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Abstract

Automated clinical risk prediction from elec-
tronic health records (EHRs) demands mod-
eling both structured diagnostic codes and
unstructured narrative notes. However, most
prior approaches either handle these modalities
separately or rely on simplistic fusion strategies
that ignore the directional, hierarchical causal
interactions by which narrative observations
precipitate diagnoses and propagate risk across
admissions. In this paper, we propose THCM-
CAL, a Temporal-Hierarchical Causal Model
with Conformal Calibration. Our framework
constructs a multimodal causal graph where
nodes represent clinical entities from two
modalities: Textual propositions extracted
from notes and ICD codes mapped to textual
descriptions.  Through hierarchical causal
discovery, THCM-CAL infers three clini-
cally grounded interactions: intra-slice same-
modality sequencing, intra-slice cross-modality
triggers, and inter-slice risk propagation. To
enhance prediction reliability, we extend
conformal prediction to multi-label ICD coding,
calibrating per-code confidence intervals under
complex co-occurrences. Experimental results
on MIMIC-III and MIMIC-IV demonstrate the
superiority of THCM-CAL.

1 Introduction

Accurate clinical risk prediction from Electronic
Health Records (EHRs) (Evans, 2016) is essential
for enabling timely clinical interventions and im-
proving treatment effects (Choi et al., 2016; Miotto
et al., 2016). EHRs comprise two complementary
data modalities: Structured diagnostic codes drawn
from the International Classification of Diseases
(ICD) (Choi et al., 2017; Bodenreider, 2004) and
Unstructured narrative notes that chronicle patient
observations and interventions over time (Huang
et al., 2019). Leveraging both modalities can
enhance automated code assignment (Sun et al.,
2024), risk stratification (Tsai et al., 2025), and
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Figure 1: An illustrative two-slice causal graph over
textual propositions and ICD nodes. Three directed edge
types are learned: intra-slice sequencing (P2 — P3),
intra-slice cross-modality triggers (P; — C;), and inter-
slice propagation (C; — Cy).

downstream decision support (Lu et al., 2021; Xu
et al., 2023).

Previous approaches as shown in Table 1 fall
into two broad categories. On one hand, text-
centric models such as CAML (Mullenbach et al.,
2018) and ZAGNN (Rios and Kavuluru, 2018)
leverage label-wise attention over narrative notes
but entirely ignore structured code context, while
code-focused methods like RETAIN (Choi et al.,
2016) and GRAM (Choi et al., 2017) attend only
to historical ICD sequences and overlook the
rich semantics of free-text observations. On the
other hand, recent transformer-based and text-
driven frameworks including Chet (Lu et al,
2022), DistilBioBERT (Rohanian et al., 2024),
BioMedLLM (Bolton et al., 2024), GatorTron (Yang
et al., 2022) and DKEC (Ge et al., 2024) improve
representation power or inject external knowledge
yet still treat text and codes as static co-occurrences.
They remain task-agnostic during pretraining,
neglect fine-grained narrative-to-code triggers and
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Table 1: Overview of representative clinical risk prediction methods, comparing their input modalities, support for
causal structure discovery, uncertainty estimation capabilities, and temporal hierarchical modeling.

Method Modalities Causal Discovery Uncertainty ~ Temporal Hi
CAML (Mullenbach et al., 2018) Text X X X
ZAGNN (Rios and Kavuluru, 2018) Text X X X
DistilBioBERT (Rohanian et al., 2024)  Text X X X
BioMedLM (Bolton et al., 2024) Text X X X
GatorTron (Yang et al., 2022) Text X X X
DKEC (Ge et al., 2024) Code+Text X X X
Chet (Lu et al., 2022) Code+Text Dynamic graph X X
CDANSs (Ferdous et al., 2023) Codes Instantaneous & lagged edges X v
CACHE (Xu et al., 2022) Codes Hypergraph-based X X
COMPOSER (Shashikumar et al., 2021) Codes X Single-task CP X
THCM-CAL (Ours) Code+Text Intra/inter-slice, cross-modality Multi-label CP v

rely on fixed graph structures that cannot adapt to
patient-specific time-varying causal relationships.

Taking the patient trajectory in Figure 1 as
an example. In the first admission (T;), the
note reports a medication contraindication (P3)
that prompts a reassessment of the urinary tract
infection etiology (P3), capturing an intra-slice
sequencing dependency. The description “recurrent
aspiration pneumonia” (Py) directly precipitates the
assignment of ICD code J69.0 (C;), exemplifying
an intra-slice cross-modality trigger. Finally, the
diagnosis C; in T; increases the likelihood of
a related complication (C4) in the subsequent
admission (T2), demonstrating inter-slice risk
propagation. These patterns highlight three critical
dimensions of clinical causality that current models
overlook: how narrative observations temporally
trigger diagnoses, how events in one hospitalization
propagate risk to the next, and how causal
dependencies span hierarchical temporal scales.
Existing approaches either operate on a single
slice or treat text—code interactions as undirected
associations, and thus fail to capture these directed,
modality-aware causal mechanisms.

To address these gap, we propose THCM-
CAL, a Temporal-Hierarchical Causal Model
with Conformal Calibration for Clinical Risk
Prediction. Our framework proceeds in four stages:
First, we segment each admission’s narrative
into diagnostically relevant sections; Second, we
encode both propositions and code descriptions
with BERT and project them into a shared
embedding space to form textual and code nodes.
Third, we sample intra-slice same-modality, intra-
slice cross-modality, and inter-slice propagation
edges using Gumbel-Softmax (Jang et al., 2016)
with acyclicity constraints; then fuse these edges

via graph (Rossi et al., 2020) message passing to
produce per-admission embeddings. Finally, we
apply split conformal prediction (Shafer and Vovk,
2008) to the multi-label probabilities, generating
valid confidence sets at a desired coverage level
even under complex code co-occurrences. Our key
contributions are:

* We propose a causal framework to unify intra-
visit sequencing, cross-modality triggers, and
cross-visit propagation in a hierarchical graph.

* We develop a split-conformal calibration
method that provides distribution-free un-
certainty guarantees on the prediction of
diagnostic codes.

* We demonstrate that explicit causal modeling
of multimodal interactions yields obvious
gains in performance, interpretability, and
robustness, with ablations showing each
module contributes.

2 Related Work

We categorize prior work into three areas: text-
centric diagnosis prediction, temporal causal
discovery, and uncertainty quantification.

2.1 Text-Centric Diagnosis Prediction

Automated diagnosis-code prediction from free-
text clinical narratives is commonly formulated as
a multi-label text classification task mapping notes
to sets of ICD codes. Early label-wise attention
networks such as CAML (Mullenbach et al., 2018)
and ZAGNN (Rios and Kavuluru, 2018) assign
each code its own attention mechanism to highlight
relevant text spans and capture label co-occurrence
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Figure 2: Overview of THCM-CAL. A four-stage pipeline for clinical risk prediction, which consists of: (1)
Extracting diagnostic propositions and normalize ICD descriptions, (2) Embeding nodes with BERT, (3) Building
and fuse a temporal-hierarchical causal graph via Gumbel-Softmax and message passing, and (4) Appling split
conformal prediction for calibrated multi-label ICD coding.

and hierarchy. More recent transformer-based
approaches including DistilBioBERT (Rohanian
et al., 2024), BioMedLLM (Bolton et al., 2024) and
GatorTron (Yang et al., 2022) learn rich contextual
embeddings via large-scale pre-training but remain
task-agnostic and often disregard explicit code
dependencies at fine-tuning. Domain-knowledge
frameworks such as DKEC (Ge et al., 2024)
integrate external ontologies to inform prediction
but rely on static graph structures that may not
reflect patient-specific interactions between text
and codes. Despite their strengths, these methods
overlook directional triggers between narrative
findings and subsequent codes.

2.2 Causal Discovery in Medical

Causal discovery in EHRs has mainly focused on
structured codes. SemDBN (Wang et al., 2018)
employs ontology-augmented Bayesian networks
for sepsis onset prediction yet excludes unstruc-
tured narratives. FGES-based techniques (Shen
et al., 2020) improve edge orientation in static
cohorts, and CDANSs (Ferdous et al., 2023) extend
causal discovery to time series by modeling lagged
dependencies. CACHE (Xu et al., 2022) applies
hypergraph learning and counterfactual inference
to structured codes but does not capture how
textual propositions precipitate specific diagnoses.
As a result, these methods cannot reveal cross-
modal, directional relationships between narrative
observations and ICD assignments.

2.3 Uncertainty Quantification in Clinical
Prediction

Conformal prediction provides finite-sample cov-
erage guarantees but has been applied mainly to
single-label clinical forecasting. COMPOSER
(Shashikumar et al., 2021) and NeuroSep CP
(Zhou et al., 2025a) generate confidence intervals
for sepsis onset and temporal risk trajectories,
respectively, under an assumption of label inde-
pendence. Sepsyn OLCP (Zhou et al., 2025b)
adapts conformal methods to online monitoring but
does not address multi-label ICD coding, where
code co-occurrences induce complex uncertainty
dependencies. Consequently, existing frameworks
do not yield valid per-code confidence sets for
multi-label diagnosis prediction.

3 THCM-CAL
3.1 Task Definition

We consider a cohort of S patients, each
with up to 7' chronological hospital admissions
Al A% ... AT For the t-th admission, we denote
the raw data by A? = (Tt, Nt C’t), where
7t € R is the admission timestamp, N is
the free-text clinical note, and C? is the set of
recorded ICD-9 codes. After Stage 1 (“Information
Extraction”), each admission is transformed into
Al = (7, ¢t N, P!, DY), where Nt =
E(NY) is the cleaned clinical narrative, C! =
T1cpo(C?) is the normalized set of ICD-9 codes,
Pt is the extracted propositions and D! is the
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labels. Given the history of the first 7' — 1
admissions, {A', ..., AT=1}, our objective is to
predict the ICD-9 code set at the next admission:
cr = fico (AL, ..., AT71). We train and
evaluate ficp under the standard multi-label
framework, comparing CT to the ground-truth C7'.

3.2 Overview of THCM-CAL

Figure 2 summarizes the four connected modules
that compose THCM-CAL. Starting from raw
EHRs, we first segment each admission’s free-text
note into diagnostically meaningful sections and
invoke a large language model to extract a set of
atomic propositions. In parallel, all recorded ICD
codes are normalized to ICD-9 and replaced with
their canonical textual descriptions. In the second
module, every proposition and code description is
fed through BERT and projected into a common
embedding space, yielding a rich set of node
feature vectors. These vectors form the inputs
to our third, core component: we assemble a
temporal-hierarchical causal graph by sampling
three kinds of directed relationships—within-
admission links among propositions and among
codes, cross-modal links from propositions to
codes, and across-admission propagation edges.
Edge selection is performed via Gumbel-Softmax
under acyclicity constraints, and the resulting
multi-slice graph is combined through a graph
fusion that propagates messages and pools node
representations into a compact embedding per
admission.  Finally, the fourth stage applies
split conformal prediction to the model’s multi-
label outputs, producing calibrated confidence sets
that respect a user-specified coverage level. By
chaining these modules—information extraction,
node encoding, causal graph construction with
fusion, and conformal calibration—THCM-CAL
delivers interpretable risk estimates with rigorous
uncertainty quantification.

3.3 Stage 1: Information Extraction

We start from the raw clinical note N* and the
raw ICD set C?, and extract the cleaned narrative
Nt together with normalized ICD-9 codes C! via
/\/t = 8(Nt) and Ct = TICDg(Ct).

Text segmentation & scoring Let H =
{h1, ..., hyy)} be the set of recognized section
headings (e.g., “Chief Complaint”, “History of
Present Illness”). We split N* into sections S =
{ S; = SEGMENT(Nt, hi, hi+1) | hi,hiv1 €

H} IS =0,letS = {N[t1;4000]}' Let countpg(s)
denote the number of occurrences of the substring

“mg” in s, K denotes a predefined set of medical

LR N3

keywords (e.g., “fever”, “cough”, “pain”) that are
strongly indicative of diseases or diagnoses. For
each segment s; € S, we extract a feature vector

£(s:) = [f1(si), f2(si), f3(ss), fa(s:)]", where
fl(sl) ”Cmsz
fa(si) = I{ “Diagnosis:” € Text(s;)},
f3(si) = min (countmg(sz) 9),
fa(s;) = I{SentCount(s;) > 2}.

We define the linear scoring function score(s;) =

w'f(s;)), w = (2,5,1,3)", and then sort S
by score(-) in descending order. The top-K
segments are retained: S* {si e S |

rankg (score(s;)) < K },where K = 3.

Atomic propositions extraction Let&: s +— Py
denote the GPT-3.5-based extractor that maps a
text segment s to a set of “atomic propositions.”
We then define

Pt — uniq( U 735) ={P1, Ppo, ...,
SES*

Pt,nt}7

where uniq(-) removes duplicates and enforces an
fixed ordering. These P ; serve as the proposition-
node set for Stage 2.

ICD code normalization We normalize the raw
ICD codes C*! via Ct = Tieq9 (C ) and retrieve
their human-readable labels by D = {d(c) | ¢ €
C'} ={Dy1,..., Dy g, }, where Ticqo is a standard
ICD-9 mapping, ¢ is the lookup from code to
description and Dy ; is the ICD-description strings.
Consequently, the complete output of Stage 1 for
admission ¢ is

At = (7, ¢, N, P, DY),

3.4 Stage 2: Node Representation

BERT Encodings. Let Encggrr : 7 — R
denote the BERT(Devlin et al., 2019) mapping
from any text token sequence to its [C'LS]
embedding of dimension d. We write hf ;=
EHCBERT (Pt z) hty = EHCBERT (Dtj) Thus
h!, hC € R4,

t,i)

Modality-Specific Projections. To bring propo-
sitions and code descriptions into a shared d'-
dimensional space, we apply two learnable linear
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projections with nonlinearity:

x{; = Projp(h{;) = ¢(Wph{; + bp),

ng = Projc(hgj) = ¢(WC hgj + bc),
where Wp, We € R¥>4 bp b € RY,

and ¢(-) denotes an element-wise activation (e.g.
ReLU) optionally combined with dropout.

Feature Matrix Assembly. Finally, we concate-
nate all proposition- and description-level vectors
into the admission-level feature matrix

t __ P P C C d'x ND;
X' = [th,...,XtJHXt71,...,Xt7Jt] c R ,

where ND; = I, + J;. This X! serves as the node-
feature input to Stage 3.

3.5 Stage 3: Temporal-Hierarchical Causal
Graph

Inspired by the temporal causal graph construction
in RealTCD (Li et al., 2024) framework , we further
extend their approach by building three types
of within-admission causal graphs and modeling
across-admission temporal dependencies, then
propagate information via graph convolutions to
obtain per-admission embeddings.

Constructing causal adjacency matrices. To
capture causal and temporal dependencies, we
construct a slice-wise causal graph at each
admission t. Define the Gumbel-Softmax sam-
pling operator GS(E;7) = softmax((E +
G)/7),G;j ~ Gumbel(0, 1). For each admission
t, we parameterize three intra-slice logit matrices
ElP EPC ESC ¢ RNPxNDe (with ND; =
I; + Ji, represents the total number of nodes at
time ¢) and obtain adjacency blocks by S/ =
GS(Ef";7),8f¢ = GS(EfY7),8¢¢ =
GS(E{'“; 7). We then form the block-structured
SPP gPC
o S).

To ensure that each intra-slice adjacency A,
defines a directed acyclic graph, we adopt the con-
tinuous acyclicity penalty from NOTEARS (Zheng
etal.,, 2018): h(Ay) = tr(exp(Ai0Ay)) — NDy,
where A; o A, is the Hadamard square of A; and
ND; = I; + J; is the total number of nodes.
We add Aacye h(A;) to the overall loss, which
vanishes if and only if A, is acyclic. In parallel, to
promote sparse and clinically interpretable graphs,
we include an ¢; penalty on the sampled adjacency
blocks: Aey 3o, crpoy|[Sell;- Similarly, inter-
slice logits E{"*°" produce S{"** = GS(E{™*r; 1),
which models influences from slice ¢ to slice ¢ + 1.

intra-slice adjacency A; =

Graph Fusion and Temporal Message Passing.
Let X; € RY*NDt pe the matrix whose rows are
{xf i}z‘lt:1 followed by {xgj }ji:l. Define two graph-
convolution operators:

GCintra(S, X; W) = ReLU(SX W) + X,

GCinter (S, X; W) =SXW + X.
We perform:

X; = GCintra(Ar, Xi3 W),
XtJrl = GCinter (Sinter’ Xt; W(z))

Finally, @ we pool the wupdated intra-
slice features and project: Z, =
MLP([Mean()N(f); Mean(f(tc)]), where

Mean(-) averages row-vectors and )N(f ) )Nitc
denote the proposition- and code-node partitions
of X;. Concatenating {Z;}7_, yields the trajectory
embedding Z € R7**  which feeds into the
downstream prediction and calibration modules.

3.6 Stage 4: Prediction and Conformal
Calibration

Prediction Let Z € R7** be the trajectory
embedding, where T is the number of admissions
and k is the embedding dimension. Define W, €
RF¥*L b, € RE,, where 1 € R” )is all-ones
vector. where L is the number of target labels.
We compute the logit matrix Y = ZW, +
1b] € RT*L and apply the element-wise
sigmoid o(x) = H% — P=o(Y) ¢
(0, )™*L, with P, j = o(Yy)-

Training loss We train by minimizing the focal
loss over all admissions ¢ and labels j:

T L
LrL==) ), [04 ye,j (1= Prj) log P

t=1 j=1
+(1—a) (1 —ye) P log(1 — Pt,j)}’
where o and v are the focal-loss balancing and
focusing parameters. The full objective also

includes the Stage 3 acyclicity penalty and sparsity
regularization:

T
L =Lrr + Aacye Y h(A+)

t=1
T
+ Aoy Z Z Hsfpr
t=1 zye{p,c}

where h(A;) is the NOTEARS acyclicity term
introduced in Stage 3.
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Conformal Calibration We partition the data
into a proper training set and a calibration set
Dealib- For each calibration pair (£,7) € Dealip,
define the nonconformity score o j = 1— pt,j' Let
{ag) <+ < aqny} be these N = |Deapip| scores

in ascending order, and set T = « [(N+1)(1—e)1 . At

test time for admission ¢, the conformal prediction
set is

ét:{jil—Pt’jST},

which guarantees the marginal
Pr(t,j)Ntest(yt,j € Ct) >1—e

coverage

4 Experiments

To rigorously evaluate THCM-CAL, we conduct
comprehensive experiments across several baseline
clinical language models and benchmark its
diagnostic-prediction performance against state-of-
the-art methods.

4.1 Experimental Setup

Dataset We evaluate THCM-CAL on two stan-
dard EHR benchmarks. For MIMIC-III (Johnson
et al.,, 2016), we include all patients with at
least two hospitalizations (7192 patients, 11980
admissions), and for MIMIC-IV (Johnson et al.,
2023), due to the risk of label leakage from
discharge summaries in the original MIMIC-
IV notes, we merge the original MIMIC-IV
dataset with MIMIC-IV-Ext-BHC!, which is a
meticulously cleaned and standardized corpus of
clinical notes (Labeled Clinical Notes Dataset for
Hospital Course Summarization), and apply the
same two hospitalization filter (17526 patients,
38346 admissions). We explicitly omit discharge
summaries in the ICD task to prevent label leakage.
Our objective is multi label ICD-9 prediction,
where the first N — 1 visits are used to predict
the full set of ICD-9 codes at visit /N. Each cohort
is split by patient into 70% train, 10% validation,
and 20% test sets. In the Conformal Calibration
stage we use the validation set for calibration.

4.2 Baselines

We compare THCM-CAL against the follow-
ing state-of-the-art models for multi-label ICD
prediction: GatorTron (Yang et al., 2022): a
345M-parameter transformer pretrained on large-
scale EHR narratives to capture clinical language
nuances. DistilBioBERT (Rohanian et al., 2024):

1https ://physionet.org/content/
labelled-notes-hospital-course/1.1.0/

a compact 66M-parameter BERT distilled on
biomedical text, offering a lightweight yet effective
encoder for clinical notes. BioMedLM (Bolton
et al., 2024): a 2.7B-parameter language model
trained on diverse biomedical corpora, providing
rich domain knowledge for downstream classifica-
tion. CAML (Mullenbach et al., 2018): employs
per-label convolutional filters and attention to
highlight text spans most relevant to each ICD
code. ZAGCNN (Rios and Kavuluru, 2018):
integrates the ICD code hierarchy via graph
convolutions to enable zero- and few-shot code
prediction. Chet (Lu et al., 2022): models multi-
label diagnosis prediction as a sequence-to-set
generation task using a transformer augmented
with clinical event encodings. DKEC (Ge et al.,
2024): incorporates external medical ontologies
and domain rules into a multi-label classifier to
enforce code consistency and improve rare code
recall.

Parameter Setup Our methods use BERT for
medical text embedding with hidden dimensions
d = 768 for both proposition and ICD code
representations. Our hierarchical temporal causal
model employs a 2-layer architecture with residual
connections and layer normalization. We train
using Adam optimizer (learning rate 1 x 1074,
weight decay 1 x 107°) with batch size 16 and
dropout 0.1. Early stopping is applied with
patience of 5 epochs over a maximum of 50
epochs. Each admission is represented with a
maximum of 50 propositions and 30 ICD codes.
The causal structure employs Gumbel-Softmax
temperature annealing from 1.0 to 0.1 to enforce
DAG constraints. Implementation uses PyTorch on
NVIDIA A100 GPUs.

4.3 Main Results

Table 2 reports AUROC, Precision@10, Re-
call@10, Precision@20 and Recall@20 for the
multi-label ICD-9 prediction task on MIMIC-III
and MIMIC-IV. We highlight three key findings:
(1) On MIMIC-III, THCM-CAL achieves
30.02% Precision@10 and 24.04% Recall@10,
representing gains of 5.50 and 5.22 percentage
points over the strongest baseline (Chet: 24.52%
/ 18.82%). On MIMIC-1V, THCM-CAL attains
28.83% Precision@10 and 37.03% Recall@10,
improvements of 6.24 and 7.20 points over
the best baseline (DistilBioBERT: 22.59% /
29.83%). These results underscore the benefit
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Model MIMIC-III MIMIC-IV
AUROC  Precision@10 Recall@10 Precision@20 Recall@20 \ AUROC Precision@10 Recall@10 Precision@20 Recall@20

CAML 9343 20.61 18.15 14.98 25.74 95.49 20.61 27.38 14.03 35.52
ZAGCNN 89.88 17.50 15.51 12.61 21.63 93.96 21.10 28.13 14.33 36.17
GatorTron 95.02% 20.53 17.72 15.03 25.66 95.90 22.87 30.19 15.47 38.81
DistilBioBERT 94.99 20.18 17.85 14.98 25.62 95.99* 22.59 29.83 15.33 38.50
Chet 60.17 24.52 18.82 18.61 27.71 60.79 19.06 26.65 12.62 34.11
DKEC 94.47 20.64 17.92 14.55 24.47 94.34 20.03 26.50 13.61 34.59
BioMedLM 93.66 20.56 17.84 14.90 25.38 95.14 20.72 27.68 14.09 35.32
THCM-CAL 92.07 30.02* 24.04* 21.47* 33.16* 94.91 28.83* 37.03* 18.66* 46.04*
—w/o BERT 86.54 20.26 17.97 14.34 25.07 89.24 20.24 25.44 13.98 33.66
—w/o ICD 91.16 23.17 17.58 17.38 25.82 92.61 20.99 27.67 14.39 36.58
— w/o Proposition 91.97 26.07 20.55 19.27 29.25 93.87 22.43 28.99 15.44 38.49
— w/o ConCalib 91.84 26.03 20.68 19.29 29.61 94.33 25.36 32.63 16.94 42.03

Table 2: Comparison of multi-label ICD code prediction performance for representative baselines and THCM-CAL
variants on MIMIC-III and MIMIC-IV. Metrics reported are AUROC, Precision@ 10, Recall@ 10, Precision@20,
and Recall@20. Cells highlighted in pink denote our THCM-CAL method, and boldface values marked with “*”
indicate the best performance across all methods, “w/0” means without.

of our narrative-to-code attention coupled with
hierarchical causal modeling, which elevates the
most critical diagnoses into the top-K predictions
even under distribution shift.

(2) THCM-CAL delivers 33.16% Recall@20 on
MIMIC-III (versus 25.74% for CAML and 24.47%
for DKEC), and 46.04% Recall@20 on MIMIC-1V
(versus 35.52% for CAML and 34.59% for DKEC),
yielding improvements of 7.42 and 10.52 points,
respectively. This boost is driven by our dynamic
causal graph component, which explicitly captures
cross-modal and temporal triggers, ensuring that
less frequent but clinically important comorbidities
are correctly retrieved.

(3) The gap in AUROC between THCM-CAL
and other methods is relatively small, with THCM-
CAL maintaining 92.07% on MIMIC-III and
94.91% on MIMIC-IV. This stability reflects the
effect of our conformal calibration in adjusting
confidence estimates for domain shifts, together
with the causal structure that guards against
spurious correlations.

Together, these results confirm that combining
rich contextual embeddings, fine-grained proposi-
tion extraction, and explicit causal modeling can
produce more effective code rankings and broader
coverage of clinically relevant diagnoses.

4.4 Ablation Study

To quantify the contribution of each component,
we perform an ablation study (Table 2) by
removing: (i) contextual BERT embeddings in
favor of simple indexing (“w/o BERT”), (ii) the
ICD-side causal graph (“w/o ICD”), (iii) the
proposition-side causal graph (“w/o Proposition™),
and (iv) the conformal calibration module (“w/o
ConCalib”). In every case, omitting a component

Dataset: MIMIC-II1

Configuration Cov.T MIW | IET
THCM-CAL 0.9006 0.1087  9.1990
— w/o Proposition  0.8980 0.1137  8.7979
—w/oICD 0.8937 0.1144 8.7412
Dataset: MIMIC-1V
Configuration Cov.T MIW | IE1
THCM-CAL 0.8973 0.0820 12.1923
— w/o Proposition  0.8976 0.0975 10.2582
—w/o ICD 0.8991 0.0889 11.2478

Table 3: Conformal Prediction Metrics on MIMIC-III
and MIMIC-IV (Cov. 1: higher is better; MIW |: lower
is better; IE 1: higher is better)

degrades performance across both datasets. First,
replacing BERT with one-hot indexing (“w/o
BERT”) yields the largest drop: on MIMIC-III,
Precision @20 falls from 21.47% to 14.34%, and
on MIMIC-IV from 18.66% to 13.98%. This
underscores the necessity of rich contextual text
representations for capturing fine-grained clinical
nuances. Second, removing the ICD-side causal
graph (“w/o ICD”) reduces Recall@20 on MIMIC-
III from 33.16% to 25.82% and on MIMIC-IV
from 46.04% to 36.58%, indicating that explicit
modeling of inter-code dependencies is critical to
retrieving less frequent but clinically important
comorbidities. Third, ablating the proposition-side
graph (“w/o Proposition”) lowers Precision@ 10
from 30.02% to 26.07% on MIMIC-III and
Recall@10 from 37.03% to 28.99% on MIMIC-
IV, demonstrating the value of narrative-to-code
triggers for prioritizing key diagnoses. Finally,
skipping conformal calibration (“w/o ConCalib”)
causes AUROC to drop modestly from 92.07% to
91.84% on MIMIC-III and from 94.91% to 94.33%
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Figure 3: Comparison of metrics with and without split conformal calibration on MIMIC-IV.
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Figure 4: Effect of the number of extracted propositions
for multi-label ICD-9 prediction.

on MIMIC-1V, confirming that score recalibration
is important for maintaining stable discrimination
under dataset shift.

4.5 Analysis on Conformal Prediction

We evaluate conformal prediction using three
complementary metrics. Coverage (Cov) measures
the fraction of true ICD codes captured by the
prediction set. Mean interval width (MIW)
quantifies the average size of these sets, with
smaller widths indicating tighter intervals. Interval
efficiency (IE), defined as the reciprocal of MIW,
directly reflects interval compactness. Table 3
presents these metrics, averaged over all epochs,
for our full THCM-CAL model and two ablations
on both MIMIC-III and MIMIC-IV.

As shown in Table 3, THCM-CAL attains the
highest coverage and the narrowest intervals on
both datasets, leading to superior efficiency. On
MIMIC-III the full model achieves a coverage
of 0.9006 alongside a mean interval width of

0.1087 (IE = 9.1990), whereas removing the
proposition side reduces coverage to 0.8980 and
widens intervals to an average width of 0.1137, and
omitting the ICD side further lowers coverage to
0.8937 with intervals of width 0.1144. Comparable
patterns emerge on MIMIC-IV, where THCM-
CAL delivers efficiency of 12.1923 compared to
10.2582 without the proposition side and 11.2478
without the ICD side. These results demonstrate
that the proposition side is crucial for concentrating
uncertainty into tighter sets and that the ICD side
preserves nominal coverage under label sparsity.
Neither ablation matches the performance of
the complete model, confirming that both sides
contribute to the final calibration quality.

4.6 Effect of Extracted Propositions

Figure 4 examines how varying the number
of extracted propositions per admission affects
prediction performance. As the proposition count
increases from 0 to 50, both precision and recall at
K =10 and K = 20 steadily improve on MIMIC-
IIT and MIMIC-IV. On MIMIC-III, Precision@10
rises from 0.26 to 0.30 and Recall@20 from 0.29
to 0.33; on MIMIC-1V, Precision@ 10 climbs from
0.22 to 0.29 and Recall@20 from 0.38 to 0.46.
These gains reflect that each additional proposition
injects new, fine-grained clinical observations
into our causal graph, enabling more accurate
identification of both the highest-priority codes
(boosting Precision@10) and the broader set of
relevant comorbidities (boosting Recall @20). With
more narrative nodes, the inter-slice propagation
and cross-modality trigger edges become better
grounded, leading to smoother per-admission
embeddings and reduced variance in performance
across patients. Notably, the marginal benefit from
adding propositions begins to plateau beyond 30
propositions, suggesting a point of diminishing
returns where most salient information has already
been captured. In practical, setting K = 30
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propositions strikes a favorable balance between
extraction cost and predictive performance.

4.7 Effect of Calibration

Figure 3 compares models trained with versus
without our split conformal calibration on MIMIC-
IV. Across all four metrics and at every checkpoint
(epochs 5, 10, 15, 20), the calibrated model
achieves higher scores than the non-calibrated
baseline, illustrating that calibration not only
provides valid confidence intervals but also leads to
more accurate top-K code retrieval. The larger gap
at early epochs indicates that calibration rapidly
corrects over- and under-confidence in raw proba-
bilities, yielding stable and reliable predictions as
training progresses. Beyond accuracy, conformal
calibration also ensures that the empirical coverage
of each code’s prediction set aligns with the
desired level, even under non-stationary label co-
occurrence patterns in MIMIC-IV. Importantly,
calibration mitigates the impact of skewed code
frequencies by adaptively adjusting thresholds per
label, thereby reducing overprediction of common
codes and underprediction of rare ones. These
results confirm that split conformal calibration
serves as a good post-hoc uncertainty quantifier.

5 Conlcusion

In this work, we introduced THCM-CAL, a
unified Temporal-Hierarchical Causal Model with
Conformal Calibration for Clinical Risk Prediction.
By constructing a multi-slice causal graph that
jointly captures intra-visit proposition sequencing,
intra-visit cross-modality triggers, and inter-visit
risk propagation, our model uncovers clinically
meaningful relationships between narrative obser-
vations and diagnostic codes. We further adapt
split conformal prediction to the multi-label setting,
providing finite-sample guarantees on per-code.
Extensive experiments on MIMIC-III and MIMIC-
IV benchmarks demonstrate that THCM-CAL
substantially outperforms state-of-the-art baselines,
while offering calibrated uncertainty estimates.
Ablation studies confirm that each causal edge type
and the conformal calibration module are critical
to performance gains.
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Limitations

While THCM-CAL demonstrates strong gains in
accuracy, interpretability, and uncertainty calibra-
tion, it has several limitations.

* First, the reliance on large language models
(e.g., GPT-3.5) for atomic proposition ex-
traction introduces additional computational
overhead and may propagate errors when
the extractor misidentifies or omits clinically
relevant statements.

* Second, although we validate on two MIMIC
datasets mapped to ICD-9, extending THCM-
CAL to richer coding systems (e.g., ICD-10)
or to non-English clinical corpora will require
careful adaptation of both the proposition
extraction and code description modules.
Addressing these challenges is our future
work.

Despite these considerations, our approach pro-
vides a solid foundation for predicting ICD, and
we believe that further refinements in these areas
can further enhance its applicability.
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A Thresholding Strategies for F1 Score
Calculation

In our experiments we do not report F1 scores
because each baseline employs a different method
to convert model scores into binary labels. This
variation makes direct comparison of F1 values
problematic. Instead, we provide AUROC, P@10,
R@10, P@20 and R@20 which do not depend
on a fixed threshold and thus allow a fair
comparison. For reference we summarize below
the thresholding strategies used in recent ICD code
prediction works.

Specifically, Chet (Lu et al., 2022) counts the
number of true labels for each instance and selects
that many codes with the highest predicted scores.
CARER (Nguyen et al., 2024) for multi-label tasks
uses a dynamic threshold equal to the number of
true labels and for binary tasks applies a fixed
cutoff of 0.5. DKEC (Ge et al., 2024) applies
a fixed cutoff of 0.5 and marks all codes with
probability at least 0.5 as positive and if none meets
this threshold it selects the single code with the
highest probability. CACHE (Xu et al., 2022)
uses the same 0.5 cutoff but allows this value to be
adjusted at runtime. RAM-EHR (Xu et al., 2024)
applies a 0.5 threshold independently for each
code and reports per-label metrics. HiTANet (Luo
et al., 2020) does not use any threshold and instead
selects exactly one code by choosing the label with
the maximum model score.

As shown above some models use dynamic
thresholds matching each sample’s true label
count some use a fixed threshold of 0.5, and
one uses maximum-probability selection. This
heterogeneity in thresholding makes F1 scores
difficult to compare on equal terms. We therefore
omit F1 from our evaluations and rely on threshold-
independent metrics to ensure a fair assessment of
all methods.
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