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Abstract

The widespread use of cloud-based Large Lan-
guage Models (LLMs) has heightened concerns
over user privacy, as sensitive information may
be inadvertently exposed during interactions
with these services. To protect privacy before
sending sensitive data to those models, we sug-
gest sanitizing sensitive text using two com-
mon strategies used by humans: i) deleting
sensitive expressions, and ii) obscuring sensi-
tive details by abstracting them. To explore the
issues and develop a tool for text rewriting, we
curate the first corpus, coined NaP2, through
both crowdsourcing and the use of large lan-
guage models (LLMs). Compared to the prior
works on anonymization, the human-inspired
approaches result in more natural rewrites and
offer an improved balance between privacy pro-
tection and data utility, as demonstrated by our
extensive experiments. Our dataset is available
at https://github.com/shuo956/NAP2-privacy-
rewrite.

1 Introduction

Data sharing and information dissemination be-
tween Al models are pivotal in the Al era, particu-
larly since the emergence of large language models
(LLMs). The remarkable performance of LLMs
benefits from a large amount of shared and publicly
available data. However, it is still challenging to
balance data privacy and information utility when
training and utilizing such LLMs (Pan et al., 2020)
with a massive amount of data. Users or appli-
cations often interact with commercial LLMs by
directly inputting raw text. Such interactions can
inadvertently expose sensitive data, such as per-
sonally identifiable information (PII), to untrusted
service providers or LLMs (Utpala et al., 2023).
Redaction and anonymization techniques are
widely applied to remove PII from texts, but suffer
from three major drawbacks (Sénchez et al., 2014).

!Corresponding author.

ORI: I have two teenage boys.
I have been to Los Angeles
a few years ago.
PER: I am a single mom of two boys.

Human Rewrite:
DEL: I have been to Los Angeles
a few years ago.
OBS: I have some children.

I have been to Los Angeles

a few years ago.

T5-BASE trained on NAP?:
Output: I have been to Los Angeles

a few years ago.

FLAIR-SCRUBBING:

Output: I have <MASK> teenage boys.
I have been to <MASK> <MASK>.
DP-PROMPT:
€e-10: Junior
€-100: I have two teenage boys.

I have been to Los Angeles
a few years ago.

Table 1: An example of rewriting a text (ORI) using
deleting (DEL) and obscuring (OBS) as strategies based
on personal information (PER). Output shows the T5-
BASE model finetuned with NAP2. Also shown are
results from FLAIR-SCRUBBING and DP-PROMPT
using e-10 and e-100.

First, after anonymization, mentions of PII are ei-
ther redacted or replaced by their entity types so
that processed texts become unnatural as it breaks
grammatical flow, coherence and semantic clarity
of sentences. Downstream applications need to
be adapted or fine-tuned to cope with such unnat-
ural texts. Second, it is still possible to recover
private attributes from PII scrubbed text by reason-
ing (Mireshghallah et al., 2023; Staab et al., 2023).
Third, the presence of deleted or masked parts or
entities may raise the awareness of a document’s
sensitivity in front of potential attackers.

The recent work on text anonymization (Dou
et al., 2024) introduced the task of self-disclosure
abstraction, which involves rephrasing sensitive in-
formation into less specific terms while preserving
utility (e.g., “I'm 16F” to “I’'m a teenage girl”).
A user study showed that 82% of participants re-
sponded positively to the system, underscoring its
practical relevance. However, the study focuses
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exclusively on rewriting mentions of private at-
tributes, and the accompanying corpus includes
only annotated spans of private attributes without
human-authored reference rewrites, limiting its
suitability for reference-based evaluation metrics.

Alternatively, differential privacy (DP) provides
a theoretical privacy guarantee for data release or
dissemination mechanisms (Dwork, 2006). Prior
works sanitize texts by perturbing texts either at the
word-level or the sentence-level (Mattern et al.,
2022; Igamberdiev and Habernal, 2023; Igam-
berdiev et al., 2022a). In order to reach a bounded
privacy guarantee, substantial noise needs to be
injected into texts or their representations so that
information utility drops sharply and the meanings
of texts are changed significantly (see Table 1).
Therefore, optimizing the trade-off between pri-
vacy and utility for data release remains to be an
unresolved challenge.

To address limitations of prior methods, we
propose a human-inspired text editing approach—
drawing on deleting and obscuring strategies
(Strengers et al., 2020)—to enhance the naturalness
and utility of rewritten texts while ensuring privacy,
aligning with the suppression and generalization
principles of k-anonymity (Sweeney, 2002) orig-
inally developed for structured data. As shown
in Table 1, given an utterance involving personal
information stated in a persona, the strategy delet-
ing simply removes all words mentioning sensi-
tive information from the utterance, while obscur-
ing substitutes sensitive expressions for more ab-
stract and general expressions. In our example, the
user requires an explicit rewrite of private informa-
tion about “a single mom of two boys. Deleting
removes entire parts about this information and
leaves other parts untouched. While obscuring ob-
scures the information about ”boys” and “teenager”
to simply “children”, which generalizes the infor-
mation to be protected. Both strategies aim to
make rewritten texts as natural as possible such
that 1) they do not raise the awareness of poten-
tial attackers that rewrites are sanitized; and ii)
downstream applications can directly process such
natural rewrites without fine-tuning their models
for any unnatural parts of texts.

To evaluate strategy-specific rewriting models,
we construct the first Naturalness and Privacy
Preserving Rewriting corpus, coined NAP?, based
on the open-domain dialogue corpus PERSONA -
CHAT (Zhang et al., 2018). Unlike prior work that

focuses solely on private attributes, our corpus in-
corporates text-based personalized privacy profiles.
Hence, detection of personal information cannot
be formulated as a multi-class classification task.
We recruit university students to manually rewrite
895 utterances involving personal information as
the manual evaluation set.

To promote the development of diverse open-
source solutions for this task, we apply GPT4
to generate 3,900 synthetic examples as the syn-
thetic training set because GPT4 demonstrates the
best performance on PERSONA-CHAT among
all evaluated models. We also design multiple au-
tomatic and human evaluation metrics for this task,
including a novel privacy metric PRIVACY_NLI.
It utilizes a Natural Language Inference (NLI)
model (Liu et al., 2019) to determine if a rewrite
entails personal information or not. Beyond intrin-
sic rewriting metrics, we also assess downstream
privacy via a membership inference attack(Fu et al.,
2024) (MIA), showing that our rewrites substan-
tially reduce training-data exposure risk. The
extensive comparative studies between the mod-
els trained on our corpus and the state-of-the-art
(SOTA) text sanitization methods demonstrate the
underlying challenges and yield the following key
findings:

e The T5-BASE model (Raffel et al., 2020)
trained on our corpus is able to achieve a fairly
high privacy preservation indicated by a PRI-
VACY_NLI of 93.81%. Its performance is
even significantly superior than GPT4 accord-
ing to human evaluation using deleting. In
contrast, the competitive DP methods have a
PrivACY_NLI score lower than 62.14%.

* The privacy metric on PRIVACY_NLI aligns
well with the human judgments by having a
Spearman’s ranking correlation of 0.70.

* GPT4 generates synthetic rewrites with de-
cent trade-off between privacy and utility
based on human evaluation, better than GPT-
3.5 TURBO and the evaluated open-source
LLM:s in the zero-shot setting. Incorporation
of such synthetic data improves the T5-BASE
model trained on human curated data by 7%
in terms of privacy preservation.
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2 Naturalness and Privacy-Preserving
Rewriting

2.1 Problem Definition

Task. Given an utterance x and a sentence p
describing personal information, the task of nat-
uralness and privacy-preserving rewriting aims to
map x into a natural sentence y such that y € J"
does not reveal the personal information in p and
maximally preserves the non-private content in .
We define a natural sentence as one that is gram-
matically correct, fluent, and does not contain any
artifacts such as blacked-out words or special sym-
bols indicating omitted sensitive information. The
rewrite space )" contains only natural sentences
with maximum sequence length of n. Compared
with DP mechanisms that prevent privacy leakage
during model training (Abadi et al., 2016a), this
task focuses on privacy-preserving data publish-
ing or privacy protection at inference time while
uploading the user query.

When sanitizing texts, humans often hide sen-
sitive information by avoiding sensitive words or
replacing them with more general or abstract ex-
pressions (Strengers et al., 2020). We expect ma-
chines to adopt similar strategies:

* Deleting: removing words and phrases in @
that leak personal information specified in p;

* Obscuring: replacing sensitive words or
phrases in & with more general or abstract
expressions to avoid compromising privacy.

Corpus Overview. Our corpus NAP? consists of
a small manually curated dataset for both training
and testing (Sec. 2.2), and a large synthetic dataset
distilled from GPT-3.5 TURBO and GPT4 for train-
ing data augmentation (Sec. 2.3). According to our
evaluation stated below, human rewrites with ob-
scuring achieve the best trade-off between privacy
and utility, and the naturalness of GPT4 generated
texts is on par with that of human rewrites.

Comparison with existing datasets Our dataset
stands out from other recent anonymization
datasets by providing both human and synthetic
rewrites based on diversified privacy profiles, rather
than simple PII spans. Unlike datasets such as Self-
Disclosure, which rely on LLM-generated rewrites
focused on detected text spans, NAP? introduces
more explicit rewrite operations including deletion
and obscuration. Additionally, while other datasets

emphasize masking or detection, NAP? offers more
natural rewrites grounded in persona-level privacy,
the rewrite option are clearly stated as obscure and
delete which can facilitate different privacy protec-
tion level.

2.2 Manually Curated Corpus

The corpus PERSONA-CHAT associates each
multi-turn chit-chat with two personas, each of
which is a set of sentences describing the cor-
responding personality. Detailed information
for PERSONA-CHAT are displayed in the Ap-
pendix. A.2 Hence, it is straightforward to measure
if an utterance leaks personal information in the
relevant persona. From another point of view, a
persona can be regarded as a user-specific privacy
profile, which states what information needs to be
protected. For instance, one user might consider
their marital status as sensitive information requir-
ing privacy protection, while another user may not
prioritize it.

Practical deployment. In our benchmark, per-
sonas serve as a proxy for user-specific privacy
preferences. In deployment, such profiles need not
be publicly disclosed; they can be (i) chosen from
default privacy templates (e.g., contact, health, fi-
nance), (ii) edited on-device by the user, and/or
(ii1) inferred locally from the user’s historical pri-
vacy settings or redaction actions. This preserves
the paper’s goal—preventing disclosures before
they occur—without requiring public posting of
sensitive attributes. Our task therefore evaluates a
contextual mechanism (delete/obscure) that can be
driven either by explicit user choices or by private,
device-resident profiles aligned with contextual in-
tegrity.

The manual created evaluation set extends
the test set of PERSONA-CHAT with human-
authored rewrites. As not all utterances reveal
private information in personas, we apply the au-
tomatic alignment methods to pair an utterance
involving personal information with the corre-
sponding sentence in a persona. Formally, given
a dialogue D, suppose there are m utterances
X; = {x1, xa, ..., @y, } associated with a persona
P; = {p1, P2, ..., Pn}, We aim to compute an align-
ment score s;; between x; € &; and p; € P; indi-
cating to what degree x; leaks personal information
inp;.

We formulate the computation of alignment
scores as an NLI problem. Namely, if x; entails
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Dataset Year | Source Human | Synthetic | Rewrite Type Form of Private info |  Size
NAP2 (Ours) 2025 | PERSONACHAT v v Delete / Obscure privacy profile Small
Self-Disclosure (Dou et al., 2024) 2024 | Reddit Post X v Obscure text span Small
SythPAT (Yukhymenko et al., 2024) 2024 | Reddit sytle X X X PII Large
Text Anon. Benchmark (TAB) (Pildn et al., 2022) | 2022 | ECHR legal cases X X Masking PII Large
TextWash(Kleinberg et al., 2022) 2022 | Wikipedia Bio X X Masking PII Medium

Table 2: Comparison of recent datasets for text anonymization or privacy-preserving rewriting. Human and Synthetic
refers to if there is any generated rewrite for the dataset either from human or LLMs. Rewrite type includes deletion,
obfuscation. Masking indicates that the detection private entities is redacted as their entity types.

pj, it is highly likely that x; leaks information in
pj. Specifically, we reuse the ROBERTA model
trained on Multi-Genre Natural Language Infer-
ence (MNLI) corpus (Williams et al., 2018), which
is available from Huggingface, to compute the prob-
ability of p(y = entail|x;, p;) as s;;. We find
out that this simple approach significantly outper-
forms SPARSE-MAX and SHARP-MAX proposed
in (Xu et al., 2020) on a random sample of 200
ground-truth pairs. We manually check the candi-
dates among the pairs with a score higher than a
threshold and keep only the well aligned ones.
For each selected sentence-persona pair, we re-
cruit annotators from Amazon Mechanical Turk
(AMT) to rewrite utterances w.r.t. the aligned per-
sona sentences using both Deleting and Obscuring.
In our preliminary experiments, we observe that
even though annotators endeavor to generate decent
rewrites, many of them could not clearly identify
and strictly stick to the required strategies. There-
fore, we prepare a small sample of pairs as a pre-
test to select qualified annotators. In addition, we
employ a rigorous procedure for quality check. We
wrap up 15 sentence-persona pairs as a batch and
ask annotators to rewrite them using the required
strategies. Then, we manually check the rewritten
batches, we only accept those that are written using
the required strategy. The averaged acceptance rate
of the rewrites is 47.97%, demonstrating the chal-
lenge of collecting a high-quality rewriting dataset
with specific rewriting requirements. As a result,
we collect 895 pairs annotated with one rewrite per
strategy. We further split this corpus into a cross-
validation (CV) set, a validation and a hold-out test
set with 655, 140 and 100 instances, respectively.

Data Statistics. We analyze the manually curated
corpus using averaged word length in sentences
(Len.) and distinct unigrams divided by the to-
tal number of words (Dist.) (Li et al., 2016). The
statistics of the dataset is given in Table 3. Delet-
ing tends to produce more concise rewrites, while
obscuring is slightly longer than ORIGINAL sen-
tences. Although the average length increases, the
diversity score for obscuring is still ascending, com-

(6\Y% Valid Test
Len. Dist.  Len. Dist.  Len. Dist.
ORI 13.7 0.148 13.6 0257 13,5 0.248
DEL 8.0 0.190 84 0.298 8.5 0.279
OBS 14.1 0.160 139 0.266 14.3 0.250

Table 3: Statistics of original sentence (ORI), rewrites
with deleting (DEL) and obscuring (OBS) on the CV set,
validation and test set of the manually curated dataset,
using average length (Len.) and distinct token (Dist.).
pared with original sentences. This shows the high
diversity of word usage using obscuring.

2.3 Synthetic Data Augmentation

We employ the ROBERTA NLI model to align
utterances with persona sentences in the training set
of PERSONA-CHAT and keep only the pairs with
an entailment probability above 0.3. This threshold
leads to high recall low precision alignments, so
that GPT4 is employed to check if there is indeed
a privacy leakage. Among them, we randomly
sample 3900 pairs to generate synthetic rewrites
by using GPT4. The resulting dataset is used to
augment the training set of the manually created
corpus to mitigate the data scarcity issue.

Prior studies show that GPT4 is one of the
strongest few-shot learner (Brown et al., 2020).
Therefore, we carefully design prompts and in-
context examples to use for privacy-aware rewrit-
ing. Given an utterance-persona pair, we use the
following prompt for a selected rewriting strategy.

Rewrite this sentence, <deleting / obscur-
ing> any private information.

Example rewrites are:
<IN-CONTEXT_EXAMPLES>

Only return the rewritten sentence, nothing

else.

Private information present is: [$PER-
SONA].

The sentence to rewrite is: [$UTTER-
ANCE].

Here, $X denotes a placeholder for the correspond-
ing information. The k in-context examples are
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selected from a combination of the validation set
of the manually curated corpus and a set of non-
sensitive utterances which do not leak personal
information. Each of the in-context examples in
the validation set contains an utterance, a persona
sentence, and a human rewrite using the given strat-
egy, while an example from the non-sensitive set
includes only an utterance. The in-context exam-
ples are found by k-nearest neighbour search using
the sentence embeddings of utterances (Reimers
and Gurevych, 2019). In this work, given an ut-
terance, we select the top-1 most similar example
from the validation set and one example from the
non-sensitive set. The latter is used to instruct
GPT4 that it should not rewrite an utterance if
there is no privacy leakage detected.

2.4 Human Evaluation

Three university students are recruited to check
their quality on a set of 100 instances sampled
from the test set of the manual corpus. Hence, an
utterance-persona pair in the sample includes a hu-
man rewrite, a rewrite from GPT-3.5 TURBO and
GPT4 respectively. For each rewrite, a student is
instructed to answer the following questions from
the perspectives of privacy leakage (Q1), semantic
relevance (Q2) and naturalness (Q3) which is de-
tailed in Appendix A.1. Each question is answered
by three university students. To deal with possible
disagreements, we take the majority vote as the
final answer. For annotation, the three annotators
achieved Fleiss’ Kappa(Falotico and Quatto, 2015)
inter-annotator agreement score with 0.47 which is
acceptable for classification problem. We further
conducted closer examination with it. It revealed
that this was largely due to disagreement from a
single annotator. When isolating the annotations
from the other two annotators, we observed sub-
stantially higher inter-annotator agreement, with
Fleiss’ Kappa values of 0.987 (Q1), 0.942 (Q2),
and 0.883 (Q3). These figures indicate strong con-
sistency between the two annotators and suggest
that the lower overall scores were not the result
of unclear guidelines or ambiguous questions, but
rather individual annotator variability. We further
incorporated the extra annotator to do the checks
and showing consistent Kappa score with two stu-
dents with 0.938(Q1), 0.913(Q2) and 0.864(Q3).
In order to use a score to summarize the perfor-
mance w.r.t. each criteria, we calculate the per-
centage of choosing the option (a) as the majority

SPRIVACY | SREL | SNATURAL
Human_deleting 82.00% 76.00% 95.00%
GPT3.5_deleting 34.00% 94.00% 72.00%
GPT4_deleting 49.00% 92.00% 99.00%
Human_obscuring 81.00% 97.00% 98.00%
GPT3.5_obscuring 61.00% 90.00% 95.00%
GPT4_obscuring 66.00% 95.00% 99.00%

Table 4: Comparison between GPT-3.5 TURBO, GPT4,
and human rewrites.

vote for each question above on the human eval-
uation test set, referred to as SPRIVACY, SREL,
and SNATURAL. They indicate the percentage of
rewrites having no privacy leakage, complete se-
mantic relevance, full naturalness, respectively.

ing Personal ion by Humans and GPT Models

Percentage

Categories

Figure 1: Human evaluation of privacy leakage.

To understand the quality of rewrites in our cor-
pus, we compare GPT4 outputs with those of GPT-
3.5 TURBO using the same prompts, as well as with
human rewrites. The key results are summarized in
Table 4. Human rewrites achieve the highest level
of privacy protection with both strategies, outper-
form the best rewriting model GPT4 by at least
15%. Human rewrites with obscuring achieve the
best balance between privacy and utility in compari-
son with alternative methods. Both OpenAl models
completely preserve personal information in over
60% of utterances by using obscuring, but strug-
gle to implement the deleting strategy for the same
purpose. A close investigation on the percentages
of individual Q1 answer in Fig. 1 demonstrates
that both models fail to delete private expressions
completely in over 34% of the utterances involving
sensitive information. GPT-3.5 TURBO is signif-
icantly worse than GPT4 in terms of sanitization.
Only a small proportion of the errors are attributed
to applying an incorrect strategy.

3 Experiments

3.1 Rewriting Models

In this section, we establish a baseline approach to
assess the efficacy of existing privacy protection
solutions in removing private content within textual
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messages. This evaluation is pivotal to addressing
the critical question: "Are current privacy protec-
tion solutions adequately equipped to conceal
privacy-sensitive content in utterances?"

For a comprehensive comparison of inference-
time privacy preservation, we benchmark repre-
sentative DP and rewriting approaches, including
DPNR (Lyu et al., 2020), DP-Forward (Du et al.,
2023), LLAMA-PARAPH, DP-PROMPT, FLAIR-
SCRUBBING, and DP-BART. Briefly, DPNR
injects Laplace noise into token representations,
whereas DP-Forward perturbs embedding matrices
to implement sentence-level local differential pri-
vacy. Detailed introduction and implementation
specifics for all baselines are provided in App. A.4.

To quantify zero-shot rewriting capability, we
evaluate the same pretrained LLMs under the
prompt template from Sec. 2.3 without additional
training, namely T5-BASE, LLAMA2-13B, GPT-
3.5 TURBO, and GPT4. To distinguish zero-
shot from supervised or baseline variants, we de-
note the former as T5_ZEROSHOT and LLAMA?2-
13B_ZEROSHOT. We only reported the GPT-40 as
zero-shot method with automatic metrics to show
the consistent performance for SOTA LLMs. For
supervised baselines, we fine-tune T5-BASE on
NAP? with and without GPT-4-based synthetic
augmentation, and additionally fine-tune BART
to assess dataset effectiveness independently of ar-
chitecture. Finally, to examine training-time pri-
vacy defenses, we train TS-NAP? with and without
DP-SGD (Abadi et al., 2016a) to characterize the
impact of differential privacy on performance.

MIA setup. For downstream task privacy eval-
uation, we also would like to see if the schema of
privacy rewrite can effectively mitigate the mem-
bership inference attack for original data as lan-
guage model training is widely adapted for open do-
mian corpus. Specially, we conducted a lightweight
experiment by finetuning a compact target model
(LLaMA3.2-1B) on human rewritten and machine
rewritten sentences respectively to evaluate if the
privacy information can be inferred from trained
model using state-of-the-art self-prompt—calibrated
membership inference attack SPV-MIA (Fu et al.,
2024).

3.2 Evaluation Details

Prior studies focus on protect data privacy from
membership inference attacks, reconstruction at-
tacks, and sensitive attribute attacks etc. (Mattern

Method PRIVACY_NLI SPrRIVACY ROUGE-1 ROUGE-Lsum
DPNR 62.14%

25.00% 92.79% 92.79%

DP-Forward 36.42% 0.00% 99.91% 99.91%
DP-PROMPT 62.86% 0.00% 42.18% 41.89%
DP-BART 78.22% 1.00% 44.01% 43.15%
FLAIR-SCRUBBING 56.43% 0.00% 67.75% 67.89%
T5_ZEROSHOT-deleting 70.00% 10.00% 16.62% 12.61%
T5_ZEROSHOT-obscuring 45.00% 45.00% 29.58% 23.80%
LLAMA2-13B_ZEROSHOT-obscuring 79.28% 16.00% 40.86% 40.12%
LLAMA2-13B_ZEROSHOT-deleting 77.14% 14.00% 68.28% 67.53%

82.86% 31.00%
76.42% 16.00%
87.14% 61.00%
74.29% 34.00%
92.14% 66.00%
90.00% 49.00%
84.29% -
89.29% -
93.81% 72.00%

LLAMA-PARAPH-obscuring 21.72% 20.05%
56.29%
66.66%
69.13%
73.24%
77.48%
67.75%
74.95%
73.01%

5491%
65.76%
68.48%
72.63%
77.08%
67.24%
74.92%
72.78%

LLAMA-PARAPH-deleting
GPT-3.5-obscuring
GPT-3.5-deleting
GPT-4-obscuring
GPT-4-deleting
GPT-40-obscuring
GPT-40-deleting
T5-NAP?-GPT4

Table 5: Evaluation and comparison of baseline meth-
ods.

et al., 2022). However, almost all of them focus
on privacy preservation at the training time. In
contrast, our target task is concerned with 1) if a
rewrite reveals personal information in a given per-
sona, ii) preservation of non-sensitive content, and
iii) naturalness of rewrites. Compared with the
prior studies based on DP mechanisms, our setting
is more close to that of natural language generation
(NLG) tasks. Therefore, we evaluate the outcomes
of the rewriting models by using NLG motivated
automatic and human evaluation.

For human evaluation, we use the same question-
naires and the metrics introduced in Sec. 2.4 and
ask annotators to answer each question in order to
obtain the majority votes.

For all experiments involving model fine-tuning,
we conduct five folds cross validation (CV) on the
CV set of the manually curated corpus. In order to
understand the usefulness of synthetic data, we also
conduct experiments with the same models that
augment the training set in each fold with 3,900
synthetic instances generated by GPT4.

3.2.1 Automatic Evaluation Metrics.

Privacy Leakage. We propose a novel metric,
called PRIVACY_NLI, by using the ROBERTA
model trained on the MNLI corpus, to infer to
what degree it is possible to infer personal infor-
mation in personas. As the NLI model classifies
a pair of input texts into entailed, contradicted,
or neutral, we adopt P (entailed|x, p) as the score
of privacy_leakage, e. Hence, we consider PRI-
VACY_NLI as 1- privacy_leakage, denoting the
privacy preserved by our method. The higher the
metric, the more private information is preserved.
To validate the effectiveness of this metric, we in-
corporated recent NLI models trained with variant
MNLI corpus to show the consistency. Besides we
also considered Sparse-MAX and Sharp-MAX as
soft alignment score(Xu et al., 2020), the detailed
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| SPRIVACY | SREL | SNATURAL
Human_deleting 82.00% 76.00% 95.00%
LLAMA2-13B _deleting 54.00% 49.00% 87.00%
T5-NAP2-GPT4 _deleting | 72.00% | 91.00% | 95.00 %
DPNR 1.00% 0.00% 19.00%
Human_obscuring 81.00% 97.00% 98.00%
DP-PROMPT 0.00% 1.00 % 0.00%
DP-BART 1.00% 10.00% 2.00%
FLAIR-SCRUBBING 0.00% 1.00% 0.00%
LLAMA2-13B _obscuring 12.00% 14.00% 86.00%
T5-NAP2-GPT4 _obscuring 53.00% 93.00% 98.00%

Table 6: Human evaluation of the SOTA models.

| SNATURAL | LLM-NATURAL

Human_deleting 95.00% 4.14
LLAMA2-13B _deleting 87.00% 4.67
T5-NAP2-GPT4 _deleting 95.00 % 4.44
DPNR 19.00% 2.01
Human_obscuring 98.00% 4.37
DP-PROMPT 0.00% 1.14
DP-BART 2.00% 1.71
FLAIR-SCRUBBING 0.00% 3.05
LLAMA2-13B _obscuring 86.00% 4.85
T5-NaP2-GPT4 _obscuring 98.00% 4.36

Table 7: LLM as Naturalness Judge compared with
Human preference.

comparsion can be found in Appendix. A.7.
Semantic Relevance. For assessing the preser-
vation of semantic content, we consider ROUGE-1
and ROUGE-LSuM (Lin, 2004) to compare gener-
ated rewrites with the corresponding references de-
tailed introduction can be found in Appendix. A.4.

3.3 Results and Discussions

Efficacy of NAP2. Table 5 reports the evaluation
of all methods. T5-BASE fine tuned on the human
rewrites and the synthetic data using both strate-
gies outperform the DP based methods and zero-
shot LLMs by a wide margin. DPNR preserves
more privacy than DP-Forward, but results in a
dramatic drop of information utility. The gener-
ated texts often have completely different meanings
and have substantial grammatical errors, though
some of them are still fluent. In contrast, DP-
Forward mostly copies inputs to outputs but rarely
hide sensitive information. LLAMA-PARAPH pro-
duces frequently irrelevant texts, hence have fairly
low ROUGE-1 and ROUGE-LSUM scores. Be-
sides, for convention personally identifiable infor-
mation scrubbing method FLAIR-SCRUBBING,
it can not effectively remove the private informa-
tion in open-ended domain, only 40.71% examples
are successfully removing PII tokens. For DP-
PROMPT and DP-BART, even PRIVACY_NLI are
outperformed than other baseline models, the para-
phrasing impairs the semantic of original sentence
leading to low ROUGE-1 score.

We further investigate the rewriting quality w.r.t.
each strategy based on human evaluation. We use
the T5-BASE model trained on the human rewrites
and the synthetic data with both strategies, and
apply it on the hold-out test set of each strategy.
Table 6 shows that the T5S-BASE model achieves
superior performance over the baselines with both
strategies. The naturalness of all generated rewrites
is on par with that of human rewrites. Both zero-
shot LLAMA2-13B models perform better than the
best DP method DPNR, which mostly perturbs non-
sensitive contents or yields repeated words. The
near-zero SPRIVACY scores observed for these
methods stem from the nature of noise injection
in embeddings or numeric representations. This
results in two extremes: either no change in output
due to insufficient perturbation or complete distor-
tion of the generated output. The overall results
are encouraging for a wide range of applications
on edge devices, because our corpus is not huge
and T5-BASE contains only a few million param-
eters, which is a few hundred times smaller than
LLAMA2-13B, GPT-3.5 TURBO and GPT4 and
GPT4o.

Alignments between Automatic metrics and
Human Evaluation. We compare the ranking us-
ing PRIVACY_NLI with the corresponding human
judgments in Table 5. T5-NAP2-GPT4 obtains the
highest 1-PRIVACY_NLI of 93.81% in automatic
evaluation, matching the highest SPRIVACY with
72.00%. The results are aligned well among the
rewriting models using the obscuring. However,
PRIVACY_NLI does not rank all rewriting models
using deleting in the same manner as humans. To
quantify the alignments, we calculate a Spearman’s
correlation of 0.70 between PRIVACY_NLI and
SPRIVACY among all models to demonstrate PRI-
VACY_NLI. The correlation between the models
using obscuring reaches even 0.83.

Naturalness Assessment via LLM-as-judge
We also consider LLM as judge to score the natural-
ness of generated sentence. Specifically, we reuse
the question from human questionnaire about natu-
ralness and convert it to prompt template with score
scale from 1-5. The prompt can be found in the
Appendix A.9 The results in Table 7 demonstrate a
generally strong alignment between LLM-judged
naturalness and human preference (SNATURAL),
particularly for high-performing models such as
LLAMA2-13B _deleting, T5-NAP?-GPT4 _delet-
ing, and T5-NAP2-GPT4 _obscuring, where LLM
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| SPRIVACY [ SREL [ SNATURAL

Human_deleting 82.00% 76.00% 95.00%
T5-NAP2-GPT4 _deleting 72.00% | 91.00% 95.00%
non-Syn_deleting 65.00% 92.00% 93.00%
Human_obscuring 81.00% | 97.00% 98.00%
T5-NAP2-GPT4 _obscuring | 53.00% | 93.00% 98.00%
non-Syn_obscuring 4.00% 92.00% 93.00%

Table 8: Human evaluation results with and without
synthetic data.

PRIVACY_NLI Mixed corpus  MNLI ~ SPRIVACY

DPNR 80.54% 53.69% 25%
DP-Forward 68.87% 48.06% 0%

DP-PROMPT 71.85% 82.76% 0%

DP-BART 85.87% 80.72% 1%

FLAIR-SCRUBBING 62.16% 61.49% 0%

TS5_ZEROSHOT-deleting 61.33% 49.14% 10%
T5_ZEROSHOT-obscuring 61.33% 19.26% 45%
LLAMA2-13B_ZEROSHOT-obscuring  81.85% 45.23% 16%
LLAMA2-13B_ZEROSHOT-deleting 87.04% 76.68% 14%
LLAMA-PARAPH-deleting 79.42% 6591% 31%
LLAMA-PARAPH-obscuring 82.69% 5221% 16%
GPT-3.5-obscuring 90.33% 53.51% 61%
GPT-3.5-deleting 61.33% 49.60% 34%
GPT-4-obscuring 95.36% 56.50% 66%
GPT-4-deleting 89.26% 47.59% 49%
Human Rewrite 97.01% 63.20% 82%

Table 9: PRIVACY_NLI score with DEBERTA as
backbone finetuned with mixed entailment corpus and
MNLIL

scores (> 4.36) closely reflect human-rated nat-
uralness (> 95%). However, notable discrep-
ancies emerge for low-performing systems like
DP-PROMPT and FLAIR-SCRUBBING, where
LLMs assign moderately high naturalness scores
(e.g., 3.05 for FLAIR-SCRUBBING) despite
near-zero human ratings. This indicates that while
LLMs can approximate human judgments in many
cases, they may overestimate the fluency or coher-
ence of outputs that humans find unnatural, under-
scoring the need for further calibration of LLM-
based evaluation frameworks.

Usefulness of the Synthetic Data. Table 8
shows the result of using synthetic data for training
rewriting models. We compare two different strate-
gies: deleting and obscuring. The results shows
that the model performs better with the synthetic
data for both tasks. In particular, the model pre-
serves more non-personal information compared
to human rewrites in the deleting task. With the
synthetic data training the models, the model per-
formance is 7% better than the non-synthetic data
model in terms of deleting. The biggest gain of the
synthetic data is obtained for improving the privacy
protection of the rewriting model using obscuring.

NLI score with different backbones In this
section, we present the PRIVACY_NLI scores ob-
tained using the DEBERTA model as the back-
bone, fine-tuned with different corpora, including

Method AUC ASR TPR@1%FPR
Human Rewrite 0.68 0.665 0.15
T5-NAP2-GPT4 051 0.58 0.01

Table 10: MIA results on a compact target model (higher
= worse privacy). Rewrites from our trained model
exhibit near-random attackability.

a mixed entailment corpus and MNLI, to evalu-
ate alignment with SPRIVACY, which serves as
our human evaluation metric. As shown in Table
9, the DEBERTA model achieves varying levels
of performance across datasets. Models trained
on the mixed corpus, such as DP-BART and -
deleting, achieve PRIVACY_NLI scores of 85.87%
and 95.36%, respectively, with the former reaching
1% and the latter 66% alignment with SPRIVACY.
Notably, human rewrites achieve a PRIVACY_NLI
score of 97.01%, with an alignment of 82% with
SPRIVACY. This comparison underscores the capa-
bility of different backbones and training strategies
to achieve results close to human-level performance
about privacy preservation while maintaining align-
ment with human evaluation metrics.

3.4 Privacy auditing via Membership
Inference (MIA)

To test the privacy implication of privacy rewrite,
we employ model finetuning as the targeted down-
stream task. In this case, membership inference
attack is widely adopted to measure privacy leak-
age via training time memorization of model. By
applying the privacy rewrite, we would to reduce
the memorization of original context via privacy
rewrite. We employ the self-prompt—calibrated
membership inference attacks(SPV-MIA)(Fu et al.,
2024) as our attack method as it follows the practi-
cal attack scenario which does not requires obtain-
ing real datasets. We fine-tune a LLaMA3.2-1B tar-
get model on human rewritten and model rewrites
respectively to measure attack power and compar-
ing it with the model finetuned using the original
dataset via AUC, ASR, and TPR@ 1%FPR.

Findings. Attacks on our model rewrites are near
random (AUC = 0.51), indicating low memoriza-
tion. The human rewrites—which intentionally
preserve more non-private content—show higher
TPR@1%FPR, consistent with their stronger utility.
This complements our main results: explicit dele-
tion/obscuring of private attributes reduces down-
stream attackability while keeping semantics us-
able.
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4 Related Work

The field of controllable text style transfer focuses
on modifying specific attributes in texts, such as
formality (Briakou et al., 2021) and sentiment (Li
et al., 2018a, 2022) while preserving the core se-
mantic content. The advancement of text rewriting
tasks is heavily dependent on the availability of
high-quality corpora to assess generation quality.
Rao and Tetreault (2018) collected a large-scale cor-
pus GYAFC for initiating the research of formality
style transfer to rewrite formal language. As for our
task sensitive to privacy, which demands sophis-
ticated alignment in rewriting utterances, the con-
struction of a specialized corpus for high-quality
privacy-sensitive rewrites are crucial.

There is a growing interest in protecting user
privacy (Chen et al., 2020; Tigunova et al., 2019;
Xu et al., 2019; Bevendorff et al., 2019) in NLP
tasks. One way of protecting privacy is to implic-
itly remove the information in decision models,
for example perturbing the representations via ad-
versarial training (Li et al., 2018b; Elazar and
Goldberg, 2018; Barrett et al., 2019) or differential
privacy (Fernandes et al., 2019; Bo et al., 2019).
In text rewriting which is close to our rewriting
approach, local differential privacy are recently
adapted to protect the data by adding customized
noise (Igamberdiev et al., 2022b; Igamberdiev and
Habernal, 2023). Such adaptations in rewriting sys-
tem mitigate the privacy leakage risk of original
input however result in complete semantic change
of inputs as the noise is independently drawn from
the data and task. We consider a more generalised
rewriting setting where the naturalness and general
meaning of sentence are preserved.

Another series of work suggested to generate
new sentences with less sensitive information (Em-
mery et al., 2018; Xu et al., 2019). Recent work has
explored prompting LLMs to rewrite sentences con-
taining private information, aiming to obscure sen-
sitive content (Emmery et al., 2018; Xu et al., 2019;
Staab et al., 2024). However, these approaches of-
ten rely on LLMs’ internal knowledge and strug-
gle to align with nuanced human privacy expecta-
tions (Dou et al., 2024). However in these works,
the author does not control how private informa-
tion to be rewritten in explicit way which may
weaken the control for required privacy and human
preference. Even advanced techniques like self-
disclosure abstraction or adversarial anonymization
face challenges in achieving robust, user-aligned

privacy and often depend on powerful cloud-based
models. In contrast, our work study private rewrite
via more diversified free text and supports two
rewriting strategies, offering a more flexible and
general setting (Strengers et al., 2020).

5 Conclusion

We introduce naturalness to the tasks of privacy-
preserving text rewriting and collect a corpus
NAP? based on PERSONA-CHAT. The funda-
mental concept involves training models to learn
human strategies, namely deleting and obscuring,
for inference-time privacy. The T5-BASE model
trained on our corpus outperforms competitive zero-
shot LLMs and DP methods by a wide margin. This
work paves the way for future research on LLM-
based rewriting techniques with a new focus on
preserving naturalness of rewriting.

Ethical Statement

In this paper, we align our research practices with
the principles outlined in the ACL Code of Ethics,
fully endorsing its values. Our investigation has
been conducted in compliance with these ethical
standards.

The creation and assessment of NAP? have been
conducted with a keen awareness of ethical con-
siderations, especially regarding the involvement
of human annotators. The necessity for human-
annotated data to train conditional independence
classifiers in our method is recognized as demand-
ing significant effort. We have taken careful mea-
sures to ensure that this process is ethically sound,
honoring the annotators’ contributions by respect-
ing their time and providing equitable compensa-
tion.

Moreover, the central objective of NAP? is to
assess the relevance of generated responses in rela-
tion to their persona information and the difference
between human evaluation and proposed automated
metrics. The system is engineered to assign scores
on a continuous scale from O to 1, with higher
scores denoting greater relevance. It is designed to
yield only these scores, without generating any in-
formation that could be deemed harmful or violate
privacy.

Limitation

Due to budgetary constraints associated with this
project, we were unable to engage a vast num-
ber of annotators to rewrite the extensive dialogue
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datasets with respective rewrite strategies. Conse-
quently, NAP? we compiled is somewhat limited
in scope. While NAP? possesses sufficient volume
to validate the core assertions of our study, it might
not fulfill the expansive needs of commercial de-
ployments. Industrial entities interested in utilizing
our dataset could potentially address this limitation
by adopting prompt tuning techniques or employ-
ing additional annotators to expand the dataset in
accordance with our outlined methodology.

Our evaluation metric is specifically designed to
assess the relevance of the generated responses. Al-
though it demonstrates superior performance over
baseline metrics in terms of privacy preservation
and naturalness, the advantage it presents in rele-
vance and specificity is less pronounced. Therefore,
the development of innovative metrics tailored to
specific evaluation criteria presents a valuable av-
enue for our future research endeavors.
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A Appendix

A.1 Question design for human evaluation

Q1: The rewrite deletes/obfuscates _ ?

(a) None of the key information in the personal
information and the original utterance does
contain personal information.

(b) None of the key information in the personal
information, because the original utterance
does not contain personal information.

(c) At least one key information in the personal
information (if the rewrite uses both correct
and incorrect strategies, only evaluate the part
that uses the correct strategy).

(d) All key information in the personal informa-
tion (using the correct strategy only).

(e) At least one or all key information in the per-
sonal information (using the incorrect strate-
gies only).

Q2: The rewrite _.

(a) Accurately preserves the meaning of the origi-
nal sentence.

(b) Basically the same meaning but does not cover
some minor content.

(c) Has a minor resemblance to the meaning of
the original sentence, however, it is also mis-
leading.

(d) Empty sentence or does not reflect the mean-
ing of the original sentence at all.

Q3: The rewrite is able to retain _ in the orig-
inal utterance that is not covered in the personal
information.

(a) has no grammatical mistakes and the sentence
is coherent.

(b) has some grammatical mistakes and the sen-
tence is less coherent

(c) is full of grammatical mistakes</b> and the
sentence is not coherent
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A.2 PERSONA-CHAT

The PERSONA-CHAT dataset (Zhang et al.,
2018) is a crowd-sourced corpus designed to facili-
tate research in personalized open-domain dialogue
systems. Each conversation in the dataset involves
two speakers, each assigned a distinct persona com-
prising 4-5 profile sentences. These personas guide
the dialogue, encouraging participants to engage in
conversations that reflect their assigned character-
istics.
The dataset encompasses:

¢ 1,155 unique personas, each with at least 5
profile sentences.

* 10,907 dialogues totaling over 162,000 utter-
ances.

* A division into training, validation, and test
sets, with 100 personas reserved for validation
and another 100 for testing.

This structure promotes the development of dia-
logue agents capable of maintaining consistent and
engaging personalities throughout interactions.

A.3 Prompt template for synethetic Data

The prompt template used across the paper is
shown as 2. We use three nearest examples drawn
from the training set as prompting example. Each
example contains two cases if the raw persona infor-
mation is provided. And objective for the prompt
is to rewrite given sentence with specified strategy.

A.4 Experiment Details

A.4.1 Evaluation metrics

Details of the evaluation metrics for semantic rele-
vance are provided below.

* ROUGE-1 (Lin, 2004): It is a widely used
evaluation metric measuring the overlap of
unigrams between a generated text and a set
of references.

* ROUGE-LsuM: It is a variant of ROUGE-
L, tailored to evaluate longer texts by sum-
marizing the longest common sub-sequences
between an output text and a set of references.

A.4.2 Baseline Methods

DPNR. It stands for Differentially Private Neu-
ral Representation, which applies Laplace noise
to distributed representations of words in order to

Example 1:

[example #1]
containing personal information [persona #1]
by <deleting/obscuring> private information, you
should return [target #1]

[example #1]
containing personal information [empty]
by <deleting/obscuring> private information, you
should return [example #1]

Example 2:

[example #2]
containing personal information [persona #2]
by <deleting/obscuring> private information, you
should return [target #2]

[example #2]
containing personal information [empty]
by <deleting/obscuring> private information, you
should return [example #2]

Example 3:

[example #3]
containing personal information [persona #3]
by <deleting/obscuring> private information, you
should return [target #3]

[example #3]
containing personal information [empty]
by <deleting/obscuring> private information, you
should return [example #3]

Rewrite this sentence, deleting any private infor-
mation.

Only return the rewritten sentence, nothing else.
Private information present is: [input personal]
Sentence to rewrite: [input utterance]

Figure 2: Prompt template for T5-NAP?

randomly drop sensitive words or replace sensitive
words with non-sensitive ones. We compare the
cosine similarity between each word in an input
utterance with those in the corresponding persona,
and pick the top-£ most similar ones.
DP-Forward. This method perturbs embedding
matrices and multi-head attention layers during
each forward pass of a language models by achiev-
ing a sentence level LDP. When adapting this ap-
proach to T5-BASE for inference, we mainly per-
turb embedding matrices, because the DP mecha-
nism for attention layers is mostly useful for pro-
tecting privacy at the training time.
LLAMA-PARAPH. Mattern et al. (2022) points
out the limitations of word-level LDP and propose
to paraphrase input texts with lower temperature to
achieve a sentence-level LDP. We implement this
approach by using LLAMA2-13B.
DP-PROMPT.Utpala et al. (2023) utilizes zero-
shot prompting and large language model to gen-
erate document paraphrasing to prevent author de-
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anonymization attack which comprise the privacy
of text owner with predefined utility constrain.

DP-BART. The method is a privatized text
rewriting system incorporates LDP. The system
leverages the LPD paradigm to perform model
rewriting using BART model to protect input data
which tackles same challenge like us.

FLAIR-SCRUBBING. we also adapt the
scrubbing method used in (Lukas et al., 2023)
as our baseline. We set FLAIR-SCRUBBING as
baseline to test if the automatic method can effec-
tively remove private information from sentences.

Zero-Shot LLMs. To compare with the LLMs
fine-tuned on our corpus, we apply the same
prompts to the same pre-trained LLMs without
any training. Specifically, we consider T5-BASE,
LLAMA2-13B, GPT-3.5 TURBO and GPT4 and
apply the prompt template introduced in Sec. 2.3.
To distinguish from the fine-tuned models, the T5-
BASE and LLAMA2-13B in the zero-shot setting
is referred to as T5_ZEROSHOT and LLAMA2-
13B_ZEROSHOT, respectively.

T5-NAP2. By using the same prompts as the
zero-shot version, we fine tune T5-BASE on the
training set of the manually curated corpus, with
or without augmenting them with synthetic data.
The prompts are similar to those used by zero-shot
models detailed in A.3.

T5-NAP2-DP. To simulate the use cases that the
training data of the rewriting models contains sen-
sitive information, we apply DP-SGD (Abadi et al.,
2016a) when fine-tuning the T5-BASE model in
order to understand to what degree the DP mecha-
nism impacts the inference quality of the rewriting
models and shed light on future research directions.

A.5 Implementation Details

In our experiment, we consider T5-BASE as our
targeted rewrite model, we set optimal hyperparam-
eters for model fine tuning with learning rate of
5e~* and beam search as decoding method with
generative temperature of 0.2. In the model fine-
tuning, we set noise multiplier of DP-SGD (Abadi
etal., 2016b) to 0.001 to gain minimal influence for
model result. In baseline experiments, for two DP
methods applied to echo language model, we con-
sider the empirically optimal noise multipliers 0.01
and epsilon to 3 with one word masked for DPNR.
As for DP-Forward-utility, we set the key noise
hyperparameters delta to 1e~> and epsilon at 7 to
obtain the impact with small noise gap, while for

DP-Forward-privacy, we set the hyperparameters
to 2¢7° and 8 for delta and epsilon respectively.
The remaining hyperparemeters are the same as
with the ones reported in the corresponding papers.

A.6 Impact of DP-SGD.

Table 11 shows results of models trained with and
without DP-SGD. The purpose is to understand
to what degree the widely used DP method can
influence rewriting quality if the training data is
sensitive. Comparing these two settings with hu-
man rewrites, there is a slight performance drop
of around 3% with DP-SGD. However, DP-SGD
provides a privacy guarantee during training which
is useful when the training data is sensitive. When
comparing with automatic metrics, as shown in
Table 12, there is only a 1% performance drop in
terms of privacy leakage if DP-SGD is applied.
For preservation of semantic contents, MAUVE
scores show little differences between using and
not using DP-SGD, meaning our proposed rewrit-
ing approaches are compatible with the DP based
training algorithms for more sensitive scenarios.

| SPRIVACY | SREL [ SNATURAL

Human_deleting 82.00% 76.00% 95.00%
DP_deleting 59.00% 88.00% 99.00%
non-DP_deleting 63.00% 82.00% 96.00%
Human_obscuring 81.00% 97.00% 98.00%
DP_obscuring 29.00% 90.00% 98.00%
non-DP_obscuring 32.00% 88.00% 93.00%

Table 11: Human evaluation results with and without
DP-SGD.

A.7 Private Information Alignment

Three alignment techniques were evaluated to de-
termine their effectiveness in identifying utterance-
persona associations: the RoBERTa MNLI en-
tailment model, Sparse-MAX, and Sharp-MAX.
The latter two algorithms, originally proposed for
token-level alignment, compute an alignment ma-
trix where each entry represents the probability that
a token in an utterance leaks information about a
token in a persona. Specifically, for a token ¢ in the
utterance and a token j in the persona, the align-
ment score in row ¢, column j denotes the leakage
likelihood.

Since our task requires sentence-level align-
ment rather than token-wise alignment. We mod-
ified algorithms to compute sentence-level align-
ment probabilities over a sample of 200 utterance-
persona pairs. The goal was to correctly identify
the persona associated with each utterance based
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DP Real Synth LLM  PRIVACY_NLI ROUGE-1 ROUGE-LsuM
False 1300 0 - 09190 £ 0.1077 0.6946 0.6924
False 1300 3900 GPT-3 0.9174 £ 0.0903 0.7143 0.7122
False 1300 3900 GPT-4 0.9381 £ 0.0870 0.7301 0.7278
True 1300 0 - 0.9398 + 0.0759 0.7338 0.7316
True 1300 3900 GPT-3 0.9243 £ 0.0908 0.7368 0.7351
True 1300 3900 GPT-4 0.9297 £0.1135 0.7446 0.7428

Table 12: Evaluation for DP and combination of synthetic data and human rewrites.

on alignment scores, such that the correct utterance-
persona pair receives a high score while unrelated
pairs do not.

To make binary alignment decisions, a fixed
threshold was applied to the alignment scores.
Probabilities below the threshold were interpreted
as indicating no alignment, and those above it as in-
dicating alignment. An ideal model would achieve
perfect alignment performance, with both preci-
sion and recall equal to 1. Our empirical analysis
revealed that Sparse-MAX and Sharp-MAX did
not generalize well to the sentence-level alignment
scenario, as shown in Table. 13. This result is
unsurprising given that these algorithms were orig-
inally designed for fine-grained, token-level appli-
cations. Furthermore, their performance may have
been affected by the lack of hyperparameter opti-
mization specific to the sentence-level setting. Due
to time constraints, a comprehensive exploration of
these configurations was not feasible. Nevertheless,
future work may revisit these methods as viable
options, contingent on further tuning.

In contrast, the RoBERTa-based MNLI entail-
ment model demonstrated strong alignment perfor-
mance and required minimal adaptation. Following
empirical threshold analysis, a decision boundary
of 0.3 was selected for determining alignment. This
threshold yielded favorable results and served as
the primary alignment mechanism in subsequent
experiments.

A.8 Limitation of LDP at Inference Time

Typical scenarios for privacy protection at infer-
ence time include i) dataset release; ii) sending
queries involving sensitive queries to LLMs hosted
on untrusted servers. Local DP can be one possible
solution to adding noise locally for individual data
releasing and it have more relaxed definition for
user input. LDP is designed to make local data
pairs indistinguishable and work generally on a
sample of instances. The mainstream LDP meth-
ods add random noise to local examples to balance

privacy and utilities. The collection of modified
instances are aggregated to obtain certain statistics
for target tasks. The aggregation step is important
to mitigate the negative effects of noise for infor-
mation utility. However, privacy protection at infer-
ence time does not allow any aggregation operation
among a set of instances and requires finding a
tradeoff between utility and privacy for individuals.
Thus LDP based text rewriting methods either add
too much noise to destroy the utility of information
or retain original content involving sensitive infor-
mation. Our experiments demonstrate the SOTA
methods based on LDP empirically and show the
promising research direction using our dataset.

A.9 Naturalness Judgment Template

We reuse the questionnaire question of naturalness
to form the naturalness template for GPT-40. We
rescale the naturalness from 1-5 where 1 means
very unnatural and 5 means perfectly natural. We
prompt model to generate a JSON like result to
score the rewritten sentence and provide the ex-
planation on it. The detailed template is shown
Figure. 3

Utility test for downstream task To further eval-
uate the utility of rewrites for LLMs, we conducted
additional experiments to compare the LLM’s re-
sponses generated by original inputs and their
rewrites as the downstream task. The original
PERSONA-CHAT is designed in a multiple round
and chit-chat manner. We locate the input utter-
ance in our datasets in the position of dialogue
and compare the generated response with original
response which can be formed as the response gen-
eration task. Specifically, we feed original texts
and their rewrites respectively to the llama3.2-3B-
Instruct and compare their responses with candi-
date responses collected from PersonaChat dataset,
from which we sampled our dataset. The candi-
date set contains both ground-truth and implausible
responses written by human.

Generated responses were ranked by calculat-
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Table 13: Private information alignment results.

Family Threshold Recall Precision Min Max Mean Frobenius Norm 1-Norm
0.20 0.71 0.25 0.00 0.99 0.04 12.81 8.08
0.25 0.69 0.27 0.00 0.99 0.04 12.81 8.08
. 0.30 0.69 0.28 0.00 0.99 0.04 12.81 8.08
RoBERTa Entailment — 55 0.68 029 0.00 099 004 12.81 8.08
0.40 0.68 029 0.00 0.99 0.04 12.81 8.08
0.80 0.57 0.35 0.00 0.99 0.04 12.81 8.08
0.20 1.00 0.01 1.00 1.00 1.00 99.50 99.00
0.25 1.00 0.01 1.00 1.00 1.00 99.50 99.00
0.30 1.00 0.01 1.00 1.00 1.00 99.50 99.00
Sparse-MAX 0.35 1.00 001 100 100 1.00 99.50  99.00
0.40 1.00 0.01 1.00 1.00 1.00 99.50 99.00
0.80 1.00 0.01 1.00 1.00 1.00 99.50 99.00
0.20 1.00 0.01 030 043 0.35 35.77 38.60
0.25 1.00 0.01 030 043 0.35 35.77 38.60
0.30 1.00 0.01 030 043 0.35 35.77 38.60
Sharp-MAX 0.35 0.64 001 030 043 035 3577 38.60
0.40 0.02 0.03 030 043 0.35 35.77 38.60
0.80 0.00 NaN 0.30 043 0.35 35.77 38.60
ing the cosine similarity of their embeddings to
those of ground-truth responses, using a Sentence-
BERT(Reimers and Gurevych, 2019). As shown in
Table. 15, the response similarity between the orig-
inal inputs and their rewrites is 35.99%. Both the
responses generated from the original inputs and
. . L. PRIVACY_NLI | ROUGE-1 | ROUGE-Lsum
those from the rewrites achieve comparable similar- GPT-3.5-deleting 7429% 69.13% 68.48%
: : : LLAMA-PARAPH-deletin, 76.42% 56.29% 54.91%
ity scores to the ground truth. It is also worth noting e e E
that the responses generated from the rewrites are T5-NAPZ-NAP? 93.31% 73.01% 72.18%

closer to the ground truth than the implausible ones.
Therefore, our rewrites achieve similar utility as
original inputs.

Generalization of Datasets To further evalu-
ate the generalization ability of our dataset, we
consider the rewriting model BART as our back-
bone and fine-tune the model on our datasets.
BART is an efficient model compared to state-of-
the-art language models, with only 175 million
parameters. As shown in Table 14, the results
demonstrate that a generative model with a small
parameter size can still effectively adopt human
rewrites from our dataset. The PRIVACY_NLI
score is 85.74%, which is competitive with GPT-
3.5, and the ROUGE-LSUM score is 57.32%, indi-
cating higher consistency in language compared to
LLAMA-PARAPH. Considering the gap in parame-
ter size, the results show that our dataset can enable
models like BART and TS5 to achieve competitive
performance in human-like rewriting tasks.

Table 14: NAP? finetuned BART with baseline method.

‘ Original ‘ Responses with Rewrites ‘ Implausible Responses
Ground Truth Responses ‘ 82.00% ‘ 76.00% ‘ 95.00%
Rewrite | 34.00% | 94.00% | 72.00%

Table 15: Response similarity Comparison between
varying types of inputs.
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LLM Naturalness Judgment Prompt

You are an expert linguist. Your task is to assess the naturalness of a given sentence — how
fluent, human-like, and typical it sounds in everyday language use.

Rate the sentence on a scale from 1 to 5:
* 1 = Very unnatural (full of grammatical mistakes, incoherent)
* 2 = Mostly unnatural
* 3 = Somewhat natural (acceptable, but some issues)
* 4 = Mostly natural (minor issues)

* 5= Very natural (fluent, coherent, no errors)

Sentence: "Sentence to Assess"

Only provide the score and a brief explanation in the following JSON format:

{"score": X, "explanation": "..."}

Figure 3: Prompt used for LLM-based naturalness judgment.
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