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Abstract

Ensuring the robustness of factual knowledge
in LLMs is critical for reliable applications in
tasks such as question answering and reason-
ing. However, existing evaluation methods pre-
dominantly focus on performance-based met-
rics, often investigating from the perspective
of prompt perturbations, which captures only
the externally triggered side of knowledge ro-
bustness. To bridge this gap, we introduce a
principled approach to measure factual robust-
ness from the perspective of the generation pro-
cess by analyzing token distribution entropy
in combination with temperature scaling sen-
sitivity. These two factors build the Factual
Robustness Score (FRS), a novel metric which
quantifies the stability of a fact against pertur-
bations in decoding conditions, given its initial
uncertainty. To validate our approach, we con-
duct extensive experiments on 5 LLMs across
3 closed-book QA datasets (SQuUAD, TriviaQA,
and HotpotQA). We show that factual robust-
ness varies significantly — smaller models re-
port an FRS of 0.76, larger ones 0.93 — with
accuracy degrading by ~60% under increased
uncertainty. These insights demonstrate how
entropy and temperature scaling impact fac-
tual accuracy, and lay a foundation for devel-
oping more robust knowledge retention and
retrieval in future models. We release our code
at https://github.com/afastowski/frs.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language understanding and genera-
tion, demonstrating remarkable capabilities across
tasks such as question answering, knowledge-
intensive text generation, and reasoning (Petroni
et al., 2019; Roberts et al., 2020; Hu et al., 2023).
However, despite their strong performance, fac-
tual stability remains an open challenge. While a
model may provide a correct answer under one set
of decoding conditions, it may fail to do so when

faced with minor perturbations, such as variations
in sampling temperature. This raises a fundamen-
tal question: how robustly is factual knowledge
embedded in LLMs?

Traditional evaluations of factual knowledge in
LLMs rely on accuracy-based metrics, which mea-
sure correctness under fixed conditions (Joshi et al.,
2017; Kwiatkowski et al., 2019; Hendrycks et al.,
2021). However, these methods do not account for
uncertainty in fact retrieval — whether a model is
inherently confident in its answer or if its correct-
ness is fragile under perturbations. Additionally,
prior techniques often focus on single-temperature
evaluations, failing to systematically analyze how
factual outputs degrade as uncertainty is introduced
(Maynez et al., 2020; Gabriel et al., 2021). To
bridge this gap, we introduce a novel perspec-
tive: factual robustness, which examines not just
whether an answer is correct but how resistant it
is to internal uncertainty and temperature-induced
variability.

To quantify this, we propose the Factual Ro-
bustness Score (FRS), a new metric designed to
measure the stability of factual knowledge within
an LLM. Unlike previous work that assesses model
performance at isolated temperature values, FRS
integrates both entropy and temperature, providing
a comprehensive robustness assessment. Entropy
quantifies the model’s intrinsic confidence in an an-
swer, while the so-called “breaking” temperature is
the first temperature greater than zero, at which the
generation produces an incorrect answer. In other
words, it captures how much uncertainty the gener-
ation process can withstand, before shifting from
the correctly produced answer to an incorrect one.
By combining these two dimensions, FRS moves
beyond simple accuracy and provides a deeper in-
sight into how reliably knowledge is stored and
retrieved within LLMs.

Through extensive experiments across multi-
ple LLM architectures and datasets, we show that
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higher-entropy facts degrade more under temper-
ature perturbations, while lower-entropy facts re-
main more stable. Model size alone does not dic-
tate robustness, as architectural and training differ-
ences also play a role. Additionally, factual stabil-
ity varies by knowledge type, with numerical facts
proving more resilient than others.

Our contributions are multifold:

1. We introduce the Factual Robustness Score
(FRS), the first metric to systematically assess
the stability of factual knowledge in LLMs by
integrating entropy and breaking temperature.

2. We analyze the impact of temperature on
factual accuracy, showing that increasing
temperature systematically degrades correct-
ness, but that this effect varies across models
and knowledge types.

3. We provide empirical evidence that fac-
tual robustness is not solely determined by
model size, highlighting the role of architec-
ture and training methods in knowledge sta-
bility.

4. We identify variations in robustness across
different types of factual knowledge, show-
ing that certain categories, such as numerical
facts, are more resilient than others.

5. We demonstrate that factual robustness
cannot be inferred from accuracy alone,
reinforcing the need for stability-focused eval-
uation methods beyond traditional correctness
assessments.

2 Preliminaries

Entropy is a measure of disorder and randomness
in a system. In text generation, it measures the
spread of the probability distribution over possible
tokens, with higher entropy indicating more ran-
domness, and lower entropy reflecting more confi-
dent, deterministic predictions (see Equation (1)).
Following the intuition of entropy, we consider it
as the first factor in our robustness assessments.

H = —ZP(xi)logP(xi). (1)

Temperature is a parameter that controls the sharp-
ness of the probability distribution during text gen-
eration. It operates by scaling the logits before
applying the softmax, as defined in Equation (2):
log P(z;)
exp (max(t,s-i:o) )
P(x;;t) =
S ex ( log P(z;)
7 p max(t,e-1i=0)

@
)

where ¢ > 0 is the temperature value, ¢ > 0 is a
small number approaching 0, in our experiments set
to 10~4, to avoid zero divisions, and 1, is the in-
dicator function with the condition ¢ = 0. A lower
t makes the probability distribution more peaked,
reinforcing the dominance of high-probability to-
kens and making the model more deterministic.
Conversely, a higher temperature flattens the distri-
bution, increasing the likelihood of selecting lower-
probability tokens and promoting more diverse gen-
erations. The effect of temperature serves as the
second factor in our robustness analysis.

LLMSs’ True Factual Knowledge. To assess fac-
tual robustness in LLMs, we first identify facts the
model answers correctly at ¢ = 0, where the proba-
bility distribution is sharply peaked, ensuring the
most likely tokens dominate (see Figure 2). If the
model has high confidence in the correct answer,
it will always produce it at ¢ = 0. However, as
we increase the temperature towards ¢ = 1, the
probability distribution flattens, allowing lower-
probability tokens to be chosen. Att = 1, tem-
perature scaling no longer affects the probability
computation (see Equation (2)), meaning we ob-
serve the model’s intrinsic token distribution—its
true knowledge representation, without artificially
enforced certainty.

Our key idea is as follows: if an initially cor-
rect answer starts shifting to an incorrect one as we
increase the temperature, the fact is not robustly
stored in the model. In other words, if the model
can only produce the correct answer when artifi-
cially forced into a low-uncertainty setting (t = 0),
then the fact is not stably embedded in its knowl-
edge base. A truly robust fact should remain correct
across a range of temperatures, reflecting consistent
and confident knowledge retention. Furthermore,
the initial entropy of a generated answer gives an-
other factor about its robustness: if an answer is pro-
duced at high uncertainty, it is less robust from the
beginning. This leads us to introduce a novel mea-
sure, which incorporates both of these factors —
the Factual Robustness Score (FRS) — which is
further detailed in Section 5.

3 Related Work

3.1 Factual Knowledge in Language Models

LLM:s encode vast amounts of factual knowledge,
often retrieved from internal representations rather
than structured databases. While models can re-
call these facts, their responses remain inconsis-
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tent, suffering from hallucinations and retrieval er-
rors (Petroni et al. (2019), Roberts et al. (2020)).
A prominent research direction focuses on under-
standing and modifying how knowledge is encoded
within LLMs: while Geva et al. (2020) and Dai
et al. (2021) identified specific structures within
Transformers, such as key-value memory stores
and knowledge neurons, De Cao et al. (2021) and
Meng et al. (2022) explored techniques to directly
manipulate the information stored within model
weights. However, beyond the challenge of mod-
ifying knowledge, ensuring its stability and relia-
bility remains an open problem. While Zong et al.
(2024) introduced ComparisonQA to evaluate fac-
tual robustness under controlled knowledge fre-
quency and uncertainty, a broader body of work
has framed robustness through the lens of adver-
sarial attacks. Studies such as Xu et al. (2024),
Bondarenko and Viehweger (2024), and Howe et al.
(2024) have examined the vulnerability of LLMs
to prompt-side perturbations, revealing inconsis-
tencies in factual recall. Approaching the question
through the prompt lens, Mahaut et al. (2024) con-
sider factual robustness in terms of semantically
equivalent question phrasing. Contrary to the ap-
proaches above, our work shifts the focus from
external prompt modifications to the model-side
of the generation process, investigating the inter-
nal mechanisms that contribute to factual robust-
ness.

3.2 Temperature and Language Models

While seemingly distant from modern LLMs, Ack-
ley et al. (1985) established temperature as a key
factor in shaping probability distributions, a prin-
ciple still central to language model decoding to-
day. Recent studies have debated whether temper-
ature significantly impacts problem-solving abil-
ity. Renze and Guven (2024) found that varying
temperature from 0.0 to 1.6 had no significant ef-
fect on accuracy, challenging the assumption that
lower temperatures enhance reasoning. Beyond
accuracy, temperature is often associated with cre-
ativity: Peeperkorn et al. (2024) showed that while
higher temperatures increase variation, this does
not necessarily translate into meaningful novelty,
raising questions about its role.

Recognizing the limitations of fixed-temperature
sampling, researchers have developed adaptive tem-
perature control strategies to balance quality and
diversity. Chang et al. (2023) introduced KL-
Divergence Guided Temperature Sampling, which

adjusts temperature dynamically based on token
relevance, while Zhang et al. (2024) proposed
Entropy-based Dynamic Temperature (EDT) Sam-
pling to optimize fluency and diversity.

A novel perspective on temperature scaling
comes from Nakaishi et al. (2024), who found that
LLMs undergo critical phase transitions at certain
temperature thresholds, exhibiting abrupt behav-
ioral shifts akin to phase changes in physical sys-
tems. This suggests that temperature adjustments
do more than refine probability distributions — they
can fundamentally reshape generative dynamics,
making temperature a key factor in understanding
LLM computational behavior.

Our Contribution. Unlike existing performance-
based methods that assess correctness at fixed tem-
peratures, or studies in attack-based scenarios, we
evaluate how robustly a fact is stored within a
model by incorporating both entropy and “breaking”
temperature — the temperature at which a model
switches to producing an incorrect answer. This
allows for a more comprehensive assessment of
factual stability, moving beyond surface-level cor-
rectness to quantify how knowledge withstands
perturbations in sampling conditions. Our work
provides new insights into the resilience of LLMs
and highlights the need for robustness-focused eval-
uation metrics in future research.

4 Experiments and Results

4.1 Experimental Setup
4.1.1 Closed-Book Question Answering Setup

Our study operates within a closed-book ques-
tion answering (QA) setting, where models gen-
erate answers based solely on the input question,
without access to external documents or retrieval
mechanisms. This ensures that any correctly an-
swered question reflects knowledge stored within
the model’s parameters.

Datasets. We use three widely studied QA datasets,
each adjusted for the closed-book setting: (1)
SQuAD (Rajpurkar et al., 2016), a reading compre-
hension dataset primarily composed of Wikipedia-
based questions; (2) TriviaQA (Joshi et al., 2017),
a collection of knowledge-intensive questions orig-
inally designed for open-domain QA; and (3) Hot-
potQA (Yang et al., 2018), a multi-hop QA dataset
that requires reasoning over multiple facts.

Model Selection. To ensure diversity in model
architectures, scales, and training sources, we eval-
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uate five different LLMs: i.e., GPT-40-mini (Ope-
nAl, 2023), LLaMA-3.2-3B and LLaMA-3.1-8B
(Touvron et al., 2023), Qwen-2.5-3B and Qwen-
2.5-14B (Yang et al., 2024). The GPT models are
accessed via the OpenAl API, while the LLaMA
and Qwen models are loaded from Hugging Face,
using their instruct fine-tuned versions.

Controlling Response Length and Format. To
manage verbosity and enforce concise answers, we
provide each model with two-shot exemplars — ex-
amples of questions paired with expected, brief
responses — before prompting with the actual ques-
tion. Additionally, we set max_new_tokens=5, lim-
iting response length to a maximum of five tokens.
This setup ensures that models produce concise,
directly comparable outputs across datasets and
temperature conditions, enabling a rigorous analy-
sis of factual recall and response certainty.

4.1.2 Selection of Correctly Answered
Questions for Analysis

To establish a controlled and reliable basis for our
experiments, we begin by identifying 1000 cor-
rectly answered questions per dataset and model.
This selection process ensures that our analysis fo-
cuses on instances where the model demonstrably
possesses the required knowledge.

Baseline Selection Criteria. To identify these cor-
rectly answered questions, we set the generation
temperature ¢ to zero, enforcing deterministic out-
put selection. This choice minimizes stochastic
variability, ensuring that the most probable token
sequence is always selected. Since we study model
robustness, we are showing the effects of increas-
ingly hard generation conditions. Hence, by first
setting ¢ = 0, we establish a baseline representing
the model’s most “ideal” conditions for factual re-
trieval. Additionally, to simulate a well-calibrated
model, we filter out instances where the model con-
fidently produces incorrect answers. This ensures
that our study focuses solely on high-confidence
correct responses, allowing us to analyze the im-
pact of increasing temperature without confound-
ing effects from miscalibrated predictions.
Inference and Selection Process. At inference
time, the model generates a single response per
question. We evaluate the output using an exact
match criterion — if the generated answer is identi-
cal to the ground truth, the sample is retained as a
correctly answered question. This guarantees that
the model has the knowledge necessary to answer
these questions correctly under optimal conditions.

By enforcing these selection criteria, we create a
robust experimental foundation that allows us to
systematically study the effects of increasing tem-
perature on response accuracy and certainty.

4.2 Temperature Scaling

Temperature ¢ is a key parameter in the generation
process, controlling the level of randomness and se-
mantic variability in model outputs. It theoretically
ranges from 0 to oo, although it is typically con-
strained between 0 and 2 (Renze and Guven, 2024).
Recall that lower temperatures lead to more de-
terministic outputs, while higher values introduce
greater diversity by flattening the probability dis-
tribution. To systematically analyze the impact of
temperature on response accuracy and certainty, we
apply temperature scaling to the previously identi-
fied correctly answered questions for each model
and dataset. The procedure is as follows:

(1) For each question, we progressively increase ¢
and observe performance variations.

(2) Since generation is a probabilistic sampling
process, we run each question 10 times per tem-
perature setting to account for variability in model
outputs.

(3) A response is deemed correct if it contains the
ground truth answer, allowing for minor verbosity
while maintaining correctness beyond exact match.
Accuracy is then calculated as the proportion of
correct responses across 10 trials per question.

We evaluate ¢ € {0.2,...,2.0}, with steps of +0.2.
This range ensures a balanced exploration of tem-
perature effects, spanning from near-deterministic
outputs to moderately diverse sampling regimes.
The following results illustrate how temperature
scaling influences factual robustness across differ-
ent models and datasets.

Effects of Temperature on Factual Accuracy and
Certainty Levels. As shown in Figure 1, accu-
racy consistently decreases with increasing temper-
ature across all models and datasets. This decline
is a direct consequence of higher temperature val-
ues amplifying probabilistic sampling, allowing
less probable tokens to be selected more frequently.
Notably, smaller models such as LLaMA-3b and
LLaMA-8b experience the steepest declines, losing
over 60% of their accuracy in some cases. In con-
trast, larger models like GPT-40-mini and Qwen-
14b demonstrate greater resilience, maintaining rel-
atively higher accuracy at elevated temperatures.
This trend suggests that model size and training
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Figure 1: Accuracy steadily degrades with increasing temperature levels. We show that temperature is a direct
factor in the difficulty of keeping the correct answer. Across all LLMs and datasets, accuracy decreases with
increasing temperature, making temperature a direct factor in correct responses.

scale influence robustness to temperature-induced
uncertainty, with larger models better preserving
factual consistency despite increased stochasticity
in token selection.

Furthermore, we analyze the certainty levels, in
terms of token probability, of generated responses
at varying temperature settings (Figure 2). Here,
we compute the average probability of generated
responses and categorize them into certainty bins. !
This visualization clearly demonstrates how tem-
perature scaling flattens the probability distribution,
increasing competition among tokens and making
the correct answer less consistently selected. Inter-
estingly, even as temperature increases, some re-
sponses remain correct, indicating that certain facts
are inherently more robust to temperature-induced
variability. This observation suggests a potential
for defining a temperature-based robustness met-
ric, where the level of ¢ at which a correct answer
“breaks” could serve as a measure of factual stabil-
ity within the model.

4.3 Entropy of true distribution

Besides temperature, we analyze the entropy levels
of generated answers to understand how entropy in-
teracts with temperature-induced distribution shifts
without compromising factual accuracy. To stan-
dardize our entropy measurements, we use log;,
instead of log,, ensuring that the maximum entropy
value is fixed at 1. The theoretical upper bound of
entropy for a given probability distribution is deter-
mined by log(n), where n represents the number
of possible outcomes — in our case, the number
of candidate tokens at a given position. Since we
restrict the top token choices to 107, the maximum

"For example, the bin 0.7-0.8 includes all responses — cor-
rect or incorrect — whose average probability falls within the
range [0.7,0.8).

’The restriction is necessary due to API limitations for
GPT-40-mini. In order to be consistent, we apply the same
limit to all models.

entropy value in our setup is log;,(10) = 1.

Entropy vs. Breaking Temperature. We begin
by analyzing the relationship between the base-
line entropy of correct answers — i.e., the entropy
over correctly generated tokens at ¢ = 0 — and
the temperature at which these answers become
incorrect due to token selection shifts. For each
sample, we determine the first temperature level
where the model’s accuracy drops below a prede-
fined threshold of 0.5, hence we say that the model
“breaks”.> Once the breaking temperature t; is iden-
tified for each sample, we compute the entropy of
the originally correct answer’s token distribution at
t = 0. Entropy is calculated at each token position
and then averaged across all tokens in the answer,
yielding a single entropy score per response.

4.4 Combining Entropy and Temperature

After establishing the relevance of both entropy
and temperature scaling to the concept of factual
robustness, we investigate the correlation between
the two factors in Figure 3. The plots depict the
initial entropy levels in relation to the breaking
temperature. While there is a downward trend to
be observed, the two variables do not exclusively
predict each other. We show this by computing the
Pearson Correlation between the two variables of
initial entropy and breaking temperature, and find
only a slight negative correlation for most mod-
els (—0.48 on average), while GPT-40-mini shows
almost no correlation (—0.24 on average).

Since we show that these two concepts do not ex-
press the same dimension of factual robustness
yet are both elementary to the robustness concept,
we proceed to combine them into one solid Factual
Robustness Score.

3We define a significant degradation as an accuracy drop
below 50%.
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Figure 2: Impact of temperature t on token probability distribution in TriviaQA. As ¢ increases, the probability
distribution flattens, reducing certainty in token selection and increasing the likelihood of generating lower-
probability responses. This highlights how temperature directly influences response confidence and factual stability.
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Figure 3: Average entropy levels of originally correct
answers vs. the breaking temperature levels. While
we observe a downward trend, we show that there is
only a weak correlation between the initial entropy of
an answer and its breaking temperature.

5 How Factually Robust are LLMs?

In contrast to the findings of Renze and Guven
(2024), who argue that temperature has no signif-
icant impact, our results in Sections 4.2 and 4.3
demonstrate that increasing temperature in a QA
context reduces both accuracy and certainty, regard-
less of model size. This sensitivity to temperature
highlights the need for LLMs to maintain factual
reliability under varying generation conditions.
Our goal is to provide a quantitative measure
of factual robustness in LLMs. To this end, we in-
troduce the Factual Robustness Score (FRS), which
captures the stability of factual knowledge and its
resilience to distributional shifts. From our per-
spective, a fact’s robustness depends on two key

factors: (1) the model’s initial uncertainty (entropy)
when generating the fact at t = 0, and (2) its resis-
tance to perturbations as temperature increases. By
integrating both aspects, we propose FRS as a sin-
gle, comprehensive score that quantifies how well
an LLM retains factual knowledge under varying
temperature sampling conditions.

5.1 Factual Robustness Score (FRS)

Initial Confidence. We quantify the model’s
initial certainty by (1 — H)% where H € [0,1] is
the entropy — scaled so that H = 1 means high
uncertainty and H = 0 means high confidence
—and d > 1 tunes how strictly we penalize
uncertainty — i.e., larger d penalizes even moderate
H more severely.

Temperature Resilience. Let ¢, > 0 be the
smallest temperature at which the model’s accuracy
drops below a chosen threshold (e.g., 50%). We
refer to it as the breaking temperature. If tp is
large, the model remains correct under stronger
sampling perturbations and should receive a higher
score. To capture this, we include the factor
(ty +1).

Entropy-Based Penalty. Even if the model can
withstand high temperatures, large H indicates the
model is essentially “guessing.” Hence we subtract
a penalty proportional to H. For scale consistency,
we divide by (¢, + 1) to reduce the penalty when
ty is large: i.e., tb%

Constructing the Final Formula. We combine the
“reward” and the “penalty” into a single function
iRy xRy xRy » R:

f(H,d,ty) = (1—H)-(ty+1)— T

3)
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Figure 4: FRS (d = 1) over all models, on SQuAD. Although FRS equal to 1 is theoretically achievable when
t, — 00, in practice, we set it to 1 for all samples where models did not break with ¢, < 2. Hence, the yellow data

points.

Table 1: Average FRS with d € {1,2,5,10,50} across
all datasets. Generally larger models are more robust
than smaller ones. * indicates the most robust model
overall.

d LLaMA-3b LLaMA-8b Qwen-3b Qwen-14b* GPT-40-mini

1 0.761 0.812 0.855 0.935 0.923
2 0.727 0.787 0.836 0.928 0.919
5 0.669 0.741 0.799 0.913 0.910
10 0.629 0.706 0.771 0.898 0.900
50 0.587 0.663 0.740 0.878 0.875

Since f(H,d,ty) € [—1,00) — see Appendix B.1
— we slightly modify Equation (3) to have a more
interpretable score of factual robustness by balanc-
ing initial knowledge confidence (entropy) with
resilience to temperature perturbations as follows:

f(H7d7tb)+]‘

f(H,d,ty)g = FH dt)+2

C))

We refer the reader to Appendix B.2 for a step-by-
step derivation of Equation (4).

Intuition of FRS. We further visualize the intu-
ition behind the function in Equation (3) and how
the entropy is a weighting factor over the break-
ing temperature (see Appendix C). Recall that a
model retains a fact if it obtains at least 50% ac-
curacy in answering over 10 trials; otherwise, it
breaks. When H ~ 0 (high confidence) and t;
is large (breaks late), f becomes large. When
H =~ 1 (no confidence), (1 — H)¢ ~ 0 and
H/(ty+1) ~ 1/(ty+1), so f is near zero or nega-
tive. Increasing d tightens the penalty on any uncer-
tainty H > 0, reflecting stricter requirements for
robust factual knowledge. This derivation shows
how f(H,d,tp) cleanly fuses how confident a
model is in a fact with how long it withstands
temperature perturbations, thus producing a single
measure of factual robustness.

5.2 Model Family vs. Size in Robustness

Table 1 compares FRS across different model
sizes and families using various values of d €
{1,2,5,10,50}, controlling the influence of the
entropy. As expected, larger models generally
tend to be more robust than their smaller coun-
terparts. However, a particularly interesting finding
is that model size alone is not the sole predic-
tor of robustness across different model fami-
lies. While larger models within the same family
(e.g., LLaMA-3b vs. LLaMA-8b) tend to retain
facts more reliably, comparing across families (e.g.,
LLaMA vs. Qwen) introduces additional factors
beyond just model size. Even though LLaMA-8b
exhibits a more stable entropy trend in relation to
ty (see Figure 3), the smaller Qwen-3b model ac-
tually achieves a higher average FRS. Interesting
in this context is also GPT-40-mini, which, being
an 8 billion parameters model, has similarly high
robustness as the leader, Qwen-14b. Hence, we ar-
gue that different models store and retrieve factual
knowledge in distinct ways. While parameter size
plays a central role in a model’s factual robustness,
factors like model architecture and training data
may also be defining factors.

We also show how the FRS gets hampered with
an increasing d based on the initial entropy. Notice
how the LLaMA models suffer the highest drop in
FRS (—0.174 for 3b, and —0.149 for 8b), meaning
that they were uncertain, on average, about the ini-
tial factual knowledge, confirmed in Figure 1 where
LLaMA has the highest accuracy drop across the
board. To explore this further, Figure 4 illustrates
FRS with d = 1 across all models on the SQuAD
dataset. Notably, Qwen-14b achieves higher FRS
scores even when its initial entropy is lower than
that of GPT-40-mini, whereas the latter’s scores are
more concentrated toward the lower entropy range.
Additionally, GPT-40-mini exhibits a more skewed
probability density distribution, with FRS — 1,
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suggesting that while it may be highly confident in
certain cases, its robustness is not consistently supe-
rior across all factual scenarios (see Appendix G).
These findings highlight the need for a deeper ex-
amination into how architectures, training method-
ologies, and knowledge retention influence factual
robustness.

5.3 Most and Least Robust Facts

We further analyze the specific question types that
are the most and least robust within the models.
For this, we choose to fine-tune a lightweight clas-
sifier, DistilBERT (Sanh et al., 2019), on the TREC
question type dataset (Li and Roth, 2002) to clas-
sify the categories Numerical, Location, Entity and
Human, for which we reach 96,6% accuracy on
the test set.* We then collect the top 1000 highest
and lowest FRS score samples across all datasets,
for each model. For both the top and bottom sam-
ples, we compute the proportion of each question
type relative to the total number of samples of
that type. Figure 5 shows the ratio of the most
robust question types in percentage for each model.
For example, for LLaMA-3B, 64.8% of numerical
type questions are among the most robust (while
100% — 64.8% = 35.2% are part of the least ro-
bust). Answers associated with numerical and
location related questions tend to be the most
robust across models, reaching up to 72.9% and
64.9%, respectively. The least robust answers be-
long to the Human entity type, which means ques-
tions asking about the name of a person or a group.
We show that all models recall names in a less ro-
bust way, meaning that those are most prone to be
produced with high entropy and/or are shifting to
a wrong answer at low temperature levels. We hy-
pothesize that this is due to the nature of expected
answers: for example, questions of the numerical
type most often call for a single digit as answer, e.g.,
a year. Here, the LLM has less individual tokens to
produce, and hence less chance of introducing an
error, than for example with the name of a person,
which is more lengthy. It is furthermore interesting
to note the difference between model sizes: while
the bigger models perform highest on numerical
type questions, they underperform smaller models
like LLaMA-3B on human type questions.

We want to emphasize that this study is not about
certain LL.Ms performing better or worse on an-
swering specific question types, but the robustness

“We report details about the dataset and the training proce-
dure in Appendix H.

of their answers, which, according to our study,
does not always directly correspond to model size
and capabilities.

Most Robust Entities

70
Numerical

Location

Entity - 44.2

w
o
% in top FRS questions

Human - 455 43.1 27.0 31.8 35.6
' ' ' ] 30
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Figure 5: Numerical facts are most robust across all
models. Grouping the top most robust answers into
question categories across datasets, we show the domi-
nance in % of the categories for each model. Answers
to numerical or location-based questions are most ro-
bust, while questions about names (here: Human) lead
to least robust answers.

6 Conclusion

This study provides a comprehensive analysis of
factual robustness in LLMs and introduces the Fac-
tual Robustness Score (FRS) as a novel metric for
evaluating factual stability under varying condi-
tions. Unlike traditional accuracy-based assess-
ments, FRS captures both internal generation un-
certainty (entropy) and sensitivity to temperature,
offering a more nuanced measure of robustness.
Our findings show that increasing temperature
reduces factual accuracy, with models that are more
confident in their initial answers maintaining cor-
rectness longer. However, since entropy alone does
not fully predict breaking temperature ¢;, FRS in-
tegrates both factors for a more complete evalua-
tion. While larger models generally exhibit greater
robustness, architectural and training differences
mean that some smaller models outperform their
larger counterparts. Additionally, factual robust-
ness varies by knowledge type, with numerical
facts proving more stable than others. In a prac-
tical sense, FRS holds potential for enhancing a
model’s factual accuracy through continued pre-
training: by evaluating a model’s FRS, one can
identify areas of weakness (specific facts where the
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model underperforms) and use these as targeted
data for further training. Beyond introducing FRS,
this study highlights limitations in current evalua-
tion methodologies and demonstrates that factual
robustness is influenced by both model properties
and the nature of the knowledge itself. Future work
could explore (1) finding the optimal breaking tem-
perature for each model based on the initial entropy,
(2) higher-temperature effects, and (3) strategies
for enhancing factual retention to improve the reli-
ability of LLMs in real-world applications.

Limitations

One key limitation of FRS is the need to evaluate
model responses across multiple temperature levels
to determine the breaking point ¢;, making the pro-
cess computationally intensive. Developing more
efficient estimation methods to approximate robust-
ness without exhaustive sampling would enhance
its practicality. Additionally, we acknowledge that
our analysis is constrained by an upper bound of
tp, = 2.0, meaning we cannot determine at which
t > 2.0 certain answers would break, leaving
some robustness thresholds uncertain - similarly
to so far uninvestigated temperatures in-between
our chosen values of £. Lastly, our study focuses
on question answering in a controlled, closed-book
setting, whereas real-world applications often in-
volve external knowledge sources, such as retrieval-
augmented generation (RAG) systems, which may
further impact factual stability.

Ethics Statement

This work aims to analyze the behavior and reli-
ability of large language models, contributing to
a deeper understanding of their factual robustness.
While our findings have potential societal impli-
cations, we do not identify any immediate ethical
concerns that require specific attention. We encour-
age further discussions on the broader impact of
LLM evaluation methodologies.
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A Temperature Effect on Probability
Distribution

Identically to Figure 2, we provide visualizations
of the token probability distributions under differ-
ent temperatures for SQuUAD and HotpotQA (see
Figures 6 and 7).

B Derivations on FRS

For simplicity of the formulas, we suppose that d =
1, thus we omit it from the equations. However,
regardless of the choice of d, the same bounds hold.

B.1 Bounds of Equation (3)

Given that H € [0, 1] and ¢, > 0, we first find the
minimum and maximum values of Equation (3).
Casel:t, =0

JOH,0) = (1= H)(O0+1) = H - 5

=(1-H)-H=1-2H
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Figure 7: Impact of ¢ on token probability distribution: HotpotQA.
When H = 0, we get f(0,0) = 1. When H =1, where fiin = —1 and fpax — oo. Thus, we
we get f(1,0) = —1. Since f(H,O0) is linearin H,  define:
the range at ¢, = 0 is [—1, 1]
» =l d H
(l—H) -(tb—l-l)—il—l—l
fo(H,d,ty) = e
0 sy Uy lp) —

Case 2: t;, — 00

If H<1,wehave (1—H) - (t, + 1) — oo and
tb% — 0. Thus, when H = 0, then f(0, t,) — oo,
and, when H = 1, then f(1,¢;) — 0.

Summarizing:
* Att, = 0, the function is in the range [—1, 1].
* As t; — oo, the function is in the range
(0, 00).
e Since f(H,t) is continuous and monotonic
in tp, the full range of the function is [—1, c0).

B.2 From Equation (3) to Equation (4)

To scale the function

f(H d,ty) = (1 - H)*- (tp +1) - ty+1

into the range [0, 1], we use min-max normaliza-
tion:

f(H7 da tb) - fmin
fmax_fmin ’

fo(H,d, ty) = (5)

(1—H)-(tp+1) — 7 +2

f(Hadatb)+1

F(H,d.tn) + 2
(6)

C Visual Intuition of FRS

As described in Section 5.1, here we provide a
visual intuition of the FRS function. Figure 8 illus-
trates f(H,1,t,) and f3(H,1,t,) by ranging the
breaking temperature ¢, € [0, 2]. Note how Equa-
tion (3) — see left plot — is more aggressive (gives
a lower FRS) with ¢, — 2, while Equation (4)
has a smoother transition to higher FRS. Addition-
ally, we show how d reshapes the FRS function by
giving more importance to the initial entropy H —
see Figure 9.

D Effect of d in FRS and its Role in
Factual Robustness of LLMs

The exponent d of Equation (3) plays a crucial role
in adjusting the sensitivity of the factual robust-
ness measure to entropy H. The term (1 — H)?
introduces a nonlinear scaling effect on the first
component (¢, + 1). The impact of d is analyzed
below and illustrated in Figure 9.
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Figure 8: 3D plot of f(H,1,t,) and f3(H,1,t,) over
H € [0,1] and ¢}, € [0, 2]. The figure visualizes Equa-
tion (3) (left) and Equation (4) (right) where H repre-
sents a weighting factor between two competing terms,
and t; is the breaking temperature. The surface plot
highlights how FRS varies as a function of both pa-
rameters.

Case 1: d > 1 (Stronger Penalization for High
Entropy)

* When d is large, even moderate values of H
significantly reduce (1 — H )9, making the first
term in f(H,d,t;) much smaller.

* This causes the function to strongly penalize
models with high entropy.

* This is desirable because high entropy corre-
sponds to greater uncertainty in the model’s
responses, making them less trustworthy.

Case 2: 0 < d < 1 (Smoother Decay of
Robustness with Entropy)

o If d is small, the decay of (1 — H)“ is much
less aggressive.

* Even models with moderate entropy will not
be penalized as strongly.

* This allows models with some uncertainty to
still contribute positively to factual robustness.

Case 3: d = 1 (Linear Dependence on Entropy)

* The function simplifies to:

H
H1,t)=1-H){tpy+1)———. 7
FUHL) = (1= H)(t+1) = = ()
¢ The effect of H on robustness is purely linear,
with no additional weighting applied to lower-
entropy or higher-entropy cases.

D.1 Why is d Useful for Evaluating Factual
Robustness?

Introducing d allows for greater control over the
sensitivity of factual robustness to entropy, making
it particularly useful when evaluating the reliabil-
ity of LLMs under adversarial conditions. When

d > 1, models producing uncertain responses
(H — 1) contribute less to factual robustness,
which aligns with the intuition that uncertain re-
sponses are inherently less trustworthy. This en-
sures that models with higher entropy are penalized
more aggressively, reflecting their reduced reliabil-
ity.

Additionally, the robustness score should scale
appropriately with ¢, the breaking temperature at
which the model begins to fail. Since the first term
in f(H,d,tp) is multiplied by (¢; + 1), models that
can withstand higher adversarial pressures before
failing naturally receive a higher robustness score.
This scaling property ensures that models capable
of maintaining factual accuracy under increasing
difficulty are recognized as more robust.

Another key advantage of introducing d is that it
provides a tunable sensitivity to entropy, allowing
for customized evaluation criteria. A high value
of d enforces stricter robustness criteria, meaning
that even moderate uncertainty is penalized heavily.
This is particularly useful in applications where
high confidence is required, such as medical Al or
legal text generation. Conversely, a lower value of
d results in a more lenient evaluation, permitting
models with some uncertainty to still be consid-
ered reasonably robust. This flexibility makes the
function adaptable to various contexts, balancing
the trade-off between strictness and tolerance in
factual robustness assessment.

In general, d acts as a tuning factor that deter-
mines how much we penalize uncertainty when as-
sessing the robustness of an LLM. This flexibility
is crucial when evaluating models under different
conditions, such as (a) high-stakes applications
(e.g., medical Al) where high certainty is required,
favoring a high d, and (b) general NLP tasks where
moderate uncertainty might be acceptable, allow-
ing for a lower d.

E Time Complexity Analysis of FRS

To compute the FRS, we consider the following
steps:

1. Generating an answer using a transformer-
based architecture.

2. Finding the breaking temperature ;.

Computing entropy H.

Computing the FRS function itself.

Rl
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Figure 9: 3D plots of f}(H,d,t,) over H € [0,1], ¢, € [0,2], and d € {1,2,5,10,50} with d varying from the

left-most to the right-most subplot.

E.1 Feeding the Question to the LLM and
Generating an Answer

Modern autoregressive LLMs generate text one to-
ken at a time. If the model generates an answer of
length L, it requires O(L) forward passes. Each
forward pass involves a Transformer forward com-
putation, which has complexity:

O(L - D?), (8)

where L is the number of generated tokens, and D
is the model’s hidden size which scales with the
number of parameters. Thus, the time complexity
for generating one answer is O(L - D?).

E.2 Finding the Breaking Temperature

The breaking temperature ¢ is the point where the
model’s accuracy falls below a certain threshold —
in our case 50%. Determining t; requires multiple
evaluations.

Incremental Search:
* We test up to O(T") different values for .
* Each requires k£ model runs.
* Since each model run has O(L - D?) complex-
ity, the total cost is:
O(T - k- L-D? )

Binary Search (Optimized Approach):
* A structured search can reduce the number of
evaluations to O(log T').
» Each evaluation still requires k£ model runs.
* This reduces the complexity to:

O(klogT - L - D?) (10)

E.3 Computing Entropy

The entropy of a generated sequence is computed
as:

H = —Zp(xi)logp(xi)

where P(x;) are the token probabilities output by
the LLM, and for each of the L tokens, the model

produces a probability distribution over a vocabu-
lary V. Hence, retrieving token probabilities costs
O(V L) since each token’s probability distribution
has V' elements, and computing the overall entropy
has a complexity of O(V'L).

E.4 Computing the FRS Function

The function

H

B d _
fH,dty) =(1—-H)" (tp +1) t+ 1

requires basic arithmetic and exponentiation, which
are computed in O(1).

E.5 Total Time Complexity Per Question

Summing up all contributions:
Using Binary Search (Optimized):
O(klogT-L-D?>+ VL)
Using Incremental Search (Naive Approach):
O -k-L-D*+VL)

Takeaway

* LLM inference dominates the complexity, as
it requires O(L - D?) per model run.

* Finding ¢; is the most expensive step, since it
requires multiple model evaluations.

* Entropy computation O(V'L) is relatively
small compared to LLM inference.

* Binary search significantly reduces complex-
ity from O(T - k) to O(klogT).

F Extended FRS Results

In Figures 10 to 12, we present the FRS scores
for all models across various datasets, considering
different values of d € {1,2,5,10,50}. As d in-
creases, the influence of entropy H on the FRS
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grows, leading to a steady decline in average FRS
scores across all models and datasets. This demon-
strates the role of the d parameter in systematically
downscaling the overall robustness score. How-
ever, it is important to note that samples without a
detected t; remain unaffected, consistently main-
taining an FRS of 1.

G Probability Density Functions of FRS

Figure 13 presents the Probability Density Func-
tions (PDF) for all models on SQuAD (top), Hot-
potQA (middle), and TriviaQA (bottom). Notably,
Qwen-14b and GPT-40-mini exhibit comparable
robustness levels. As discussed in the main paper,
when a model does not break on a question with
ty < 2, we set FRS=1, which explains the observed
gap in the x-axis in the interval [0.8,1). A deeper
investigation into higher breaking temperatures be-
yond 2 could help validate the assigned FRS=1
scores or provide more refined estimates, thereby
filling the gap in the plots with more accurate ro-
bustness scores.

H Robust Question Types
H.1 Training and Dataset

We fine-tune the base uncased version of Dis-
tiIBERT, available at https://huggingface.co/
distilbert/distilbert-base-uncased, on the
TREC dataset provided at https://huggingface.
co/datasets/CogComp/trec. The training set
consists of 5,500 labeled questions, which we use
to fine-tune a classifier for categorizing the ques-
tions in our own dataset, specifically those associ-
ated with the highest and lowest factual robustness
scores. Evaluation on the test set (500 questions)
yields an accuracy of 96.6% prior to applying the
classifier to our data. Table 2 summarizes the hy-
perparameters used during training.

Table 2: Training hyperparameters for DistilBERT fine-
tuning on the TREC dataset.

Hyperparameter Value
learning rate 2e-5
batch size 16
epochs 3
weight decay 0.01

The original dataset consists of six entity types:
Numerical, Location, Human, Entity, Abbreviation
and Description. In our results, we choose to omit

the latter two types, since they are not sufficiently
represented in our data, on average making up only
2.4% and 0.3%, respectively. Hence, in order to
avoid poorly supported claims about the robustness
of these entity types, we stick with the other four
types that are most characteristic of our data.

H.2 Examples

We provide examples of each question type ana-
lyzed in Section 5.3 for further illustration.

Numerical

Q: In what year did Universal make a film
version of Dracula?

A: 1931

Numerical-type questions usually ask for a quantity,
a date, or similar. The model’s response is usually
a single number.

Location
Q: The Scorpions came from what country?
A: Germany

Location-type questions usually ask for a location,
like a country, city, or similar. The model’s re-
sponse is a place.

Human

Q: Who introduced the first quantized model
of the atom?

A: Niels Bohr

Human-type questions usually ask for the name of a
person or a group of people. The model’s response
is a name.

Entity

Q: What is very similar to Valencian and is
considered a variety of the same language?
A: Catalan

Q: Guatama discovered the middle
path before his what?

A: Enlightenment

Q: What color jersey does Bayern
Munich wear?
A: Red

Entity-type questions are not broadly categoriz-
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Figure 10: SQuAD. FRS scores across models illustrating effects of d € {1, 2, 5,10,50}.
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TriviaQA, d=1
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Figure 11: TriviaQA. FRS scores across models illustrating effects of d € {1, 2, 5,10, 50}.
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HotpotQA, d=1
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Figure 12: HotpotQA. FRS scores across models illustrating effects of d € {1, 2,5, 10,50}.
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Figure 13: Probability Density Function of FRS for all models on SQuAD (top), HotpotQA (middle), and TriviaQA

(bottom).

able. They ask about various facts about the
world, which do not typically fall into any of
the other categories. For example, they can ask
about events, food, language, products. For a
full list, see the fine label descriptions on TREC’s
huggingface dataset card: https://huggingface.
co/datasets/CogComp/trec.
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