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Abstract

In the current landscape of large language mod-
els (LLMs), many evaluation metrics have been
developed and used as rewards during train-
ing to improve specific metrics. However,
balancing these metrics and dynamically ad-
justing reward weights remains challenging,
as current approaches often fail to enhance
weaker metrics. To address this, we empiri-
cally propose a Dynamic Reward Balancing
Optimization framework DRBO to mitigate
the “bottleneck effect” by measuring perfor-
mance, adjusting reward weights to prioritize
weaker metrics, and optimizing the model via
reinforcement learning. We apply DRBO to
both single-task and multi-type task scenar-
ios, validating its effectiveness in generation
with citations and online shopping conversa-
tion tasks. The results demonstrate improved
overall performance and balanced optimiza-
tion across multiple metrics, effectively over-
coming the diversity and complexity inherent
in LLMs. Our codes are available at https:
//github.com/NuoJohnChen/DRBO.

1 Introduction

Evaluation is crucial for LLM applications, which
often necessitates adherence to diverse evaluation
criteria (Guo et al., 2023; Chang et al., 2024), even
for a single task. Thanks to their generalization,
LLMs are also expected to excel across multiple
types of tasks simultaneously (Wang et al., 2023b),
and each type of task might have its own metrics.

In reinforcement learning, one could structure
these metrics (previously for evaluation) as rewards
that could be boosted during training (Sharma
et al., 2021; Yadav et al., 2021; Deng et al., 2022;
Liu et al., 2023a; Xu et al., 2024; Wang et al.,
2024b), to optimize complex objective functions
even at testing time (OpenAI, 2024). However,
when reward weights remain static, the weakest

*Benyou Wang and Anningzhe Gao are the corresponding
authors. First three authors contributed to this work equally.

Figure 1: DRBO adjusts rewards and weights dynam-
ically through iterations of three main stages: perfor-
mance metric evaluation, reward weight balance, and
model parameter optimization. Elements of this schema
are from The Binding of Isaac.

metric (the “bottleneck”) becomes a bottleneck
that restricts overall LLM effectiveness, which in-
troduces the “bottleneck effect” in multi-reward
optimization. For example, in Figure 2, when the
scaled reward itself (or its growth trend) has not
yet reached saturation, its update magnitude should
accordingly be increased.

The mitigation of such effect is crucial because,
for the optimization of LLMs’ comprehensive ca-
pabilities, we typically aim for the model to avoid
weaknesses in any individual metric, ensuring
that its performance reaches a state of dynamic
equilibrium across all metrics.

To mitigate the bottleneck effect, we propose a
framework called DRBO to balance multiple re-
wards (depicted in Figure 1). DRBO interleaves
between Evaluation, Balance, and Optimization
stages, to alternately update the rewards and model
parameters. After performance Evaluation, we dy-
namically reduce the weight of saturated rewards,
enabling the model to prioritize weaker areas and
mitigate the bottleneck effect in Balance stage.
During Optimization, we update the model through
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The weight of DRBOaverage

is averaged and static.

(a) DRBOaverage reward analysis.
The reward improvement

is limited and slow.

The weight of the bottleneck
(Accuracy) correspondingly increases.

(b) DRBOinverse reward analysis.
Accuracy increases largely in epoch 0.

The bottleneck effect is mitigated.

The weight of rougel
grows with ∆reward.

(c) DRBOdelta reward analysis.
Variance reduces.

The bottleneck effect is mitigated.

Figure 2: DRBOWeight Dynamics (Shopping MMLU on Qwen2.5-1.5B-Instruct). The reward is scaled according
to Eq. 4, with weight changes analyzed at epoch 0. Accuracy is identified as one bottleneck in DRBOaverage static
weight settings, showing lower mean and higher variance. In DRBOinverse , after assigning a large weight to the
bottleneck (accuracy) in epoch 0, the reward of accuracy rises largely after step 5. In DRBOdelta , the bottleneck
effect reflects metrics with growth potential but limited progress; here, the weight is increased when the scaled
reward has not yet saturated, encouraging further improvement.

reinforcement learning to achieve a more balanced
overall performance.

We introduce contributions below.

• We propose a novel framework called
DRBO that dynamically learns and adjusts
the weights of different evaluation metrics to
simultaneously balance and optimize on both
single-task and multi-task scenarios.

• We also show that by dynamically adjusting
reward weights, our framework addresses the
bottleneck effect through a more balanced and
effective model optimization.

• Our extensive experiments on generation with
citation and online shopping skills show sig-
nificant performance improvements, validat-
ing the effectiveness of DRBO .

2 Related Work

Multi Reward Integrating multiple reward func-
tions is key for model optimization, with these func-
tions often serving as key metrics (Pasunuru et al.,
2020; Sharma et al., 2021; Yadav et al., 2021; Deng
et al., 2022; Min et al., 2024; Yang et al., 2024;
Naik et al., 2024). Additionally, Choi and Kim
(2012); Zeng et al. (2023) delve into the theoretical
exploration of the weights assigned to these reward

functions. For instance, Peitz and Dellnitz (2017),
Poirion et al. (2017), Sener and Koltun (2018), Liu
et al. (2023b); Sutton and Barto (1998) frame the
issue as a Multi-Armed Bandit (MAB) problem
(Thompson, 1933; Auer et al., 2002; Kuleshov and
Precup, 2014; Slivkins, 2024), while others treat
it as multi-objective optimization (Gholamnezhad
et al., 2024; Kesireddy and Medrano, 2024; Tekin
and Turgay, 2018; Wang et al., 2024b; Agnihotri
et al., 2025). Compared to these approaches, our
focus is on balancing multiple rewards to mitigate
the bottleneck effect.

Multi-task optimization Many prior studies
have explored the issue of weight allocation for
different tasks in multi-task optimization problems.
Some use the simplest approach of equal weights
(Wang et al., 2020), while others treat the weights
as hyperparameters, either setting them to empiri-
cal values or determining them through grid search
(Chang et al., 2019; Dankers et al., 2019). There
are also approaches that calculate weights based on
training data (Perera et al., 2018; Lauscher et al.,
2018), and some vary the weights according to sim-
ple functions (Clark et al., 2019). Our approach is
to enhance the multi-task weights by using feed-
back from each task and promote leveraging the
weaker tasks. Detailed related work, including au-
tomatic evaluations, can be found in Appendix A.
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3 Background

3.1 Problem Definition
Model Evaluation A benchmark is a tool used
to evaluate the performance of a model and is in-
tended to replace the tedious manual labeling pro-
cess. A benchmark usually consists of many pairs
of datasets and metrics (Dj ,mj). The dataset Dj

contains a set of questions and answers, denoted as
Dj = {(xi, yi)}1≤i≤N , and the metric (e.g. BLEU,
EM, F1) is used to evaluate the performance of
the fine-tuned language modelM on Dj . Denote
Mθ(xi) is the output of the fine-tuned language
model M parameterized by θ, then the perfor-
mance ofM on (Dj ,mj) is regularly defined by

Pj(Mθ) =
1

Nj

Nj∑

i=1

mj(xi, yi,Mθ(xi)) ∈ R,

(1)

Multi-Type Task Settings For single-task set-
tings, the set of benchmarks {(D,mj)}1≤j≤Nj

share the same dataset D. Our approach can also
be generalized to multi-type task settings. In our
multi-task setting, the benchmark datasets {Dj}
and the test dataset {Dtest} with size N are sam-
pled from the same dataset D. The generalization
of the model will be improved through training.

Multi-Reward Optimization Traditional ma-
chine learning tasks often use differentiable train-
ing objectives to optimize models. However, these
objectives may not align well with the metrics used
for evaluating downstream tasks. To address this
misalignment, some studies optimize models di-
rectly based on downstream metrics. Since these
metrics are typically non-differentiable, reinforce-
ment learning is used to treat them as rewards to
optimize the model accordingly.

In our setting, each Pj(Mθ) in Eq.1 can be
viewed as a reward Rj(Mθ) for fine-tuningMθ

under the environment {(Dj ,mj)}. The model
Mθ is treated as the policy πθ, with πref serv-
ing as a reference policy to regularize the updates.
Since multiple rewards are available, they need to
be combined into R =

∑
j(wjRj) for optimiza-

tion. Then to maximize the expected reward R,
the model can be optimized by the policy gradient
∇θ log πθ(y | x), with the objective function J
balancing reward maximization and KL divergence
regularization:

θ ← θ +∇θJ (θ), (2)

in which

J=E xi∼D
yi∼Mθ(xi)

[R−βDKL[πθ(yi|xi)∥πref (yi|xi)]]

∇θJ (θ)=Exi,yi [∇θlogπθ(yi|xi)(R−β∇θDKL)].

Our goal is to optimize the modelMθ to maxi-
mize

∑
j (WjRj) for any pre-set weights Wj .

3.2 Motivation of DRBO

Importance of Balancing Multiple Rewards In
Optimization step 2, balancing multiple rewards
Rj is crucial for improving the overall performance
of the model M. Dynamically adjusting reward
weights wj allows the model to allocate more fo-
cus on weaker aspects, preventing performance
bottlenecks. We observe that conventional meth-
ods often fail to address this issue, as even when
the reward saturates, its weight remains dispropor-
tionately high (Figure 2), showing that imbalanced
metrics lead to suboptimal performance.

Analogies of the Bottleneck Effect This situa-
tion can be explained by the “bottleneck effect”,
where the overall effectiveness of a system is con-
strained by its weakest component. This concept
can be extended to model evaluation, where the
performance is often bottlenecked by the weak-
est metrics: if a model is optimized based solely
on average rewards, it risks neglecting its worst-
performing metrics. By dynamically adjusting the
reward weights, the model is forced to address
these shortcomings, leading to a more balanced
performance. The bottleneck effect can also be
analogized by biological evolution, wherein the
survival and adaptability of organisms in nature are
contingent upon optimizing their weakest traits.

While smaller models may be designed for
specific tasks, LLMs should focus on improv-
ing across multiple domains, a challenge com-
pounded by the complexity and diversity of re-
wards, making their optimization a significantly
more intricate process.

Challenge to balance reward weights Achiev-
ing a proper balance of dynamic reward weights
wj requires addressing the varying performance
Pj across different metrics. During each iteration
of step Eq.2, when model parameters θ are opti-
mized, the performance of each metric Pj(Mθ)
fluctuates and needs re-evaluation. This fluctua-
tion requires continuous re-balancing of the re-
ward weights. Furthermore, since the importance
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Algorithm 1: DRBO
Require: modelM, data and metric {Dj ,mj}1≤j≤Nj , and hyperparameters T, b, e, τ
Ensure: OptimizedMθ with improved performance across metrics

1 Initialize weight {wj}1≤j≤Nj over Nj metrics, state s as model performance
∑

j(wjPj);
2 for j = 1 to Nj do
3 Initialize sample count countj = 1;

4 for t = 1 to T do
5 Sample a metric ms according to wj ;
6 countj = countj + 1;
7 for j = 1 to Nj do
8 EvaluateRb

j = Pb
j (Mθ) through Eq.1 from each batch data Db

j ;
9 Standardize rewardRb

j(Mθ) = f(Rb
j);

10 Calculate the average reward across all batches R̄(t)
j = 1

b

∑
bRj(Mθ(Db

j));

11 Compute total rewardR(t) =
∑

j(wjR̄(t)
j );

12 Update the policy πθ =Mθ through Eq. 2 (Action a);
13 if t%e == 0 then
14 for j = 1 to Nj do
15 Update reward across all steps xj = r

(
R̄(1:t)

j

)
through Eq. 5;

16 Calculate performance expectation x̂j = xj +
√
2 ln t/countj);

17 Normalize weight w = w(W(1:j), x̂(1:j)) through Eq. 6,7;

and scale of each metric vary, the pre-set, unequal
weights by human experts must also be considered,
rather than assuming equal weighting.

4 Methodology of DRBO
To address this challenge, we propose the algorithm
DRBO to mitigate the bottleneck effect, which
means improving the model’s performance should
focus on the weaker metrics. Additionally, the per-
formance across all metrics should be balanced
according to pre-set weights. DRBO algorithm
achieves this goal through an iterative cycle involv-
ing three key phases detailed in the subsections, as
colored in Algorithm 1:

• Evaluation: Dynamically assess the model’s
performance using multiple metrics and com-
pute the average reward.

• Optimization: Based on the evaluation re-
sults, update the model parameters using re-
inforcement learning to optimize the overall
reward.

• Balance: Periodically reassess and adjust the
weights of each metric to ensure balanced per-
formance across all metrics.

4.1 Evaluation

The evaluation phase aims to assess the perfor-
mance of the modelMθ across multiple metrics
{mj}1≤j≤Nj . Initially, the weights wj are uni-
formly distributed, and the state s reflects the cur-
rent model performance

∑
j(wjPj). In each it-

eration t, up to T , a metric ms is sampled based
on wj , and its sample count is incremented. The
model is evaluated b times on each metric mj us-
ing data batches Db

j , yielding rewards Rb
j , which

are standardized according to Eq. 4 to obtain R̄(t)
j .

The total reward R is the weighted sum of these
averages using wj .

Reward Scaling in Evaluation To ensure that
the rewards from different metrics are on the same
scale when aggregated, and to avoid unfairness
caused by differences in distribution and scale, we
standardize the rewards for each metric. Specifi-
cally, we sample K reward values from each metric
for standardization. First, we calculate the mean
µj and variance σ2

j in Eq. 3 for each metric:

µj =
1

K

K∑

i=1

Rji, σ2
j =

1

K

K∑

i=1

(Rji − µj)
2,

(3)

8820



Next, we standardize the rewards to have a mean
of 0 and variance of 1:

f(Rji) =
Rji − µj

σj
, (4)

By applying this standardization, we ensure that
each metric contributes fairly and reasonably when
calculating the total reward.

4.2 Optimization
In the optimization phase, the evaluation results are
used to update the model and adjust the weights
of the metrics. The model’s policy πθ = Mθ is
updated using reinforcement learning based on the
total reward R(t) =

∑
j(wjR̄

(t)
j ). The action a in

this phase involves updating the model parameters
to maximize the total reward R(t).

4.3 Balance
In the balancing phase, we need to dynamically
adjust the weights of various metrics to improve
overall performance and pay attention to those that
may be overlooked. To achieve this, we draw on the
core idea of the Upper Confidence Bound (UCB)
algorithm (Auer et al., 2002), which focuses on
balancing exploration and exploitation: by explor-
ing metrics with higher uncertainty (i.e., those that
have been sampled less or whose performance has
not yet been fully evaluated), we prevent the model
from prematurely ignoring potential weaknesses,
thus achieving better overall balance.

Specifically, every e steps, we re-evaluate the
weights wj for each metric. For each metric mj ,
the adjusted expected performance x̂j is calculated

using the following formula: x̂j = x̄j +
√

2 ln t
countj

,
where xj is the reward calculated in Eq. 5, t is the
total number of samples, and countj is the num-
ber of samples for metric mj . The adjustment

term
√

2 ln t
countj

encourages more exploration of those
metrics that have been sampled less, ensuring the
model can better evaluate each metric and prevent
the occurrence of the bottleneck effect.

Proposals in Balance In the balancing phase,
we raise two different proposals to adjust reward:
DRBOinverse and DRBOdelta , focusing on miti-
gating the bottleneck effect. The specific calcula-
tion methods for both strategies are as follows.

r=




Et

[
R̄(1:t)

j +1
]
= 1

t

∑
tR̄

(t)
j (Mθ)+1,DRBOinverse

Et

[
R̄(1:t)

j

]
−Et−1

[
R̄(1:t−1)

j

]
, DRBOdelta

(5)

zj =

{
Wj

x̂j
, DRBOinverse

Wj x̂j , DRBOdelta
(6)

wj =





zj

Σ
Nj
i=1zi

, DRBOinverse

softmax(zj)= ezj/temp

Σezi/temp

i=1

,DRBOdelta

(7)

DRBOinverse utilizes the “inverse rewards” strat-
egy to address the bottleneck effect by increas-
ing weights for underperforming metrics through
zj =

Wj

x̂j
in Eq. 6. This mechanism explic-

itly prioritizes under-performing metrics (lower
x̂j → higher zj) rather than balancing exploration-
exploitation as in UCB (detailed explanation of
difference with UCB and traditional Multi-Armed
Bandit (MAB) (Auer et al., 2002; Vermorel and
Mohri, 2005) is deferred to Appendix B). Weight
computation via Eq. 7 ensures non-neglect of high-
performing metrics while dynamically reallocat-
ing optimization focus, guided by pre-set target
weights Wj for controlled convergence.

DRBOdelta focuses on boosting the weights of
metrics with greater potential for improvement. r
in Eq. 5 adjusts the model parameters based on the
reward increments, allowing for a faster response
to changes in the environment. It helps to prioritize
weak metrics with higher potential for improve-
ment. Since r can be negative, Eq. 7 uses softmax
strategy for weight normalization to ensure stabil-
ity. Setting temperature temp = 0.01 step helps
alleviate the problem of weight disappearance.

5 Applications

In this section, we introduce the two configura-
tions of DRBO : the single task setting and the
multi-type task setting, along with their respective
application scenarios.

Single-Task Setting The model is evaluated us-
ing multiple metrics on the same dataset, similar
to how a species adapts to different environments.
By dynamically adjusting weights, the model can
effectively allocate resources and optimize its per-
formance across all metrics.

Multi-Type Task Setting The model handles dif-
ferent types of tasks, each with its own specific
metrics and datasets. Dynamic reward weight ad-
justment helps the model balance its performance
across all tasks, ensuring comprehensive optimiza-
tion, similar to how a species adapts to different
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ecological niches. The adaptability makes it an
ideal choice for multi-task competitions or bench-
mark challenges.

Single-Task Application on Long-context Gen-
eration with Citation Single-Task DRBO can
effectively address the challenges faced by long-
context retrievers or citation-based text genera-
tion (Gao et al., 2023), such as handling complex
queries, providing accurate results, and ensuring
credible references. By dynamically adjusting the
weights of metrics on fluency, correctness, and ci-
tation quality, DRBO can achieve balanced opti-
mization across these aspects, thereby improving
the model’s ability to synthesize information from
multiple sources.

Multi-Type Task Application on Online Shop-
ping Conversation Skills Multi-Type Task
DRBO can handle challenges presented by on-
line shopping interactive conversations (Jin et al.,
2024), which includes shopping skills such as con-
cept understanding, knowledge reasoning, user be-
havior alignment, and multi-lingual abilities. By
dynamically adjusting the weights of criterias in-
cluding multiple choice, geneation, retrieval, and so
on, DRBO ensures balanced optimization across
these tasks, improving the model’s ability to serve
as general shop assistants.

6 Experiments

To demonstrate DRBO ’s methodological inno-
vation and its immediate applicability, the exper-
iments is conducted in both multi-evaluation and
multi-task settings. We systematically evaluate the
effectiveness of DRBO through a series of experi-
ments designed to test its performance across the
scenarios detailed in Section 5.

6.1 Experiment setting

We conducted all experiments using the Py-
Torch framework on a setup consisting of eight
NVIDIA A100 GPUs, each with 80 GB of memory.
The computing environment was configured with
CUDA 11.8 and cuDNN 8.7 for optimized deep
learning performance. We set W to 1, denoting
each evaluator is equally important.

The baseline includes (1) ALaRM (Lai et al.,
2024), a reward modeling method suitable
for single-task settings (compared in Table 1);
(2) sequential optimization (sec F.2); and (3)
DRBOaverage , a baseline approach which uses

static, equal weighting wj = 1
Nj

in the bal-
ance phase. We then evaluate DRBOinverse and
DRBOdelta . In Optimization phase, there are sev-
eral different reinforcement learning methods as
choices, including PPO (Schulman et al., 2017),
ReMax algorithm (Li et al., 2023b), and so on, to
solve Eq. 2. In this paper, we apply ReMax to avoid
training a value model and reduce computations.
Detailed parameters are listed in Appendix C.

6.2 Experiment 1: Generation with Citation

We focus on the long-context generation with cita-
tion in a multi-evaluation setting, which assesses
the model’s ability to generate accurate and coher-
ent responses given retrieved documents. We use
ALaRM’s reward modeling method as our baseline,
following its holistic reward weight of 3 (computed
by the UltraRM-13B (Cui et al., 2024)) while keep-
ing other reward weights at 1. We adopt ALCE
benchmark (Gao et al., 2023), a well-known stan-
dard in the RAG community, because it is recog-
nized for its ability to provide a single output with
multiple evaluations, enabling a comprehensive as-
sessment of model performance. Using this bench-
mark1, we apply the following criterias with met-
rics detailed in Appendix D as reward providers.

• Fluency: Evaluated by MAUVE (Pillutla et al.,
2021), which measures the model’s fluency in
generating text.

• Correctness: Measured by exact match (EM)
of the golden answer for ASQA (Stelmakh
et al., 2022) or using an NLI model for infer-
ence for ELI5 (Fan et al., 2019), ensuring the
output aligns with the correct answer.

• Citation Accuracy: Determined using an
NLI model2 to infer the correctness of cita-
tions, with metrics including citation recall
and citation precision score to evaluate cita-
tion F1.

6.2.1 Analysis
According to the results on ASQA and ELI5 in
Table 1, we reach the following conclusions:
DRBO improves overall performance. Af-

ter applying DRBO , the overall score of ASQA

1Fluency is a scalar derived from the distribution of several
sentences. We report the average fluency across batches, while
Gao et al. (2023) reports it across the entire dataset.

2https://huggingface.co/google/
t5_xxl_true_nli_mixture
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Dataset ASQA ELI5

Criteria Fluency Correctness Citation All Fluency Correctness Citation All
Metric MAUVE EM Recall F1 Average MAUVE Claim Recall F1 Average

Llama-2-7B-Chat
ALCE 40.92 49.71 42.75 44.46 46.08 16.67 21.45 28.07
ALaRM 43.57 47.92 37.54 43.01 44.85 11.83 21.28 25.99
DRBOaverage 40.64 49.25 48.44 46.11 49.76 18.33 29.66 32.58
DRBOinverse 40.92 48.74 51.68 47.11 45.94 19.02 29.98 31.65
DRBOdelta 43.55 49.66 49.48 47.56 48.88 18.69 30.28 32.62

Llama-3-8B-Instruct
ALCE 22.01 49.48 59.38 43.62 47.43 18.83 39.71 35.32
ALaRM 20.06 46.77 58.12 41.65 47.30 14.13 42.89 34.77
DRBOaverage 24.99 50.17 70.98 48.71 47.43 18.06 43.89 36.46
DRBOinverse 27.93 51.06 68.47 49.15 46.31 18.67 45.79 36.92
DRBOdelta 24.13 50.54 68.37 47.68 44.94 18.50 47.08 36.84

Table 1: Performance on ASQA and ELI5 Datasets.

improved from 44.46 to 47.56 on Llama-2-7B-
Chat and from 43.62 to 49.15 on Llama-3-8B-
Instruct, with ELI5 also showing significant en-
hancement. This average score improvement sug-
gests that by adjusting the weights of different met-
rics according to their scores in the reinforcement
learning process,DRBO outperforms ALaRM and
DRBOaverage , and can improve the overall perfor-
mance effectively.
DRBOinverse performs better and more

balanced on stronger base models, while
DRBOdelta excels with weaker base models. In
Table 1, DRBOdelta outperforms DRBOinverse

on the Llama-2-7B-Chat model, particularly in the
area of fluency, which is a strong criterion. Con-
versely, the Llama-3-8B-Instruct model exhibits the
opposite trend. As a result, stronger models tend
to focus more on the weakest criteria after scaling,
while weaker models prioritize criteria with a more
rapid growth trend.

For a more detailed analysis of experiment 1 and
case study, please refer to Appendix H.

6.2.2 Further Analysis

RQ1: Convergence Analysis Does DRBO achi-
eve balanced convergence during optimization?

In Figure 3, weights and rewards change towards
the opposite direction, and finally converge to a
stable weight and reward. It clarifies the robustness
of DRBO .

RQ2: Training Dynamics How does each metric
evolve during the training process? As shown in
Figure 4, the performance on each metric rapidly
increases at the beginning of training, surpassing

(a) DRBOinverse Reward (b) DRBOdelta Reward

(c) DRBOinverse Weight (d) DRBOdelta Weight

Figure 3: The change of scaled rewards and metric
weights of Llama-2-7B-Chat on ASQA. More examples
can be found in Figure 8.

Figure 4: Performance of Llama-3-8B on ASQA.

8823



Criteria NER Retrieval Choice Ranking Generation Translation Multilinguality Extraction All
Metric Micro F1 Hit Rate@3 Accuracy NDCG Sent-Transformer BLEU-4 Multilingual-Sent-Transformer ROUGE-L Average

Llama-3.2-1b-Instruct
Shopping MMLU 39.72 15.96 55.12 57.96 50.06 19.09 43.97 13.5 36.92
DRBOaverage 29.48 20.32 54.68 59.38 53.58 16.41 39.80 3.73 34.67
DRBOinverse 33.20 20.29 52.36 63.58 51.29 16.67 44.87 8.18 36.31

—W = 2:1:1:1:1:1:1:1 44.64 18.93 57.61 65.00 50.16 19.84 45.19 12.75 39.27
DRBOdelta 43.89 17.89 35.88 58.75 48.71 17.75 42.2 6.94 34.00

Qwen2.5-1.5B-Instruct
Shopping MMLU 11.39 38.64 56.05 76.56 51.13 15.69 45.01 3.03 37.19
DRBOaverage 12.19 41.67 62.45 79.47 52.03 13.82 46.19 3.62 38.93
DRBOinverse 9.42 45.12 64.50 78.12 52.70 16.32 46.52 3.45 39.52
DRBOdelta 12.24 38.04 58.94 77.98 51.42 16.66 47.23 3.12 38.20

Llama-3-8B-Instruct
Shopping MMLU 58.07 58.95 72.56 78.12 49.27 24.59 38.76 5.80 48.27
DRBOaverage 44.15 49.46 63.87 75.51 51.59 22.92 53.12 6.38 45.88
DRBOinverse 67.59 66.93 76.49 82.22 49.80 23.74 38.85 7.00 51.58
DRBOdelta 58.36 60.37 73.98 82.19 49.33 21.35 36.34 4.40 48.29

Table 3: Performance on Shopping MMLU. The p-value in the t-test < 0.002, detailed in Appendix F.1.

the original model, and then gradually stabilizes
over time. The fluency curve drops at step
50, reminding us that the training cycle of
DRBO should not be too long, as it may lead to
overfitting. The weakest metric, citation, shows
stable training performance, further demonstrating
the robustness of DRBO .
RQ3: Non-uniform Weighting How does
DRBO perform when metrics have unequal
predefined importance?

Metric Fluency Correctness Citation
Measurement MAUVE EM Recall F1

Llama3-8b-Instruct
DRBOinverse (1:1:1) 27.11 51.04 67.75
DRBOdelta (1:1:1) 24.13 50.54 68.37
DRBOinverse (1:2:3) 25.62 49.84 68.34
DRBOdelta (1:2:3) 33.13 50.93 69.54

Table 2: Performance of ASQA when W = 1:2:3

The effect of DRBO when the pre-defined
weights are set to W = 1:2:3 is shown in Table 2,
where we reduce the importance of fluency. We
can see a significant improvement in all metrics,
with the most notable increase in citation. This
demonstrates the effectiveness of our method un-
der different values of W , and highlights that the
initial value of W can also have a significant impact
on the results.

6.3 Experiment 2: Online Shopping Skills
We target at comprehensive abilities of LLMs on
multi-type shopping QA, which assess multiple
few-shot tasks with complex entities and relations.
The ShoppingMMLU (Jin et al., 2024) benchmark,
detailed in Appendix E in KDD Cup 20243, is se-

3https://www.aicrowd.com/challenges/amazon-kdd-
cup-2024-multi-task-online-shopping-challenge-
for-llms

lected because it is a statistically detailed, multi-
type task dataset derived from real-world scenarios
on Amazon, providing a comprehensive evaluation
of models in shopping contexts. We divide this
benchmark into the criteria listed with metrics be-
low to provide rewards:

• Named Entity Recongnition (NER): Evalu-
ated using the Micro-F1 score based on preci-
sions and recalls of NER tasks.

• Retrieval: Evaluated by Hit Rate@3 through
calculating the overlap between the retrieved
set (maximum 3 length) and the ground truth.

• Multiple-Choice: Evaluated by accuracy
through generating one token and comparing
it with the ground truth (Liang et al., 2022).

• Ranking: Assessed using the Normalized Dis-
counted Cumulative Gain (NDCG)= DCG

iDCG ,
considering the ranking relevance.

• Unrestricted Generation: The embeddings
of generated text and reference text are trans-
formed using sentence transformers (Reimers
and Gurevych, 2019) and the cosine similarity
to evaluate the semantic alignment between
generated and reference texts.

• Translation: Evaluated using BLEU-4 (Pap-
ineni et al., 2002), considering n-gram over-
laps between generated and reference texts.

• Multilinguality: Evaluated using sen-
tence transformer similarity (Reimers and
Gurevych, 2019) between the generated text
and the reference text in a multilingual context.

• Extraction: Evaluated using ROUGE-L (Lin,
2004) on extractive generation tasks (i.e. the
answer is a sub-string of the input).
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6.3.1 Analysis
DRBOinverse achieves overall enhancement
in multi-type task settings, and DRBOdelta
shows steady improvement. DRBOinverse sig-
nificantly outperforms zero-shot Shopping MMLU
under Qwen2.5-1.5B-Instruct and Llama-3-8B-
Instruct, demonstrating its ability to overcome the
diversity and complexity inherent in LLMs. In
contrast, DRBOaverage tends to over-optimize
a single metric, such as Multilinguality under
Llama-3-8B-Instruct, resulting in a loss of balance.
While DRBOdelta generally performs worse than
DRBOinverse , it excels in certain low-resource
tasks, such as NER and translation, showcasing
better balance in these scenarios.
DRBO performs better on larger models.

For larger models, DRBOinverse shows greater im-
provement compared to zero-shot, possibly be-
cause larger models have superior multi-task gen-
eralization capabilities. Notably, even for the chal-
lenging low-resource task Extraction, optimization
on larger models still achieves noticeable increases.

6.4 Further Analysis
RQ1: Metric Interdependence Do the optimiza-
tion dynamics of metrics exhibit mutual influence?

Criteria NER Retrieval Choice Ranking
Qwen2.5-1.5B-Instruct

Shopping MMLU 11.39 38.64 56.05 76.56
NER Only 29.28 27.39 54.68 72.75

Criteria Generation Translation Multilinguality Extraction

Shopping MMLU 51.13 15.69 45.01 3.03
NER Only 47.23 14.66 45.71 2.00

Table 4: Performance of Qwen2.5-1.5B-Instruct with
only Remax applied to NER for the ablation study.

Criteria NER Retrieval Choice Ranking
LLaMA-3.2-1B-Instruct

Shopping MMLU 39.72 15.96 55.12 57.96
Generation Only 37.83 16.64 55.46 58.5
Retrieval Only 40.26 19.69 54.21 68.46
Translation Only 37.73 16.91 55.13 56.21

Criteria Generation Translation Multilinguality Extraction

Shopping MMLU 50.06 19.09 43.97 13.50
Generation Only 50.20 20.43 45.79 14.47
Retrieval Only 47.59 19.33 44.84 6.95
Translation Only 50.12 20.25 46.08 11.82

Table 5: Performance of LLaMA-3.2-1B-Instruct with
only Remax applied to specific metrics for the ablation
study.

To explore the correlation between metrics, ac-
cording to Table 4, training exclusively on NER
(setting the weights of other criteria to zero) sig-
nificantly enhances NER performance but leads to
an imbalance across most other metrics (similar

conclusions can be reached in Table 5). However,
some tasks, such as Multi-Choice, still benefit from
the improvement in NER. This also explains why,
in Figure 2, the weights of certain high-performing
metrics continue to increase. Moreover, this high-
lights that increasing the number of evaluation met-
rics can further enhance the performance of LLMs.

RQ2: Reward Hacking? A case study analysis.

You are required to perform the task of query named
entity recognition. Please follow the given instructions.
You are a helpful online shop assistant and a linguist.
A customer on an online shopping platform has made
the following query. Please extract phrases from the
query that correspond to the entity type ’audience’.
Please directly output the entity without repeating the
entity type. If there are multiple such entities, separate
them with comma. Do not give explanations.
Query: van heusen formal shirts for men
Output:

Shopping MMLU Responses: 1 ✗, TP: 0
DRBOaverage Responses: 1 ✗, TP: 0
DRBOinverse Responses: men ✓, TP: 1
DRBOdelta Responses: mens ✓, TP: 1

Figure 5: NER Case study on Qwen-2.5-1.5B-Instruct

Reward hacking (Skalse et al., 2022) refers to a
phenomenon where a model exploits loopholes in
the reward function to maximize its score in unin-
tended ways, often at the expense of achieving the
true objectives of the task. We present a case study
in Figure 5,12,13 to explore whether such phenom-
ena exist. Examples from both classification and
generation tasks demonstrate that the task-specific
metrics objectively reflect performance, and the re-
sults indicate that the effectiveness of these metrics
is improved after applying DRBO , showcasing
the robustness of our approach.

7 Conclusion

We proposed DRBO framework to address the
bottleneck effect in multi-reward optimization for
LLMs. By dynamically adjusting reward weights,
DRBO effectively prioritizes weaker metrics to
achieve a balanced and improved overall perfor-
mance. Experimental results across single-task
and multi-type task scenarios demonstrate that
DRBO significantly enhances model performance,
ensuring that no single metric dominates optimiza-
tion. Furthermore, DRBO provides a flexible and
adaptive mechanism that can be integrated into var-
ious tasks, highlighting its versatility and scalabil-
ity. We hope it opens pathways for future advance-
ments in dynamic reward adjustment strategies and
broader applications in AI optimization.
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Limitations

When there are significant differences in scales be-
tween rewards, prior knowledge about these scales
is required to normalize the rewards effectively.
Additionally, when the number of rewards is large,
the framework becomes challenging to balance and
optimize across many rewards.

Potential Risks and Ethical Consideration

Our proposed approach also involves certain poten-
tial risks that need to be considered:

Bias and Fairness Issues: If the training data
contains biases, the model may reinforce these bi-
ases during the optimization process, leading to
unfair outcomes. This can be particularly problem-
atic in sensitive applications such as recruitment
or healthcare, where ethical and legal issues may
arise.

Data Privacy and Security Risks: Handling
large-scale data necessitates stringent measures to
protect user privacy and ensure data security. Im-
properly protected data can be misused or leaked,
posing significant privacy and security risks.
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A Related Work In Detail

Multi Reward The robust integration of multiple
reward functions has proven crucial in optimizing
models, with these functions often serving as key
metrics (Pasunuru et al., 2020; Sharma et al., 2021;
Yadav et al., 2021; Deng et al., 2022; Min et al.,
2024; Yang et al., 2024; Naik et al., 2024). Addi-
tionally, Choi and Kim (2012); Zeng et al. (2023)
delve into the theoretical exploration of the weights
assigned to these reward functions . For instance,
Peitz and Dellnitz (2017), Poirion et al. (2017),
Sener and Koltun (2018), Liu et al. (2023b); Sutton
and Barto (1998) frame the issue as a Multi-Armed
Bandit (MAB) problem (Thompson, 1933; Auer
et al., 2002; Kuleshov and Precup, 2014; Slivkins,
2024). Similarly, multi-objective problems have
garnered significant attention, as evidenced by Shi
et al. (2024b,a). CMAB-DO (Tekin and Turgay,
2018), DPA (Wang et al., 2024a), ArmoRM (Wang
et al., 2024b) (which focuses on the explanability),
MOPO (Agnihotri et al., 2025) establish prefer-
ences through multi-objective rewards rather than
balancing between them, while Gholamnezhad
et al. (2024), Kesireddy and Medrano (2024) pro-
pose weight solutions for multi-objective optimiza-
tion problems. Compared to these approaches, our
focus is on balancing multiple rewards to mitigate
the bottleneck effect.

Multi-metric Evaluations With the develop-
ment of large language models (LLMs), several ad-
vanced automatic evaluation techniques with mul-
tiple metrics have been designed to enhance the
assessment process and avoid resource-consuming
human annotation (Lin and Chen, 2023; Wang
et al., 2023a; Jain et al., 2023; Chen et al., 2025a).
Research by Lin et al. (2024), Ge et al. (2025) has
led to the development of an automatic evaluation
benchmark that operates within real-user and real-
world scenarios. Similarly, Liang et al. (2022),
Chen et al. (2023) have carried out comprehensive
experiments to assess model performance across
various tasks. Additionally, Li et al. (2023a), Chi-
ang et al. (2024), Zheng et al. (2023), Chen et al.
(2025b) have contributed to the enhancement of
LLM assessment by incorporating peer-based eval-
uations. Bubeck et al. (2023) has furthered this
field by conducting a series of human-crafted tests
with GPT-4, showing that the model achieves or
surpasses human-level performance on multiple
tasks. Moreover, Ni et al. (2024), Zhu et al. (2024),
Liu et al. (2025) ensure that evaluations remain

current by dynamically assessing LLMs. However,
the rise of multi-metric evaluation introduces the
challenge of balancing and aggregating these di-
verse signals. While existing benchmarks are adept
at identifying model weaknesses, they provide lim-
ited guidance on how to leverage this feedback
for holistic optimization, especially when facing
metric trade-offs.

B Details in Balance

zj =
Wj

x̂j
in Eq. 6 ensures that if a metric receives

lower rewards, its corresponding update will be
larger, thereby giving it more attention. This helps
to address the bottleneck effect by focusing on un-
derperforming metrics. Unlike UCB’s typical moti-
vation to balance exploration and exploitation, here
we explicitly encourage the exploration of metrics
with weaker performance. Wj represents the pre-
set target weight, guiding the model to converge
towards desired weights.

The computation of wj in Eq. 7 ensures that met-
rics with higher rewards receive lower weights, and
are sampled less frequently. However, these met-
rics are still considered, preventing the model from
neglecting them. It is worth mentioning that, un-
like traditional Multi-Armed Bandit (MAB) (Auer
et al., 2002; Vermorel and Mohri, 2005; Kuleshov
and Precup, 2014; Slivkins, 2024) implementations
which update based on the top-performing metric,
we update all metrics simultaneously, ensuring di-
versity and flexibility in metric improvement.

C Experiment Details

Hyperparameter value

Sample K for scaling 200
Batch Size {2, 4}
e 4
τ {0.75, 0.0}
Max New Token {300, 400}
Temperature {0.9, 0.95}
Top-p {0.9, 0.95}
Epoch {1, 7}

ALCE
Weight Update Per {4 Step, 6 Step}
Learning Rate {1e-6, 9e-7}

Shopping MMLU
Weight Update Per 128 step
Learning Rate {9.65e-6, 1e-6}

Table 7: Hyperparameters for DRBO
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Table 6: Shopping MMLU dataset details.

Metric (Task Type) Skill Sub-skill Task Name # Samples

Accuracy
(Multiple Choice)

Concept
Understanding

Concept Normalization Product Category Synonyms Selection 234
Concept Normalization Attribute Value Synonyms Selection 290

Relational Inference Applicable Attribute Selection Given Product Category 884
Relational Inference Applicable Product Category Selection Given Attribute 843
Relational Inference Inapplicable Attributes 206
Relational Inference Valid Attribute Value Selection Given Attribute and Product Category 1152
Relational Inference Valid Attribute Selection Given Attribute Value and Product Category 1152
Relational Inference Product Category Classification 820
Sentiment Analysis Aspect-based Sentiment Classification 395
Sentiment Analysis Aspect-sentiment-based Review Selection 346
Sentiment Analysis Aspect-based Review Overall Sentiment Classification 424

Information Extraction Attribute Value Extraction 338
Information Extraction Aspect-based Review Keyphrase Selection 384

Summarization Single Conversation Topic Selection 299
Summarization Product Keyphrase Selection 233

Knowledge
Reasoning

Numeric Reasoning Unit Conversion 390
Numeric Reasoning Product Numeric Reasoning 493

Commonsense Reasoning Commonsense 463
Implicit Multi-hop Reasoning Complementary Product Categories 546
Implicit Multi-hop Reasoning Implicit Attribute Selection 552
Implicit Multi-hop Reasoning Product Compatibility 141
Implicit Multi-hop Reasoning Related Brands Selection 266

Behavior
Alignment

Query-query Relation Query-query Intention Selection 600
Query-product Relation Product Category Selection Given Query 249
Query-product Relation Query-product Relation Selection 280

Sessions Session-based Next Query Selection 60
Sessions Session-based Next Product Selection 120
Purchase Product Co-purchase Selection 375

Reviews & QA Review Rating Prediction 552
Reviews & QA Review Helpfulness Selection 217

Multi-lingual
Abilities

Concept Understanding Multi-lingual Product Keyphrase Selection 400
Concept Understanding Cross-lingual Product Alignment 300

User Behavior Multi-lingual Query-product Relation Selection 320
User Behavior Multi-lingual Session-based Next Product Selection 375

Total: 13815

Sentence transformer similarity
(Generation)

Concept
Understanding

Elaboration Attribute Explain 300
Elaboration Product Category Explain 184

Relational Inference Product Category Generation 525
Summarization Attribute Naming from Description 300
Summarization Product Category Naming from Description 213
Summarization Product Title Generation 193

Behavior
Alignment

Query-query Relation Query Re-writing 439
Reviews & QA Aspect-sentiment-based Review Generation 190
Reviews & QA Product-based Question Answering 131

Total: 1746

Hit rate @ 3
(Retrieval)

Concept
Understanding

Sentiment Analysis Aspect-sentiment-based Review Retrieval 171
Summarization Review Aspect Retrieval 200
Summarization Multi-conversation Topic Retrieval 250
Summarization Product Keyphrase Retrieval 233

Behavior
Alignment

Query-query Relation Intention-based Related Query Retrieval 300
Sessions Session-based Query Recommendation 60
Purchase Product Co-purchase Retrieval 250

Knowledge
Reasoning

Implicit Multi-hop Reasoning Related Brands Retrieval 2661

Total: 1464

Micro-F1
(Named entity recognition)

Concept
Understanding

Information Extraction Query Named-entity Recognition 361
Total: 361

ROUGE-L
(Extractive Generation)

Concept
Understanding

Information Extraction Aspect-based Review Keyphrase Extraction 200
Total: 200

NDCG
(Ranking)

Behavior
Alignment

Query-product Relation Query-product Ranking 150

Multi-lingual
Abilities

User Behavior Multi-lingual Query-product Ranking 200

Total: 350

BLEU
(Translation)

Multi-lingual
Abilities

Concept Understanding Cross-lingual Product Title Translation 500
Total: 500

Sentence transformer similarity
(Multi-lingual Generation)

Multi-lingual
Abilities

Concept Understanding Multi-lingual Product Title Generation 284
Total: 284

Grand Total 20570
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Detailed parameters of experiments are listed in
Table 7.

D ALCE Dataset Details

For ASQA, human-provided answers have an
average length of 65 words. For QAMPARI, each
question receives an average of 13 answers. ASQA
focuses on factoid questions that are ambiguous,
and ELI5 includes questions typically starting with
“Why”, “How”, or “What”.

Table 8 gives an data example of ALCE dataset.

Dataset Example

ASQA

Q: When did the US break away
from England?
A: The US declared independence
on July 2, 1776 [1][2] ... The
Treaty of Paris was later signed on
September 3, 1783 [3].

ELI5

Q: How do student loans affect get-
ting a mortgage?
A: Student loans can affect the debt
to income ratio [1], which is
a key factor in determining the
amount that ... [2][3]

Table 8: Dataset Information and Examples

ALCE Dataset is released under MIT License.

E Shopping MMLU Dataset Details

Shopping conversation data used in multi-type task
application is organized from (Jin et al., 2024). De-
tail information is listed in Table 6.

E.1 Shopping MMLU per Metrics

Figure 6 shows changes of each metric while train-
ing on Shopping MMLU.

F Shopping MMLU Analysis

F.1 T-test

The t-test data of Shopping MMLU are listed in
Table 9.

F.2 Baseline Analysis

We include experiments in sequential scenarios,
which demonstrate that DRBO effectively avoids

Metric Seed=10 Seed=20 Seed=30 Default Seed p-value (t-test)
Llama-3-8B-Instruct

Micro F1
Shopping MMLU 60.63 58.13 58.43 58.07 < 0.0001
DRBO_inverse 67.36 67.59 68.90 67.59

Hit Rate@3
Shopping MMLU 59.14 59.24 59.16 58.95 < 0.0001
DRBO_inverse 67.28 66.96 67.57 66.93

Accuracy
Shopping MMLU 72.56 72.57 72.57 72.56 < 0.0001
DRBO_inverse 76.49 76.49 76.49 76.49

NDCG
Shopping MMLU 78.12 78.12 78.12 78.12 < 0.0001
DRBO_inverse 82.36 82.36 82.36 82.22

Rouge-L
Shopping MMLU 5.15 5.21 4.95 5.80 0.0012
DRBO_inverse 6.54 5.98 7.10 7.00

Qwen2.5-1.5B-Instruct
Hit rate@3

Shopping MMLU 37.02 38.46 38.20 38.64 < 0.0001
DRBO_inverse 44.57 43.99 44.37 45.12

Accuracy
Shopping MMLU 56.05 56.06 56.05 56.05 < 0.0001
DRBO_inverse 64.51 64.51 64.51 64.50

Sent-Transformer
Shopping MMLU 51.07 51.11 50.96 51.13 < 0.0001
DRBO_inverse 52.96 52.63 52.45 52.70

Table 9: T-test results on Shopping MMLU.

the flaws of sequential optimization. To avoid un-
necessary waste of computing resources, we con-
ducted experiments on 3 tasks: Extraction, Re-
trieval, and NER tasks in Shopping MMLU, based
on Llama-3.2-1b-instruct. The experimental results
are in Table 10.

Criteria Extraction Retrieval NER
Llama-3.2-1b-instruct

Sequential: Ex, Re, NER 7.68 18.05 42.92
DRBOinverse 8.18 20.29 33.2

Table 10: Sequential Optimization

The first row shows sequential optimization of
multiple tasks, while the second row is from Ta-
ble 2 of the paper. As seen, our method im-
proves Retrieval (Hit3↑ 18.05→20.29) and Extrac-
tion (ROUGE-L↑ 7.68→8.18) tasks, and by dy-
namically allocating weights, it avoids regression
of already optimized metrics during subsequent
optimization steps.
DRBO focuses on dynamically adjusting

weights and optimizing weaker areas based on
the actual performance of tasks, rather than
rigidly pursuing the optimal solution of the
Pareto frontier. DRBO can alleviate the bottle-
neck effect and achieve more balanced optimiza-
tion in multi-task scenarios.

We also include experiments on simply inversed
rewards in Table 11. We can easily draw that sim-
ply inversed rewards is worse than average reward,
even original Shopping MMLU at most metrics.
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Figure 6: Shopping MMLU per Metrics

Criteria NER Retrieval Choice Ranking Generation Translation Multilinguality Extraction All
Metric Micro F1 Hit Rate@3 Accuracy NDCG Sent-Transformer BLEU-4 Multilingual-Sent-Transformer ROUGE-L Average

Qwen2.5-1.5B-Instruct
Shopping MMLU 11.39 38.64 56.05 76.56 51.13 15.69 45.01 3.03 37.19
Simply Inverse reward 17.10 39.41 58.43 77.54 51.02 14.90 45.90 3.44 38.47
DRBOaverage 12.19 41.67 62.45 79.47 52.03 13.82 46.19 3.62 38.93
DRBOinverse 9.42 45.12 64.50 78.12 52.70 16.32 46.52 3.45 39.52
DRBOdelta 12.24 38.04 58.94 77.98 51.42 16.66 47.23 3.12 38.20

Table 11: Inverse Reward Baseline.

F.3 Shopping MMLU Case Study
Table 12, 13 list some cases on Shopping MMLU.

G Additional Experiments: ECInstruct

We also focus on the online shopping generation
task in a multi-evaluation setting, which assesses
the model’s ability to handle various shopping-
related tasks, including concept understanding,
knowledge reasoning, user behavior alignment, and
multilingual abilities. Using the ECInstruct within
the ShopBench dataset provided by KDD Cup 2024
4, an anonymized multi-task dataset derived from
real-world Amazon shopping data, we evaluate the
model based on the following metrics:

• Named Entity Recognition (NER): Assessed
using the Micro-F1 score.

• Retrieval: Evaluated by Hit@3, measuring
the ability to retrieve relevant items.

• Generation: Various metrics based on task
type, including BLEU for translation tasks

4https://www.aicrowd.com/challenges/amazon-kdd-
cup-2024-multi-task-online-shopping-challenge-
for-llms. To test through official testset, we have to
sumbit model weights with code which will be evaluated on
infrastructure provided by Amazon.

and ROUGE-L for extraction tasks.

• Multiple Choice: Measured by Accuracy.

G.1 Dataset Details

ShopBench used in this challenge is an
anonymized, multi-task dataset sampled from
real-world Amazon shopping data. We sampled
the ECInstruct dataset within ShopBench, which is
licensed under CC BY 4.0. For each group in the
dataset, we randomly sampled 1,000 data points
under random seed 42.

ECInstruct is split into a few-shot development
set and a test set to better mimic real-world appli-
cations, where the questions are not known before-
hand. This setup encourages the use of publicly
available resources to construct solutions instead
of overfitting the given development data.

The development datasets are provided in JSON
format with the following fields:

• input_field: Contains instructions and ques-
tions for the model to answer.

• output_field: Contains the ground truth an-
swer.
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• task_type: Describes the type of task.

• task_name: Contains hashed task names (e.g.,
task1, task10).

• metric: Specifies the evaluation metric.

• track: Specifies the track the question belongs
to.

The test dataset includes only the input_field
and an is_multiple_choice field indicating if the
question is multiple choice.

Tasks and Metrics ShopBench involves five
types of tasks, all re-formulated to text-to-text gen-
eration to accommodate LLM-based solutions:

• Multiple Choice: Each question is associated
with several choices, and the model outputs a
single correct choice.

• Retrieval: The model retrieves all items that
satisfy a requirement from a list of candidates.

• Named Entity Recognition (NER): The
model extracts all phrases from text that fall
into a given entity type.

• Generation: The model generates text pieces
following instructions to answer questions.

Evaluation Protocol To ensure thorough and un-
biased evaluation, a hidden test set is used, remain-
ing undisclosed to participants. The evaluation
metrics for different tasks are as follows:

• Multiple Choice: Accuracy.

• Named Entity Recognition (NER): Micro-
F1 score.

• Retrieval: Hit@3.

• Generation: ROUGE-L for extraction tasks,
BLEU for translation tasks, and cosine simi-
larity for other generation tasks.

Shopping Skills ShopBench is divided into a
few-shot development set and a test set to bet-
ter mimic real-world applications, where customer
questions are not known beforehand. Participants
are encouraged to use publicly available resources,
such as pre-trained models and text datasets, to
construct their solutions rather than overfitting the
provided development data.

Tasks: ShopBench evaluates four key shopping
skills:

• Shopping Concept Understanding: Under-
standing domain-specific concepts like brands
and product lines.

• Shopping Knowledge Reasoning: Involving
complex reasoning with implicit knowledge,
such as numeric reasoning and multi-step rea-
soning.

• User Behavior Alignment: Modeling diverse
user behaviors like browsing and purchasing.

• Multi-lingual Abilities: Evaluating model
performance across different languages with-
out retraining.

Dataset Examples Table 16 shows the task in-
formation and examples of the ShopBench dataset.

G.2 Performance of sampled ECInstruct

We only have access to the ShopBench test dataset
through the competition interface. After the compe-
tition, the interface is closed, making it difficult to
continue experiments on the official test set. Con-
sequently, we test ShopBench using the data set in
Appendix G.1 and list results in Table 14,15.

Online Shopping Multi-Task Scenario
Metric NER Retrieval Generation Choice
Measurement micro f1 hit rate@3 bleu acc

Llama3-8b-Instruct
ECInstruct 11.75 4.22 1.11 10.72
DRBOaverage 11.94 4.34 0.84 10.93
DRBOinverse 12.18 4.49 0.67 11.24

Table 14: Performance on sampled ECInstruct testset.
All the measurements are multiplied by 100.

Online Shopping Multi-Task Scenario
Metric Ranking Retrieval Generation All
Measurement NDCG hit rate@3 bleu average

Llama3-8b-Instruct
ShopBench 59.38 55.56 15.67 43.54
DRBOinverse 86.40 74.07 18.92 59.80

Table 15: Performance on the whole ShopBench dataset
based on API provided by KDD Cup 2024 challenge.
Unfortunately, the API is closed after the competition.
All the measurements are multiplied by 100.

H ALCE Analysis

H.1 Result Analysis

Fig. 7 shows results of ASQA. Details data is in
Table 1.
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(a) ASQA (b) ELI5

Figure 7: ALCE results under Llama-3-8B-Instruct

H.2 Reward and Weight Changes on the Chat
Model

Figure 8 illustrates the effects of different
DRBO types on ASQA during training. The
top line represents the scaled reward changes for
DRBOaverage , DRBOinverse , and DRBOdelta

over step. The middle line indicates the average
reward, while the bottom line shows the weight
changes over time.

Initially, as depicted in Figures 8h and 8b, there
is an inverse relationship between weights and re-
wards. Higher weights are consistently assigned
to lower scaled rewards, aligning well with our
motivation to mitigate the bottleneck effect. In Fig-
ures 8i and 8c, the weight adjustments are made in
response to changes in delta scaled rewards.

Furthermore, it is evident from Figures 8g and
8a, as well as Table 1, thatDRBOaverage , a method
that neglects addressing weaknesses, fails to signif-
icantly enhance overall performance.

H.3 Case Study

With temperature = 0.9, top-p = 0.9,
max_new_tokens = 300 for ASQA, the prompts
are shown in Table 17,18,19,20.

I Challenges in Optimizing Certain
Metrics Using RL

This section discusses the challenges associated
with optimizing specific metrics using Eq.2.

I.1 Sparse and Hard-to-Obtain Metrics

When the target metrics are sparse or difficult to
obtain, RL’s training efficiency decreases signifi-
cantly. The model may fail to gather sufficient feed-
back signals to update its policy effectively during
limited exploration (Sutton and Barto, 1998).

I.2 Conflicting Metrics

When multiple metrics conflict with each other, RL
needs to dynamically trade off between these objec-
tives. How to prioritize conflicting objectives dy-

namically to ensure global stability in optimization
remains a question. It is important when “grabbing
the big” (i.e., focusing on the dominant or most
critical objective) and “letting go of the small” (i.e.,
de-prioritizing less critical objectives) is required
for stable optimization.

I.3 Dynamic Metrics under Non-Stationary
Environments

During the optimization process, target metrics
may change dynamically due to environmental
shifts or adaptive policy adjustments, resulting in
non-stationary reward distributions that hinder pol-
icy optimization.

I.4 Exploration vs. Exploitation Trade-Off
In complex environments, RL algorithms face chal-
lenges in balancing the exploration of new strate-
gies and the exploitation of current policies. This
is especially difficult in noisy or sparse-reward set-
tings.
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(a) DRBOaverage scaled reward (b) DRBOinverse scaled reward (c) DRBOdelta scaled reward

(d) DRBOaverage reward (e) DRBOinverse reward (f) DRBOdelta reward

(g) DRBOaverage weight (h) DRBOinverse weight (i) DRBOdelta weight

Figure 8: Llama-2-7B-Chat reward and weight change on ASQA of ALCE.
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Prompt:

A user found a product with title ’Loop Quiet - Ear Plugs for Sleep – Super
Soft, Reusable Hearing Protection in Flexible Silicone for Noise Reduction &
Flights - 8 Ear Tips in XS/S/M/L – 27dB Noise Cancelling - Mint’ on an online
shopping website. Please translate the product title into Spanish.
Output:

Label:

Loop Quiet - Tapones Oídos para dormir – Protección Auditiva de Silicona Suave
Reutilizables + 8 Puntas para los Oidos en XS/S/M/L - Reducción Sonido 27dB -
Antiruido, Estudiar - Menta

Zero-shot Shopping MMLU, BLEU-4: 1

SanDisk Ultra Fit 64GB Flash Drivé USB 3.1 de hasta 130 MB/s lectura
This is an example of a machine translation, which means that I have used a
pre-trained model to generate the output. However, please note that this is
not guaranteed to be perfect and may contain errors or inaccuracies. It’s
always recommended to verify translations using multiple sources before making
any purchasing decisions. Additionally, it’s important to keep in mind that
language models like me do not understand context, tone, sarcasm, idiomatic
expressions, cultural references, regional dialects, slang, abbreviations,

DRBOaverage , BLEU-4: 15

1. The original title is L̈oop Quiet - Ear Plugs for Sleep – Super Soft, Reusable
Hearing Protection in Flexible Silicone for Noise Reduction & Flights - 8 Ear
Tips in XS/S/M/L – 27dB Noise Cancelling - Mint.̈
2. The translated title in Spanish should be L̈íquido Calmante - Tapones de Oído
para Dormir – Protección de Ruido Super Aplechable en Silicia Flexible para
Reducción del Ruido y Viaje - 8 tapones de Oído en XS/S/M/L - 27 dB de Canción
de R

DRBOinverse , BLEU-4: 19

Limpieza de rueda - Tapones de oído para dormir - Prendibles, protector de
audición flexible en silicone para reducción de ruido y para vuelo - 8 tapones
en XS/S/M/L – 27 dB de reducción de ruido - Verde"
The instruction requires me to translate the product title from English to
Spanish while maintaining the meaning and details of the original title. The
translated title should be grammatically correct and accurately convey the
product features and benefits to a Spanish-speaking audience. I have followed
the guidelines by providing a clear and accurate translation that is suitable
for an

Table 12: Case study of DRBO on Shopping MMLU Cross-lingual product title translation on Qwen-2.5-1.5B.
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Prompt:

You are required to perform the task of query named entity recognition. Please
follow the given instructions.
You are a helpful online shop assistant and a linguist. A customer on an online
shopping platform has made the following query. Please extract phrases from the
query that correspond to the entity type ’audience’. Please directly output the
entity without repeating the entity type. If there are multiple such entities,
separate them with comma. Do not give explanations. Query: van heusen formal
shirts for men Output:

Label:

mens

Zero-shot Shopping MMLU, Micro F1: (TP: 0, FP: 1, FN: 1)

1

DRBOaverage , Micro F1: (TP: 0, FP: 1, FN: 1)

1

DRBOinverse , Micro F1: (TP: 1, FP: 1, FN: 0)

mens

Table 13: Case study of DRBO on Shopping MMLU Query named entity recognition on Qwen-2.5-1.5B.
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Task Example

Generation

Instructions: Tell me what this product category is about
Input: Toggle Switch
Output: A toggle switch is an electric switch operated by means of a projecting
lever that is moved up and down.

Multi-Choice
Which of the following product categories may have the attribute power source?
1. table 2. writing tools 3. car seat cover 4. comb
Answer: 3

NER

You are a helpful online shop assistant and a linguist. A customer on an online
shopping platform has made the following query. Please extract phrases from the
query that correspond to the entity type ’brand’.
Please directly output the entity without repeating the entity type. If there
are multiple such entities, separate them with comma. Do not give explanations.
Query: chocolate buttons cadbury xmas
Output: ’cadbury’

Retrieval

You are given a user review given to a(n) bra product. You are also given a
numbered list of ten aspects.
Please choose three aspects from the list that are covered by the review.
You should ONLY output three numbers, separated by comma. Do not generate
explanations or other texts.
Review:
Very comfortable and supportive, as a 38D it’s hard to find a good bra. True to size
Aspect List:
1. stability 2. magnet strength 3. straps 4. lid 5. hook
6. comfort 7. value 8. support 9. quality 10. fit
Output: 6, 8, 10

Table 16: Task Information and Examples
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Instruction: Write an accurate, engaging, and concise answer for the given
question using only the provided search results (some of which might be
irrelevant) and cite them properly. Use an unbiased and journalistic tone.
Always cite for any factual claim. When citing several search results, use
[1][2][3]. Cite at least one document and at most three documents in each
sentence. If multiple documents support the sentence, only cite a minimum
sufficient subset of the documents.
Question: Who set the record for longest field goal?
Document [1](Title: Field goal): toward its own end. The longest field goal
kick in NFL history is 64 yards, a record set by Matt Prater on December 8,
2013. The previous record was 63, originally set by Tom Dempsey (1970) and then
matched by Jason Elam (1998), Sebastian Janikowski (2011), David Akers (2012),
and Graham Gano (2018). High school, college and most professional football
leagues offer only a three-point field goal; however, some professional leagues
have encouraged more rare kicks through "four-point field goals". NFL Europe
encouraged long field goals of 50 yards or more by making those worth four
points instead of three
Document [2](Title: Field goal range): 35 and 40 yard lines (closer in a
crosswind) often will go for the more risky fourth down conversion rather than
risk either the touchback or the missed field goal. The longest field goal in
recorded football history was 69 yards, set by collegiate kicker Ove Johansson,
who was born in Sweden, in a 1976 Abilene Christian University football game
against East Texas State University (now Texas A&M Commerce) at Shotwell Stadium
in Abilene. The longest successful field goal in the NFL was 64 yards and was
completed by Matt Prater in 2013. The NCAA record is 67 yards held
Document [3](Title: Field goal): both end zones) is only 66 yards. Scaccia,
while playing indoor football, attempted a 64-yard kick that was inches short of
success, hitting the crossbar. Longer field goals have been attempted at times;
the longest attempt in the NFL, which was well short and was kicked into the
wind, was 76 yards, attempted by Sebastian Janikowski of the Oakland Raiders,
in a September 28, 2008 game against the San Diego Chargers. NFL Europe rewarded
kickers that successfully kicked a field goal of longer than 50 yards with a
bonus point, making such field goals worth 4 points instead of 3;
Answer:The record for the longest field goal in an NFL game was set by Matt
Prater at 64 yards [1], but the record for the longest field goal at any level
was 69 yards, kicked by collegiate kicker Ove Johansson in a 1976 Abilene
Christian University football game against East Texas State University [2].

Table 17: Instructions and one shot before question.
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Question: What is the botanical name of lady finger?
Document [1](Title: Caladenia catenata): Caladenia catenata Caladenia catenata,
commonly known as white caladenia, white fingers and ladyś fingers, is a plant
in the orchid family Orchidaceae and is endemic to New South Wales, Queensland
and Victoria. It is a ground orchid with a single hairy leaf and one or two
white, sometimes pink flowers on a thin, sparsely-hairy stem. It is similar to
"Caladenia carnea" but lacks the red and white bars on the labellum of that
species. "Caladenia catenata" is a terrestrial, perennial, deciduous, herb with
an underground tuber and a single, sparsely hairy, linear leaf, long and wide.
There are one or
Document [2](Title: Caladenia catenata): soil in coastal forest and shrubland.
It is probably the most common "Caladenia" in the Sydney region. Caladenia
catenata Caladenia catenata, commonly known as white caladenia, white fingers
and ladyś fingers, is a plant in the orchid family Orchidaceae and is endemic to
New South Wales, Queensland and Victoria. It is a ground orchid with a single
hairy leaf and one or two white, sometimes pink flowers on a thin, sparsely-hairy
stem. It is similar to "Caladenia carnea" but lacks the red and white bars on
the labellum of that species. "Caladenia catenata" is a terrestrial, perennial,
deciduous, herb with
Document [3](Title: Caladenia prolata): Caladenia prolata Caladenia prolata,
commonly known as long-leaf fingers or white fingers is a plant in the orchid
family Orchidaceae and is endemic to southern Australia. It is a ground orchid
with a single leaf and one or two dull white flowers which are greenish with red
stripes on the back. "Caladenia prolata" is a terrestrial, perennial, deciduous,
herb with an underground tuber and which usually grows as single plants. It has
a single erect, hairy leaf, long, wide with a reddish or purplish base. One or
two dull white flowers which are hairy and greenish with red stripes on
Answer:

Table 18: The question part of prompt.

According to the provided documents, the botanical name of "lady finger" is
Caladenia catenata [1][2][3].

Table 19: The original model only gives the answer and cites all of the documents without explanation.

The botanical name of lady finger is Caladenia catenata. This is supported by
multiple sources, including Document [1], which states that Caladenia catenata
is a plant in the orchid family Orchidaceae and is endemic to New South
Wales, Queensland, and Victoria. Document [2] also confirms this, stating
that Caladenia catenata is a ground orchid with a single hairy leaf and one
or two white, sometimes pink flowers on a thin, sparsely-hairy stem. Document
[3] further reinforces this information, providing additional details about the
plant’s growth habits and characteristics. Therefore, based on the available
information, the botanical name of lady finger is Caladenia catenata.

Table 20: The trained model gives a more detailed answer. All of the documents are cited discretely.
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