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Abstract

Training robust retrieval and reranker models
typically relies on large-scale retrieval datasets;
for example, the BGE collection contains 1.6
million query-passage pairs sourced from vari-
ous data sources. However, we find that certain
datasets can negatively impact model effective-
ness — pruning 8 out of 15 datasets from the
BGE collection, reduces the training set size
by 2.35 %, surprisingly increases nDCG@ 10 on
BEIR by 1.0 point. This motivates a deeper ex-
amination of training data quality, with a partic-
ular focus on “false negatives”, where relevant
passages are incorrectly labeled as irrelevant.
We utilize LLMs as a simple, cost-effective ap-
proach to identify and relabel false negatives
in training datasets. Experimental results show
that relabeling false negatives as true positives
improves both ES (base) and Qwen2.5-7B re-
trieval models by 0.7-1.4 points on BEIR and
by 1.7-1.8 points at nDCG@ 10 on zero-shot
AIR-BENCH evaluation. Similar gains are ob-
served for rerankers fine-tuned on the relabeled
data, such as Qwen2.5-3B on BEIR. The re-
liability of LLMs to identify false negatives
is supported by human annotation results. Our
training dataset and code are publicly available.

1 Introduction

Modern-day retrievers and rerankers are data-
hungry, relying on large and high-quality training
datasets to accurately retrieve or rerank on chal-
lenging domains (Thakur et al., 2021; Muennighoff
et al., 2023; Chen et al., 2025; Su et al., 2025). A
typical training dataset for information retrieval
(IR) has multiple instances consisting a training
query, labeled positive passages, and a set of mined
hard negative passages. Sampling hard negatives
has been consistently used in retrieval models to im-
prove downstream retrieval accuracy (Karpukhin
et al., 2020; Xiong et al., 2021; Qu et al., 2021;
Moreira et al., 2024, inter alia).

“Equal contribution.

More recently, state-of-the-art (SoTA) retrieval
models are observed to fine-tune on enormous or
large training datasets (Zhang et al., 2025). While
the general notion is that more training data is bet-
ter, in accordance with scaling laws (Chen et al.,
2024a; Li et al., 2024; Muennighoff et al., 2025),
we show the contrary: fine-tuning on a select few
datasets is rather crucial. For example, removing
ELIS surprisingly improves nDCG@10 on 7 out of
14 of the BEIR datasets (Thakur et al., 2021) and
the average nDCG@10 by 0.6 points. A similar
observation is also made on other training datasets:
by pruning 8 out of the 15 datasets in the BGE
training collection (Li et al., 2024),! the E5 (base)
retrieval model improves by 1.0 point nDCG@ 10
on BEIR (as shown later in Figure 4).

The above observation reveals a non-negligible
amount of “false” or mislabeled data is mixed in
the current training datasets, that not only adds un-
necessary training cost but also hurts the model
training. How can the “false” data be eliminated?
We approach the issue from the perspective of false
negatives (example in Figure 1), specifically, by
proposing RLHN (ReLabeling Hard Negatives)
utilizing a cost-effective framework with large lan-
guage model (LLM) cascading (Chen et al., 2024c)
to accurately identify and relabel false negatives
(at a data sample level). We choose to look at
false negatives since it is a systematic pitfall from
how retrieval training data is constructed:> As long
as there are unjudged documents used as neg-
ative examples, the issue of false negative per-
sists, which is especially severe for big sparsely-
annotated datasets, such as MS MARCO (Nguyen
et al., 2016) or NQ (Kwiatkowski et al., 2019).

The issue of false negatives has been noticed for
long — Qu et al. (2021) distill knowledge from a

'The pruned dataset contains only 42.5% training pairs of the
original dataset, making it 2.35 x smaller in size.

%In contrast to “false positives”, that only results from mistakes
of human annotators in training datasets.
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HotpotQA Query

Qf Ground Truth Positives

| P
Wild Beast (roller coaster) True Positive

Wild Beast is a wooden roller coaster located at Canada's Wonderland,

in Vaughan, Ontario, Canada. Originally named "Wilde Beast", it is one of

the four roller coasters that debuted with the park in 1981, and is one of two
wooden coasters at Canada's Wonderland modelled after a ride at Coney

Island amusement park in Cincinnati, Ohio [ ... ]

- J

What park contains the Wild Beast and a 20 acre water park?

? Unlabeled Hard Negatives

| .
T
Splash Kingdom Waterpark rue Negative

Splash Kingdom Waterpark (formerly known as Pharaoh's Lost Kingdom) is an

Egyptian-beach themed water park, trampoline park, and concert venue located

in Redlands, California, United States. Splash Kingdom is the largest water

park in the Inland Empire. The park is known for having the world's tallest
enclosed body-flume waterslide, and the world's tallest [ ... ]

.
Canada's Wonderland True Positive

Canada's Wonderland is a 330 acre theme park located in Vaughan,

e

in 1981 by the Taft Broadcasting Company and The Great-West Life
Assurance Company as the first major theme park in Canada, it remains the
country's largest. [ ... ] The 330 acre park includes a 20 acre water park
N named Splash Works. [ ... ]

Ontario, a suburb approximately 40 km north of Downtown Toronto. Opened | |

| Splash Works \

Splash Works is a 20 acre water park located within the park boundaries of

Canada's Wonderland in Vaughan, Ontario, Canada. Entry is free with park

|admission. Splash Works is home to "Whitewater Bay", the largest outdoor wave |

pool in Canada, and is today home to 16 waterslides. Splash Works operates |
during the summer months of June through September.

Figure 1: Example of a training instance (query, ground truth positives, and unlabeled hard negatives) with detected
false negatives taken from HOTPOTQA. The false negative passage (Splash Works) is mislabeled as it is relevant in
answering the user’s query. The relevant parts of the text useful in answering the query are highlighted in blue.

cross-encoder to alleviate their impact. Moreira
et al. (2024) filter potential false negatives based
on relevance score to the query. However, the for-
mer solution does not curate or clean the training
datasets and is based on the assumption that the
cross-encoder is more robust to false negatives than
retrieval models. As we will show in Section 5, al-
beit smaller, inferior training data also negatively
affect cross-encoders. The latter solution is based
on the assumption that the relevance scores of false
negatives are systematically higher than 95% of
the positive scores, which does not consider score
variance at the level of a data instance.

We use an LLM cascading framework to allevi-
ate “false negatives”. The first stage employs GPT-
40-mini, a cost-effective LLM, to identify false neg-
atives in all training instances. Next, the detected
instances with false negatives are relabeled with a
more reliable judge, GPT-40. We observe a maxi-
mum of 56% of training pairs in MS MARCO can
contain false negative documents, to a minimum of
about 3% in SCIDOCSRR. The framework is better
illustrated in Figure 2. With the false negatives
detected, we compared three data modification ap-
proaches: (i) remove: discarding the whole training
instance, (ii) remove HN: removing only the false
hard negatives, and (iii) relabel HN (RLHN): rela-
beling the false hard negatives as ground truth. We
experiment on the seven pruned training datasets
from the BGE training collection (Li et al., 2024).

Our results consistently show that the RLHN
setting achieves the highest nDCG@10 scores
on BEIR (Thakur et al., 2021) and AIR-
BENCH (Chen et al., 2025), amongst their counter-
parts with both retrievers: E5 (base) and Qwen2.5-
7B and a reranker with Qwen2.5-3B. Compared

to the aforementioned works, RLHN outperforms
hard negative sampling in Moreira et al. (2024)
and is comparable to cross-encoder distillation (Qu
et al., 2021) yet with a simpler training pipeline.

To better understand the behavior of LLM judg-
ment in identifying false negatives, we compare
LLM judgment with human assessors on 670 ran-
domly sampled query—hard negative pairs. We ob-
serve the Cohen’s Kappa (k) score of GPT-40 is
10 points higher than GPT-40-mini, which echoes
their effectiveness in improving training data qual-
ity. Lastly, we provide a qualitative analysis exam-
ining different categories of false negatives identi-
fied in training datasets.

Our contributions are as follows: (1) We are the
first to report that carelessly adopting enormous
training data may negatively affect the retriever
and reranker model training. We show that the
retrieval effectiveness can be improved by 4% with
57% less data, (2) We propose a LLM cascading
framework that identifies and relabels the false hard
negatives at an instance level. Our approach results
in higher in-domain and out-of-domain retrieval
effectiveness with a simpler training pipeline.

2 Related Work

Sparsely-annotated datasets. Popular IR train-
ing datasets, such as MS MARCO (Nguyen
et al., 2016), were shallow pooled and sparsely
judged by human assessors (Mackenzie et al., 2021;
Arabzadeh et al., 2022). The assessor observed
a few passages from a baseline retrieval system,
picked those relevant to the query, and labeled them
as ground-truth. On the other hand, non-relevant
judged passages (i.e., passages seen but preferred
lower than the ground truth) were not provided.
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Figure 2: Flowchart for RLHN (ReLabeling Hard Negatives): (1) Provide the query, ground-truth or positive
passages, and hard negative passages from a training instance as input, (2) Prompt a cost-effective LLM judge (e.g.,
GPT-40-mini) and evaluate whether any hard negative is misclassified, (3) If yes, repeat the prompt with an accurate
LLM judge (e.g., GPT-40) (4) Output the relabeled hard negative passages (which are found relevant) and either
remove them or relabel them as ground-truth passages in our experiments.

Therefore, an assumption is made in fine-tuning
where remaining passages (in a passage corpus) are
negatives, and a few mined passages similar to the
query are labeled as hard negatives. In this work,
we avoid relabeling false positives, as these labels
are trustworthy, provided by a human assessor, who
can have a different preference than the LLM itself.

LLM-based data curation. Hiring human as-
sessors for judgments is expensive and time-
consuming, and produces limited training pairs,
e.g., 1K pairs in LIMA (Zhou et al., 2023). Alterna-
tively, LLMs as judges have been recently explored
for dataset curation in tasks, such as reranking (Ma
et al., 2023; Zhuang et al., 2024; Qin et al., 2024),
instruction fine-tuning (Chen et al., 2024b; Chen
and Mueller, 2024), or even code-generation (Jain
etal., 2024).

Pseudo-labeling. Instead of using supervised
judgments, pseudo-labeling tackles the problem of
sparse annotations by employing other techniques
to estimate query-document relevance. Examples
include distillation from cross-encoders (Qu et al.,
2021), or ranking documents through prompting
LLMs (Sun et al., 2023), or through composite mea-
sures of embedding similarity with ground-truth
documents (Zerveas et al., 2023).

False negatives. Qu et al. (2021) first noted the
issue of false negatives in retrieval, where certain
hard negative passages should have been classi-
fied as positives. However, instead of curating
the training datasets, RocketQA (Qu et al., 2021)
fine-tuned models by distilling knowledge from
the cross-encoder score for the query—document
pair. Similarly, Moreira et al. (2024) examined
various filtering methods for negative sampling by
avoiding very hard negatives. In Gecko (Lee et al.,
2024, 2025b), an LLM such as Gemini was used to
relabel positive passages and identify better hard

negatives. However, unlike our work, they focused
on relabeling synthetic queries rather than existing
collections like MS MARCO or NQ.

3 The RLHN Methodology

In this section, we discuss the LLM judge cascad-
ing framework, training dataset modifications, and
dataset postprocessing and statistics.

3.1 LLM Judge Cascading Framework

We adopt a simple and cost-effective approach of
using cascaded LLLM judges (shown in Figure 2) in-
spired by Chen et al. (2024c) to identify false hard
negatives datasets at a large scale. The framework
involves two stages:

1. Cost-effective judge (GPT-40-mini): In the
first stage, we prompt GPT-40-mini (OpenAl,
2024), a cost-effective LLM in the first stage
to improve recall by identifying potential pairs
with false negatives across all training pairs.

2. Accurate judge (GPT-40): In the second stage,
we prompt GPT-40 (OpenAl, 2024), a more
reliable and expensive judge’ to re-evaluate the
potential pairs with false negatives identified by
GPT-40-mini and re-evaluate them using GPT-
40 to improve precision.

3.2 Training Dataset Modification

Upon successful completion of identifying the false
negatives, we compare three operations on the iden-
tified false negatives as follows:

* Remove: Discard the complete training instance
due to the low quality, even if it contains at least
one false negative.*

3GPT-40-mini and GPT-4o pricing (as of May 15th, 2025) is
0.6$ and 5.0$ for 1M input tokens and 2.4$ and 20.0$ for IM
output tokens, respectively.

“We lose the instance completely in the “remove” technique.
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Dataset #Train  Avg. Avg. RLHN
Pairs GT/Q HN/Q | Stagel Stage2
MS MARCO 485,823 1.1 25.0 | 391,965 326,301
HOTPOTQA 84,516 2.0 200 | 11,268 4,756
NQ 58,568 1.0 98.5 | 32,184 19,199
FEVER 29,096 1.3 20.0 7,764 3,577
SCIDOCSRR 12,655 1.6 19.7 2,068 351
FIQA-2018 5,500 2.6 15.0 3,632 1,833
ARGUANA 4,065 1.0 13.6 0 0

Table 1: BGE training dataset statistics (Chen et al.,
2024a). Avg. GT/Q denotes the average ground truth
passages per query, and Avg. HN/Q denotes the average
hard negative passages per query. RLHN Stages 1 & 2
show training pairs with at least one false hard negative.

* Remove HN: Discard only the detected false
negatives from the hard negative subset, keeping
the instance with the remaining hard negatives.

* Relabel HN (RLHN): Relabel only the detected
false negatives from the hard negative subset, by
adding them to the ground truth subset, keeping
the instance with the remaining hard negatives.

3.3 Dataset Postprocessing & Statistics

In Table 1, we show the training dataset statis-
tics observed in the BGE training collection. MS
MARCO contains the highest amount of training
pairs, followed by HOTPOTQA. All datasets con-
tain training pairs with 1-3 ground-truth passages
and 13-25 hard negatives (except NQ with 98-100
hard negatives).

False negatives. From Table 1, we see a majority
of detected false negatives occur in MS MARCO
(91.6% of all detected pairs). A maximum of up
to 56% of all training pairs in MS MARCO con-
tain false negatives, to a minimum of about 3%
in SCIDOCSRR.’> From Figure 3, we observe that
in 58% of all detected false negative pairs, only a
single false positive was detected, and 19% with
two false negatives, and less than 1% with eight or
more false negatives. If we detect any training pair
with detected false negatives over a certain thresh-
old k£ (k = 7 in our experiments), we excluded the
pair completely in RLHN, as the query is likely to
be ambiguous, that might not be a useful training
instance (e.g., what color is amber urine?).

Cost estimates. We report the maximum costs in-
curred in RLHN (accurate input tokens + estimated

>We avoid relabeling ARGUANA due to its inherent complex
task, which doesn’t measure directly for argument similarity,
but rather counter arguments given an argument. Therefore,
we keep the original dataset in fine-tuning without relabeling.

Avg. Distribution of False Hard Negatives
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Figure 3: The distribution of training pairs (with at least
one false negative) across false hard negatives detected.
58% of the training pairs detected contain a single false
negative, 19% with two false negatives, and so on.

2048 output tokens on average) by both judges at
each cascading stage: GPT-40-mini and GPT-40
in Table 2. Overall, running RLHN with GPT-4o-
mini in Stage 1 costs around ~ 300 USD and with
GPT-40 in Stage 2 costs around ~ 3000 USD.

4 Experimental Setting

BGE training data. We utilize the original BGE
training dataset® (Li et al., 2024), a comprehen-
sive collection with training datasets for retrieval
(e.g., NQ, MS MARCO), clustering (e.g., Twen-
tyNewsgroups), and classification (e.g., Amazon-
Reviews) tasks. Many of these training datasets
are used in fine-tuning of popular retriever mod-
els such as E5-Mistral (Wang et al., 2024), GRIT-
LM (Muennighoff et al., 2025), Linq (Choi et al.,
2024), LLM2Vec (BehnamGhader et al., 2024),
CDE (Morris and Rush, 2025), or NV-Embed (Lee
et al., 2025a). Our work focuses on the retrieval
task, therefore, we remove all training datasets
from clustering and classification tasks, resulting
in 15 datasets focused on the retrieval task, com-
prising a total of 1.6M training pairs, originally
released with the MIT license.

LLM judges. In our work, we use GPT-4o-
mini (version 2024-07-18) and GPT-40 (version
2024-11-20) as the judge using the Azure Ope-
nAl service in the batch setting. We follow a tem-
perature setting of 0.1 and use a chain-of-thought
prompt setting (Wei et al., 2022). The prompt first
evaluates the relevance between every hard nega-
tive passage and the question, and compares them
with the ground truth to identify potential false neg-
atives. We prompt up to 25 hard negative passages
per query in a single API call as shown in Figure 6.

Shuggingface.co/datasets/cfli/bge-full-data
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Cascading Stage 1 Cascading Stage 2

Dataset #Pairs GPT-4o-mini # Pairs GPT-40
MS MARCO 485,823 180.40 USD | 391,965 2431.98 USD
HOTPOTQA 84,516 43.35USD | 11,268 97.26 USD
NQ 58,568 37.41USD | 32,184  345.08 USD
FEVER 29,096 22.67 USD 7,764  103.99 USD
SCIDOCSRR 12,655 9.07 USD 2,068 24.81 USD
FIQA-2018 5,500 3.60 USD 3,632 40.17 USD
Total Costs ~300 USD ~3000 USD

Table 2: Cost estimates for relabeling false negatives in
RLHN using GPT-40-mini and GPT-4o.

Evaluation benchmarks. We evaluate the re-
trieval and reranker accuracy of the models
fine-tuned on datasets with false negatives ei-
ther removed or relabeled with RLHN on the
BEIR benchmark (Thakur et al., 2021) and AIR-
BENCH (Chen et al., 2025). Both benchmarks
evaluate retrieval accuracy in nDCG@10. BEIR
contains human-constructed datasets, and AIR-
BENCH contains datasets automatically generated
by LLMs without human intervention. In BEIR,
we drop Quora and CQADupstack and evaluate on
the remaining 16 datasets. In AIR-BENCH (ver-
sion 24.05), we evaluate five specific domains in
English-only: Arxiv, Finance, Healthcare, Law, and
News.

Backbone models. We use the E5 (base) unsuper-
vised’ (Wang et al., 2022b, 2024), a BERT-based
encoder, due to its high accuracy on BEIR (pre-
liminary results in Appendix A), the inclusion of
a pre-training stage, and lower training complex-
ity. ES (base) contains 110M parameters, 12 layers,
and a 768 embedding dimension with mean pool-
ing. Also, we use a LLM-based decoder model
with Qwen?2.5-7B model® (Yang et al., 2024) with
7.61B parameters, 28 layers, and a 3584 embed-
ding dimension with the [EOS] token pooling as the
retrieval models. In addition, we use Qwen2.5-3B
model (Yang et al., 2024)° for the reranker.

Fine-tuning details. All models were fine-tuned
using 7 hard negatives, 1 positive, and random in-
batch negatives (128 total) per batch, optimized
with the InfoNCE loss function (van den Oord et al.,
2018) using the Tevatron repository'? (Gao et al.,
2023; Ma et al., 2025) for up to 4-5 epochs, with
a learning rate of 2e-5, and a maximum sequence

"intfloat/e5-base-unsupervised on HuggingFace.
8Qwen/Qwen2.5-7B on HuggingFace.
°Qwen/Qwen2.5-3B on HuggingFace.
Ohttps://github.com/texttron/tevatron

Emm Better than ALL
Hmm Worse than ALL

----- Baseline: ALL (0.519)
—-= 7 Pruned (**) (0.529)

Same as ALL

0.530

0.525

0.520

0.515

0.510

BEIR (Avg. 14)

0.505

Figure 4: Dataset pruning by leaving one dataset out
during fine-tuning ES5 (base) on the BGE-training col-
lection; [ALL] denotes fine-tuning on all datasets with
1.6M training pairs; [7 Pruned] denotes fine-tuning on
680K training pairs with seven remaining datasets (or
57.5% pairs) after dataset pruning. [Better than ALL]
denotes the results improved after removing the dataset,
meaning it has negative impact on the training pro-
cess. [Worse than ALL] denotes the opposite, where the
dataset has a positive impact on the training.

length of 350 tokens (512 tokens during inference).
We append a “query: ” and “passage: ” prefix.
E5 (base) models are fine-tuned using 4 xL40S
GPUs, and Qwen2.5-7B and Qwen2.5-3B using a
maximum of 2xH200 GPUs.

Baselines. To evaluate the impact of relabel-
ing hard negatives using RLHN, we include two
baselines: (1) hard-negative mining: Top-95%
TopK-PecPos sampling (Moreira et al., 2024)
on the default training dataset, using similarity
scores computed for all hard negatives with the
bge-reranker-v2-gemma reranker, and (2) cross-
encoder distillation: we compute the normalized
similarity scores for all query and hard negatives
and positive pair on the default training dataset
with the bge-reranker-v2-gemma reranker. We
fine-tune the ES-base using knowledge distillation
from the cross-encoder scores, with 1 positive, 15
hard and zero in-batch negatives using Tevatron.

5 Experimental Results

5.1 Preliminary Results: Dataset Pruning

False datapoint can hurt the training of retriever
models. We assess the individual dataset con-
tribution by evaluating several model variants by
leaving one dataset out and fine-tuning the rest.

9068


https://huggingface.co/intfloat/e5-base-unsupervised
https://huggingface.co/Qwen/Qwen2.5-7B
https://huggingface.co/Qwen/Qwen2.5-3B
https://github.com/texttron/tevatron

BEIR Dataset No Filtering Baselines Ce ding Stage 1: GPT-4 Cascading Stage 2: GPT-4o-mini + GPT-40  No Filtering Cascading Stage 2
Default TopK-PercPos CE Distill Remove Remove HN RLHN Remove Remove HN RLHN Default Remove HN RLHN
Backbone ES5 (base) ES5 (base) ES (base) | ES (base) ES (base) ES5 (base) | ES (base) ES (base) ES (base) Qwen2.5-7B | Qwen2.5-7B  Qwen2.5-7B
TREC-COVID! 0.783 0.789 0.793 0.786 0.793 0.798 0.794 0.785 0.809 0.797 0.771 0.815
NFCorpus’ 0.378 0.377 0.363 0.378 0.380 0.381 0.380 0.382 0.390 0.389 0.389 0.391
NQ 0.595 0.601 0.624 0.593 0.592 0.602 0.573 0.598 0.591 0.597 0.602 0.623
HotpotQA 0.737 0.734 0.741 0.737 0.736 0.739 0.741 0.736 0.735 0.704 0.702 0.729
FiQA-2018 0.439 0.434 0.417 0.443 0.440 0.444 0.441 0.445 0.448 0.453 0.461 0.465
ArguAna 0.701 0.697 0.725 0.702 0.706 0.700 0.700 0.700 0.692 0.554 0.550 0.560
Touché-20201 0.256 0.286 0.305 0.255 0.271 0.268 0.218 0.265 0.266 0.221 0.211 0.230
DBPedia 0.438 0.444 0.446 0.439 0.437 0.442 0.433 0.441 0.447 0.443 0.456 0.472
SCIDOCS 0.242 0.243 0.216 0.243 0.243 0.244 0.245 0.243 0.242 0.245 0.243 0.252
FEVER 0.878 0.878 0.889 0.875 0.876 0.877 0.881 0.876 0.871 0.863 0.857 0.872
Climate-FEVER 0.391 0.386 0.377 0.388 0.385 0.391 0.382 0.384 0.367 0.370 0.373 0.360
SciFact 0.735 0.735 0.727 0.741 0.731 0.733 0.744 0.735 0.740 0.755 0.755 0.767
TREC-NEWS' 0.465 0.466 0.458 0.470 0.466 0.473 0.464 0.473 0.484 0.494 0.480 0.487
Robust04" 0.442 0.451 0.452 0.448 0.452 0.471 0.447 0.458 0.497 0.501 0.501 0.540
Signal-1M (RT)" 0.275 0.272 0.271 0.279 0.275 0.275 0.274 0.270 0.274 0.275 0.268 0.280
BioASQ' 0.378 0.375 0.413 0.382 0.385 0.392 0.384 0.384 0.394 0.408 0.412 0.438
Avg. 16 (All) 0.508 0.511 0.514 0.510 0.511 0.514 0.506 0.511 0.515 0.504 0.502 0.518
Avg. 7 (OOD) 0.425 0.431 0.436 0.428 0.432 0.437 0.423 0.431 0.445 0.441 0.433 0.454

Table 3: Retrieval results measuring nDCG@10 on 16 datasets in the BEIR benchmark by fine-tuning retrieval
models on variants of the BGE training dataset after relabeling false negatives. The seven unseen (or out-of-domain)
datasets during fine-tuning are highlighted with  and their average scores are provided in Avg. 7.

As we fine-tune many models, i.e., one for each
removed dataset, we limit these experiments to
ES5 (base). Summarized results are shown in Fig-
ure 4 (detailed results can be found in Table 12),
demonstrating that training datasets (highlighted
in red) can hurt the model retrieval accuracy, such
as ELIS, removing which improves the nDCG@10
on BEIR (0.519 — 0.525). Also, it shows that
certain datasets (highlighted in green) are crucial
for model accuracy.

Based on findings in Figure 4 and selecting nec-
essary datasets for individual task-based perfor-
mances in BEIR, we prune the original 16 retrieval
datasets in the BGE collection and select seven
datasets (highlighted as *x), reducing the training
dataset size from 1.6M to 680K training pairs in
our experiments. The average nDCG @10 score
of E5 (base) improves from 0.519 — 0.529 on 14
datasets on average in BEIR, by fine-tuning on
almost 2.35x smaller dataset (1.6M — 680K).

5.2 Main Results: Relabeling False Negatives

This section shows the results of the fine-tuned
models on the variants of the training dataset de-
scribed in Section 3.1 and 3.2, keeping the rest of
the model training parameters unchanged.

BEIR benchmark. Results in Table 3 show
that for both E5 (base) and Qwen2.5-7B, the
RLHN technique achieves the best overall aver-
age nDCG@10 of 0.515 and 0.518 on 16 datasets
on BEIR, outperforming models trained with the
default setting and other remove techniques. The
relabeled data in RLHN improves model gener-
alization, with improvements strongly visible in
seven out-of-domain (OOD) datasets in BEIR.

Backbone Technique Arxiv Finance Health. Law News Avg.5
ES5 (base) Default  0.345 0.401 0.521 0.117 0455 0.368
ES5 (base) TopK-PercPos 0.348 0.418 0.529 0.119 0464 0.376
ES5 (base) CE Distill  0.372 0.430 0.536 0.168 0.498 0.401
Cascading Stage 1: GPT-40-mini
ES5 (base) Remove 0.346 0.407 0.526 0.118 0452 0370
ES5 (base) Remove HN  0.344 0.406 0.522 0.118 0459 0.370
ES5 (base) RLHN 0.362 0.421 0.522 0.123 0465 0.379
Cascading Stage 2: GPT-40-mini + GPT-40
ES5 (base) Remove 0.341 0.403 0.514 0.125 0438 0.364
ES5 (base) Remove HN  0.346 0.411 0.525 0.124 0464 0.374
ES (base) RLHN 0.356 0.440 0.521 0.138 0476  0.386
Qwen2.5-7B Default 0.325 0.391 0479 0.115 0430 0.348
Cascading Stage 2: GPT-40-mini + GPT-40
Qwen2.5-7B Remove HN  0.335 0.384 0487 0.111 0423 0.348
Qwen2.5-7B RLHN 0.330 0.418 0.494 0.133 0450 0.365

Table 4: Retrieval results measuring nDCG@10 on
five specialized domains in AIR-BENCH dev (version
24.05) by fine-tuning E5 (base) and Qwen2.5-7B on
variants of the BGE training dataset with RLHN.

Stage 1 (RLHN) outperforms the Default setting
by 2.0 points and Stage 2 (RLHN) by 3.2 points
in nDCG@10. Overall, relabeling false negatives
improves the data quality, which is reflected in
model generalization across out-of-domain settings
in BEIR.

AIR-BENCH. In addition to BEIR, AIR-
BENCH provides a zero-shot setting to evaluate
on challenging domains, such as Law. Table 4
shows the average nDCG@ 10 on five specialized
domains. The improvements in model generaliza-
tion are consistent to what we observed in BEIR.
Stage 1 (RLHN) improves the Default setting by 1.1
points in nDCG @10, and Stage 2 (RLHN) further
improves by 2.1 points. Overall, without changing
the model or training parameters, mitigating false
negatives in training datasets with RLHN enables
the model generalize better to specialized domains
in AIR-BENCH.
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BEIR Dataset No Filtering  Cascading Stage 1 ~ Cascading Stage 2
Default RLHN RLHN
TREC-COVID' 0.836 0.861 0.862
NFCorpus’ 0.401 0.414 0.415
NQ 0.730 0.739 0.736
HotpotQA 0.863 0.861 0.861
FiQA-2018 0.517 0.521 0.519
ArguAna 0.740 0.730 0.763
Touché-2020" 0.275 0.308 0.313
DBPedia 0.532 0.536 0.538
SCIDOCS 0.278 0.273 0.270
FEVER 0.941 0.939 0.936
Climate-FEVER 0.457 0.468 0.430
SciFact 0.786 0.793 0.794
TREC-NEWS' 0.507 0.513 0.527
Robust04' 0.531 0.548 0.589
Signal-1M" 0.292 0.276 0.274
BioASQf 0.510 0.505 0.500
Avg. 16 (All) 0.575 0.580 0.583
Avg. 7 (OOD) 0.479 0.489 0.497

Table 5: Reranker results measuring nDCG@10 on
16 datasets in BEIR by fine-tuning reranker models
(based on Qwen2.5-3B) on variants of the BGE training
datasets after relabeling false negatives. Stage 1 and 2
refers to GPT-40-mini and GPT-40-mini + GPT-4o.

Comparison with baselines. Results in Table 3
and Table 4 show that carefully avoiding sampling
very hard negatives using Top-95%-PercPos outper-
forms the Default model, but still underperforms
compared to the RLHN strategy with ES (base).
Next, the bge-reranker-v2-gemma cross-encoder,
used as the distillation teacher is a strong base-
line. It slightly underperforms RLHN on BEIR
but outperforms RLHN on AIR-BENCH. How-
ever, we want to reiterate that our core motivation
is to identify and relabel false negatives in training
datasets to enhance data quality. Distillation-based
fine-tuning requires on a strong, domain-focused
cross-encoder reranker. Similarly, RLHN is partic-
ularly valuable for fine-tuning cross-encoders when
teacher supervision is not viable.

Reranker results. Training data with improved
quality also benefits cross-encoder rerankers. Ta-
ble 5 shows the result comparison on the BEIR
benchmark, where we rerank the top-100 results
from the fine-tuned E5 (base) in the Default set-
ting. Training rerankers with data fixed on RLHN
Stages 1 and 2 progressively increases nDCG@ 10
on BEIR datasets by 0.5 points and 0.8 points, re-
spectively. This improvement is most prominent on
the seven OOD datasets, consistent with the above
observation on retrievers: the data correction on the
two stages improves the averaged OOD results by
1.0 and 1.8 points, respectively.

We note that the scale of the improvement on
cross-encoders is not as large as on retrievers,

RLHN (Ablation of Hard Negatives)
RLHN (1HN) RLHN (3HN) RLHN (7HN) RLHN (9 HN)

BEIR Dataset

TREC-COVID' 0.809 0.810 0.809 0.812
NFCorpus' 0.389 0.388 0.390 0.392
NQ 0.563 0.583 0.591 0.595
HotpotQA 0.717 0.729 0.735 0.739
FiQA-2018 0.438 0.448 0.448 0.450
ArguAna 0.660 0.679 0.692 0.693
Touché-2020" 0.249 0.263 0.266 0.276
DBPedia 0.439 0.442 0.447 0.447
SCIDOCS 0.234 0.238 0.242 0.243
FEVER 0.851 0.864 0.871 0.875
Climate-FEVER 0.339 0.362 0.367 0.371
SciFact 0.736 0.737 0.740 0.744
TREC-NEWS' 0.481 0.473 0.484 0.484
Robust04 0.506 0.502 0.497 0.499
Signal-1M' 0.273 0.272 0.274 0.272
BioASQf 0.384 0.394 0.394 0.397
Avg. 16 (All) 0.504 0.512 0.515 0.518
Avg. 7 (O0D) 0.442 0.443 0.445 0.447

Table 6: Ablation of number of hard negatives during
fine-tuning with InfoNCE loss function (van den Oord
et al., 2018) in Tevatron with E5 (base).

which may indicate that cross-encoder rerankers
are comparatively more robust to false negatives.
Howeyver, albeit small, cross-encoders still bene-
fit from training data of higher quality, especially
when generalizing to unseen domains.

6 Analysis

Ablation on hard-negatives and significance
tests. As an ablation, we experiment with the
number of hard negatives during fine-tuning E5
(base) in Tevatron. From Table 6, we observe that
increasing the number of hard negatives improves
the nDCG @10 score on BEIR, with the best scores
observed using 9 hard negatives.

We conduct statistical significance tests using
ranger plots (Sertkan et al., 2023) for both ES
(base) and Qwen2.5-7B, comparing RLHN versus
the Default setting. The ranger plots are provided
in the Appendix (Figure 10 and Figure 11). In
Figure 10, the plot shows statistical improvement
for 10/16 BEIR datasets with ES (base) fine-tuned
using RLHN. Similarly, Figure 11 shows statis-
tical improvement for 14/16 BEIR datasets with
Qwen2.5-7B fine-tuned using RLHN.

Robustness of RLHN across varying training
data subsets. As training datasets can be large,
relabeling all training pairs using the LLM cas-
cading pipeline can be computationally prohibitive.
From Figure 5, we demonstrate that RLHN remains
robust and maintains similar accuracy gains, even
when applied to smaller randomly sampled sub-
sets of the training dataset. To evaluate this, we
use four random subsets (100K, 250K, 400K, and
680K) of the training datasets, with each dataset’s
distribution shown in Table 10.
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Figure 5: nDCG@ 10 scores on BEIR (Avg. 16 and Avg. 7) and AIR-BENCH (Avg. 5) by fine-tuning ES (base)
on a subset of the 100K, 250K, 400K, and 680K training pairs using the “RLHN" technique for both stages. All
individual dataset scores for both BEIR and AIR-BENCH are provided in Figure 7 and Figure 8.

Datasets — FEVER (3,521) FIQA-2018 (1,829) HOTPOTQA (4,720) ScIipOCSRR (350)
SoTA Reranker Judge | mAP@10 P@L(GT) , mAP@10 PQ@L(GT) A mAP@10 P@L(GT) , mAP@10 P@L(GT)
BAAI/bge-reranker-v2-gemma 0.839 0.777 0.632 0.492 0.742 0.638 0.926 0.875
mxbai/rerank-large-v2 0.496 0.365 0.658 0.525 0.737 0.634 0.680 0.524
mxbai/rerank-base-v2 0.570 0.455 0.598 0.464 0.671 0.565 0.612 0.462
Cohere (rerank-v3.5) 0.811 0.740 0.572 0.437 0.694 0.588 0.838 0.743
Alibaba-NLP/gte-reranker-modernbert-base 0.688 0.602 0.545 0.408 0.658 0.560 0.843 0.754
cross-encoder/ms-marco-MinilM-L12-v2 0.745 0.656 0.517 0.387 0.587 0.479 0.832 0.755

Table 7: Reranker as the judge as a baseline to identify RLHN false negatives in each training dataset (written along
with the count of training pairs). mAP @10 calculates the average precision of false negatives (labeled as positives)
in the top-10 reranked results. P@L(GT) calculates the precision of false negatives present in top-% reranked results,
where k varies in each query, measuring the count of false negatives detected using RLHN.

Overall, we have two main findings: (i) the E5
(base) model fine-tuned on RHLN Stages 1 and 2
training data, with false hard negatives relabeled
as positives, consistently outperforms the Default
setting, and (ii) the steeper slope in nDCG@ 10
demonstrates continual improvement across zero-
shot domains, as the amount of training data in-
creases, especially as observed in AIR-BENCH.

Reranker distillation is competitive but limited
in detecting false negatives. A reranker, or cross-
encoder, is commonly used in knowledge distilla-
tion to fine-tune a retriever model as an alternative
to the traditional contrastive or InfoNCE loss func-
tion (Hofstétter et al., 2020; Qu et al., 2021; Wang
et al., 2022a). This approach bypasses the original
relevance judgments, relying instead on knowledge
encoded within the reranker itself. Rather than us-
ing RLHN, we evaluate how well rerankers detect
false negatives in training datasets. Specifically, we
rerank the hard negatives for each training instance
and compute two metrics: (i) mAP@ 10, which
measures the average precision of false negatives
in the top-10 results, and (ii) P@L(GT), which
measures the precision of false negatives among
the top-k results, where k£ equals the number of
false negatives.

Table 7 reports results of six reranker judges
from various sources across four datasets. We

GPT-40-mini
0.320

GPT-40
0.390

Metric

Cohen’s Kappa (k)

Table 8: Cohen’s « score of GPT-40-mini and GPT-40
with human judgments on 670 query—negative pairs.

observe that the bge-reranker-v2-gemma judge
achieves the highest scores amongst its counter-
parts in identifying false negatives labeled by
RLHN (except on FIQA). However, on datasets
such as FIQA-2018 and HOTPOTQA, rerankers
detect only 52.5-63.8% of false negatives, indicat-
ing that while existing rerankers are competitive,
they still require improvement. We suspect this
limitation arises because rerankers are fine-tuned
on these existing training datasets that contain false
negatives, which negatively affects their accuracy.

7 Human Validation

We conducted a validation study with three hu-
man assessors conducting using Label Studio!! for
data annotation. The assessors were briefed on
the relevance task, and then independently evalu-
ated a total of 670 query—hard negative pairs. The
hard negatives were randomly sampled from the
RLHN set, each containing at least one false nega-
tive. During the assessment, all annotators worked
independently and were not exposed to the LLM

"eithub.com/HumanSignal/label-studio
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Query

Ground Truth or Positive Passages

False Negatives (Detected by RLHN)

(Q1) Which is a
food

zine or Saveur?

magazine,
Latin Mass Maga-

Latin Mass Magazine: A Journal of Catholic
Culture, commonly referred to as Latin Mass

Magazine, is an American Catholic maga-

zine published quarterly, with a traditionalist
Catholic viewpoint. [ ... ]

Saveur: Saveur is a gourmet, food, wine,
and travel magazine that in es-

Food & Wine: Food & Wine is a monthly
i 1 by Time Inc. It was

says about various world cuisines. Its slo-
gan—"Savor a World of Authentic Cui-
sine"—signals the publication’s focus on en-
during culinary traditions [ ... |

founded in 1978 by Ariane and Michael Batter-
berry. It features recipes, cooking tips, travel
information, restaurant reviews, chefs, wine
pairings and seasonal content [ ... ]

Cocina (magazine): is a Colombian-based
monthly i ished by Publi
Semana S.A.. It features recipes, cooking tips,
culinary tourism information, restaurant re-
views, chefs, wine pairings and seasonal holi-
day content [ ... ]

(Q2) What year was

the premier profes-

sional ice hockey
league in the world
established?

2016-17 Minnesota Wild season: The
2016-17 Minnesota Wild season was the 17th

season for the National Hockey League fran-

chise that was established on June 25, 1997.

National Hockey League: The National
Hockey League (NHL; French: "Ligue na-
tionale de hockey—LNH" ) is a professional
ice hockey league currently comprising 31
teams [ ... ]

History of the National Hockey League (1917-42): History of the National Hockey League
(1917-42) The National Hockey League (NHL) was founded in 1917 following the demise of
its predecessor league, the National Hockey Association (NHA). [ ... |

(Q3) name meaning
yin and yang

Yin and yang: In Chinese philosophy, yin and yang (also, yin-yang or yin yang) describes
how apparently opposite or contrary forces are actually complementary, interconnected, and
interdependent in the natural world, and how they give rise to each other as they interrelate to

one another.

Yin and yang: Yin and Yang are ancient Chi-
nese philosophical terms, with the Yin Yang
Theory being a fundamental part of Feng Shui.
It is a Chinese theory on the perspective of
continuous change and balance. [ ... ]

Yin Yang Symbols and Their Meanings: In
a nutshell, Chinese yin yang symbols repre-
sent perfect balance. A great deal of Chinese
philosophy stems from the concept of yin and
yang - opposites interacting [ ... ]

(Q4) Charles,
Prince of Wales is
patron of numerous
other organizations.

Charles, Prince of Wales: Charles, Prince of Wales (born 14 November 1948) is the eldest
child and heir apparent of Queen Elizabeth I [ ... ] Charles’s interests encompass a range of
humanitarian and social issues: he founded The Prince’s Trust in 1976, sponsors The Prince’s
Charities, and is patron of numerous other charitable and arts organisations. [ ... |

Julia Cleverdon Dame: Julia Charity Clever-
don [ ... ] served for 16 years as Chief Execu-
tive of Business in the Community, one of the
Prince’s Charities of Charles, Prince of Wales.

The Prince’s Trust: The Prince’s Trust is
a charity in the United Kingdom founded in
1976 by Charles, Prince of Wales, and Freder-
ick John Pervin to help young people. [ ... |

Table 9: Qualitative analysis showcasing the different varieties of false negatives detected by RLHN. The first two
questions are taken from HOTPOTQA, the third from MS MARCO, and the last from FEVER. The text supporting
the query is highlighted in green, partially supporting in orange, and not supporting with red.

predictions. An example of the annotation interface
is shown in Figure 9.

Table 8 reports Cohen’s Kappa (k) measuring
agreement between each LLM’s predictions and
the human labels. The « scores are consistent with
prior work reporting similar levels of human-LLM
agreement (Arabzadeh and Clarke, 2025). GPT-40
shows substantially higher agreement with human
annotators compated to GPT-40-mini. This finding
aligns with our empirical results, where relabeling
with GPT-40 shows consistent gains over GPT-40-
mini in training retrieval and reranker models.

8 Qualitative Analysis of False Negatives

We qualitatively analyze the labeling accuracy of
our LLM cascading framework by manually spot-
checking a few training instances. As shown in
Table 9, we observe a variety of false negatives,
which fall into the following scenarios:

1. Detected false negatives are incorrect or not
relevant. GPT-40 can sometimes detect a false
negative that is not relevant to the query. E.g.,
(Q1) query asks which is a food magazine between
Latin Mass or Saveur, however, the detected false
negatives identify different food magazines such as
Food & Wine or Cochina, which are both incorrect.

2. The ground truth may be incorrectly labeled.
In a few queries, we observe that the ground truth
passage can contain conflicting information with
the false negative, resulting in incorrect labeling.
E.g., the correct answer to the (Q2) query, which
asks about the professional ice hockey establish-
ment is 1917 (present in the false negative). How-
ever, the ground truth incorrectly states 1997.

3. The query may be too generic or ambiguous.
In a substantial amount of training pairs in MS
MARCO, we find that the training query is rather
ambiguous, leading to many false negatives being
detected. E.g., for the (Q3) query, all passages—
including both the ground truth and false negatives—
are relevant, as they each correctly define “yin and
yang” but with different interpretations.

4. False negatives can be partially correct. Not
all detected false negatives are entirely non-relevant
to the query. E.g., one false negative is partially
relevant to (Q4), which asks about organizations
associated with Charles, the Prince of Wales.

9 Conclusion

In this work, we emphasize the importance of clean
training datasets. First, we showed that certain
datasets can negatively impact model effectiveness
when fine-tuned across a huge collection with many
training pairs. Dataset pruning removes 57.5% (8
datasets out of 15) and improves the model accu-
racy on BEIR by even 1.0 point and making the
dataset 2.35x smaller. Next, after pruning, we
observed the issue of false hard negatives in the
remaining training datasets, where passages in the
hard negative list are misclassified and are relevant
to the query. We presented RLHN, an effective cas-
cading LLM approach for relabeling hard negatives
as ground truth or positives.

Using RLHN, both retrievers and rerankers con-
sistently improved their model generalization on
BEIR and zero-shot AIR-BENCH evaluations, as
supported by human annotation results, outperform-
ing competitive baselines such as hard-negative
sampling and cross-encoder knowledge distillation.
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Limitations

Even though we propose an effective technique
to identify and relabel false hard negatives with
RLHN, no technique is perfect and has its limi-
tations. Making those explicit is a critical point
in understanding the RLHN results and improve-
ments, and for future work, to propose even better
detection techniques.

1. False positives in training datasets. De-
tecting and relabeling false positives in training
datasets is an important avenue of potential re-
search. However, we avoid checking for false posi-
tives, as these labels are trustworthy, provided by
a human assessor, who can have a different pref-
erence than the LLM itself. False positives might
occur in a dataset due to human errors in existing
datasets, but we suspect both the importance and
frequency of detected false positives to be much
lower than false negatives.

2. Cleaning extremely large training datasets.
The maximum training dataset size that we cov-
ered in our work contained <1M training pairs.
This is a reasonable dataset size to apply RLHN
within a strict compute budget. Cleaning extremely
large training datasets (for example, containing be-
tween 1-10M training pairs) is not feasible, as it
may require a very high computation budget, with
detection using GPT-40. In the future, we wish
to experiment with open-source LLMs, such as
Qwen-3 (Yang et al., 2025), as an alternative in
our LLM cascading pipeline, allowing relabeling
of extremely large training datasets.

3. Multilingual and long-context document
retrieval datasets. A majority of the training
datasets included in the BGE training collection
have average document lengths up to a few hundred
words, roughly equivalent to a few paragraphs. Ap-
plying RLHN to clean long-context document re-
trieval datasets, such as MLDR (Chen et al., 2024a)
and multilingual training datasets, such as MIR-
ACL (Zhang et al., 2023), would be highly relevant
in the future.

4. Multi-vector retrieval models. A popular
suite of retrieval models includes multi-vector mod-
els, such as ColBERT (Khattab and Zaharia, 2020;
Santhanam et al., 2022), representing queries and
documents by multiple contextualized token-level
embeddings. In our work, we limited our experi-
ments to dense retrievers and rerankers. We keep

RLHN with an extension to multi-vector models
as future work, using a training repository such as
PyLate (Chaffin and Sourty, 2025).
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A Pretrained or Backbone Choice

We experimented with several pretrained or base
model choices. In particular, we focused on fine-
tuning recently introduced encoder models such
as ModernBERT (Warner et al., 2025) to decoder-
based large language models such as Qwen-2.5
(less than <500M parameters). We fine-tune each
backbone on the whole BGE retrieval training sub-
set (15 datasets & 1.6M training pairs) for up to
3 training epochs with different hyperparameters
to fit the training with 4x A6000 GPUs. We plot
the model configurations and training settings in
Table 11.

Validation results. From Table 11, we observe
that encoder models pre-trained such as E5-base or
ES5-large achieve the highest nDCG @10 scores on
four BEIR datasets. These outperform recent back-
bones such as ModernBERT-base (Warner et al.,
2025) or even smaller-sized LLMs such as Qwen-
2.5 (0.5B). This anecdotally confirms that the unsu-
pervised pre-training stage in ES pretrained models
is useful and necessary for achieving a competitive
nDCG @10 score on BEIR. Since fine-tuning ES
(large) is around 2x slower than fine-tuning E5
(base), we run our main experiments on ES (base)
due to computational budget constraints.

Dataset ~100K ~250K ~400K ~680K

MS MARCO 49,571 145,000 210,000 485823
HoTPOTQA 10,250 30,000 84,516 84516

NQ 6110 30,000 58,568 58,568
FEVER 8017 28,755 28,755 28,755
ScIbOoCcSRR 12,654 12,654 12,654 12,654
FIQA 5500 5,500 5,500 5,500
ARGUANA 4065 4,065 4,065 4,065

Total Pairs 96,167 255,974 404,058 679,881

Table 10: Training pair distribution across seven datasets
for four configurations: 100K, 250K, 400K, and 680K.

B Leave-One-Dataset-Out Results

We provide detailed scores for leave-one-dataset-
out (Figure 4) in Table 12, where we fine-tune
E5-base retriever models on:

Part (a): no datasets;

Part (b): all 15 datasets;

Part (c): all 15 datasets but one left-out dataset;

Part (d): 7 datasets with the most significant ef-

fectiveness drop after being removed;
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Backbone #Params #Layers Hidden Size Pool LR Batch Size Epoch Time Taken COVID NFC. FiQA SciFact

ES-large (unsup.) (Wang et al., 2022b) 330M 24 1024 mean le-5 128x8x4 3 ~ 36 hours 0.712  0.383 0475 0.747
ModernBERT-base (Warner et al., 2025) 149M 22 768 mean 2e-4 256x8x4 3 ~ 12 hours 0.560 0.279  0.440 0.602
E5-base (unsup.) (Wang et al., 2022b) 110M 12 768 mean 2e-5 256x8x4 3 ~ 18 hours 0.731 0.381 0.444 0.728
ES-small (unsup.) (Wang et al., 2022b) 33M 12 384 mean 3e-5 256x8x4 3 ~ 13 hours 0.667 0.349  0.420 0.698
Qwen-2.5-0.5B (Yang et al., 2024) 500M 24 896 last  le-5 96x8x4 3 ~ 36 hours 0.503 0.356 0417 0.692
SmolLM2-360M (allal et al., 2025) 360M 32 960 last  le-5 96x8x4 3 ~ 33 hours 0.670 0.336  0.355 0.635
SmolLM2-135M (allal et al., 2025) 135M 30 576 last le-5 128x8x4 3 ~ 24 hours 0.668 0.327 0.304 0.608

Table 11: Model configuration, training settings, and retrieval results (nDCG @ 10) for backbone models fine-tuned
on the BGE-training dataset (1.6M training pairs) and evaluated on four datasets from the BEIR benchmark. The
models are sorted according to parameter size; The best score is highlighted as bold, the second best is underlined.
COVID denotes the TREC-COVID dataset and NFC. denotes the NFCorpus dataset.

&~
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£ =t S 2 < El S < =) > £ 1 =t 2 T 8 2 &
= £ o ) 3 & £ = = 2 o & 8 g
; & E & 2 =2 E Z E &8 § B © & & &z E g g
Setting =
(a) Pre-trained (Only) 0 0.610 0.358 0.390 0.524 0.401 0422 0.169 0.354 0.211 0.634 0.154 0.737 0441 0416 | 0416 - -
(b) (ALL) Training Pairs 1.60M | 0.731 0.381 0.595 0.726 0.444 0.652 0.181 0.437 0.233 0871 0370 0.728 0434 0477 | 0.519 -
w/o ELI5 1.27M | 0.772 0378 0.593 0.728 0.424 0.652 0213 0434 0235 0868 0377 0.734 0469 0478 | 0.525 7 5 X
w/o FEVER 1.57M | 0.748 0379 0.598 0.725 0.446 0.647 0.175 0434 0234 0.787 0240 0.749 0423 0483 | 0.505 6 5 v
w/o HotpotQA 1.51IM | 0.724 0.381 0.600 0.642 0.449 0.652 0.178 0.425 0232 0.863 0.358 0.725 0441 0489 | 0.511 4 7V
w/o MS MARCO Document 1.23M | 0.742 0380 0.586 0.726 0.445 0.656 0.175 0435 0235 0866 0347 0.742 0.458 0490 | 0.520 6 5 X
w/o Stack Overflow (Dup.) 1.58M | 0.720 0379 0.593 0.726 0.444 0.650 0.174 0436 0235 0870 0368 0.729 0431 0487 0517 7 2 X
w/o Trivia QA 1.54M | 0.729 0.380 0.595 0.730 0.450 0.647 0.174 0.440 0.234 0870 0.382 0.731 0443 0481 | 0.520 7 3 X
w/o NLI 1.60M | 0.729 0.380 0.594 0.726 0.445 0.652 0.177 0.437 0.233 0870 0.368 0.728 0436 0477 | 0.518 1 3 X
()  w/o SQUAD 1.5IM | 0.709 0379 0.598 0.723 0.445 0.654 0.181 0437 0234 0872 0376 0.729 0439 0481 0518 5 3 X
w/o ArguAna 1.59M | 0.736 0.381 0.598 0.728 0.448 0.434 0.174 0.434 0234 0871 0378 0.731 0445 0.486 | 0.506 8 3 v
w/o FIQA-2018 1.59M | 0.728 0.380 0.596 0.727 0.428 0.658 0.174 0.436 0.235 0871 0370 0.729 0433 0477 | 0517 3 2 v
w/o MS MARCO Passage 1.1IM | 0.699 0377 0551 0.730 0.440 0.650 0.162 0.407 0237 0869 0338 0.733 0431 0484 | 0508 3 10 v
w/o NQ 1.54M | 0.745 0381 0.553 0.728 0451 0.659 0.178 0435 0234 0867 0369 0.728 0435 0472 | 0517 5 4 v
w/o Quora 1.54M | 0.759 0.382 0.599 0.727 0.451 0.653 0.185 0.436 0234 0.867 0371 0.729 0436 0481 | 0.522 6 1 X
w/o SCIDOCSRR 1.59M | 0.733 0378 0.595 0.727 0.447 0662 0.178 0436 0201 0868 0374 0.740 0.434 0475|0518 5 4 v
w/o STS 1.60M | 0.718 0.379 0.596 0.727 0.446 0.652 0.177 0437 0234 0867 0369 0.729 0435 0478 | 0.517 1 4 X
(d) 7 Datasets Pruned (v') 680K | 0.781 0.376 0.593 0.728 0.421 0.664 0.242 0.440 0204 0.875 0.397 0.748 0467 0464 | 0529 9 5 -

Table 12: Retrieval results measuring nDCG@ 10 on 14 datasets in the BEIR benchmark by fine-tuning E5 (base) by
leaving out one training dataset at a time and fine-tuning the rest. Improved denotes E5 (base) with a nDCG@ 10
better than +1 point, Reduced with a nDCG@ 10 worse than —1 point, and No Change within the +1 point range,
compared to part (b) ES (base) fine-tuned on ALL Training Pairs. Each row in part (¢) is fine-tuned on all but one
left-out dataset. Part (¢) is fine-tuned on the 7 selected datasets.
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SYSTEM: Given (1) a search question, (2) a relevant ground-truth document, (3) and a set of unrelated documents that
may appear in any system’s response to that question. Your task is to evaluate whether any of the unrelated documents are
relevant compared to the ground-truth document in answering the question. A document is only considered relevant to the
question if it provides sufficient information in answering the question.

## Input

You will receive:

1. question: The question that the to-be-judged documents will be evaluated on.

2. ground_truth: A pre-validated document judged as most relevant to the question. This document can answer the
question and should be used as a guide for your analysis.

3. documents: A set of unrelated documents which may not be relevant in answering the question.

You will first read the question and carefully analyze each unrelated documents provided to you.
Read every question and unrelated document carefully as you would when proofreading.

## Criteria

Use the following criteria to judge the relevance of each document:

- Relevant: A document is considered relevant to the question if it provides sufficient information in answering the
question, containing all necessary parts highlighted in the ground truth.

- Not Relevant: The document does not answer the question and does not provide information in entailing parts present
in the ground truth.

## Output

Follow these detailed steps and output your reasoning for each step wrapped for each respective XML tag below:

1. You should think and provide your reasoning under <thinking> [ ...] </thinking>on why and how if an unrelated
document is relevant following the criteria above.

2. Next, for all unrelated documents which are found to be relevant, compare them against the ground truth
(<ground_truth>) document in answering the question under <preference> [ ...] </preference> tokens.

3. Finally, output the list of documents which are (1) relevant and (2) prefer better or equal under the XML tag
(<better>) or worse (<worse>) than the ground truth (<ground_truth>) document for answering the question in
<verdict>[...] </verdict>. Output [ ] if none of the documents are found to be relevant.

Follow strictly the format below:

<thinking> Evaluate the reasoning individually for all unrelated documents to answer the question
Doc (1): output the reasoning here
Doc (2): output the reasoning here

</thinking>
<preference> Compare the ground truth and every relevant document individually to answer the question
Doc (1): compare the relevance of Doc (1) with the <ground_truth> document here, which is more preferred?

</preference>
<verdict>
<better> Preferred over or equally as ground truth: [Doc (2) ...] </better>,
<worse> Relevant but not preferred over ground truth: [Doc (1) ...] </worse>
</verdict>

<question> {question} </question>
<ground_truth> {ground_truth} </ground_truth>
<documents> {documents} </documents>

Figure 6: Prompt used in RLHN with GPT-40-mini and GPT-40 for relabeling hard negatives for all BGE training
datasets. Certain texts above in the prompt are bolded and tab-aligned to assist with reading. For both GPT-40-mini
(stage 1) and GPT-40 (stage 2) experiments, we consider negatives present within the <better> and </better>
tags as false negatives. However, a training instance with any hard negative in either <better> and </better>
or <worse> and </worse> tags in the first stage output (GPT-40-mini judge) was forwarded to the second stage
(GPT-40 judge) in the RLHN framework.
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Figure 7: nDCG @10 scores on all 16 BEIR datasets by fine-tuning ES (base) retrieval model on a subset of the
100K, 250K, 400K, and 680K training pairs from both stages 1 and 2, sampled from seven datasets in the BGE
collection (listed in Table 1) using the RLHN framework. The training pair distribution is shown in Table 10.
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Figure 8: nDCG@10 scores on all 5 AIR-BENCH datasets by fine-tuning E5 (base) retrieval model on a subset of
the 100K, 250K, 400K, and 680K training pairs from both stages 1 and 2, sampled from seven datasets in the BGE
collection (listed in Table 1) using the RLHN framework. The training pair distribution is shown in Table 10.
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I Label Studio

Projects / RLHN Data Annotation / Labeling

Relevance Judgment Task

hotpotqa

Query:

6ed05edfebdaddb33c7eaal6b330f4ch
What park contains the Wild Beast and a 20 acre water park?

Relevant Passages (Ground Truth):

87b5a65952215d7f194dbBeb23a839ad

Wild Beast (roller coaster) Wild Beast is a wooden roller coaster located at Canada's Wonderland, in Vaughan, Ontario, Canada. Originally named "Wilde Beast", it is one of the four roller coasters that debuted with the park in 1981, and is one
of two wooden coasters at Canada's Wonderland modelled after a ride at Coney Island amusement park in Cincinnati, Ohio (specifically, Wildcat); the other is the Mighty Canadian Minebuster. The ride’s fan curve was rebuilt in 1998.
a3ce9e3b09e83e16ada8BcOe70dfIde

Canada's Wonderland Canada's Wonderland is a 330 acre theme park located in Vaughan, Ontario, a suburb approximately 40 km north of Downtown Toronto. Opened in 1981 by the Taft Broadcasting Company and The Great-West Life
Assurance Company as the first major theme park in Canada, it remains the country's largest. The park, currently owned by Cedar Fair, has been the most visited seasonal amusement park in North America for several consecutive years. As a
seasonal park, Canada's Wonderland is open daily from May to September, with weekend openings in late April, October and early November. With sixteen roller coasters, Canada's Wonderland is ranked third in the world by number of roller

coasters, after Six Flags Magic Mountain (19 coasters) and Cedar Point (17 coasters). The 330 acre park includes a 20 acre water park named Splash Works. The park holds Halloween Haunt, a Halloween-themed event, each fall, as well as
special events throughout the season.

Passage to Judge:
7874ccab03b887a65322776¢7850682

Quartz Mountain Nature Park Quartz Mountain Nature Park is located in southwest Oklahoma at the western end of the Wichita Mountains, 13 mi east of Mangum, Oklahoma and 20 mi north of Altus, Oklahoma. The nearest community is Lone
Wolf, Oklahoma, about 9 miles northeast of the park. It is operated by Oklahoma State Regents for Higher Education. The park began as a 158.3 acre tract adjacent to Lake Altus donated to the state by local residents, who had bought the
land for $51.58. It was designated as Quartz Mountain State Park, one of the original seven Oklahoma State Parks designated in 1935. Additional land has been donated since then, and the park now encompasses 4540 acre . The park
occupies land on the west side of Lake Altus-Lugert, which was originally built in 1927, then expanded in 1940 and renamed Lake Altus-Lugert. The park contains 4284 acre of land and more than 6000 acre of water.

Relevant'!!  Non-Relevant/?!

Figure 9: A screenshot of the human validation study conducted via Label Studio. First, the human assessor reads
the query (highlighted in grey) and the relevant passages (highlighted in blue). Next, the assessor reads a sequence

of hard negative passages one by one (highlighted in yellow) and evaluates the relevancy with the question, marking
their decision in the checkbox as either (1) relevant or (2) non-relevant.
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RLHN (GPT-40-mini + GPT-40) vs. Default (E5-Base)

Effect Size Weight Mean Cl 95%
TREC-COVID L 2 2.8% 0.03 [0.00, 0.05]
NFCorpus <& 7.2% 0.01 [0.01, 0.02]
NQ X 3 7.3% -0.00 [-0.01, 0.00]
HotpotQA ¢ 8.0% -0.00 [-0.00, 0.00]
FiQA-2018 X 2 6.7% 0.01 [0.00, 0.02]
ArguAna Lo 6.9% -0.01 [-0.02,-0.00]
Touche-2020 < 3.2% 0.01 [-0.01, 0.03]
DBPedia X 2 7.0% 0.01 [0.00, 0.02]
SCIDOCS Q 7.9% -0.00 [-0.00, 0.00]
FEVER < 7.9% -0.01 [-0.01, -0.00]
Climate-FEVER +4 7.3% -0.02 [-0.03, -0.02]
SCIFACT ¢ 5.5% 0.00 [-0.01, 0.02]
TREC-NEWS X 2 4.5% 0.02 [0.00, 0.03]
Robust04 X 3 5.2% 0.05 [0.04, 0.07]
Signal-1M (RT) Q 6.5% -0.00 [-0.01, 0.01]
BioASQ | L 2 6.1% 0.02 [0.01, 0.03]
Summary Effect (RE) ‘ 0.00 [-0.00, 0.01]

Figure 10: Ranger plot (Sertkan et al., 2023) showing the statistical significance of improvements observed in

—0.02 0.00 0.02 0.04 0.06
Mean Difference

RLHN (GPT-40-mini + GPT-40) versus the Default setting for the E5 (base) fine-tuned retriever.
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RLHN (GPT-40-mini + GPT-40) vs. Default (Qwen-2.5 7B)

Effect Size Weight Mean Cl 95%

TREC-COVID & 3.4% 0.02 [-0.01, 0.05]
NFCorpus Q 6.7% 0.00 [-0.01, 0.01]

NQ X 3 7.1% 0.03 [0.02,0.03]

HotpotQA & 7.5% 0.03 [0.02,0.03]
FiQA-2018 X 3 6.4% 0.01 [0.00, 0.02]
ArguAna X 3 6.7% 0.01 [-0.00, 0.01]
Touche-2020 X 3 5.2% 0.01 [-0.01, 0.03]
DBPedia X 3 6.6% 0.03 [0.02,0.04]
SCIDOCS X 3 7.3% 0.01 [0.00, 0.01]
FEVER X 2 7.5% 0.01 [0.01, 0.01]
Climate-FEVER X 3 7.3% -0.01 [-0.01, -0.00]
SCIFACT X 3 5.9% 0.01 [-0.00, 0.03]
TREC-NEWS < 4.3%  -0.01 [-0.03, 0.01]
Robust04 L 2 6.0% 0.04 [0.03, 0.05]
Signal-1M (RT) Q 6.3% 0.00 [-0.01, 0.02]
BioASQ ¢ 6.0% 0.03 [0.02, 0.04]
Summary Effect (RE) ‘ 0.01 [0.01, 0.02]

~0.02 0.00 0.02 0.04
Mean Difference

Figure 11: Ranger plot (Sertkan et al., 2023) showing the statistical significance of improvements observed in
RLHN (GPT-40-mini + GPT-40) versus the Default setting for the Qwen2.5-7B fine-tuned retriever.
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