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Abstract
Recent Multimodal Large Language Models
(MLLMs) have achieved remarkable advance-
ments, yet their internal mechanisms for con-
currently processing diverse modalities like
text, image, and audio remain largely opaque.
In this paper, we propose a methodology to con-
vert dense MLLMs into fine-grained Mixture-
of-Experts (MoE) architectures. This allows
us to visually investigate their multimodal ac-
tivation patterns through expert activation fre-
quency heatmaps. Conducting comprehensive
experiments on representative MLLMs, we an-
alyze the similarities and differences in inter-
nal neuron activations when handling distinct
modalities. Specifically, we examine the dis-
tribution of high-frequency activated experts,
the distinct roles of high-frequency (e.g., funda-
mental logic) and low-frequency (e.g., domain-
specific concepts) multimodal shared experts,
and the prevalence and localization of modality-
specific experts. Furthermore, we explore lever-
aging these discovered activation discrepan-
cies to guide sparse activation and model prun-
ing. Experimental results demonstrate that
our approach substantially outperforms random
expert pruning and can achieve comparable
or even superior performance to the original
unpruned models while utilizing significantly
fewer active parameters. Our work not only
sheds light on the multimodal processing mech-
anisms within MLLMs but also provides a prac-
tical pathway toward developing more inter-
pretable and efficient multimodal systems.

1 Introduction

Large Language Models (LLMs) have demon-
strated extraordinary capabilities in processing and
generating human language, catalyzing a new era in
natural language processing (Hadi et al., 2023; Zhu
et al., 2024b). The frontier has rapidly expanded
towards multimodal LLMs (MLLMs), which inte-
grate capabilities for understanding and reasoning
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across diverse modalities such as text, images, and
audio (Li et al., 2024c; Liu et al., 2024a). These
models, often architected by coupling powerful
visual and/or audio encoders with a pre-trained
LLM backbone, have achieved remarkable success
on a wide array of multimodal tasks, from visual
question answering to image captioning and audio-
grounded dialogue (Wang et al., 2024; Wu et al.,
2024; Li et al., 2025).

However, despite their impressive performance,
a fundamental question remains largely unan-
swered: how do these MLLMs process and inte-
grate information from disparate modalities within
a unified architectural framework? While an
LLM’s core is trained on text, its adaptation to
handle visual or auditory signals introduces new
complexities. Previous studies in neuroscience
suggest that while the multilingual LLMs exhibit
considerable overlap in regions processing differ-
ent languages, discernible specializations also ex-
ist (Zhu et al., 2024a; Tang et al., 2024). Anal-
ogously, we hypothesize that MLLMs might de-
velop both modality-agnostic (shared) computa-
tional pathways and modality-specific ones. Uncov-
ering these internal mechanisms is crucial not only
for advancing our theoretical understanding but
also for addressing practical challenges. MLLMs,
inheriting the scale of their LLM parents, are com-
putationally intensive, making deployment and in-
ference costly (Caffagni et al., 2024). A deeper
insight into their internal workings could pave the
way for more efficient model designs, targeted prun-
ing strategies, and improved interpretability.

Currently, we lack an intuitive, fine-grained un-
derstanding of the internal neuron-level activity
within MLLMs as they process different modal-
ities—the system largely remains a “black box.”
This opacity hinders our ability to diagnose failures,
improve robustness, and optimize performance ef-
ficiently. Therefore, we aim to investigate the dis-
tinct and shared internal neuron activation patterns
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of MLLMs when confronted with inputs from vari-
ous modalities. We term these phenomena “multi-
modal activation patterns.”

To demystify this black box and gain an intuitive
understanding, we devise a methodology inspired
by recent explorations in multilingual LLMs (Liu
et al., 2024c). Our approach involves converting
standard, dense MLLMs into fine-grained Mixture-
of-Experts (MoE) architectures (Zhang et al., 2021).
This transformation allows us to treat groups of neu-
rons as “experts” and subsequently calculate their
activation frequencies when processing data from
different modalities (e.g., text-only, image-only,
audio-only, or combined inputs). These frequen-
cies are then visualized as heatmaps, offering a
global view of expert utilization across layers and
modalities.

Through comprehensive experiments on leading
MLLMs, we analyze: (1) The distribution of high-
frequency activated experts across different modal-
ities. (2) The existence and functional roles of mul-
timodal shared experts—those frequently activated
regardless of input modality, potentially handling
core reasoning or abstract concepts. We further
differentiate these by activation frequency, hypoth-
esizing that high-frequency shared experts man-
age fundamental cross-modal logic, while lower-
frequency shared experts might capture more nu-
anced, less common inter-modal abstractions. (3)
The characteristics and distribution of modality-
specific experts—those predominantly activated by
a single modality (e.g., visual experts, textual ex-
perts, auditory experts). Furthermore, we explore
their practical application in guiding sparse acti-
vation and model pruning. By identifying which
experts are critical for specific modalities or gen-
eral reasoning, we propose methods to selectively
activate or retain only the most relevant experts
during inference. This aims to significantly reduce
computational load while preserving, or even in
some cases enhancing, model performance on spe-
cific tasks. Our preliminary findings indicate that
this informed approach can substantially outper-
form random pruning baselines. In this work, we
make the following contributions:

• We introduce a novel methodology to convert
and visualize the internal multimodal activa-
tion patterns of MLLMs by transforming them
into MoE structures and analyzing expert acti-
vation frequencies.

• We demonstrate that these identified activa-

tion patterns can be effectively leveraged to
guide sparse activation and model pruning,
leading to significant computational savings
with minimal performance degradation, and
sometimes even improvements.

• Our findings offer new insights into the inter-
nal processing mechanisms of MLLMs, con-
tributing to a better understanding of how
these complex models handle and integrate
multimodal information, and paving the way
for more interpretable and efficient MLLM
architectures.

2 Related Work

Our work builds upon several interconnected lines
of research: understanding internal mechanisms of
large language models, the development and analy-
sis of MLLMs, and techniques for model compres-
sion and efficient inference, particularly through
sparsity.

The quest to understand the inner workings
of LLMs has gained significant traction. Much
of this research has focused on monolingual or
multilingual textual LLMs. For instance, studies
have investigated how LLMs represent linguistic
structures (Hewitt and Manning, 2019; Davies and
Khakzar, 2024), store factual knowledge (Meng
et al., 2022; Sharma et al., 2024), and perform
reasoning (Wei et al., 2022). More recently, in-
spired by neuroscience, researchers have begun to
explore language-specific neurons or expert-like
structures within LLMs (Kojima et al., 2024). Liu
et al. (2024c) provided a direct inspiration by con-
verting dense LLMs into MoE architectures to
study multilingual activation patterns, demonstrat-
ing the existence of language-specific and shared
experts. For MLLMs, while their architectures
combining vision/audio encoders with LLMs are
well-documented (Li et al., 2024c; Zhu et al., 2023),
fine-grained analysis of how different modalities
are processed and integrated at the neuron or ex-
pert level is still nascent. Early work has explored
cross-modal attention mechanisms (Lu et al., 2019)
or attempted to localize concepts across modal-
ities (Goh et al., 2021), but a systematic, layer-
wise, and expert-level understanding of activation
patterns across multiple modalities, akin to what
we propose, remains less explored. Our work ex-
tends the MoE-based activation analysis from the
multilingual to the multimodal domain, aiming to

9006



uncover similar notions of shared and modality-
specific computational units.

MoEs (Fedus et al., 2022) have emerged as a
promising approach to scale up model capacity
while keeping computational costs manageable by
sparsely activating only a subset of “experts” per
input. While initially prominent in LLMs, their ap-
plication and analysis in the multimodal context are
growing. Some MLLMs have started to incorporate
MoE layers explicitly in their design for efficiency
(Lin et al., 2024). However, much of the existing
MLLM landscape still relies on dense architectures.
Zhang et al. (2021) demonstrated that pre-trained
dense Transformer FFN layers can be post-hoc con-
verted into MoE structures without significant per-
formance loss, providing a powerful tool for analy-
sis and potential efficiency gains. Our methodology
leverages this MoEfication concept, not primarily
for pre-training efficient MLLMs, but as an ana-
lytical lens to decompose existing dense MLLMs
and study their internal multimodal specialization.
Subsequently, the identifying frequently or infre-
quently activated experts per modality can inform
strategies for sparse activation during inference or
targeted pruning (Heurtel-Depeiges et al., 2024;
Ding et al., 2023). Unlike works that design MoE
MLLMs from scratch, we focus on understanding
and re-purposing existing dense models.

3 Exploring Multimodal Activation
Patterns in MLLMs

To investigate how MLLMs internally process and
integrate information from diverse modalities, we
propose a methodology centered around convert-
ing dense MLLM architectures into fine-grained
Mixture-of-Experts (MoE) structures. This allows
us to analyze the activation patterns of these “ex-
perts” in response to unimodal and multimodal
inputs.

3.1 Expert Construction in Multimodal
Architectures

Our first step is to transform the feed-forward
network (FFN) layers within the MLLM’s back-
bone into distinct experts. MLLMs like Llava-
NeXT (Liu et al., 2024b) and Qwen-Omni (Yang
et al., 2025) often employ LLM backbones whose
FFNs consist of up-projection, gate-projection, and
down-projection layers.

Modality-Aware Parameter Clustering.
MLLMs process embeddings that can originate

from text, projected visual features, or projected
auditory features. While the core LLM processes
these as sequences of vectors, the origin and
nature of these vectors differ significantly. We
hypothesize that neurons within FFNs might
specialize not just based on abstract features but
also subtly influenced by the statistical properties
of embeddings derived from different modalities.
Therefore, for expert construction, we adopt
a parameter clustering approach (Zhang et al.,
2021) but with considerations for multimodal
processing. We perform balanced K-Means
clustering (Malinen and Fränti, 2014) on the
parameters of the up-projection layer of each FFN,
dividing it into a predefined number of clusters.
The neurons and corresponding parameters in the
down-projection layers are then grouped according
to the up-projection clustering. This creates
fine-grained “experts” within each FFN layer. The
key distinction from a purely textual MoEfication
is that these experts will subsequently be evaluated
based on their activation by inputs derived from
distinct modalities.

3.2 Cross-Layer Expert Selection for
Multimodal Inputs

Shallow layers might handle low-level unimodal
features, while deeper layers integrate information
and perform abstract reasoning. To capture this,
and acknowledging the direct incomparability of
raw activation magnitudes across different FFN
layers, we extend a cross-layer expert selection
strategy for multimodal contexts.

Modality-Specific Activation Scoring and Nor-
malization. For each input token, we calculate
an activation score for every expert in every FFN
layer. This score is the sum of the activation values
of all neurons within that expert before the down-
projection layer. Crucially, to enable fair compari-
son and selection across all layers for a given input
token, regardless of its originating modality, we
perform a Z-score normalization of these expert
scores within each FFN layer.

Global Expert Ranking and Selection. Af-
ter layer-wise normalization, we rank all experts
across all FFN layers based on their normalized
scores for the current input token. We then select
the top-K% of experts as the “activated experts”
for that specific token. The activation count for
these selected experts is incremented by 1. This
cross-layer approach allows us to identify experts
that are significantly active relative to their peers
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Figure 1: Heatmaps of activation patterns for LLaVA-NeXT-Llama3-8B in Text and Visual modal. Each heatmap is
32*256 (number of layers * number of experts), with darker colors indicating higher activation frequencies.

within their own layer, regardless of the absolute
magnitude differences between layers, and whether
the token originated from text, vision, or audio.

3.3 Quantifying and Visualizing Multimodal
Expert Activation Patterns

After processing a large corpus of data for each
modality (and their combinations), we calculate
the activation frequency for each expert:

ActFreq =
ActCount(Experti,j ,Modalitym)

TotalTokens(Modalitym)
(1)

where Experti,j is the j-th expert in the i-th FFN
layer, and Modalitym represents a specific input
condition (e.g., image-only, text-only, audio-only).

This results in an L ×Ne activation frequency
matrix for each modality (where L is the number
of FFN layers and Ne is the number of experts
per layer). We then visualize these matrices as
heatmaps. These heatmaps are central to our analy-
sis, as they allow us to directly observe:

• Overall Sparsity and Layer-wise Trends:
How sparsely are experts activated for differ-
ent modalities? Are there layers that are con-
sistently more or less active for images versus
text versus audio?

• Modality-Specific Hotspots: Are there spe-
cific experts or groups of experts that show
significantly higher activation for one modal-
ity compared to others?

By comparing these heatmaps across different
modalities, we can identify patterns of specializa-
tion and sharing, providing a granular view into
the MLLM’s internal processing landscape. This
multimodal-centric approach to expert construc-
tion, selection, and visualization is key to differ-
entiating our work from purely language-focused
analyses.

4 Experiments and Analysis

4.1 Experimental Settings

Models. We conduct experiments on two SOTA
MLLMs, LLaVA and Qwen, to investigate their
activation patterns across different modalities.
Specifically, LLaVA-NeXT-Llama3-8B (Li et al.,
2024a) supports text and image modalities, while
Qwen2.5-Omni-7B (Jin Xu, 2025) is an all-modal
model. This setup enables a comprehensive analy-
sis of modality-specific activation behaviors across
model architectures.

Data. For the text modality, we use the MMLU
(Massive Multitask Language Understanding)
benchmark (Hendrycks et al., 2021b,a), which
spans a wide range of subjects including elemen-
tary mathematics, history, computer science, law,
ethics, and medicine. For the visual modality,
we adopt the LLaVA-OneVision-Data corpus (Li
et al., 2024b), encompassing both general images
and domain-specific scenarios such as documents,
charts, screenshots, mathematical reasoning, lan-
guage comprehension, and OCR tasks. For the au-

9008



Figure 2: Heatmaps of activation patterns for Qwen2.5-Omni-7B in Text, Visual and Audio modal. Each heatmap is
28*296 (number of layers * number of experts), with darker colors indicating higher activation frequencies.

dio modality, we utilize the LibriSpeech dataset
(Panayotov et al., 2015), consisting of approxi-
mately 1,000 hours of read English speech. For
each modality, we test its activation pattern using
10,000 samples. For image and audio data, we only
use the images and audio clips without any text
instructions.

4.2 Multimodal Activation Patterns of
MLLMs

Our analysis of the activation heatmaps reveals dis-
tinct patterns both between models (LLaVA-NeXT
vs. Qwen-Omni) and across modalities within each
model.

As Figure 1, the LLaVA-NeXT model demon-
strates a pronounced difference in activation pat-
terns between visual and textual modalities, partic-
ularly in the shallower layers. For visual inputs,
the initial FFN layers (e.g., layers 0-10) exhibit
significantly higher and more broadly distributed
expert activation compared to textual inputs. This
suggests a substantial allocation of neural resources
for processing raw visual features early in the net-
work. As information propagates to middle layers,
the activation frequencies become more compa-
rable and relatively stable across both modalities,
with fewer discernible hotspots. Interestingly, in
the deeper layers (e.g., layers 25-31), while overall

sparsity increases, the pattern of activated experts
for visual and textual inputs shows greater simi-
larity. This convergence indicate that these later
layers are primarily involved in abstract reasoning
and response generation, integrating information
from the processed visual features into the language
modeling stream. The sparsity in deeper layers is
consistent with findings in LLMs where later layers
often show more specialized roles.

The Qwen2.5-Omni-7B model, an all-modal ar-
chitecture, presents a different activation landscape,
as shown in Figure 2. A striking feature in the shal-
low layers (e.g., layers 0-5) is the appearance of
prominent “white stripes” – contiguous regions of
uniformly low expert activation. Notably, the ex-
pert indices of these low-activation stripes vary de-
pending on the input modality. For instance, visual
inputs trigger very limited activation among experts
in layers 1, 2, and 5 at specific index ranges, while
audio or text inputs might activate these same ex-
perts or show different low-activation stripes. This
strongly suggests that Qwen-Omni employs highly
specialized, modality-specific pathways in its earli-
est FFN layers, potentially routing different types
of unimodal information through distinct subsets of
experts before extensive cross-modal fusion. This
early specialization could be a mechanism for ef-
ficient unimodal feature extraction. Beyond these
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Figure 3: The heatmaps of Multimodal shared experts for Qwen2.5-Omni-7B model. The color shade of each cell
indicates the activation frequencies.

initial layers, activation patterns become more uni-
form and distributed, with fewer stark differences
between modalities until the deeper layers, where
sparsity again increases, similar to LLaVA-NeXT.

4.3 Multimodal shared experts

We define such units as multimodal shared experts,
specifically those whose activation frequency sur-
passes a predefined threshold θs = 0.05 for all rel-
evant input modalities (text, vision, and audio for
Qwen-Omni; text and vision for LLaVA-NeXT),
and where the maximum pairwise difference in
activation frequencies between any two modali-
ties does not exceed a small tolerance δs ≤ 0.1.
To further refine our understanding, we catego-
rize these shared experts based on their average
cross-modal activation levels into High-Frequency
Shared Experts (HF-SEs, average activation fre-
quency > θhf = 0.3) and Low-Frequency Shared
Experts (LF-SEs). As illustrated in Figure 3, it
indicates that HF-SEs are few in number and pre-
dominantly concentrated in the deeper layers of the
network. This strongly suggests they form the core,
modality-agnostic reasoning and output generation
backbone of the model, playing an indispensable
role in final decision-making or generation stages
due to their consistent high-frequency activation
across diverse inputs.

In contrast, LF-SEs are significantly more nu-
merous, and their distribution patterns unveil
model-specific information integration strategies.
For instance, in Qwen-Omni, LF-SEs are primarily
located in the middle layers, with a near absence
of shared experts in the shallowest layers, align-
ing with this model’s strong early-stage modality-
specific processing characteristics. This suggests
that the middle layers serve as a key zone for inte-
grating unimodal features and representing abstract
cross-modal concepts. Broadly, the prevalence
of LF-SEs indicates that beyond core reasoning
units, MLLMs possess a larger, more diverse set

of experts for flexibly handling specific types of
cross-modal abstraction and integration tasks as
needed. The identification and characterization of
these shared experts provide crucial insights into
the general-purpose versus specialized computa-
tional mechanisms within MLLMs

4.4 Modality Specific Experts

In addition to shared computational units, MLLMs
employ modality-specific experts dedicated to pro-
cessing unique unimodal information, defined as
experts with significantly higher activation (e.g.,
by at least 0.1) for one modality over others. Our
analysis of Qwen2.5-Omni-7B, visualized through
pairwise modality comparisons in Figure 4, reveals
a clear hierarchy: vision-specific experts are the
most numerous, followed by audio-specific and
text-specific experts. This prevalence of vision
experts, evident across comparisons in Figure 4,
likely stems from the higher token count typically
generated from image inputs, demanding greater
neural resources. Similar trends in vision expert
dominance are noted in LLaVA-NeXT (Appendix
Figure 6).

The layer-wise distribution of these specific ex-
perts, as inferred from Figure 4 for Qwen-Omni,
indicates that vision- and audio-specific experts
are notably concentrated in shallow and middle
layers, forming dedicated pathways for initial uni-
modal feature extraction. Audio-specific experts in
Qwen-Omni also maintain a significant presence
into deeper layers, reflecting its all-modal archi-
tecture and audio generation capabilities. This
observed division of labor underscores the role
of modality-specific experts in performing fine-
grained unimodal processing, particularly in early
network stages, thereby preparing representations
for subsequent integration and reasoning by shared
experts.
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Figure 4: The heatmaps of Modality specific experts for Qwen2.5-Omni-7B model. The color shade of each cell
indicates the activation frequencies.

4.5 Can Expert Activation Frequencies Guide
Sparse Activation and Model Pruning?

The distinct multimodal activation patterns and
functional specializations of experts, identified in
previous sections, present opportunities for enhanc-
ing MLLM efficiency. We investigate whether
these insights can guide sparse activation and tar-
geted model pruning to reduce computational over-
head while maintaining robust performance.

Evaluation. We conduct experiments on tasks
across different modalities. For text-based tasks,
we use CSQA (Talmor et al., 2019) (commonsense
question answering) and GSM-8K (Cobbe et al.,
2021) (grade-school math problems). For vision
tasks, we adopt MMStar (Chen et al., 2024) (vision-
indispensable problems) and POPE (Li et al., 2023)
(object hallucination). For audio tasks, we employ
VocalSound (Gong et al., 2022) (vocal sound clas-
sification) and MELD (Poria et al., 2019) (speech
emotion recognition). We use accuracy and F1
score as evaluation metrics.

4.5.1 Pruning Based on Expert Functions
This strategy involves selectively activating
only those experts deemed functionally rele-
vant—combinations of multimodal shared (reason-
ing) experts and modality-specific experts—for a

given task within the Qwen2.5-Omni-7B model.
This targeted activation aims to reduce FFN pa-
rameter usage (by 10-20%, translating to ∼9-17%
FLOPs reduction) without significant performance
loss.

Experimental results for Qwen2.5-Omni-7B
across text, visual (Table 1) and audio tasks (Ta-
ble 2) demonstrate the efficacy of this approach.
On text and visual tasks (Table 1), configura-
tions such as “Reasoning+text+visual” (activating
shared, text-specific, and vision-specific experts)
achieve performance that is remarkably close to,
or even surpasses, the original unpruned model.
For instance, on CSQA, this configuration yields
an accuracy of 67.9, matching the ‘Origin’ model,
and on GSM8K, it achieves 86.2, close to the orig-
inal 87.6, while utilizing only 92.2% of FFN pa-
rameters. Similarly, for visual tasks like MMstar
and POPE, this comprehensive expert set maintains
strong performance (e.g., 64.0 vs. 63.7 on MMstar;
74.5 vs. 73.8 on POPE). For Qwen-Omni’s audio
tasks (Table 2), activating “Reasoning+text+audio”
experts also yields compelling results, notably on
VocalSound (94.2 vs. 93.4 for Origin) and MELD
(56.7 vs. 56.3 for Origin). A critical observation
across all task types is the performance degrada-
tion when high-frequency shared (“Reasoning (w/o
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CSQA GSM8K MMstar POPE
Activate Patterns Parameters Random Experts Random Experts Random Experts Random Experts

Reasoning(w/o high) 80.9% 39.8±6.8 54.6 61.7±2.8 67.3 34.9±6.3 46.4 50.4±1.5 55.4
Reasoning 82.0% 42.5±5.3 61.5 63.8±2.6 78.5 37.4±4.5 55.2 52.9±1.6 61.5

Reasoning+text 85.9% 46.4±4.7 67.7 70.4±1.7 84.3 40.7±2.8 59.3 53.5±1.3 65.9
Reasoning+audio 86.3% 49.7±4.2 65.3 73.4±1.6 81.8 43.2±1.1 58.5 56.4±0.7 68.3

Reasoning+text+audio 90.3% 58.2±3.8 67.5 76.5±0.7 84.5 52.2±0.9 61.5 62.4±0.3 70.2
Reasoning+visual 88.3% 53.5±4.6 66.2 74.7±1.4 83.7 48.5±2.3 63.2 59.6±0.9 74.5

Reasoning+text+visual 92.2% 61.7±2.4 67.9 78.2±0.8 86.2 56.5±1.2 64.0 65.7±0.8 74.2

Origin 100% 67.9 87.6 63.7 73.8

Table 1: Pruning performance of Qwen2.5-Omni-7B on Text tasks (CSQA, GSM8K) and Visual tasks (MMstar,
POPE) . The POPE dataset uses F1-score as the metric. Other datasets use Accuracy (%).

VocalSound Meld
Activate Patterns Parameters Random Experts Random Experts

Reasoning(w/o high) 80.9% 79.2±1.5 82.9 30.4±2.3 41.5
Reasoning 82.0% 82.3±1.8 87.5 33.3±1.9 46.8

Reasoning+text 85.9% 86.5±1.7 89.7 38.8±1.5 51.3
Reasoning+visual 88.3% 88.2±0.9 91.8 45.4±0.7 53.6
Reasoning+audio 86.3% 87.7±1.5 93.1 42.7±0.8 56.7

Reasoning+text+visual 92.2% 90.4±0.5 92.6 48.4±0.4 55.1
Reasoning+text+audio 90.3% 90.2±0.4 94.2 47.6±0.5 56.7

Origin 100% 93.4 56.3

Table 2: Accuracy (%) of Qwen2.5-Omni-7B on Audio task.

CSQA GSM8K MMstar POPE Meld VocalSound
Pruning rate global equal global equal global equal global equal global equal global equal

70% 46.3 29.7 66.5 53.7 41.8 24.2 51.6 50.8 38.3 30.4 75.9 69.4
80% 59.7 42.7 78.3 60.8 54.6 32.5 64.1 53.7 46.7 37.9 87.6 76.2
90% 66.2 54.2 84.9 76.2 61.3 53.6 70.3 60.3 53.4 46.8 92.3 88.6

Origin 67.9 87.6 63.7 73.8 56.3 93.4

Table 3: Pruning performance of Qwen2.5-Omni-7B based on frequency sorting. The “Pruning rate” shows the
overall pruning ratio. The “global” column shows unequal pruning for each layer. The “equal” column shows equal
pruning for each layer.

high)”) experts are excluded, underscoring their
foundational role. These function-guided strategies
consistently and significantly outperform random
expert selection at comparable parameter counts.
Similar positive trends for LLaVA-NeXT are de-
tailed in Appendix Tables 4.

4.5.2 Pruning Based on Frequency Sorting

We also explore pruning Qwen2.5-Omni-7B by
retaining only the top n% of experts sorted by their
activation frequency, either applied “equally” per
layer or “globally” across the model. The results
are presented in Table 3.

We can find that the superiority of “global” (un-
equal per-layer) pruning over “equal” (uniform
per-layer) pruning for Qwen2.5-Omni-7B. For ex-
ample, on the CSQA task, retaining 70% of ex-

perts via “global” pruning yields an accuracy of
46.3, substantially better than the 29.7 achieved
by “equal” pruning. This pattern holds across dif-
ferent tasks and pruning rates (e.g., on MMstar:
54.6 with “global” vs. 32.5 with “equal” at 80%
retention; on MELD for audio: 53.4 with “global”
vs. 46.8 with “equal” at 90% retention.) This
disparity validates our earlier finding that expert
activation sparsity varies significantly across layers
in Qwen-Omni. “Global” pruning respects these
intrinsic layer-wise differences, leading to more
effective compression. This strongly suggests that
layer-differentiated pruning rates, informed by ac-
tivation characteristics, are more effective than uni-
form approaches for Qwen2.5-Omni-7B, a finding
also echoed by experiments on LLaVA-NeXT (see
Appendix Table 5).
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5 Conclusion

In this paper, we systematically investigated the in-
ternal multimodal activation patterns of MLLMs by
transforming dense architectures into fine-grained
MoE structures and visualizing expert activation
frequencies. Our analysis revealed that a small core
of high-frequency shared experts, concentrated
in deeper layers, appears crucial for fundamental
cross-modal reasoning Large contingent of low-
frequency shared experts, often in middle layers,
likely handles more nuanced multimodal integra-
tion and abstract concept representation. We also
characterized modality-specific experts, predomi-
nantly vision-focused and active in shallower lay-
ers, underscoring early-stage unimodal processing.
Crucially, we demonstrated that these identified
activation patterns can effectively guide sparse acti-
vation and model pruning strategies. Our function-
based and frequency-sorted pruning methods sig-
nificantly outperformed random baselines and of-
ten matched or even surpassed the original model
performance with substantially reduced computa-
tional costs. These findings not only offer novel
insights into the “black box” of MLLM multimodal
processing but also provide a practical pathway to-
wards developing more interpretable and efficient
MLLMs.

Limitations

Despite achieving some meaningful conclusions in
our research, there are still some limitations.

The limitations of Experimental Data. Al-
though we conduct comprehensive experiments
on two representative MLLMs, these models may
not fully capture the diversity of all multimodal
tasks and scenarios. For instance, certain domain-
specific tasks—such as medical image-text integra-
tion or multilingual speech-text interaction—may
require more specialized model architectures and
training strategies. Additionally, the diversity and
scale of the experimental datasets may limit our
ability to fully uncover the internal mechanisms of
the models.

The limitations in Cross-Modal Reasoning.
Our study primarily focuses on analyzing the in-
ternal multimodal activation patterns and their im-
pact on model performance. However, the explo-
ration of deep cross-modal reasoning mechanisms
remains limited. Questions such as how models

transfer and integrate information across modali-
ties, and how they perform effective reasoning in
complex multimodal scenarios, require further in-
vestigation.

In future work, we plan to extend our experi-
ments to a broader range of models and datasets,
covering more domains and complex multimodal
interaction settings. We also aim to explore cross-
modal reasoning mechanisms that better align with
human cognitive processes.
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A Appendix

A.1 Multimodal shared experts
In Figure 5, we present the distribution of multi-
modal shared experts in the LLaVA-NeXT-Llama3-
8B model.

A.2 Modality specific experts
In Figure 6 , we present the distribution of modality
specific experts in the LLaVA-NeXT-Llama3-8B
model.

A.3 Pruning results on expert functions
Tabel 4 present the pruning performance of LLaVA-
NeXT-Llama3-8B on Text tasks (CSQA, GSM8K)
and Visual tasks (MMstar, POPE).

A.4 Pruning results on frequency sorting
Tabel 5 present the pruning performance of LLaVA-
NeXT-Llama3-8B on Text and Visual Task.
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Figure 5: The heatmaps of Multimodal shared experts for LLaVA-NeXT-Llama3-8B. The color shade of each cell
indicates the activation frequencies.

Figure 6: The heatmaps of Modality specific experts for LLaVA-NeXT-Llama3-8B. The color shade of each cell
indicates the activation frequencies.

CSQA GSM8K MMstar POPE
Activate Patterns Parameters Random Experts Random Experts Random Experts Random Experts

Reasoning(w/o high) 79.8% 43.8±8.3 54.2 53.4±3.1 60.3 27.7±3.9 32.8 56.7±1.6 67.5
Reasoning 82.1% 49.5±6.5 62.8 61.7±2.4 68.6 34.5±2.6 42.1 62.4±0.8 74.7

Reasoning+text 85.7% 57.7±5.3 71.8 65.8±1.7 75.1 37.8±1.7 47.6 71.6±0.5 81.8
Reasoning+visual 87.5% 60.4±2.7 69.4 68.7±1.3 74.7 40.4±0.9 51.5 74.6±0.5 86.5

Reasoning+text+visual 91.1% 64.7±0.8 71.9 71.8±0.6 77.4 42.6±0.8 52.3 77.4±0.3 86.2

Origin 100% 72.0 77.6 52.1 86.2

Table 4: Pruning performance of LLaVA-NeXT-Llama3-8B on Text tasks (CSQA, GSM8K) and Visual tasks
(MMstar, POPE) . The POPE dataset uses F1-score as the metric. Other datasets use Accuracy (%).

CSQA GSM8K MMstar POPE
Pruning rate global equal global equal global equal global equal

70% 56.3 42.5 58.7 40.6 30.6 19.3 64.6 50.5
80% 61.7 49.7 67.2 48.7 45.4 28.9 75.2 58.8
90% 69.4 61.2 76.5 62.4 50.8 46.7 84.5 72.3

Origin 72.0 77.6 52.1 86.2

Table 5: Pruning performance of LLaVA-NeXT-Llama3-8B based on frequency sorting. The “Pruning rate” shows
the overall pruning ratio. The “global” column shows unequal pruning for each layer. The “equal” column shows
equal pruning for each layer.
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