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Abstract

Preference optimization methods like DPO
have achieved remarkable performance in LLM
alignment. However, the evaluation for these
methods relies on a single response and over-
looks other potential outputs, which could
also be generated in real-world applications
within this hypothetical space. To address
this issue, this paper presents a Hypothesis-
based PrEference-aware AnaLysis Framework
(HEAL), a novel evaluation paradigm that for-
mulates preference alignment as a re-ranking
process within hypothesis spaces. The frame-
work incorporates two complementary metrics:
ranking accuracy for evaluating ordinal consis-
tency and preference strength correlation for
assessing continuous alignment. To facilitate
this framework, we develop UniHypoBench, a
unified hypothesis benchmark constructed from
diverse instruction-response pairs. Through ex-
tensive experiments based on HEAL, with a
particular focus on the intrinsic mechanisms
of preference learning, we demonstrate that
current preference learning methods can effec-
tively capture preferences provided by proxy
models while simultaneously suppressing neg-
ative samples. These findings contribute to
preference learning research through two sig-
nificant avenues. Theoretically, we introduce
hypothesis space analysis as an innovative
paradigm for understanding preference align-
ment. Practically, HEAL offers researchers ro-
bust diagnostic tools for refining preference op-
timization methods, while our empirical results
identify promising directions for developing
more advanced alignment algorithms capable
of comprehensive preference capture. Code
and data available at this link.

1 Introduction

Direct preference optimization (DPO) has emerged
as the predominant method for aligning large lan-
guage models (LLMs) with human preferences

* Corresponding author.

(Rafailov et al., 2024; Xiao and Zhu, 2025). Recent
research on DPO has also explored various vari-
ants, including SimPO (Meng et al., 2024), ORPO
(Hong et al., 2024), and KTO (Ethayarajh et al.,
2024). To evaluate the effectiveness of these prefer-
ence alignment methods, researchers typically rely
on benchmarks such as AlpacaEval (Dubois et al.,
2024) and MT-Bench (Bai et al., 2024). In the
evaluation process using these benchmarks, we typ-
ically follow a standard procedure: given a prompt,
we first generate a response from the aligned model
using a temperature-based sampling method (Gu
et al., 2024). Next, we employ a proxy model (such
as GPT-4) to compare this response with the ref-
erence response, evaluating whether the model is
effectively aligned.

However, this procedure faces a fundamental
limitation because this sampling-based evaluation
approach only examines single responses sampled
from target LLMs. But in practice, the LLMs are
commonly expected to generate a wide spectrum
of diverse responses, which cannot be sufficiently
covered by several sampled responses. This mis-
alignment between evaluation and real-world LLM
development prohibits researchers and developers
from assessing the LLMs’ performance accurately.
Furthermore, this paradigm also neglects the rela-
tive comparison of responses, which is fundamen-
tally modeled in preference learning scenarios.

To address these limitations in the evaluation,
we propose HEAL (Hypothesis-based prEference-
aware Analysis), a novel framework that evalu-
ates LLMs through the lens of ranked hypothesis
spaces. Inspired by the ranking-based evaluation
approaches such as RewardBench (Lambert et al.,
2024), HEAL conceptualized preference alignment
as a dynamic re-ranking process within the hypoth-
esis space, enabling comprehensive assessment
through two complementary quantitative methods:
(1) The first metric is ranking accuracy, which is
measured via Kendall’s Tau between the ranking
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of policy model and proxy preference model (used
for training data annotation). This metric evalu-
ates ordinal consistency in preference learning and
directly assesses whether the model preserves the
relative ordering of hypotheses as intended by the
preference signals. (2) The second one is pref-
erence strength correlation. We use Pearson cor-
relation between generation likelihoods and gold-
standard preference scores as the metric. This met-
ric captures continuous alignment precision. Un-
like binary or ordinal measures, it quantifies the
model’s sensitivity to fine-grained preference dis-
tinctions, ensuring quantified relationships in pref-
erence strength are maintained across hypotheses.

We evaluate mainstream preference learning
methods using HEAL to address three key research
questions. (RQ1): Do these methods effectively
capture preference information? While ranking ac-
curacy confirms that LLMs acquire preferences
through optimization, results reveal incomplete
learning. To elaborate, current methods struggle
to absorb all preference signals fully. (RQ2): Can
LLMs discern proxy model-specific preferences?
Experiments demonstrate that LLMs successfully
learn distinct preference patterns from different
proxy models, showcasing HEAL’s sensitivity to
subtle inter-model variations. (RQ3): How do
learned preferences vary across methods? All
tested methods achieve strong in-distribution align-
ment with proxy models, but out-of-distribution
performance degrades significantly, except for
SimPO, which exhibits notable generalization.
These results validate the partial efficacy of prefer-
ence alignment while underscoring critical limita-
tions, particularly in robustness and completeness
of learned preferences.

Our main contributions are:

¢ To the best of our knowledge, we are the first
to present a systematic study assessing how
effectively LLMs capture proxy model prefer-
ences through a hypothesis lens.

* We construct HEAL, a hypothesis-based
preference-aware analysis framework that
quantifies the preference modeling analysis
into two metrics: ranking accuracy and pref-
erence strength correlation. Furthermore, we
construct a Unified Hypothesis Benchmark
(UniHypoBench) to support the evaluation
pipeline of HEAL.

* We conduct comprehensive experiments using

HEAL. The experimental results yield three
key observations: (1) Low ranking accura-
cies reveal a significant preference learning
gap, which we attribute to the task’s substan-
tially greater complexity compared to stan-
dard pairwise response ranking; (2) Current
LLMs struggle to capture nuanced prefer-
ence strength relationships between hypothe-
ses, a limitation evidenced by low correlation
scores on our novel preference strength met-
ric; (3) We uncover distinct, model-specific
preference signatures, demonstrating that each
model learns and prioritizes values differently.

2 Preliminary

2.1 Sequence Likelihood

In the literature of LLMs, a model parameterized
with 0 is essentially a generative large language
model, which is applied to generate a response
sequence y when prompted with input x. The re-
sponse y is typically generated by sampling the
next tokens auto-regressively from a probabilistic
distribution. At each time step in this procedure,
the model selects the next token randomly to form
a new input. Under this approach, the likelihood of
generating a specific sentence can be obtained by
computing the conditional probability, which can
be written as:

|y]
mo(ylz) = [ Po(ynly<n. ) 1)

n=0

where the term Py(y,|y<n, x) represents the proba-
bility of the n-th token of response y. The sequence
likelihood reflects how an LLM tends to generate
a specific response. Typically, this likelihood can
be used as a core component of other metrics, such
as perplexity (PPL) (Melis et al., 2017; Hu et al.,
2021).

2.2 Human Preference Alignment

In the realm of LLMs, the training process gener-
ally encompasses three key stages: pre-training, su-
pervised fine-tuning, and human preference align-
ment (Ouyang et al., 2022; Bai et al., 2022; Wang
et al., 2024a). Recent advancements have demon-
strated that alignment can be effectively achieved
through two branches of RLHF: reward-based
methods and reward-free methods. Throughout
the training process, LLMs inherently learn human
preferences either through reward scores provided
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by a reward model (Wang et al., 2025a,b) or by
utilizing ranked pairs of responses (Rafailov et al.,
2024; Meng et al., 2024). However, the reward-
based methods often require extensive reward mod-
eling and face challenges in scalability and gen-
eralization (Gao et al., 2022). Consequently, re-
cent work has shifted towards reward-free methods,
which directly optimize preferences without ex-
plicit reward signals. This shift highlights the grow-
ing importance of reward-free approaches in ad-
dressing the limitations of traditional reward-based
methods, offering a more scalable and efficient path
for aligning LLMs with human preferences.

Reward Modeling. To effectively capture human
preferences, a widely adopted approach involves
training a reward model using human preference
datasets. In the context of RLHF, a reward model is
generally formulated as a function ry(z, y), where
¢ represents model parameters, x denotes the in-
struction, and y corresponds to the response. To
develop such a reward model, a foundation LLM
is optimized by minimizing the Bradley-Terry loss
(Stiennon et al., 2020), as follows:

Lreward = _E(%yw,yl)wpp 1Og(
O'(T¢(CC, yw) - ’I”d)(l‘, ?/l))) (2)

Here, Dy, represents the human preference dataset,
which comprises input tuples containing an instruc-
tion = and a pair of responses (y,,,y;) with pref-
erence ¥y, > ¥, where y,, > y; indicates that y,,
is preferred over y; according to human or model-
based annotations. This dataset serves as the foun-
dation for training the reward model, enabling it to
capture human preferences effectively.

Although it has been discussed that recent work
has increasingly focused on reward-free methods,
reward models continue to play a significant role
in alignment. For instance, a robust reward model
can act as a reliable human proxy, which is capa-
ble of constructing high-quality preference data for
reward-free methods such as DPO. The training
of reward models lays the groundwork for under-
standing and optimizing human preferences, which
will be further explored in the context of preference
optimization in subsequent sections.

Preference Optimization. Building on the dis-
cussion of reward models and their role in align-
ment, Rafailov et al. (Rafailov et al., 2024) intro-
duced DPO, a novel approach that inherently inte-
grates the reward model within the policy model

itself. In DPO, the policy model is directly opti-
mized using a preference dataset, which can also
serve as the basis for training a reward model. This
dual-purpose utilization of the dataset highlights
the flexibility and efficiency of the DPO. The DPO
loss function can be given by:

Lopo(m9) = —E(z4,.4)~D
[loga(ﬂlog mo(ywlz) log o (yi| %) ﬂ
Tref (yw’w) Tref (yl‘x)

3

where [ denotes a parameter that controls the
strength of constraints, ensuring the optimized pol-
icy mg(y|z) does not deviate excessively from the
reference policy 7,.f(y|z). Notably, there is a
significant conceptual similarity between the loss
functions of DPO and reward modeling loss as
introduced in Eq. 2. Although the specific objec-
tives of Eq. 2 and Eq. 3 differ in formulation,
their underlying goals are fundamentally aligned:
Maximize the likelihood of generating responses
preferred by humans while minimizing the probabil-
ity of producing dispreferred ones. In conclusion,
understanding the shared principles of preference
modeling between reward-based and reward-free
methods is crucial for uncovering the fundamental
mechanisms of alignment in LLMs.

3 HEAL: A Hypothesis-based Analysis
Framework

We propose HEAL (hypothesis-based analysis), il-
lustrated in Figure 1. The framework models pref-
erence patterns as ranked hypothesis spaces and
evaluates them through two complementary met-
rics: (1) ranking accuracy for ordinal consistency
and (2) preference strength correlation for contin-
uous alignment, which we detail in this section
respectively.

3.1 Ranking in Hypothesis Space

In the current evaluation procedure, recent research
studies the behavior of LLMs directly from their
generated content. However, as mentioned in Sec.
2.1, generation is naturally a random process that
hardly produces stable outputs.

Definition 1 (Hypothesis Space). In the genera-
tion phase, the responses possibly differ within a
constrained set Y, due to variations in hyperparam-
eter configurations. To study these responses, we
extend the term hypothesis to LLMs by analogy
to natural language understanding (NLU), where
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Figure 1: The overview of HEAL. We conceptualize preference learning as an alignment process between the
original preference pattern and the standard preference sampled from the proxy model. The framework employs
two evaluation metrics - ranking accuracy and preference strength correlation.

this terminology denotes a candidate sentence sam-
pled from the output space (Proebsting and Poliak,
2024). Here, we consider the constrained set Y,
as the hypothesis space for the given x, which con-
tains all possible responses (i.e. hypotheses). The
hypothesis space is formulated as follows:

oo
Vo ={vie | JV"Ixp) >
n=0

>I(z,y)) > ,i€ Ny} (D)
where V' denotes the vocabulary set defining the
hypothesis space. Formally, Y, constitutes a set
comprising (potentially infinite) textual hypotheses
generated from V. These hypotheses are ordered
by an indicator function I(z,y), which assigns a
comparable scalar value to each hypothesis y. Typ-
ical instantiations of I(z, y) include the generation
probability 7y(y|z) under the model parameter 6,
or a preference score given by a human annotator
(or a strong LLM). With these instantiations, the
hypothesis space Y, is structured as an ordered set,
where hypotheses are ranked in descending order.
Consequently, hypotheses positioned earlier in Y,
exhibit a higher likelihood of being selected during
generation.

Definition 2 (Gold-Standard Hypothesis Space).
From the perspective of generation probabilities,
the alignment algorithms optimize the generation
probabilities to favor preferred responses while sup-

pressing the dispreferred ones, thus we can con-
clude alignment as reordering the hypothesis space
Y, to better match a gold-standard hypothesis space
Yie01a. Formally, the gold-standard hypothesis
space Yy 014 18 defined as:

oo
Y;c;gold = {yz € U v | GS(ZC,yl) >
n=0

> GS(w,y) >+, i€ Nyp (5)
where the gold scoring function GS(z, y) quanti-
fies the alignment quality of response y to instruc-
tion z, as evaluated by either reward models or hu-
man annotators (Lambert et al., 2024; Zhou et al.,
2023). From a formal perspective, GS(z,y) rep-
resents a specialized instantiation of the indicator
function I(z, y), optimized to reflect ideal human
preferences. In conclusion, this space serves as the
theoretical optimum for alignment objectives.

3.2 Quantitative Analysis Method

Ranking Accuracy. In Section 3.1, we formally
defined both the hypothesis space Y, and the gold-
standard hypothesis space Yy.s01q. These spaces
differ only in their internal ranking criteria, while
their elements remain identical (Chen et al., 2024).

To quantify the alignment quality between an
LLM’s outputs and gold-standard preferences, we
propose measuring the ordinal discrepancy be-
tween Y, and Yyeqq. Specifically, we adapt
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Kendall’s Tau-b correlation coefficient as our
metric for comparing their partial orders. The
Kendall’s Tau-b statistic is formally expressed as:

Tb(Yx(l)a Y:E(Q)) =
cviM, v - pvi, v?)
V(To = T () (To — To(v,?))

(6)

where:

. Yx(l) and Yx@) denote two hypothesis spaces
sharing identical response elements but poten-
tially differently ordered by their respective
indicator functions I, (x,y) and Iy(z,y).

* C(+,-) counts concordant pairs - cases where
the relative ordering of (y;,y;) is consistent
between both spaces, while D(, -) counts dis-
cordant pairs with contradictory orderings.

e Ty = (g) represents the total possible pairs.

e Ty(-) and Ty(-) are tie correction terms for
each hypothesis space.

The ranking of responses y;, y; in each space
is determined by comparing their indicator values
I(x,y;) and I(z,y;). The denominator’s adjust-
ment for ties ensures robustness when the indicator
function produces discrete scores. This metric pro-
vides a unified comparison capability, applicable to
any system generating comparable I(z, y;) values.

Definition 3 (Ranking Accuracy). Furthermore, we
notice that Kendall’s Tau differs from the ranking
accuracy in range. Therefore, we map the original
metric to obtain an accuracy ratio, as follows:

RA(D) =

A ¥) 41

where the term 7,(-, -) is computed based on Eq.
(6). Here, D denotes the input dataset consisting
of tuples (z, Yx(l), Yx(z)). The mapping operation
is equal to assigning a zero-valued weight to the
discordant pairs since they do not contribute to the
accuracy computation.

Preference Strength Correlation. In human
preference modeling, beyond relative ranking, pref-
erence strength correlation plays a critical role by
quantifying the strength of preferences through con-
tinuous numerical values. However, the current

reward-free alignment paradigm often disregards
this scalar information, focusing solely on ordinal
comparisons. This omission leads to a loss of pref-
erence modeling, which may result in LLMs that
fail to accurately capture the subtle variance in hu-
man preferences. Consequently, such models can
exhibit suboptimal calibration in generation likeli-
hoods or reward predictions (Zhou et al., 2024).

Definition 4 (Preference Strength Correlation).
We consider that if an LLM is perfectly aligned
with a gold-standard hypothesis space, its indicator
function values should exhibit a strong linear cor-
relation with those derived from the gold standard.
To quantify the correlation at the dataset level, we
propose an expectation-based Pearson correlation
metric, as follows:

PSC(D) =
E[I1 2] — E[L]E[I2]

0'[10'[2

E

®)

(2,0 Y )~D

where the function I; (-, -) and I(-, -) represent the
indicator functions (generation likelihoods or re-
ward scores) of hypothesis spaces Yz(l) and Yz(z)
respectively. Consequently, a well-aligned model
would yield a Pearson correlation coefficient ap-
proaching 1, reflecting high agreement in prefer-
ence strength correlation.

4 Experiments

4.1 Setups

We evaluated three widely adopted preference op-
timization algorithms, including DPO (Rafailov
et al., 2024), SimPO (Meng et al., 2024), and
ORPO (Hong et al., 2024), using our proposed
framework. For preference annotation and evalu-
ation, we employed ArmoRM-LLaMA-3-8B-v0.1
(Wang et al., 2024b) as our primary gold-standard
proxy model, ensuring consistency between train-
ing and evaluation preference distributions. To
investigate the influence of optimization methods
across different preference distributions, we addi-
tionally utilized GRM-LLaMA3-8B-rewardmodel-
ft (Yang et al., 2024) as a comparative proxy model
with a distinct preference distribution.

Datasets. We employed the following datasets
for training and evaluation:

(1) UltraFeedback (Cui et al., 2023): A large-
scale preference dataset comprising 64k prompts
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w/o Length Normalization

w/ Length Normalization

Model/Method

UniHypo HelpSteer2  UltraFeedback UniHypo HelpSteer2  UltraFeedback
RA PSC RA PSC RA PSC RA PSC RA PSC RA PSC
Alignment with ArmoRM-Llama3-8B-v0.1 (Same Preference Distribution)
LLaMA-3.2-3B-Instruct  54.64 0.152 46.79 -0.063 53.09 0.079 4822 -0.048 50.69 0.013 4944 -0.017
+DPO 5472 0.154 46.79 -0.063 53.17 0.081 4829 -0.046 51.38 0.027 49.38 -0.016
+ORPO 5455 0.151 46.68 -0.065 53.12 0.080 48.19 -0.049 50.69 0.013 49.28 -0.018
+SimPO  54.61 0.152 46.68 -0.066 53.22 0.080 4821 -0.048 51.16 0.023 4931 -0.017
LLaMA-3-8B-Instruct 54.15 0.124 4736 -0.051 53.13 0.079 49.81 0.031 50.81 0.016 49.86 -0.011
+DPO 54.16 0.138 49.31 -0.013 64.62 0.368 47.66 -0.033 5576 0.112 59.87 0.251
+ORPO  52.67 0.084 4839 -0.031 63.28 0.341 4837 -0.029 5333 0.065 64.45 0.065
+SimPO  63.59 0.502 53.32 0.065 66.70 0419 7330 0.598 66.51 0.319 71.51 0.545
Alignment with GRM-Llama3-8B-rewardmodel-ft (Different Preference Distribution)
LLaMA-3.2-3B-Instruct 51.65 0.059 53.14 0.063 50.78 0.021 52.08 0.066 4842 -0.031 51.16 0.030
+DPO 51.64 0.059 5291 0.058 50.77 0.021 52.08 0.066 48.65 -0.027 51.29 0.031
+ORPO  51.65 0.059 53.14 0.063 50.74 0.021 52.08 0.066 48.65 -0.027 51.21 0.032
+SimPO  51.65 0.059 53.14 0.063 50.84 0.022 52.08 0.066 48.19 -0.036 51.29 0.033
LLaMA-3-8B-Instruct 51.68 0.056 52.58 0.051 49.92 0.008 52.67 0.076 4853 -0.029 50.13 0.013
+DPO 51.29 0.049 5448 0.089 50.54 0.014 51.78 0.054 47.52 -0.049 50.31 0.007
+ORPO  51.56 0.053 5247 0.049 50.10 0.009 5242 0.072 49.66 -0.007 50.01 0.007
+SimPO  49.50 -0.031 55.03 0.100 50.46 0.013 50.73 -0.008 4898 -0.020 50.99 0.023

Table 1: Experimental results on different preference optimization methods. RA and PSC denote ranking accuracy
and preference strength correlation, respectively. The best results for each group are in bold. The second-best

results for each group are with underline.

and 256k responses. We performed preference op-
timization on the training split and utilized its vali-
dation set for in-distribution evaluation.

(2) HelpSteer2-Preference (Wang et al., 2024c¢):
A high-quality dataset annotated with preference
directions, strength scores, and textual justifica-
tions. Similarly, we conducted the evaluation on its
validation split.

(3) UniHypoBench: To address the limitation
of the existing evaluation sets (which typically pro-
vide less than 4 responses per prompt), we con-
structed the Unified Hypothesis Benchmark (Uni-
HypoBench). Curated from RewardBench (Lam-
bert et al., 2024), it extends the instruction set
with 2,985 prompts, each containing more than
8 responses sampled from diverse LLMs, enabling
more comprehensive analysis.

We construct the benchmark by first collecting
hypothesis response samples from multiple state-
of-the-art commercial and open-source LLMs, as
detailed in Appendix A.1. To ensure optimal re-
sponse diversity while preserving output quality,
we configure the generation process with a temper-
ature of 0.75 and top-p sampling at 0.95, as well a
768-token truncation limit for all responses.

Models. We evaluated our approach using three
models, including LLaMA-3.2-3B-Instruct and
LLaMA-3-8B-Instruct. For the LLaMA-3.2-3B-

Instruct model base, we conducted preference
optimizations. Concurrently, the LLaMA-3-8B-
Instruct models were evaluated using the pre-
optimized weights released by Meng et al. (2024).

Training Settings. We conducted preference op-
timization using an effective batch size of 128
and a maximum sequence length of 1024. The
learning rate follows a cosine decay schedule with
10% warmup steps over one training epoch. For
method-specific hyperparameters, we performed a
grid search to determine the optimal configuration.

4.2 Main Results

We conduct an evaluation of diverse preference
learning methods using our proposed framework.
To ensure the preference consistency, we maintain
identical rating proxy models between training and
evaluation phases, thereby guaranteeing that all
compared methods learn from and are assessed
against the same preference distribution. Addition-
ally, we apply the original instruction models as
baselines, which enables a quantitative assessment
of the performance gains achieved through explicit
preference learning. We present the main results in
Table 1. The results demonstrate:

Preference Optimization Effectively Captures
the Preference Information. Our results show
that preference optimization methods generally
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Figure 2: Upset plots of preference intersections on the OOD test set (UniHypo). The upper bar chart displays
the amount of preference overlaps between different methods, while the lower connection matrix identifies the
constituent subsets of each intersection. Full results can be found in Figure 5.

outperform baselines in both ranking accuracy
and preference strength correlation, confirming
their effectiveness in capturing preference distri-
butions. The LLaMA-3-8B-Instruct model bene-
fits most significantly, with SimPO achieving over
10% improvement across all datasets. However,
even SimPO’s best performance (66.70% on Ultra-
Feedback) remains suboptimal, aligning with Chen
et al.’s observation that current methods still have
substantial room for improvement.

Preference Optimization Learns Model-Specific
Preference Patterns. Our evaluation reveals that
while preference optimization improves alignment
with the training proxy model, these gains often
fail to generalize to other proxy models with differ-
ent distributions. In some cases, we even observe
performance degradation when evaluating against
alternative proxies. These findings demonstrate
that current methods primarily learn model-specific
judging patterns rather than general preferences.
This specificity poses a fundamental challenge for
the LLM-based evaluation, as different evaluators
may employ conflicting preference criteria, com-
plicating the assessment of alignment quality.

Length Normalization is Potential in Preference
Modeling. Our analysis indicates that length
normalization generally impairs ranking accu-
racy. However, the normalized SimPO version of
LLaMA-3-8B-Instruct achieves a 73.3% accuracy,
surpassing the performance of unnormalized mod-
els. This demonstrates that length-aware objectives
can learn better preference representations, suggest-
ing their value for future methods.

Capturing Subtle Preference Correlation is
Challenging. Current alignment methods exhibit
strong ranking accuracy but exhibit a weak correla-

tion with preference strength, typically below 0.3.
This result highlights the challenges in quantifying
preference strength. However, SimPO stands out
as an exception, achieving a correlation of 0.419
on UltraFeedback (up from 0.079), demonstrating
that improved strength modeling is achievable.

4.3 Analysis

Visualization of Preference Intersections. We
employ upset plots (Lex et al., 2014) to analyze
preference intersections across hypothesis spaces
(Figure 2), presenting both in-distribution (a) and
out-of-distribution (b) results. For clarity, we focus
on the plot’s forepart, where solid-connected points
mark shared preference tendencies across response
pairs. Our key observations of the in-distribution
test set include: (1) The largest intersection demon-
strates fundamental preference knowledge shared
by all optimization methods and the proxy model.
(2) The substantial second intersection indicates
significant unlearned preferences. (3) The fourth
intersection shows that methods successfully cap-
ture novel preferences from the proxy model with
notable behavioral deviation.

In parallel, we conduct the identical visualization
on the out-of-distribution test set. Apart from the
observations in Figure 2 (a), we find that: (1) Un-
learned preferences increase proportionally, reveal-
ing domain-shift effects. (2) While most methods
degrade, SimPO maintains the largest intersection,
demonstrating superior generalization. (3) The
overall performance decline underscores the need
for more robust preference learning paradigms.
These visual analyses provide intuitive mechanistic
insights that corroborate our quantitative findings
in Section 4.2.
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Figure 3: Violin plots comparing generation likelihood distributions across different alignment methods (including
the SFT base model as baseline). The plot width represents probability density, with the central white line marking
the median value for each distribution. To enhance the readability of the chart, we employ length normalization.

Metric/Method SFT DPO ORPO SimPO
RA w/o LN 5593 5599 55.01 61.50
PSC w/o LN 0.164 0.153 0.123  0.301
RA w/LN 54.12 5149 5474  59.70
PSC w/ LN 0.100 0.044 0.108  0.252

Table 2: Experimental results of LLaMA-3-8B-Instruct-
based models’ internal preference distribution. The best
results for each group are in bold. LN denotes length
normalization.

Alignment in LLM’s Internal Preference Dis-
tribution. To gain deeper insights into the align-
ment effects, we analyze the internal preference
distribution using UniHypoBench. We sample re-
sponses from aligned LLaMA-3-8B-Instruct-based
models (with the SFT base model as baseline) at
a temperature of 0.75 to ensure sufficient diver-
sity. The generation likelihoods are then extracted
to compute both ranking accuracy and preference
strength correlation, as listed in Table 2. Surpris-
ingly, the results reveal that performance shows
no significant improvement even when evaluated
on the model’s own preference distribution. More
notably, we observe performance degradation in
some cases, particularly for the SimPO-aligned
model. We assume that this phenomenon probably
stems from the scarcity of the diversity of these
sampled hypotheses. This finding also notes that
distinguishing the subtle difference between similar
hypotheses is a challenge for further development
of the preference learning method.

To gain deeper insight into the mechanisms of
preference learning, we conduct a density-based
analysis of generation likelihood distributions. Fig-
ure 3 presents violin plots of these distributions

across different alignment approaches, with the
density curves estimated using kernel density meth-
ods. As shown in Figure 3 (a), which visualizes
the internal preference distributions, we observe
remarkably consistent patterns across all optimiza-
tion methods. The finding indicates that these op-
timization methods probably do not vary much in
their internal preference distributions.

Our analysis of external preference distributions
in Figure 3 (b) reveals distinct patterns that contrast
with the internal consistency observed previously.
The distributions exhibit a clear dichotomy: while
SFT and ORPO maintain near-uniform distribu-
tions, DPO and SimPO obtain spindle-shaped dis-
tributions, reflecting their enhanced capability to
suppress negative samples through preference opti-
mization. This successful suppression of undesir-
able outputs represents a significant advancement
in alignment techniques.

However, closer examination reveals a critical
limitation - none of the methods achieve the theoret-
ically optimal bimodal distribution that would fully
separate preferred and rejected responses. This
persistent unimodality suggests that while current
approaches can effectively downweight negative
samples, they struggle to develop truly discrimi-
native representations that clearly partition the hy-
pothesis space. The gap between empirical results
and theoretical expectations points to fundamen-
tal constraints in existing optimization frameworks,
which appear to learn primarily through global like-
lihood adjustment rather than developing more so-
phisticated, robust representations of preference
structure.
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Helpfulness Correctness Coherence Complexity Verbosity
Model/Method RA. PSC. RA. PSC. RA. PSC. RA. PSC. RA. PSC
LLaMA-3-8B-Instruct  46.61 -0.068 45.25 -0.095 5044 0.009 32.14 -0.357 26.87 -0.463
+DPO 47.25 -0.055 4593 -0.081 52.86 0.057 3159 -0.368 2347 -0.531
+SimPO  44.79 -0.104 44.13 -0.117 54.82 0.096 29.55 -0.409 23.13 -0.537
+ORPO 48.18 -0.037 4693 -0.061 5132 0.026 32.14 -0.357 24.15 -0.517
Table 3: Experimental results on different preference dimensions.
M Armo-RM  Human Annotation sive multidimensional assessment. We demon-
odel/Method RS PSC RS PSC . o . .
: : : : strate this capability through a multidimensional
LLaMA-3-8B-Instruct ~ 66.79  0.336 46.61 -0.068 analysis of the HelpSteer2 dataset, which pro-
+DPO 4970 -0.006 47.25 -0.055 . . .
+SImPO 4710 -0.058 4479 0.104 vides human annotations across five key dimen-
+ORPO  60.03 0201 48.18 -0.037 sions: helpfulness, correctness, coherence,

Table 4: Experimental results on human annotation.

5 Discussion

Using Human Annotation as a Proxy Model.
While the previous sections demonstrated how
HEAL measures alignment with a single gold-
standard proxy, a key advantage of our framework
is its ability to perform a unified evaluation across a
diverse hypothesis space. The ranking-based struc-
ture of this space allows HEAL to seamlessly in-
corporate gold standards from various sources, in-
cluding generative language models, reward mod-
els, and human annotators. We further explore
the distinction between reward models and human
judgment by incorporating the original human an-
notations from HelpSteer2, with the results shown
in Table 4 details the findings from this experiment.
We observe that preference optimization demon-
strates stronger alignment with our proxy reward
model than with human annotations. Then, de-
spite this quantitative difference, both evaluation
methods reveal resemblance in their assessments,
indicating correlation between reward model and
human evaluation paradigms. This empirical evi-
dence suggests that reward models can serve as a
computationally efficient proxy for alignment as-
sessment, particularly when resource constraints
make large-scale human evaluation impractical.

A Multidimensional Study on Preferences. The
complex, multidimensional nature of human pref-
erences makes alignment evaluation challenging
under the standard LLM-as-a-Judge paradigm. In
contrast, HEAL is specifically designed for this
complexity, offering the flexibility to assess pref-
erences along any given sub-dimension. We
expand our analysis to incorporate comprehen-

complexity, and verbosity in Table 3, our find-
ings reveal that preference learning algorithms
are notably adept at capturing most of these sub-
dimensions.

Distinction Existing Evaluation Methods.
HEAL distinguishes itself from traditional pair-
wise ranking evaluations (e.g., RewardBench,
LLM-as-a-Judge) by not being an incremental
improvement on existing methods. Instead, HEAL
utilizes ranking as just one component within a
broader analytical structure. To the best of our
knowledge, HEAL is the first framework to adopt a
hypothesis-driven perspective for alignment evalu-
ation. It advances prior approaches by introducing
a unified framework that seamlessly integrates
generative models, reward models, and human
feedback. This distinctive architecture enables
profound flexibility in alignment measurement—a
core contribution of our work. We further detail
these key differences in Appendix C.2.

6 Conclusion

This paper presented HEAL, a novel, hypothesis-
based framework designed to move beyond tradi-
tional evaluation of preference learning. By em-
ploying two complementary metrics, HEAL pro-
vides a more holistic assessment of model align-
ment. Our evaluation using HEAL yields three key
observations in current models, revealing subopti-
mal ranking performance, an inability to capture
preference nuances, and unique, model-specific
learning behaviors. Ultimately, HEAL offers the
community a more powerful and nuanced tool
for diagnosing and improving preference learning,
paving the way for the development of more reli-
ably aligned models.
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Limitations

While our proposed HEAL framework provides a
novel hypothesis-based approach for preference-
aware analysis, several limitations require dis-
cussion.  First, our experimental validation,
though demonstrating practical utility for resource-
constrained scenarios, was conducted on a limited
set of models, with LLaMA-3-8B-Instruct serv-
ing as the primary exemplar due to its consistently
strong performance. Second, while ranking ac-
curacy and preference strength correlation prove
effective as evaluation metrics, future work may
identify more sophisticated measures that better
capture the nuances of preference learning. Finally,
our current analysis does not examine the train-
ing dynamics of these metrics during optimization,
leaving open questions about their evolution and re-
lationship to model convergence. These limitations
point to valuable directions for future research, par-
ticularly in developing more comprehensive analy-
sis approaches and investigating the inherent mech-
anism of preference alignment.
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Name Commercial

Claude-3-Haiku

GPT-40

DeepSeek-V2-Lite
Qwen2.5-32B

Qwen-14B
Mixtral-8x7B-Instruct-v0.1
LLaMA-3-8B-Instruct
ChatGLM3-6B

Open-source

™ X X X X X NN
SN NN NN

Table 5: Models selected for UniHypoBench construc-
tion.

A Implementation Details

A.1 Construction of UniHypoBench

The hypothesis-driven nature of our approach ne-
cessitates careful attention to preserving diversity
across hypotheses, motivating us to construct Uni-
HypoBench, a benchmark maintaining 10 or more
hypotheses per input. We construct UniHypoBench
based on the RewardBench instruction set, lever-
aging its comprehensive coverage of diverse task
types. Our benchmark construction process begins
by collecting hypothesis samples from multiple
powerful commercial and open-source LLMs, as
specified in Table 5.

The UniHypoBench is constructed considering
a balance between the response diversity and over-
all quality. Therefore, the construction involves
two key components: (1) Diverse Model Selec-
tion: Our model selection encompasses diverse
LLM architectures, scales, and training paradigms
to maximize hypothesis variation, as highlighted
in Table 5; (2) Increased Randomness during Sam-
pling: We conduct sampling with a temperature
of 0.75 and top-p sampling at 0.95 that carefully
balance diversity and output quality.

To enhance the response diversity while main-
taining quality, we configured the sampling param-
eters with a temperature setting of 0.75 and top-p
value of 0.95, with all responses truncated at 768
tokens. Following generation, we implemented a
filtering process to remove low-quality and empty
responses, thereby ensuring the benchmark’s relia-
bility and consistency.

The Table 10 shows an example of
the UniHypoBench, and we have also
created a repository for the dataset:

https://anonymous.4open.science/r/HEAL-4C68/

A.2 Experimental Setups

Our implementation leverages LLaMA-Factory
(Zheng et al., 2024) for model training and
vLLM (Kwon et al., 2023) for efficient inference.
All experiments were conducted on 2xNVIDIA
3090 GPUs, with additional optimization through
DeepSpeed (Rajbhandari et al., 2020) ZeRO-2 to
minimize computational overhead and accelerate
training. Following established practices in prefer-
ence optimization (Meng et al., 2024), we maintain
an effective batch size of 128 and employed a co-
sine learning rate schedule with 10% warmup steps.
To balance computational efficiency with model
performance, we set the training sequence length
to 1024 tokens.

Before final model training, we performed ex-
tensive hyperparameter tuning to identify optimal
configurations for each method. We first search the
learning rates invidually in the range of [3e-7, 7e-7,
le-6]. Then we search method-specific parameters
whose search ranges are detailed in Table 6.

A.3 Guidelines on Incorporating Personalized
Preferences

In this paper, we define a reference preference as a
gold-standard that serves as the optimization target
for LLM alignment. It is important to note that
this reference is not a universal ground truth; rather,
it is derived from a specific preference distribu-
tion, such as one embodied by a reward model or
a particular group of human annotators. While the
inherent diversity of human values makes a single,
universally valid gold-standard infeasible, HEAL
can effectively estimate user-specific preferences
by leveraging ranking-based annotations that cap-
ture distinct preference patterns. HEAL is designed
for straightforward adaptation to personalized pref-
erences. The process for applying it to diverse user
groups involves the following key steps:

* Data Generation: Construct a set of 1-to-n
input-response pairs. This can be achieved by
sampling from one or more LLMs or by using
pre-existing datasets.

* Preference Annotation: The generated re-
sponses for each input must be ranked. This
can be performed using one of two methods:

— Engaging human annotators who are rep-
resentative of the target user group’s pref-
erences.
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Method Objective Hyperparameter
DPO  —logo (ﬁ log el _ glog ;;;gf;jg)) 3 € [0.01,0.05,0.1]
ORPO  —108P0(Yw|w) — Alogo <1°g 132(;1(;'5:\)90 08 1p§a(ey(ly|ﬂc)> A €[0.1,0.5, 1.0]
where py(yle) = exp (4 log o (ylr))
SimPO —logo (% log 79 (Yw|z) — |z% log mg(yi|z) — fy) B : [[gg: (2);’ :138]7 5.0,10.0],

Table 6: Optimization objectives and hyperparameter search ranges of applied preference learning methods

— Employing a reward model fine-tuned on
the desired preference distribution.

A critical requirement for this stage is that the
annotators or proxy models must accurately
reflect the target preferences.

* Applying HEAL for Alignment Quantifi-
cation: The resulting ranked list from the
annotation step establishes the gold-standard
for that specific user group. HEAL can then
be utilized to quantify the alignment of any
generative model, reward model, or annotator
with this bespoke reference.

B Results on Other Backbone Models

To further validate the generalizability of our frame-
work, we extend the main experiment to incor-
porate four additional backbone models: Gemma
(Riviere et al., 2024), Mistral (Jiang et al., 2023),
LLaMA-3.1 (Dubey et al., 2024), and Qwen3
(Yang et al., 2025). The comprehensive perfor-
mance comparison across all evaluated models is
presented in Table 7. These results consistently
reinforce our paper’s central finding that prefer-
ence optimization effectively captures preference
information. While the statistical significance of
these metrics is slightly lower than our primary re-
sults—a difference we attribute to the absence of
model-specific hyperparameter tuning—the over-
all trend remains robust and aligns with our main
conclusion.

C More Analysis

C.1 Preference Learning Achieves Limited
Improvements with Confident LLMs.

Building upon the main results presented in Table
1, we observe that preference optimization yields
limited improvement for LLaMA-3.2-3B-Instruct,

with both ranking accuracy and preference strength
showing marginal gains or even performance degra-
dation. This unexpected outcome suggests poten-
tial overfitting to the original training corpus during
earlier optimization stages. More fundamentally,
these findings reveal an important relationship be-
tween a base model’s core capabilities and its ca-
pacity for effective preference learning - implying
that successful alignment may be constrained by
the underlying model’s basic capabilities before
fine-tuning.

C.2 Relationship with Existing Methods.

HEAL’s methodology for assessing alignment is
fundamentally different from conventional tech-
niques, as outlined in Section 5. To empirically
validate this distinction, we benchmarked HEAL
against leading metrics—pairwise accuracy (Re-
wardBench) and win-rate (Alpaca-Eval (Dubois
et al., 2024), Arena-Hard (Li et al., 2024) )—utiliz-
ing data from (Meng et al., 2024) (Table 8).

Our analysis reveals a moderate correlation
between HEAL and pairwise accuracy methods,
confirming its unique methodological foundation.
This finding strongly suggests that HEAL captures
facets of alignment that are not fully addressed
by traditional metrics. Beyond its novel measure-
ment capabilities, HEAL’s sampling-free architec-
ture presents a computationally efficient alternative
to expensive LLM-as-a-Judge protocols.

We have also listed several key advantages of
HEAL in Table 9. Most notably, HEAL advances
beyond prior approaches by introducing a unified
hypothesis-driven framework that seamlessly inte-
grates generative models, reward models, and hu-
man evaluation. This distinctive architecture offers
flexibility in alignment measurement—a core con-
tribution of our work. Below we highlight HEAL’s
key advantages:
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w/o Length Normalization

w/ Length Normalization

Model/Method

UniHypo HelpSteer2  UltraFeedback UniHypo HelpSteer2  UltraFeedback
RA PSC RA PSC RA PSC RA PSC RA PSC RA PSC

Alignment with ArmoRM-Llama3-8B-v0.1 (Same Preference Distribution)
Gemma-2-9B 5321 0.128 48.16 -0.037 54.06 0.103 4733 -0.047 5321 0.064 47.74 -0.060
+DPO 52.04 0.096 47.11 -0.058 54.15 0.105 47.10 -0.058 5231 0.046 48.17 -0.050
+ORPO  52.10 0.098 4690 -0.062 5391 0.100 47.18 -0.056 52.41 0.048 48.07 -0.053
+SimPO  52.07 0.097 47.36 -0.053 54.09 0.104 47.17 -0.057 51.73 0.035 4821 -0.051
Mistral-7B-it-v0.3 48.11 -0.006 45.54 -0.089 51.20 0.035 42.63 -0.155 4690 -0.062 4647 -0.081
+DPO 48.13 -0.005 45.53 -0.089 51.21 0.035 42.66 -0.155 4691 -0.062 4641 -0.081
+ORPO 4824 -0.003 4552 -0.090 51.36 0.036 42.84 -0.149 47.14 -0.057 46.64 -0.078
+SimPO  48.13 -0.005 45.54 -0.089 51.24 0.034 42.65 -0.155 4690 -0.062 46.54 -0.081
LLaMA-3.1-8B-Instruct 55.62 0.172 47.71 -0.046 54.05 0.099 4872 -0.040 52.41 0.048 50.34 0.011
+DPO 55.63 0.172 47.94 -0.041 53.98 0.100 48.74 -0.040 5230 0.046 50.28 0.011
+ORPO  55.61 0.172 4793 -0.041 53.84 0.098 4872 -0.040 52.19 0.044 50.27 0.010
+SimPO  55.62 0.172 47.71 -0.046 53.97 0.099 4875 -0.040 52.41 0.048 50.35 0.012
Qwen3-8B 51.12  0.064 4585 -0.083 51.99 0.053 46.77 -0.074 4897 -0.021 46.07 -0.093
+DPO 51.12  0.064 51.13 0.064 51.96 0.054 46.79 -0.073 46.77 -0.074 46.07 -0.092
+ORPO  51.14 0.064 4575 -0.085 51.99 0.053 46.81 -0.073 48.62 -0.028 46.27 -0.092
+SimPO  51.12  0.064 4598 -0.080 52.03 0.054 46.78 -0.073 48.85 -0.023 46.06 -0.092

Table 7: Additional experimental results on different preference optimization methods. RA and PSC denote
ranking accuracy and preference strength correlation, respectively. The best results for each group are in bold. The

second-best results for each group are with underline.

HEAL RewardBench Alpaca-Eval Arena-Hard
Model/Method RA. PSC. ACC. LC. WR. WR.
LLaMA-3-8B-Instruct 54.15 0.124 72.66 26.0 253 223
+DPO 54.16 0.138 72.63 482 475 35.2
+SimPO 63.59 0.502 72.70 53.7 475 36.5
+ORPO 52.67 0.084 72.23 38.1 338 28.2

Table 8: Performance Metrics for Alignment Evaluation Methods.

Unification: HEAL provides a hypothesis-

based evaluation paradigm applicable to both
generative and reward models, enabling direct

comparison across different model types.

Scalability: HEAL flexibly adapts to diverse

preference distributions and model architec-
tures without requiring structural modifica-

tions.

Consistency: As a sampling-free method,

HEAL yields deterministic results, eliminat-
ing the need for repeated testing to optimize

hyperparameters.

Cost-Efficiency: Unlike LLM-as-a-Judge ap-

proaches (e.g., Alpaca-Eval), HEAL operates
without external API calls, significantly reduc-

ing evaluation costs.

D More Upset Plots

This section presents the complete upset plot vi-
sualizations in Figure 4, along with their length-
normalized counterparts in Figure 5. The observed
patterns remain consistent with our preliminary
analysis in Figure 2, further validating our earlier
conclusions regarding preference alignment behav-
iors. Notably, we find that the length normalization
has smoothed the distribution of the intersections,
which could be valuable for further study.

E Joint Distribution of Reward Scores
and Generation Likelihoods

Figure 6 presents the joint distribution of reward
scores and generation likelihoods, revealing sev-
eral key insights about preference learning dynam-
ics. Consistent with our previous observations, all
examined methods demonstrate the capability to
effectively suppress likelihoods for undesired re-
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Feature RewardBench LLM-as-a-Judge

HEAL

Reward Model Evaluation
Generative Model Evaluation
Scalability

Reference Required
Hyper-parameter Free

API Free

Sampling Free

AN N NN

xX X X NN N X%

NN N NN RN

Table 9: Key advantages of HEAL compared with existing methods.

sponses, confirming this as a fundamental mecha-
nism of preference alignment. However, the distri-
butions exhibit notable differences: while SimPO
shows an unintended reduction in likelihoods for
preferred responses, DPO achieves superior sepa-
ration through what appears to be a linear reorga-
nization of the probability space. This distinctive
pattern suggests DPO’s particularly effective trans-
formation of the model’s internal representation
space for preference modeling. The comparative
performance highlights DPO’s ongoing potential
for preference alignment tasks and underscores the
value of further investigating its underlying opti-
mization dynamics.
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Figure 4: Upset plots of generation likelihoods without length normalization.
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Figure 6: Joint plots of generation likelihoods and reward scores.
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Field

Sentence

Reward Score

Instruction

My coffee is tasting quite watery lately... what am i doing wrong?

N/A

Response#1

It sounds like you might be experiencing a few common issues that
can lead to a watery cup of coffee. Here are some potential causes
and solutions:\n\nl. **Grind Size**: If your coffee grounds are
too coarse, ... ... By addressing these factors, you should be able to
improve the taste of your coffee and avoid the watery flavor.

0.1611328

Response#2

\nIf your coffee is tasting watery, there are a few things that could
be causing this. One possibility is that you are using too much water
in your coffee, which can dilute the flavor and make it taste watery.
To fix this, try ... ... you should be able to improve the flavor of your
coffee.

0.1328125

Response#7

\nI am a newbie to the coffee world, but i really enjoy it. I am having
trouble figuring out what i am doing wrong because my coffee is
tasting very watery. I have tried different coffee brands, but it still ... ...
\nlt’s easy to make, and it produces a delicious cup of coffee.\nHow
do you grind coffee beans?\nI’m not sure if you

0.0568847

Response#13

How do I make a good cup of coffee? OPTIONS: - no - yes Answer:
no What are the best ways to lose weight? ... ... What is the best way
to learn about stock market? What is the best way to learn about stock
market? OPTIONS: - no - yes Answer:\nyes

0.0125732

Table 10: An example of UniHypoBench.
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