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Abstract

Despite significant progress, large language
models (LLMs) still struggle with long con-
texts due to memory limitations and their in-
ability to tackle complex and long-context
tasks. Additionally, LLMs often suffer from
a lack of transparency and are prone to pro-
ducing hallucinations. To address these chal-
lenges, we propose JERR, a novel framework
designed to enhance long-context compre-
hension via graph-based reasoning in LLMs.
JERR integrates three key components: syn-
opsis extraction, graph construction, and rela-
tional reasoning. First, synopsis is extracted
by chunking text strategically, allowing the
model to summarize and understand informa-
tion more efficiently. Second, we build a di-
rected acyclic graph (DAG) to resolve redun-
dancy, ensuring logical consistency and clar-
ity. Finally, we incorporate Monte Carlo Tree
Search (MCTS) to help the model navigate
complex reasoning paths, ensuring more accu-
rate and interpretable outputs. This framework
provides a novel solution that enables LLMs to
handle extended contexts and complex reason-
ing tasks with improved reliability and trans-
parency. Experimental results show that JERR
consistently outperforms all baselines on the
ROUGE and F1 metrics, achieving the highest
scores on the LLM-Rater evaluation.

1 Introduction

In recent years, large language models (LLMs)
have achieved significant achievements in natural
language processing (Zhao et al., 2023). However,
transformer-based LLMs still face limitations in
high-performance reasoning with long-context in-
puts due to constraints on memory usage and con-
text window size (Liu et al., 2024b; Shi et al., 2023).
Another challenge is that, although these models
are pre-trained on extensive text corpora to respond
coherently and appropriately to user inputs, they
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still struggle with complex knowledge-reasoning
tasks (Hu et al., 2023; Wang et al., 2024; Li and
Wu, 2025).

We consider that the capability to handle long-
context and graph-related tasks is critically impor-
tant. Firstly, LLMs often struggle to provide ac-
curate answers when key information is deeply
embedded within lengthy contexts(Gandhi et al.,
2024) or when specialized knowledge extends be-
yond the pre-training corpora (Jiang et al., 2024b),
particularly with up-to-date information. Secondly,
LLMs lack interpretability, transparency, and ac-
countability, which increases the risk of producing
hallucinations (Zhou et al., 2024). Thirdly, few
LLMs or frameworks operate in a human-like man-
ner (Lee et al., 2024; Li et al., 2024). They do
not think and respond in the thoughtful, delibera-
tive way humans do when faced with challenging
questions.

To address these three issues, researchers have
proposed many methods to solve these problems re-
cently, which can be roughly divided into two cate-
gories. The first approach focused on graph-related
tasks by integrating LLMs with knowledge graphs
(Luo et al., 2024; Jiang et al., 2024a; Sun et al.,
2024; Xu et al., 2024). These methods fine-tune
baseline models using large datasets of generated
triplets and reasoning paths (Liu et al., 2024a). The
second approach emphasizes training-free frame-
works, which deliver high benchmark performance
and broader generalizability, particularly for long-
context processing, without compromising infer-
ence capabilities (Lee et al., 2024; Li et al., 2024).
These frameworks also simplify knowledge updat-
ing (Han et al., 2024b; Wang et al., 2023), allowing
users to add new information to the knowledge base
without retraining the model (Ibrahim et al., 2024).

Given these challenges, we aim to design a gen-
eralized framework to enhance LLMs’ capacity
for processing long contexts and reasoning effec-
tively. Our approach simulates the way humans
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Figure 1: The overall framework of JERR consists of three main steps: 1) Given a question and a long context,
LLMs are first prompted to segment the context into chunks. 2) Next, synopsis is generated through LLMs’
prompts, followed by the construction of the graph. 3) Finally, reasoning is performed using relevant nodes,
identified through the MCTS algorithm on the question and graph, along with the synopsis to generate the final
answer.

utilize long-term memory by creating and mem-
orizing summaries of key chunks as entities with
interrelated attributes (Zhou et al., 2024). This
framework addresses long-context comprehension
in three main stages: synopsis extraction, graph
construction, and relational reasoning.

For synopsis extraction, we leverage LLMs’
summarization prompts to strategically segment
the context (Dong et al., 2023; Huang et al., 2024).
In graph construction, we employ algorithms that
address issues like entity redundancy (Chen et al.,
2024a) and attribute recurrence (Ning and Liu,
2024). This phase also involves building a directed
acyclic graph (DAG) (Zhang et al., 2024) to al-
low models to explore complex reasoning paths
while maintaining logical coherence. Finally, in
the relational reasoning phase, Monte Carlo Tree
Search (MCTS) (Zhao et al., 2024; Gao et al., 2024;
Browne et al., 2012) enables precise retrieval of rel-
evant nodes on the graph, enhancing the model’s
capacity to deliver accurate answers to complex
queries.

To this end, we propose JERR (Figure 1), a
Joint Enhancement of Relational Reasoning for
long-context LLMs.

2 Related Work

2.1 Long-Context LLMs

Recent progress in long-context LLMs highlights
training strategies that extend context windows to
improve model performance (Beltagy et al., 2020;
Zhou, 2023; Zaheer et al., 2020; Ainslie et al., 2023;
Chen et al., 2024b; Ding et al., 2024). Optimized
Transformer attention mechanisms have also been
developed to efficiently manage long contexts with-
out extensive fine-tuning (Press et al., 2022; Jin
et al., 2024; Chen et al., 2023; Xiao et al., 2024;
Han et al., 2024a). However, studies show that
model performance often declines with longer in-
puts, even within the context limit, due to the influ-
ence of distracting elements (Liu et al., 2024b; Shi
et al., 2023). Our work addresses these issues by
improving the effective context length and filtering
irrelevant content, avoiding the need for architec-
tural changes or retraining.

2.2 Retrieval

Retrieval-Augmented Generation (RAG) methods
allow LLMs to access relevant information from
large documents or text segments (Dinan et al.,
2019; Izacard and Grave, 2021; Park et al., 2023;
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Lewis et al., 2020). Research has examined re-
trieval granularity at levels such as tokens (Khan-
delwal et al., 2020), entities (Févry et al., 2020;
de Jong et al., 2022), and chunks, with tech-
niques ranging from traditional BM25 (Rasooli
and Tetreault, 2015) to advanced learning-based
approaches (Sachan et al., 2023). Although RAG
enhances retrieval accuracy, it struggles with com-
plex queries due to limited decision-making. Our
approach leverages relational reasoning in a graph-
based framework to better retrieve and integrate rel-
evant information for tasks requiring long-context
understanding.

2.3 Agent for Retrieval

Interactive agents have been employed to help
LLMs navigate and process long texts. PEARL
(Chen et al., 2024a) uses iterative prompting to
improve understanding, and Self-note (Lanchantin
et al., 2024) integrates notes with documents for
better reasoning. LongRAG (Jiang et al., 2024c) in-
troduces a “long retriever” and a “long reader”,
allowing the entire corpus to be processed into
larger-sized units, which reduces the number of
units needed during retrieval and alleviates the
burden on the retriever. GraphRAG (Edge et al.,
2024) introduces a graph-based retrieval augmenta-
tion framework that enhances large language mod-
els by explicitly modeling entity relationships and
semantic associations within knowledge sources.
GraphReader (Li et al., 2024) addresses these is-
sues by structuring text into graphs and employing
agents for autonomous exploration.

3 Methodology

This section details the design and implementation
of our framework, JERR, an agent that integrates
graph structures with long-context processing ca-
pabilities.

3.1 Overview of the Approach

As discussed in Section 1, there remains a signifi-
cant challenge in balancing long-context process-
ing with strong reasoning capabilities in LLMs. To
address this, we propose a three-step approach that
combines synopsis extraction, graph construction,
and graph-based reasoning.

For synopsis extraction, we use the autogen1

package to segment the original long context into
chunks. Each chunk is then refined into a synopsis

1https://github.com/microsoft/autogen

through targeted prompts specifically designed for
summarization.

For graph construction, we extract nodes and
attributes via prompts of information atoms, core
components and attributes extraction. Then we
incorporate both exact and similar deduplication
techniques. We utilize a Bloom Filter with Trie
for exact match and SimHash for similarity-based
deduplication. Subsequently, inspired by the core
approach in Shi et al.’s (2023) work, we construct a
Directed Acyclic Graph (DAG), which significantly
enhances the efficiency of graph traversal, allow-
ing the agent to conduct more focused exploration
during the reasoning process.

For graph-based reasoning, we identify the top-k
nodes most relevant to a given question via em-
ploying the Monte Carlo Tree Search (MCTS) algo-
rithm. The resulting subset of relevant nodes, along
with the extracted synopsis, is used to prompt the
agent. This allows the agent to identify specific
sections of the original text that should be revisited
and replaced. Finally, the combination of the ex-
tracted synopsis and selected passages is used to
generate a well-informed response to the query.

3.2 Synopsis Extraction
To extend the capacity of large language models
(LLMs) for long-context processing, a foundational
approach involves segmenting the context into man-
ageable chunks through prompt-based or conven-
tional chunking methods.

The autogen chunking function allows for var-
ious customization parameters, including a maxi-
mum token limit per chunk, a specified chunking
mode, an option to enforce breaks at empty lines,
and an overlap line count to ensure continuity be-
tween consecutive chunks. Given an input context
T , the function can be expressed as follows:

chunk (T ) = {t1, t2, ..., tn} (1)

In the chunking phase, the input text is divided into
a set of segments, denoted as {t1, t2, ..., tn}. This
segmentation is followed by a synopsis extraction
prompt (in §A.1) with specific parameter settings,
designed to facilitate efficient storage and rapid re-
trieval of the most relevant information from the
extended context. This process provides a struc-
tured approach to distilling key information from
each chunk. The resulting set of synopsis segments
can be represented as:

S = {s1, s2, ..., sn} =
n
U
i=1
psyn (ti) (2)
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where psyn denotes the synopsis extraction prompt.
Each synopsis segment sn thus captures the essen-
tial content of its corresponding chunk ti.

3.3 Graph constructing
To maximize the effectiveness of synopsis, we de-
veloped a graph construction method that struc-
tures an information database, capturing key enti-
ties and relationships within the text. This approach
provides a robust pipeline for entity deduplication
and the construction of a Directed Acyclic Graph
(DAG) that effectively encapsulates semantic rela-
tionships across the text corpus.

Initially, entities and core elements are extracted
from synopsis using the corresponding prompts (in
§A.2 and §A.3). Then we process exact deduplica-
tion, where each entity is passed through a Bloom
Filter2 and Trie structure to retain only unique en-
tities. The set of exact deduplicated elements is
defined as:

C = {ci |c = ddpexact (sj) , ∀sj ∈ S } (3)

where ci represents the result of deduplication for
each synopsis segment sj and ddpexact denotes the
exact deduplication function.

A second deduplication step is performed on the
unique entities from the previous stage using the
SimHash3 algorithm. SimHash approximates simi-
larity between entities by generating hash values,
which are compared to determine near-duplicates.
Entities with a bitwise difference below a set thresh-
old (e.g., three bits) are considered similar and are
combined. Similarly, the set of similar dedupli-
cated elements is denoted as:

V = {vi |v = ddpsim (cj, θ) , ∀cj ∈ C } (4)

where vi denotes the final set of candidate nodes
after two rounds of deduplication, θ is the similar-
ity threshold and ddpsim represents the SimHash-
based deduplication function.

The final step involves constructing graph. In
this stage, unique entities from deduplication stages
are iteratively added as nodes in the graph. Each
node is annotated with the corresponding synopsis
derived from the segmented context. For each pair
of entities within a chunk, a directed edge is pro-
posed based on the existence of relational attributes
between them. These relational attributes are deter-
mined using an edge attribute generation prompt

2https://pypi.org/project/pybloom/
3https://pypi.org/project/simhash/

(in §A.4), and the resulting set of attributes can be
expressed as:

E = {(vi, vj) | promptea (vi, vj) 6= 0, ∀vi, vj ∈ V } (5)

Thus, graph G is defined as G = (V,E).

3.4 Graph-based Reasoning
After constructing the graph G, we identify the
most relevant nodes using prompt-extracted key-
words from query and the Monte Carlo Tree Search
(MCTS) as a graph search mechanism. Upon re-
trieving the relevant nodes, a prompt-based mecha-
nism guides the agent in selecting key chunks from
the original context. The agent then uses both the
retrieved nodes and the selected context chunks to
perform an inference step and generate a response
to the user’s query.

The Monte Carlo Tree Search (MCTS) mech-
anism searches for relevant nodes by iteratively
simulating paths from a root node set V to poten-
tial child nodes within the synopsis graph. Dur-
ing the selection phase, it traverses down the tree,
choosing child nodes with the highest win/visit ra-
tio to maximize exploration of promising nodes.
In the expansion phase, it adds unexplored neigh-
bor nodes as children if the selected node lacks
children. The simulation phase computes scores
by evaluating keyword matches between the query
and the nodes in the simulated path, approximating
relevance based on keyword overlap. Finally, in
backpropagation, these scores are updated along
the path to the root, guiding the search toward
nodes that yield high relevance scores in future
iterations. Given a specified number of returned
nodes k, graph G and user query q, the resulting
set of candidate nodes after the MCTS algorithm
can be defined as:

R = MCTS (G, q, k) (6)

The above MCTS process is detailed as §B.

4 Experiment

In this section, we describe the experimental setup
and present our main results with an ablation study,
case study of our proposed approach (cost analysis
is in §C.2).

4.1 Experiment Setup
Dataset We conduct experiments on three types
of long-context QA benchmarks, QuALITY,
MuSiQue and NarrativeQA, shown in Table 1. See
more details in §C.1.
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Table 1: The statistic of benchmark in our experiments
to conduct three types of evaluation on our agent

Task Dataset Avg Tokens Max Tokens Samples
Multi-choice QA QuALITY 4.1k 6.0k 230

Multi-hop QA MuSiQue 15.5k 16.0k 200
Single-hop QA NarrativeQA 29.7k 63.7k 200

Baselines We evaluate the proposed approach
against several established baselines:

Retrieval Augmented Generation: As dis-
cussed in Section 2, retrieval-augmented generation
(RAG) is a widely used approach for accessing ex-
tensive text collections beyond the LLM’s context
window. In our study, we implement two RAG
variants: one utilizing BM25 (2020) and the other
leveraging neural retrieval with the Qwen API’s
text-embedding v3 (2024) to retrieve the chunks
most relevant to the user’s query. The retrieved
chunks are then processed by the qwen-plus 128k
(2024) model to generate answers.

Long-context LLM: Given the cost constraints
for handling extensive long-context benchmarks,
we choose not to use GPT-4, instead selecting
the high-performance qwen-plus-128k model to di-
rectly process the entire input passage. This choice
aligns well with our selected datasets, which fit
within the qwen-plus-128k input window capacity.

Agent-based Method: For agent-based re-
trieval, we use ReadAgent (Lee et al., 2024), a
model inspired by human reading processes that
performs interactive retrieval and reading, demon-
strating effective handling of long-context QA
tasks. We replace the PALM-2L model used in
the ReadAgent study with the qwen-plus-128k
model. GraphReader (Li et al., 2024) was not in-
corporated as a comparative baseline in the present
study due to the absence of public source code,
thus lacking its operational integration with qwen-
plus-128k. We’ve clarified the differences among
JERR, GraphReader and GraphRAG in §D. While
GraphRAG (Edge et al., 2024) and LongRAG
(Jiang et al., 2024c), as excellent agent-based meth-
ods, can be compared during experiments.

Evaluation Settings To assess the long-context
summarization capabilities of our model, we em-
ploy several automatic evaluation metrics, includ-
ing ROUGE (R-1, R-2, and R-L) and F1 score.
While these automatic metrics offer high efficiency,
the accuracy may vary depending on the model’s
response format. To address this, we incorporate
LLM Raters within ReadAgent to evaluate answer

Table 2: Comparison of Different Methods on QuAL-
ITY Datasets

Method ACC
BM25 Retrieval with qwen API

Top-1 58.68%
Top-2 66.97%
Top-3 73.21%
Top-4 74.59%
Top-5 78.00%
Top-6 79.91%

Neural Retrieval with qwen API
Top-1 66.30%
Top-2 73.92%
Top-3 78.14%
Top-4 79.43%
Top-5 81.30%
Top-6 83.32%

qwen-plus-128k 84.80%
ReadAgent with qwen API 83.80%
LongRAG with qwen API 84.91%

GraphRAG with qwen API 85.02%
JERR with qwen API 86.39%

correctness by prompting a comparison to ground
truth responses. The LLM Raters include LR-1
(strict version) and LR-2 (permissive version). The
specific prompts of them can be seen in (Lee et al.,
2024).

Implementation Details In the RAG baseline,
chunk sizes are tailored to the specific characteris-
tics of each dataset: 2000 tokens for NarrativeQA
and MuSiQue, and 600 tokens for QuALITY, to
account for differences in passage lengths. The
top-k parameter in MCTS is set to 5, a choice
informed by ablation study results. To identify
relevant pages across datasets, we adapt a look-
up prompt approach inspired by ReadAgent (Lee
et al., 2024), applying dataset-specific configura-
tions to effectively address questions in QuALITY,
NarrativeQA, and MuSiQue, as outlined in §A.5
and §A.6.

4.2 Overall Performance Comparison
The comparative results of the four baseline meth-
ods and the proposed JERR framework on multiple-
choice question answering, multi-hop, and single-
hop long-context question-answering benchmarks
are presented in Table 2 and Table 3.

RAG Methods BM25 and Neural Retrieval ap-
proaches demonstrate varying effectiveness across
different benchmark tasks. In the QuALITY bench-
mark (Table 2), both retrieval methods underper-
form compared to direct reading approaches, sug-
gesting that chunking and ranking processes may
introduce unnecessary complexity. The retrieval
methods show consistent accuracy improvements
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Table 3: Comparison of Different Methods on MuSiQue and NarrativeQA Datasets

Dataset MuSiQue NarrativeQA
Method LR-1 LR-2 R-1 R-2 R-L F1 LR-1 LR-2 R-1 R-2 R-L F1

BM25 Retrieval with qwen API
Top-1 0.175 0.275 0.147 0.094 0.139 0.253 0.165 0.300 0.100 0.076 0.104 0.182
Top-2 0.260 0.380 0.184 0.149 0.181 0.291 0.255 0.430 0.134 0.108 0.122 0.194
Top-3 0.325 0.47 0.161 0.116 0.153 0.251 0.345 0.520 0.138 0.112 0.135 0.221
Top-4 0.355 0.505 0.172 0.137 0.168 0.233 0.340 0.575 0.143 0.103 0.131 0.217
Top-5 0.425 0.535 0.159 0.112 0.156 0.267 0.420 0.585 0.150 0.143 0.150 0.238
Top-6 0.41 0.525 0.160 0.109 0.154 0.286 0.445 0.645 0.155 0.129 0.150 0.237

Neural Retrieval with qwen API
Top-1 0.185 0.295 0.072 0.068 0.070 0.235 0.290 0.410 0.075 0.053 0.069 0.156
Top-2 0.275 0.405 0.079 0.062 0.05 0.269 0.340 0.525 0.077 0.056 0.070 0.160
Top-3 0.335 0.450 0.088 0.068 0.084 0.231 0.390 0.570 0.081 0.051 0.073 0.162
Top-4 0.395 0.535 0.087 0.074 0.083 0.288 0.445 0.635 0.087 0.059 0.079 0.178
Top-5 0.425 0.565 0.094 0.076 0.091 0.295 0.445 0.645 0.089 0.055 0.081 0.166
Top-6 0.405 0.525 0.091 0.074 0.089 0.272 0.475 0.685 0.091 0.061 0.083 0.165

qwen-plus-128k 0.425 0.515 0.095 0.075 0.091 0.328 0.515 0.735 0.104 0.066 0.094 0.251
ReadAgent with qwen API 0.405 0.530 0.206 0.169 0.201 0.448 0.520 0.735 0.230 0.209 0.212 0.247
LongRAG with qwen API 0.415 0.545 0.209 0.174 0.203 0.473 0.520 0.735 0.228 0.204 0.201 0.249
GraphRAG with qwen API 0.410 0.550 0.211 0.185 0.205 0.488 0.525 0.745 0.221 0.205 0.207 0.254

JERR with qwen API 0.455 0.595 0.226 0.212 0.218 0.505 0.540 0.760 0.234 0.215 0.216 0.269

up to Top-5/Top-6 chunks, after which returns di-
minish.

BM25 retrieval consistently outperforms neu-
ral retrieval in lexical-based metrics (ROUGE-1,
ROUGE-2, ROUGE-L) across MuSiQue and Nar-
rativeQA benchmarks in Table 3. For instance, in
MuSiQue, BM25 achieves an R-1 score of 0.159 at
Top-5, significantly higher than neural retrieval’s
0.094. This performance gap highlights BM25’s
strength in capturing lexical overlap.

For LR metrics, both retrieval methods exhibit
similar patterns: starting with low Top-1 scores,
they improve gradually with additional chunks, typ-
ically peaking at Top-5 or Top-6. In MuSiQue, both
methods reach comparable maximum scores (LR-1:
0.425, LR-2: 0.55), while in NarrativeQA, neu-
ral retrieval achieves peak performance with Top-6
chunks (LR-1: 0.475, LR-2: 0.685). However,
increasing retrieval chunks beyond these points
shows diminishing returns, indicating a trade-off
between comprehensive coverage and precision.

Long-Context LLMs qwen-plus-128k demon-
strates distinct capabilities across different bench-
mark tasks. In the QuALITY benchmark, the
model achieves strong accuracy through direct
question-answering without context segmentation,
effectively avoiding the "lost in the middle" issue
(Liu et al., 2024b) when input lengths fall within
its context window.

For complex summarization tasks in MuSiQue
and NarrativeQA, qwen-plus-128k shows mixed
performance patterns. While achieving rela-
tively lower ROUGE scores (R-1: 0.095-0.104,

R-2: 0.066-0.075, R-L: 0.091-0.094) compared
to retrieval-based approaches, the model demon-
strates stronger performance in LR metrics. Specif-
ically, it achieves LR-1 scores of 0.425-0.515 and
LR-2 scores of 0.515-0.735 across these bench-
marks, indicating robust semantic understanding of
long-form content.

The F1 scores (0.328 in MuSiQue, 0.251 in Nar-
rativeQA) suggest balanced precision-recall perfor-
mance, though generally lower than BM25 retrieval
approaches. However, a key advantage of qwen-
plus-128k lies in its ability to process entire docu-
ments holistically, achieving comparable recall to
chunking-based approaches without the overhead
of document segmentation and selection.

Agent-based Methods Our framework, JERR,
consistently demonstrates superior performance
across diverse benchmarks by leveraging agent-
based approaches for reasoning and information
retrieval. In the QuALITY benchmark (Table
2), JERR outperforms other baselines in multiple-
choice question-answering tasks. By employing
the Monte Carlo Tree Search (MCTS) algorithm for
graph construction and exploration, JERR achieves
robust graph comprehension and precise relational
reasoning. This enables it to efficiently retrieve and
synthesize relevant information, minimizing infor-
mation loss. In contrast, methods such as ReadA-
gent, which rely on compressing context into gist
memories, face limitations in accuracy due to sig-
nificant information loss during compression.

For the MuSiQue benchmark (Table 3), JERR
demonstrates a clear advantage in long-range recall
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tasks, achieving superior LR-1 and LR-2 scores of
0.455 and 0.595, respectively, compared to ReadA-
gent’s 0.405 and 0.53. Additionally, JERR sur-
passes ReadAgent across automatic evaluation met-
rics, including ROUGE and F1 scores, showcasing
its effectiveness in handling multi-sentence reason-
ing tasks.

In the NarrativeQA benchmark (Table 3), JERR
achieves the highest ROUGE, F1, and LR scores,
excelling in both detailed lexical matching and
maintaining narrative coherence. This highlights
its ability to adapt to complex narrative structures,
effectively preserving key elements from the source
text while ensuring a cohesive understanding of the
storyline. Across all datasets, JERR is a reliable
and versatile approach for long-text reasoning and
retrieval tasks.

The results suggest that JERR’s graph-based ap-
proach offers an advantage in processing and rea-
soning over extended narrative information, mak-
ing it a highly effective solution for retrieval-based
tasks on narrative datasets.

4.3 Ablation Study

The Effect of MCTS
A critical step in JERR’s processes is the MCTS

algorithm setting. Thus, in Table 4, we com-
pare JERR’s performance using the MCTS algo-
rithm with that of the PageRank algorithm on
the QuALITY benchmark. The results clearly
show that JERR achieves better performance with
MCTS, boosting accuracy by approximately 5%
and demonstrating a notable improvement.

Table 4: w. / w.o. MCTS accuracy Comparison on
QuALITY of JERR

Method Accuracy
JERR (via MCTS algorithm) 86.39%
JERR (via PageRank algorithm) 81.69%

Impact of the Number of Relevant Nodes
Another essential factor in JERR’s performance

is the selection of the top-k values. We con-
ducted experiments with various top-k values on
the QuALITY dataset to assess their impact. As
shown in Figure 2, performance improves as top-k
values increase, peaking at an optimal value of 5,
which we adopt as the default setting. Beyond this
point, however, performance declines, likely due
to an overload of retrieved information, which may
hinder the model’s inference capability.

Figure 2: Performance of JERR with different top-k
relevant nodes text on QuALITY.

Figure 3: Performance of JERR with different chunk
size on NarrativeQA.

Impact of Chunk Size For different setting of
chunk size, we conduct experiments comparing
LR-1 and LR-2 to evaluate JERR’s performance
on NarrativeQA dataset. As shown in Figure 3, the
best performance is achieved with chunk size of
2k. It is evident that performance declines when
the chunk size is set too large, which we attribute
to model’s inability to capture all details within
longer chunks. Smaller chunk sizes allow for more
accurate extraction of the synopsis. Therefore, we
select chunk size of 2k as default.

In the QuALITY dataset, due to its shorter aver-
age context length, we use chunk sizes under 1000
tokens to maintain an optimal number of segments.
Consistent with our findings on the NarrativeQA
dataset, Figure 5 demonstrates that accuracy de-
creases when chunk size exceeds an optimal thresh-
old. Peak performance is observed at a chunk size
of 600, which we therefore set as the default for
QuALITY.

4.4 Case Study

This section demonstrates JERR’s workflow
through a case study from QuALITY, analyzing
a 4,168-word passage about Korvin’s interactions
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Figure 4: Study of case from the second passage of QuALITY dev set with the corresponding question (1 out of 9)

Figure 5: Performance of JERR with different chunk
size on QuALITY.

with the Tr’en society, which lacks understanding
of democratic principles and mental sciences.

As illustrated in Figure 4, the original passage
undergoes refinement into synopsis chunks that
preserve essential information. JERR then con-
structs a knowledge graph where nodes represent
key concepts and edges indicate their relationships,
enabling systematic mapping of textual informa-
tion for efficient analysis.

JERR processes the question: "Why did the
Tr’en leave Korvin’s door unlocked and a weapon
nearby?" using Monte Carlo Tree Search (MCTS),
which simulates various paths within the graph to
identify the most pertinent nodes for answering the
question.

Based on the MCTS traversal, relevant nodes
(highlighted in red boxes) are extracted, encom-

passing critical concepts including the Tr’en’s
democratic incomprehension, their inability to con-
sciously resolve problems outside their governance
model, and subconscious actions stemming from
their mental limitations.

The framework synthesizes these nodes to gener-
ate an inference, suggesting that the Tr’en’s subcon-
scious influenced their decision to leave Korvin’s
door unlocked, driven by their desire to eliminate
the "problem" he represented due to cognitive dis-
sonance within their society.

The generated inference aligns with the correct
answer (marked with a green check mark), con-
firming that the Tr’en subconsciously recognized
Korvin as an insoluble problem and facilitated his
escape to avoid further societal contradiction.

4.5 Comparison to GraphReader on GPT-4

We’ve conducted Experiment, which has the
same settings in the paper of GraphReader, on
MusiQUE and NarrativeQA to compare JERR with
GraphReader and other baselines (e.g., ReadAgent,
Pearl, LongRAG and GraphRAG) using GPT-4-
128k. The table is presented in additional TABLE
5 as below (the statistics in the table is aligned with
Table 2 in GraphReader paper, MQ and NR stand
for MuSiQue and NarrativeQA, respectively).

The result demonstrates that JERR outperforms
GraphReader and other baselines using the base
model GPT-4, which shows great robustness and
proves that JERR Framework doesn’t depend on a
specific LLM.
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Table 5: Comparison to GraphReader

Methods LR-1 (MQ) LR-2 (MQ) F1 (MQ) LR-1 (NR) LR-2 (NR) F1 (NR)

BM25 (Top-1) 33 36.5 23.9 29.5 34.5 11.3
BM25 (Top-3) 43.5 49.5 31.1 44.5 52.5 20.5
Ada-002 (Top-1) 34.5 37 26.6 37.5 46.5 15.5
Ada-002 (Top-3) 40 45.5 32.1 45.5 53 19.5
GPT-4-128k 52 59.5 42.7 63.5 77 29.4
ReadAgent 54.5 61 45.1 63.5 75.5 18.9
Pearl 45 51.5 33.3 43.5 48 16.2
LongRAG 49 54.5 40.3 60.5 69.2 27
GraphRAG 46.5 56 31.2 52 66.5 23.1
GraphReader 59 63.5 47.4 65 80 29.8
JERR 60.5 64 49.2 68 83 30.1

5 Conclusion

We have introduced JERR, a graph with MCTS
algorithm based agent, designed to combine effec-
tive long context and relational reasoning graph
smoothly in LLMs. JERR transfers the input long
context into synopsis, builds DAGs and employs
MTCS algorithm to search the relational nodes in-
formation, thus guaranteeing high performance on
long-context tasks versus all the baselines.

6 Limitations

Our current framework JERR has so far been val-
idated exclusively on QuALITY, MuSiQue and
NarrativeQA. Experimental results demonstrate
that JERR has high performance on such long-
context benchmarks. However, JERR has limita-
tions mainly on three aspects:

For task scalability, although JERR performs
well on the selected datasets, its ability to general-
ize to other reasoning tasks in different knowledge
domains remains uncertain. Further validation on
a broader range of datasets is necessary to assess
its scalability.

For knowledge graph construction, the frame-
work relies on the Qwen API to extract graph
nodes, which helps automate knowledge represen-
tation. However, constructing a refined knowledge
graph still requires a complex pipeline which can
make large-scale and high-precision graph building
a challenging task.

For task complexity, JERR applies a graph-based
approach and Monte Carlo Tree Search (MCTS) to
improve knowledge reasoning and retrieve relevant
text more effectively. However, its effectiveness on
simpler tasks has not been systematically evaluated.
Future studies should compare its performance on

both simple and complex tasks to provide a more
complete assessment of its capabilities.
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A Prompts

A.1 Synopsis Extraction Prompt

Please transfer the following chunk of a
passage into synopsis.
Just give me a synopsis version. No extra
explanation.
Passage: {SYNOPSIS TEXT}

A.2 Entities Extraction Prompt

You are a summarizing agent. Given a
chunk of paragraph, summarize it into
information atoms. (Information Atoms:
Brief statements represent the most fun-
damental, indivisible facts, covering ideas
like propositions, theories, entities, con-
cepts, and underlying aspects such as rea-
soning, cause-effect relationships, event
sequences, social interactions, timelines,
and similar elements.)

A.3 Elements Extraction Prompt

You are a keyword extracting agent. Given
a chunk of paragraph of a story, extract
only 3 core components.
(Core components: The fundamental
nouns (e.g., people, moments, occur-
rences, settings, quantities), verbs (e.g.,
activities), and adjectives (e.g., conditions,
emotions) that are central to the story’s
progression.)

A.4 Edge Attributes Prompt

Based on the atomic facts: ’{INFOR-
MATION ATOMS1}’ and ’{INFORMA-
TION ATOMS2}’, what are the at-
tributes between {ELEMENT1} and {EL-
EMENT2}?
(Information Atoms: smallest, indivisible
truths extracted from text chunks.)
Use no more than three words to answer.

A.5 QuALITY Answer Prompt

Read the following article and answer a
multiple choice question. For example, if
(C) is correct, answer with "Answer: (C)
...". No extra explanation please.
Article: {CONTEXT}
Question: {QUESTION} {OPTIONS}

A.6 NarrativeQA / MuSiQue Answer Prompt

{RELEVANT NODES TEXT & SYNOP-
SIS}
Question: {QUESTION}
Answer the question based on the above
relevant content and extracted synopsis.
Your answer should be short and concise.

B MCTS Process

Initialize the Search Tree We define the search
tree nodes T , where each tree node corresponds
to an informational node within the graph. Each
node’s state sj ∈ S is associated with a graph node
vj ∈ V in graphG. The visit countN(s) represents
the number of times a node’s state sj has been
visited, while the total reward W (s) reflects the
cumulative reward accumulated by visits to node’s
state sj. The average reward of node’s state sj,
utilized during the selection stage, is calculated as:

Q (s) =
W (s)

N (s)
(7)

Selection The selection strategy employs the Up-
per Confidence Bound (UCB) to balance explo-
ration and exploitation. An exploration coefficient
κ is introduced to regulate this balance. The UCB
for a node s is defined as:

UCB (s) = Q (s)+κ ·
√
lnN (parent (s))

N (s)
(8)

The selection criterion then chooses the node with
the highestUCB (s) in the current set of tree nodes
T :

snext = argmax
s∈T

UCB (s) (9)
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Algorithm 1 MCTS Relevant Nodes Extraction
Algorithm

Input: Graph G, Query text Q, Start nodes S,
Number of simulations N

Output: Top nodes based on keyword relevance
1: Initialize root node R with state S[0]
2: Extract keywords K from Q as set of lower-

case words
3: for i = 1 to N do
4: Selection: Set current node n← R
5: while n has children do
6: Select the best child of n based on

win/visit ratio
7: if n has no selectable children then
8: break
9: end if

10: end while
11: Expansion:
12: if n has no children then
13: Expand children for n using neighbors in

G
14: end if
15: Simulation:
16: if n has children then
17: Set current node n to best child of n
18: end if
19: Initialize score score← 0
20: for depth d = 1 to 10 do
21: if n exists in G then
22: Increment score by matching keywords

K with state of n
23: Set n to best child of n
24: if n has no children then
25: break
26: end if
27: end if
28: end for
29: Backpropagation:
30: while n is not null do
31: Update visits and wins for n based on

score
32: Set n to parent of n
33: end while
34: end for
35: Sort root children by win/visit ratio and return

top nodes
36: return Top relevant nodes based on MCTS

exploration

Expansion If the selected node snext has not
reached a terminal state or attained a sufficient visit
count, the expansion step continues by adding its
corresponding graph node vnext ∈ V to its neigh-
boring nodes. The appropriate set of nodes for
expansion is defined as:

E (snext) =
{
s′ ∈ N (vnext) ∩ s′ /∈ T

}
(10)

Simulation In this stage, a random simulation is
conducted from one of the newly expanded nodes
s′ to estimate the potential reward along this path.
The reward for state s′ is evaluated based on its
relevance to the query, which is determined by the
maximum simulation depth d and a set of keywords
extracted from the query. The reward function is
given as:

r
(
s′
)

=
d
Σ
i=1

∣∣K ∩ E
(
s′
)∣∣ (11)

Backpropagation The final step of MCTS is the
Backpropagation phase, where the reward r (s′)
obtained from the simulation is propagated back
through each node along the traversal path, updat-
ing both the total rewardW (s) and visit countN(s)
for each node:

N(sn) = N(sn−1) + 1 (12)

W (sn) = W (sn−1) + r
(
s′
)

(13)

As a result, the set of top− k, ranked by relevance,
is used as the set of retrieved nodes R:

R =

{(
ri,

Wi

Ni

)∣∣∣∣ i = 1, 2, ..., k

}
(14)

In summary, the entire MCTS procedure com-
prises five stages, as illustrated in Algorithm 1. The
final retrieval of relevant nodes is expressed as:

R = MCTS (G, q, k) = {r1, r2, ..., rk} , ri ∈ V (15)

C Experiment

C.1 Dataset list
QuALITY4 is a four-way multiple-choice QA
challenge comprising text data from diverse
sources, evaluated based on accuracy. The dev
set of QuALITY includes 230 long-context sam-
ples with corresponding questions, answer options,
and other details.

4https://github.com/nyu-mll/quality
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MuSiQue5 serves as a multi-hop long-context
QA benchmark, with an average of 15.5 thousand
tokens across 200 samples. MuSiQue’s questions
include various content types, such as narratives,
expository texts, and factual material. This diver-
sity challenges models to generalize across various
genres and structures, strengthening their capac-
ity for comprehensive language understanding and
reasoning.

We also include the NarrativeQA6 dataset as
a single-hop long-context benchmark, averaging
29.7 thousand tokens across 200 samples. This
dataset focuses on narrative comprehension in a
long-form context, requiring models to answer
questions based on an understanding of entire nar-
ratives, such as books or movie scripts, rather than
isolated text segments. This differentiates Narra-
tiveQA from typical QA datasets, which generally
focus on shorter text segments.

C.2 Cost Analysis

Table 6 compares the average token consumption
across methods used in our experiments. Neural
retrieval demonstrates the highest token usage, as
it requires converting context chunks into embed-
dings with the text-embedding-v3 model, adding
significant computational overhead. BM25 also
has high token consumption, greater than that of
the qwen-plus-128k method alone, due to the addi-
tional step of evaluating and selecting Top-k chunks
for answer generation. Our agent-based method,
JERR, consumes 1.23 times more tokens than
ReadAgent but achieves superior performance.

Table 6: comparison of token consumption per question
among all methods on MuSiQue LR evaluation, where
"Avg. Ctx. #Tokens" refers to the average token num-
ber of the original dataset. The "Avg. Cost #Tokens"
comprise both input tokens and output tokens during
exploration

Method Avg. Ctx # Tokens Avg. Cost #Tokens
JERR 15.5 k 98.54 k
JERR (w.o. Graph Construction) 15.5 k 44.33 k
ReadAgent 15.5 k 79.98 k
Neural Retrieval 15.5 k 138.90 k
BM25 15.5 k 39.18 k
qwen-plus-128k 15.5 k 16.99 k

Additionally, once JERR has constructed its
graphs, it can reuse these structures efficiently with-
out requiring reconstruction for each new query.

5https://github.com/stonybrooknlp/musique
6https://github.com/google-deepmind/narrativeqa

This capability significantly reduces JERR’s token
cost, averaging 44.33k tokens per query when op-
erating without additional graph construction. This
efficiency marks a substantial improvement over
the token consumption required by ReadAgent.

D Differences among JERR,
GraphReader and GraphRAG

GraphReader constructs undirected graphs where
nodes represent text chunks or atomic facts. While
this captures local relationships, undirected edges
lack explicit hierarchical or causal dependencies,
leading to inefficient exploration (e.g., cycles or
backtracking). While JERR introduces a directed
acyclic graph (DAG) to model causal and hierarchi-
cal relationships explicitly. For example, edges in
JERR’s DAG are weighted by relational attributes
(e.g., "causes," "belongs-to"), allowing the agent to
prioritize paths with stronger semantic relevance.
This structure inherently avoids cycles and sup-
ports efficient traversal, whereas GraphReader’s
undirected graph requires heuristic rules to prevent
redundant exploration.

GraphRAG relies on entity extraction and hi-
erarchical community detection (via Leiden algo-
rithm) to group nodes, followed by community-
level summarization. While effective for global
query-focused summarization, this approach treats
communities as isolated modules, limiting cross-
community reasoning. Instead of partitioning
nodes into communities, we perform synopsis ex-
traction—an LLM-guided summarization process
that preserves logical dependencies across chunks.
This generates a condensed yet interconnected set
of entities and relationships, avoiding information
fragmentation. Unlike GraphRAG’s static commu-
nity summaries, JERR’s synopses retain hierarchi-
cal relationships (via DAGs), enabling multi-hop
reasoning across distant text segments.
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