S Experiments

In this section, we present and analyze the perfor-
mance of various LLMs on EventRelBench, which
evaluates models’ capabilities across four prompt-
ing paradigms: Zero-shot, Zero-shot with CoT,
Few-shot, and Few-shot with CoT. We also include
results for fine-tuned variants (FT) of several mod-
els using EventRellnst based on LoRA.

5.1 Main Results

Table 2 shows the average performance of 10 pub-
licly available LLMs on the EventRelBench under
various configurations, each evaluated over three
independent runs. From these results, we can draw
the following conclusions:

Overall Performance As shown in Table 2,
there is a clear performance gap between base mod-
els and their fine-tuned counterparts. The best-
performing model is Qwen2.5-7B-FT, achieving an
accuracy of 60.0% and F1 score of 54.5%, signif-
icantly outperforming its base version (Qwen2.5-
7B: 53.1% / 44.1%). This highlights the effective-
ness of EventRellnst and fine-tuning strategy in
improving event relation understanding.

Following Qwen2.5-7B-FT, the top-performing
general-purpose models without fine-tuning are
ERNIE-3.5-8K (Acc: 52.9%, F1: 49.9%) and
DeepSeek-V3 (Acc: 55.6%, F1: 53.2%), both
demonstrating strong performance under zero-shot
and few-shot paradigms. Notably, DeepSeek-V3
shows remarkable consistency across prompting
styles, suggesting a robust general understanding
of event relations.

In contrast, models such as AquilaChat-7B and
Gemma-7B-IT consistently underperform, with
overall accuracy around 44-46% and F1 scores
below 35%, indicating limited temporal and rela-
tional reasoning capabilities without fine-tuning.

Effect of Prompting Strategies Prompting meth-
ods significantly influence model performance:
Zero-shot vs. CoT prompting: Most models
show only marginal improvements or even slight
declines in performance when Chain-of-Thought
reasoning is introduced. For instance, GPT-3.5-
Turbo’s accuracy remains nearly unchanged (47.7%
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Model Zero-shot Zero-shot w/ CoT Few-shot Few-shot w/ CoT Overall
Acc. Fq Acc. Fq Acc. F Acc. F Acc. Fq

Bloomz-7B 460 416 454 41.9 454 416 47.1 424 46.0 419
ChatGLM2-6B-32k 46.0 36.6 464 34.7 474 377 494 38.1 473 36.8
AquilaChat-7B 46.6 36.1 462 34.8 46.8 345 463 30.4 46.5 340
Gemma-7B-1T 41.8 336 437 35.6 456 3277 474 31.9 446 335
ERNIE-3.5-8K 56.7 532 56.1 52.3 50.6 485 482 45.7 529 499
DeepSeek-V3 56.3 532 56.0 52.5 562 539 540 53.3 55.6  53.2
Claude-3-Haiku 485 403 480 38.5 543 51.0 50.6 42.1 50.4  43.0
GPT-3.5-Turbo 477 394 479 38.5 519 472 50.8 46.3 496 429
GPT-40-mini 56.1 529 56.1 52.3 56.2 527 55.8 52.5 56.1 526
GPT-40 574 543 575 54.1 576 544 572 53.9 574 542
LLaMA-3-8B 46.4 31.7 485 32.5 48.5 363 49.6 39.1 48.3 349
LLaMA-3-8B-FT 51.6 44.6 51.6 43.1 51.1 404 49.7 427 51.0 427
Qwen2.5-0.5B 459 38.6 458 38.8 46.1 38.9 457 38.5 459 387
Qwen2.5-0.5B-FT 46.6 393 462 38.8 464 38.7 46.8 38.2 46.5 38.8
Qwen2.5-1.5B 46.1 382 462 37.5 46.0 384 456 37.6 46.0 379
Qwen2.5-1.5B-FT 478 394 473 38.8 479 387 475 38.2 476 3838
Qwen2.5-3B 48.1 38.7 48.1 38.5 475 379 478 37.6 479 382
Qwen2.5-3B-FT 50.1 434 503 435 499 426 50.0 424 50.1 43.0
Qwen2.5-7B 53.8 443 539 443 53.6 450 51.1 429 53.1 44.1
Qwen2.5-7B-FT 63.7 59.0 633 56.1 583 51.8 545 51.0 60.0 54.5

Table 2: Results obtained by employing various prompt formats across 10 publicly accessible LLMs. FT means
fine-tuning using Lora on the EventRellnst instruction dataset.

— 47.9%), while Claude-3-Haiku’s F1 score drops
from 40.3 to 38.5. This suggests that naive CoT
prompting may not benefit event relation under-
standing unless carefully engineered.

Few-shot prompting generally offers modest
gains in performance. GPT-3.5-Turbo improves
from 47.7% (Zero-shot) to 51.9% (Few-shot), and
Claude-3-Haiku jumps from 48.5% to 54.3% in ac-
curacy. This demonstrates that few-shot exemplars
help models better align with the task format and
logic.

Few-shot with CoT only benefits a few models.
While GPT-3.5-Turbo and DeepSeek-V3 maintain
their performance, models like AquilaChat and
Gemma-7B-IT experience performance degrada-
tion, likely due to reasoning noise introduced by
suboptimal CoT generation.

Fine-tuning Gains Instruction fine-tuning with
EventRellnst yields consistent and sometimes sub-
stantial improvements across all model scales and
variants: Qwen2.5-7B-FT outperforms its base
model by +6.9 accuracy and +10.4 F1, showing
the greatest relative improvement across all models.
Even smaller models such as Qwen2.5-3B-FT and
Qwen2.5-1.5B-FT benefit from fine-tuning, with
improvements of 2—4 points in both metrics. These
results affirm that even lightweight models can sig-
nificantly benefit from domain-specific instruction

tuning for structured relation extraction tasks.

Model Size vs. Performance Interestingly,
model size does not always correlate with bet-
ter performance. For instance, LLaMA-3-8B per-
forms worse (Acc: 48.3%) than smaller models
like Qwen2.5-3B-FT (50.1%), and its fine-tuned
version (LLaMA-3-8B-FT) still lags behind top
models. This suggests that architecture, training
data, and fine-tuning strategy play a more crucial
role than sheer parameter count.

Summary of Findings Instruction tuning is es-
sential for high performance on structured event
relation benchmarks. Few-shot prompting benefits
strong base models like GPT-3.5-Turbo and Claude-
3-Haiku more than weaker ones. CoT prompting
provides inconsistent improvements and may intro-
duce noise if not carefully guided. DeepSeek-V3
and ERNIE-3.5 emerge as strong out-of-the-box
performers. Qwen2.5-7B-FT achieves state-of-the-
art results on our benchmark, validating the effec-
tiveness of EventRellnst.

In Table 3, we present the performance of LLMs
in four event relations under the Few-shot CoT set-
ting. This reveals the relative difficulty LLMs have
in understanding and extracting event relations, pro-
viding insights for future training of event relation
knowledge in LLMs. From Table 3, it is observed
that LL.Ms exhibit relatively poorer performance
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Model Causal Coreference  Supersub Temporal
Acc. Fq Acc. Fq Acc. Fq Acc. Fq

Bloomz-7B 527 521 484 480 582 481 293 224
ChatGLM2-6B-32k 54.6 48.1 55.0 487 505 42.0 30.8 21.6
AquilaChat-7B 506 362 537 369 494 344 320 150
Gemma-7B-IT 410 375 660 416 503 337 323 156
ERNIE-3.5-8K 69.1 693 67.1 642 204 201 38.6 31.8
DeepSeek-V3 742 743 69.1 655 389 323 358 323
Claude-3-Haiku 613 385 702 669 403 378 322 260
GPT-3.5-Turbo 612 613 551 531 570 503 308 220
LLaMA-3-8B 51.0 355 582 524 559 473 336 212
LLaMA-3-8B-FT 528 398 628 593 503 342 336 279
Qwen2.5-0.5B 485 483 535 458 492 482 328 210
Qwen2.5-0.5B-FT 51.5 51.0 535 379 495 482 334 21.1
Qwen2.5-1.5B 46.2 436 58.0 550 504 358 304 195
Qwen2.5-1.5B-FT 488 478 612 559 505 350 313 200
Qwen2.5-3B 552 552 503 375 51.0 474 367 162
Qwen2.5-3B-FT 557 552 600 543 513 497 340 157
Qwen2.5-7B 71.1 706 613 534 483 343 327 266
Qwen2.5-7B-FT 738 736 718 694 469 409 353 292

Table 3: Results of different LLMs using Few-shot w/ CoT prompts across four event relations.

on the temporal relation, significantly lower than
the other three event relationships. This is because
LLMs lack the ability to understand long-term con-
texts. The timing of events often depends on clues
across sentences or even paragraphs. Insufficient
long-term dependency will miss key time cues. We
analyze the LLMs in understanding four event rela-
tions in Sec. 5.2.

5.2 Analysis

In this section, we explore LLMs’ understanding
capabilities focusing on four event relations coref-
erence, temporal, causal, and supersub relation. We
also examine their performance on different prompt
strategies.

Event Causal Relation In the causal relation
task, models that undergo LoRA-based instruc-
tion fine-tuning demonstrate a clear edge, with
Qwen2.5-7B-FT attaining over 73% accuracy and
F1. This outperforms even strong generalist models
like DeepSeek-V3 (74.2%/74.3%) by leveraging
dedicated causal reasoning examples during tuning.
Notably, smaller models such as Qwen2.5-0.5B-FT
still gain 3—4 points post-fine-tuning, illustrating
the broad applicability of the approach. Meanwhile,
underperformers like Gemma-7B-IT highlight that
without specialized tuning, certain architectures
struggle with causal logic extraction.

Event Coreference Relation LLMs show ro-
bust capability in coreference resolution, with sev-
eral untuned models, including Claude-3-Haiku
(70.2%/66.9%), DeepSeek-V3 (69.1%/65.5%), and
ERNIE-3.5-8K (67.1%/64.2%) already surpassing
65% accuracy. Fine-tuning via our instruction
dataset elevates top models to nearly 72% accuracy
and almost 70% F1, yielding consistent 8—10 point
improvements in accuracy for architectures like
LLaMA-3-8B and Qwen2.5-3B. This underscores
the value of high-quality coreference annotations
in closing recall gaps and handling long-tail event
mentions. A few cases of slight F1 declines suggest
that tuning data must maintain diversity to avoid
overfitting to narrow coreference patterns.

Event Supersub Relation Semantic hierarchy
extraction remains more challenging: Bloomz-7B
(58.2%/48.1%) and GPT-3.5-Turbo (57.0%/50.3%)
lead the pack out of the box, indicating strong
baseline knowledge of category relations. How-
ever, instruction fine-tuning yields only modest
improvements (1-3 accuracy points), even for
Qwen2.5-7B-FT, which rises to 48.3% F1. This
suggests that our current fine-tuning examples lack
sufficient coverage of diverse supersub patterns and
complexities. Future work should incorporate re-
cursive and cross-domain hierarchy instances.

Event Temporal Relation Time ordering re-
mains the hardest relation type, with most
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F1 scores lingering below 30%—for example,
Qwen2.5-7B-FT achieves only 29.2% F1 de-
spite fine-tuning. Models exhibit minimal accu-
racy gains (2-3 points) after LoRA tuning, and
some even see minor F1 drops, indicating that
our temporal examples may not fully capture
multi-hop or intersecting timelines. Stronger per-
formance by ERNIE-3.5-8K (38.6% accuracy) and
DeepSeek-V3 (35.8% accuracy) suggests that cer-
tain pretraining strategies help, but overall, explicit
temporal markers and richer time-sequence reason-
ing tasks are needed. Enhancing prompt design
with timestamp normalization, interval calculation,
and narrative chain tasks should be priorities to
bolster temporal inference capabilities.

6 Conclusion

In this work, we present EventRelBench, a com-
prehensive evaluation suite comprising approxi-
mately 35K questions spanning four types of event
relations. This benchmark is designed to assess
whether LLMs can effectively understand, extract,
and reason over event relations. Our empirical
analysis reveals that, despite employing various
prompting strategies, existing LLMs still face sig-
nificant challenges in achieving optimal perfor-
mance on event relation extraction tasks. To ad-
dress this limitation, we introduce EventRellnst,
a 48K instruction fine-tuning dataset specifically
tailored for event relation extraction. Experimental
results demonstrate that EventRellnst greatly en-
hances the performance of general-purpose LLMs
on tasks involving event relation understanding.
We hope that this novel benchmark and instruction
fine-tuning dataset will advance research in this
domain and serve as a foundation for improving
LLMs’ capabilities in understanding event relation
knowledge.

Limitations

Despite its contributions, our work has several lim-
itations that warrant consideration. First, although
EventRelBenchmark encompasses four fundamen-
tal event relation categories, it does not capture
the full diversity and granularity of interactions.
Second, because both the EventRelBenchmark and
EventRellnst were constructed primarily from En-
glish text, their applicability to non-English lan-
guages remains untested. Third, despite rigorous
annotation guidelines and quality checks, subtle
ambiguities in defining event boundaries and re-

lation strength may have introduced inconsisten-
cies, potentially capping the performance ceiling
even for optimally tuned models. Fourth, while
instruction fine-tuning with EventRellnst demon-
strably improves extraction accuracy, it may also
induce overfitting to our specific prompt formu-
lations, thereby hindering zero-shot adaptation to
novel instruction styles. Fifth, although we bench-
marked a representative spectrum of LLMs, we did
not exhaustively explore the wider space of model
scales, specialized architectures, or diverse infer-
ence setups, which may exhibit different strengths
and weaknesses.

Ethical Considerations

When developing and deploying EventRelBench
and EventRellnst, we must guard against annota-
tion bias and ensure diverse, de-identified data; mit-
igate privacy and sensitive-content risks through
strict PII filtering; address hallucinations by inte-
grating fact-checking and uncertainty estimates;
prevent dual-use misuse via access controls and
licensing; and minimize environmental impact by
reporting energy use, adopting efficient fine-tuning
methods, and sharing compressed models, thereby
balancing technical advancement with ethical re-
sponsibility.
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A Statistics of EventRelBench

Options ‘ Yes No All

Sentence 3000 3000 6000
Doc 1506 1111 2617
All 4506 4111 8617

Table 4: Detailed statistics of event coreference relation-
ships in EventRelBench.

Options | Before After Equal Vague All

Sentence | 2300 2300 475 1534 6609
Doc 660 670 1014 0 2344
All 2960 2970 1489 1534 8953

Table 5: Detailed statistics of event temporal relation-
ships in EventRelBench.

Options | Cause  Caused by All

Sentence 4000 4000 8000
Doc 128 80 208
All 4128 4080 8208

Table 6: Detailed statistics of event causal relationships
in EventRelBench.

Options Cause Caused by All

Sentence 4000 4000 8000
Doc 510 450 960
All 4510 4450 8960

Table 7: Detailed statistics of event supersub relation-
ships in EventRelBench.

B Distractor Generation for MCQs

* A positive pool of other pairs labeled L
(to yield plausible same-relation distrac-
tors).

* A negative pool of pairs labeled —L (to
provide contrastive distractors).

3. Distractor Selection per Relation

» Temporal (4-way): select the top three
candidates (mix of positive and negative)
to accompany the correct label, yielding
four options.

» Causal (2-way): binary choice; select
the single most confusable negative pool
candidate as the sole distractor.

* Coreference (2-way): binary choice;
one positive-pool candidate when gold
= “no,” or one negative-pool candidate
when gold = “yes.”

* Super-Sub (2-way): binary choice; one
inverted-hierarchy candidate (e.g., Sub-
Super if gold = Super-Sub).

4. Quality Validation

* We randomly sampled 200 MCQs per
relation type (800 total) and had eight
annotators judge each distractor on gram-
matical plausibility, semantic coherence,
and clear incorrectness.

» Pass rate: 89% of distractors passed
on first submission; 11% were replaced
and re-validated to ensure each MCQ re-
tained the intended number of valid dis-
tractors.

5. Illustrative MCQs As shown in Table 8, we
provide one fully detailed example per rela-
tion type.

1. Relation-Specific Option Sets C The Detailed Introduction to the LLMS
» Temporal relations: (before, after, equal,  This section provides a detailed overview of each
vague) language model evaluated in EventRelBench. For

» Causal relations: (causes, caused by) each model, we describe the architecture, training

¢ Coreference relations: (yes, no)
e Super-Sub relations: (Super-Sub, Sub-

data, parameter scale, notable features, and prior
performance characteristics.

Super) Bloomz-7B is a multilingual, instruction-tuned

. . variant of the BLOOM family with approximately

2. Candidate Pool Construction 7 billion parameters (Le Scao et al., 2023). It builds
For each gold event pair (£, E5) with label  on a Transformer decoder-only architecture with

L, we build: 30 layers and 32 attention heads, supporting a 2048
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Relation

Prompt & Events

Options Gold

Temporal

Causal

Coreference

Super-Sub

Another cousin Georgina Cid
said Elian father had intended to
flee Cuba himself but was being
coerced by the Castro govern-
ment to stay and make certain
statements. What is the tempo-
ral relationship between ’said’
and ’intended’?

A series of nine bombs ex-
ploded in which one person was
killed and 20 injured. What is
the causal relationship between
“exploded’ and ’killed’?

One man got killed and thou-
sands of people were left
stranded. Police said an 81-
year-old man died in central
Toyama when the wind blew
over a shed, trapping him un-
derneath. Do ’killed’ and *died’
have an event coreference rela-
tionship?

The Fandango! Tour was a
concert tour by American rock
band ZZ Top. Launched in sup-
port of their fourth studio album
"Fandango!". What is the re-
lationship between ’tour’ and
’support’?

A.before B.after C.equal D.vague B

A.causes B.caused by A
A.yes B.no A
A.Super-Sub B.Sub-Super A

Table 8: One fully detailed example per relation type

token context window. Pre-trained on a diverse
corpus covering dozens of languages and then fine-
tuned on the cross-lingual Task Mixture (xP3), it de-
livers strong zero-shot instruction following across
languages and competitive performance on stan-
dard NLP benchmarks.

ChatGLM2-6B-32k is an open-source, decoder-
only bilingual chat model from Tsinghua’s group,
with 6 billion parameters and a 32 K-token context
window (Du et al., 2021). It extends ChatGLM2-
6B using FlashAttention and positional interpo-
lation for long-context understanding, and lever-
ages Multi-Query Attention for faster, lower-
memory inference. Pre-trained on 1.4 trillion Chi-
nese—English token pairs with human-preference
alignment, it excels at dialogue coherence and long-

form reasoning.

AquilaChat-7B is an open-source conversational
SFT model released by BAALI, built on the Aquila-
7B. It was fine-tuned with supervised learning and
reinforcement learning to improve dialogue quality
and instruction following. While it benefits from
Aquila’s efficient low-level operators and parallel
training methods, yielding faster inference com-
pared to unoptimized implementations.

Gemma-7B-IT is Google’s 7-billion-parameter
instruct-tuned variant of the Gemma family (Team
et al., 2024), released in late 2024. Built on a
decoder-only Transformer architecture, it was fine-
tuned on general conversational and instruction
datasets (e.g., UltraChat) and supports up to 8K to-
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kens of context. While well-suited for a broad
range of text-generation tasks, including Q&A,
summarization, and reasoning.

ERNIE-3.5-8K released on July 1, 2024, is
Baidu’s flagship large-scale model supporting an
8 K-token context window (Sun et al., 2021). Pre-
trained on massive Chinese and English corpora us-
ing knowledge-enhanced techniques that integrate
structured knowledge graphs, it excels at capturing
complex semantic relations, making it particularly
strong on tasks like event relation extraction.

DeepSeek-V3 is an advanced Al language model
built on an innovative Mixture-of-Experts (MoE)
architecture, featuring a total of 671 billion param-
eters with 37 billion activated per token to maxi-
mize efficiency and performance (Liu et al., 2024).
DeepSeek-V3 is pre-trained on 14.8 trillion high-
quality tokens. It delivers great results across com-
plex reasoning, code generation, and multilingual
understanding benchmarks while maintaining an
extended 128 K context window for long-form in-
puts. Remarkably, DeepSeek-V3 was developed at
a fraction of the typical cost, under $6 million in
compute.

Claude-3-Haiku launched on March 13, 2024, is
Anthropic’s fastest and most cost-effective model
in the Claude 3 family (Anthropic, 2024). It sup-
ports both text and image inputs, offers a massive
200K token context window, and delivers near-
instantaneous responses, making it ideal for real-
time enterprise applications, while still achieving
strong results on industry-standard benchmarks.

GPT-3.5-Turbo is OpenAI’s flagship chat-
optimized, decoder-only model with a 4096-token
context window, launched in March 2023 as the
default Chat Completions endpoint (Achiam et al.,
2023). On February 16, 2024, OpenAl automati-
cally upgraded it to the gpt-3.5-turbo-0125 variant,
adding bug fixes and improved format-following.

LLaMA-3-8B is Meta’s 8-billion-parameter,
decoder-only Transformer model released in April
2024 as part of the LLaMA 3 family (Grattafiori
et al., 2024). It was pretrained on over 15 trillion
tokens of multilingual text to improve reasoning
and generation capabilities, and supports an 8 K-
token context window for longer inputs. The model
employs Grouped-Query Attention to enhance in-
ference efficiency and scalability, and is offered in
both base and instruction-tuned variants under the

Event Relation # Nums
Coreference 14749
Temporal 8523
Causal 23780
Supersub 864
All 47916

Table 9: Statistics of the EventRellnst.

Meta Llama 3 Community License. LLaMA-3-8B
delivers strong performance on general NLP bench-
marks, coding tasks, and multilingual applications
while remaining lightweight enough to run on a
wide range of hardware setups.

Qwen2.5 is a family of dense, decoder-only lan-
guage models released by Alibaba Cloud (Bai
et al., 2023). We have selected 0.5B, 1.5B, 3B,
and 7B parameter sizes. Each model is pretrained
on up to 18 trillion tokens. For each size, both
base and instruction-tuned versions are provided,
and all open-weight variants are publicly available.
These models outperform their Qwen2 predeces-
sors on instruction following, long-text generation,
structured-data understanding, and code tasks, mak-
ing them versatile tools across NLP and developer
workflows.

D Statistics of the EventRellnst

As shown in Table 9, we provide the statistics of
the EventRellnst.
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