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Abstract

Large Vision Language Models (LVLMs) have
garnered substantial interest owing to their im-
pressive ability to interpret visual inputs and
converse with users. Nevertheless, LVLMs still
suffer from object hallucination — generating
descriptions for objects that are absent from the
image, which undermines their reliability and
hinders real-world deployment. We propose
DAPE-BR, a positional-alignment scheme that
(i) preserves the pretrained weight order while
globally aligning visualtext distances, (ii) em-
beds an isotropic fused patch-distance metric,
and (iii) applies a patch-distance causal mask
to enforce spatial causality. Extensive experi-
ments on POPE, MMStar, and SQA show that
DAPE-BR consistently reduces hallucinations
and boosts overall performance.

1 Introduction

LVLMs(Liu et al., 2023b, 2024b; Bai et al.,
2023; Cha et al., 2024; Ye et al., 2023; Zhu
et al., 2023) excel at parsing images and conduct-
ing natural-language conversations, but they still
hallucinate-describing objects that are missing or
mis-characterised in the picture(Li et al., 2023;
Rohrbach et al., 2018; Cui et al., 2023; Liu et al.,
2024a). These factual slips erode user trust and im-
pede reliable, real-world deployment, so reducing
object hallucination has become a central research
priority.

To tackle this challenge,Various strategies have
been developed to mitigate object hallucination in
LVLMs. A widely adopted approach involves em-
ploying post-hoc correction through revisor mod-
els(Yin et al., 2024; Zhou et al., 2023; Lee et al.,
2023), which refine generated outputs to suppress
hallucinated descriptions. Another promising av-
enue enhances supervised fine-tuning by enrich-
ing the diversity of instruction-tuning datasets(Liu

*Equal contribution.
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Figure 1: Long-term decay under two positional en-
codings. Attenuation follows the downward numerical
gradient in each matrix-from larger to smaller values.
(a) CCA exhibits concentric multi-directional decay; (b)
DAPE-BR spreads decay more evenly in space. Dark
cells mark weak decay, light cells strong decay. Exam-
ple shows 36 image tokens.

et al., 2023a; Yu et al., 2024a). Although these
methods effectively reduce object hallucination,
they rely on high-quality annotations, which entail
substantial manual labor and make them costly to
deploy in practice. Recently, several studies have
explored training-free techniques that mitigate ob-
ject hallucination by directly correcting inaccura-
cies during the autoregressive decoding phase of
LVLMs(Leng et al., 2024; Huo et al., 2024; Huang
et al., 2024). While these training-free heuristics
operate at the output layer, another line of work re-
visits the input sidenamely, the positional encoding
itself.

A recent study (Xing et al., 2024) traces ob-
ject hallucination in LVLMs to the problem of
"long-term decay" in Rotary Position Embeddings
(RoPE) (Su et al., 2024): as token indices increase,
RoPE’s sinusoidal phases shrink exponentially and
thus cause tokens at higher positions to overshadow
earlier visual context. The authors counter this by
adding a lightweight positional-alignment module
(Figure 1a) that rescales and recenters the phases
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before decoding and then fine-tunes the model.
This modification reduces hallucinations but still
suffers from three issues. First, its concentric-
ring encoding merges all patches on the same ring
into a single index, slashing the positional vocabu-
lary from H ×W to O(min{H,W}) and causing
under-utilization and aliasing (border patches dom-
inate, and objects that cross rings split encodings).
Second, because the algorithm scans patches from
the periphery inward, the last visual token fed to
the language model is an arbitrary border patch
rather than the bottom-right patch used during pre-
training. As a result, the learned visualtext offset
is disrupted, and additional fine-tuning becomes
necessaryhence the method is not truly training-
free. Third, since the indices depend only on the
radius, angular information is lost: patches that are
opposite each other on a ring (approximately 2r
apart) appear co-located, whereas adjacent patches
in neighboring rings seem distant. This angular
insensitivity introduces anisotropic distortions that
hinder consistent 2-D spatial reasoning.

Building on this analysis, we propose DAPE-BR
(see Figure 1b), a two-stage positional-alignment
module that first scans visual tokens from the
bottom-right corner in a special raster order and
rectifies the causal mask, then encodes each to-
ken with the mean of its Euclidean, Manhattan,
and Chebyshev distances, thereby preserving two-
dimensional continuity and markedly reducing hal-
lucinations during LVLMs training; this scheme
shortens global tokeninstruction paths without dis-
turbing pretrained attention, introduces an isotropic
fused-distance metric that removes directional bias,
and applies a three-step pipelinedistance fusion,
shell quantization, and reverse causal maskingto
confine attention to truly causal regions.

Our key contributions include:
• Refines DAPE-BR positional encoding, enrich-

ing spatial indices and strengthening visual
grounding.

• Introduces a fully training-free hallucination-
mitigation strategy that plugs into existing
LVLMs without changing their parameters,
sharply reducing computation and annotation
costs.

• Shows consistent hallucination reduction and
overall performance gains across multiple pub-
lic benchmarks(Li et al., 2023)(Lu et al.,
2022)(Chen et al., 2024a)(+1.25% on Accuracy
and +1.84% on F1 score, as compared to the state-

of-the-art method (Zou et al., 2025) on POPE).

2 Related Works

Large Vision Language Models. BERT and its
variants (Devlin et al., 2019; Lu et al., 2019; Chen
et al., 2020) laid the groundwork for multimodal
AI, which was later amplified by GPT-3, PaLM,
T5, and LLaMA (Brown et al., 2020; Chowdhery
et al., 2023; Raffel et al., 2020; Touvron et al.,
2023a). In Vision Language learning, ViLBERT
and LXMERT (Lu et al., 2019; Tan and Bansal,
2019) were soon surpassed by the contrastive gi-
ants CLIP and ALIGN (Radford et al., 2021; Jia
et al., 2021). Modern LVLMs such as LLaVA,
Gemini, and Qwen (Liu et al., 2023b; Team et al.,
2023; Bai et al., 2023) attach a frozen LLM to a
vision encoder through a slim projection head and
are tuned with visual instructions, yet they still
hallucinate objects absent from the image.

Object hallucination. Hallucinating nonexis-
tent objects compromises model reliability (Cui
et al., 2023; Li et al., 2023; Rohrbach et al., 2018;
Liu et al., 2024a; Guan et al., 2024; Wang et al.,
2024; Nie et al., 2024; An et al., 2024; Favero
et al., 2024; Wang et al., 2023). Remedies include
post-hoc grounding or post-hoc self-correction,
both of which break end-to-end flow (Yin et al.,
2024; Zhou et al., 2023; Lee et al., 2023; Liu
et al., 2024c; Wu et al., 2024); additional human-
annotated data for instruction tuning (Liu et al.,
2023a; Yu et al., 2024b; Sun et al., 2023; Jiang
et al., 2024a; Yue et al., 2024; Yu et al., 2024a);
and training-free reranking, which increases infer-
ence latency (Huang et al., 2024; Leng et al., 2024;
Chen et al., 2024b). Instead, we study how rotary
position encoding (RoPE) influences this failure
mode.

Position encoding in Transformers. Be-
cause self-attention is order-agnostic (Vaswani
et al., 2017), researchers have proposed sev-
eral positional-encoding schemes, including sinu-
soidal (Vaswani et al., 2017), learnable (Dosovit-
skiy et al., 2020), and relative approaches (Shaw
et al., 2018; Ke et al., 2020; He et al., 2020; Huang
et al., 2020), the last of which excels on variable-
length inputs (Su et al., 2024; Peng et al., 2023).
Rotary position encoding (RoPE) encodes posi-
tions by rotating embedding pairs (Su et al., 2024);
this design boosts linear attention and enables
large-scale pre-training in LLaMA (Touvron et al.,
2023a,b), and it is now being explored for vision
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tasks (Chu et al., 2024; Lu et al., 2024). In this
work, we examine whether RoPEs long-term decay
contributes to object hallucination and how to curb
it without costly retraining.

3 Motivation

3.1 Rotary Position Encoding in LVLMs.
Modern LVLMs (e.g. LLaVA) adopt Rotary Po-
sition Encoding (RoPE) to model positional de-
pendencies in the Transformer. RoPE encodes
token position p by multiplying the token em-
bedding with a position-specific rotation matrix
R(p). In practice, R(p) is a block-diagonal ma-
trix composed of 2D rotation submatrices for each
pair of hidden dimensions: for example, one such

2×2 submatrix is R2D(θp) =

(
cos θp − sin θp

sin θp cos θp

)
,

where θp is determined by predefined sinusoidal
functions of p. Applying RoPE to a query or key
embedding xp yields x̃p = xpR(p). This rota-
tion imprints the position into the embedding such
that (i) the inner product between any two position-
encoded vectors depends on their relative index
difference, and (ii) it enables extrapolation beyond
a fixed length by cyclically repeating positional
phase patterns. In LVLMs architectures, the rota-
tion R(p) is applied to all query and key vectors
across each self-attention layer, so that positional
relationships are consistently encoded throughout
the network. Formally, for a query at position i and
a key at position j, the scaled dot-product attention
score is:

si,j =
(qiR(i))(kjR(j))>√

d

=
qi

(
R(i)R(j)>

)
k>
j√

d
.

(1)

Here R(i)R(j)> = R(j − i), meaning that
the attention score depends on the relative posi-
tion j − i. This property effectively introduces a
distance-dependent attenuation in attention: as the
relative index difference |i− j| grows, the rotation
R(j− i) represents a larger phase shift, making the
dot-product si,j smaller on average (a long-term
decay). In language modeling, such decay is de-
sirable since distant words typically have weaker
direct dependencies.

However, in multimodal sequences this decay
can be harmful e.g. visual token v1 (the first im-
age patch) and a late instruction token wNt may

correspond to the same object(see Figure 3(b)), yet
RoPE attenuate their interaction simply because
they are far apart in the sequence.

3.2 Limitations of CCA for Long-Term Decay

Underutilization. CCA adopts a coarsegrained
concentric-ring encoding that merges every patch
on the same ring into one positional index(seeFig-
ure 3(c)). Let the ring index for patch coordinate
(x, y) be r(x, y). This collapses the number of dis-
tinct indices from H × W (for an H × W grid)
to O(max{H/2,W/2}). Worse, the population of
each index is highly imbalanced: the innermost
ring contains only 4 patches, whereas the outer-
most ring contains 4H − 4 patches, so tokens con-
centrated near the borders dominate the positional
vocabulary. Whenever r(x1, y1) = r(x2, y2) the
embeddings coincide, p(x1,y1) = p(x2,y2), causing
positional aliasing: fine objects that straddle two
rings get split encodings, and distant, unrelated
regions sharing a ring become indistinguishable.

Sequential-bias mismatch (not training-free).
CCA traverses patches from the periphery toward
the centre, so the visual token that immediately
precedes the first text token is an arbitrary bor-
der patch rather than the bottom-right patch pro-
duced by standard raster scan. This shifts the vi-
sualtext ’bridge’ index and perturbs the relative
offset dvis→text internalized during language-only
pre-training, thereby distorting RoPEs learned at-
tention phases and hindering visualinstruction fu-
sion. Correcting this misalignment requires addi-
tional fine-tuning to re-establish cross-modal posi-
tional correlations, so CCA cannot serve as a truly
training-free remedy

Anisotropy. Ring indices depend solely on radial
distance; angular displacement is ignored. A ra-
dial step changes the index by ∆r = ±1, whereas
any tangential move along a ring leaves ∆r = 0,
even though the Euclidean displacement is compa-
rable. Consequently, two patches on opposite sides
of the same ringseparated by ≈ 2r grid unitsare
treated as co-located, whereas two adjacent patches
in neighbouring rings are treated as far apart. This
direction-dependent (non-isotropic) notion of dis-
tance introduces inconsistent geometry and weak-
ens the models ability to perform coherent 2-D
spatial reasoning.
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Figure 2: Overall workflow of the proposed DAPE-BR. We first normalise the Euclidean, Manhattan, and Chebyshev
distance matrices, then average them to obtain the fused distance map. After flattening, the distances are sorted and
discretised at equal intervals to generate shell indices, which are finally re-projected onto the 2-D grid (right).

4 DAPE-BR Method

Core contributions of the proposed DAPE-BR
(Figure 2). Our approach can be summarized in
three interconnected aspects:

Order-consistent re-indexing. Without any ad-
ditional supervised fine-tuning, DAPE-BR glob-
ally shrinks the relative distances from most visual
tokens to the instruction token, effectively coun-
teracting the hallucination-prone long-range decay
inherent to RoPE.

The first patch-distance metric and anisotropy
removal. We are the first to explicitly measure
pairwise distances between image patches and to
encode them in the positional indices. This fused
metric removes the directional anisotropy inherent
in prior ring-based or raster layouts, enabling the
model to perceive patch separations isotropically
across the grid.

Three-stage pipeline. The method proceeds
through (i) fused distance computation, (ii) shell
quantization that converts the distance into discrete
indices, and (iii) a causal mask that allows a query
to attend only to keys in the same or inner shells.
In the following subsections,We elaborate on each
stage in the following subsections, starting with the
definition of the fused distance.

4.1 Fused distance and Shell quantization.

Consider an image feature map (Figure 3(d)) of
height H and width W , yielding v = H × W
visual tokens arranged on a 2D grid. We denote
coordinates on this grid as (r, c) with 0 ≤ r < H

and 0 ≤ c < W , where (0, 0) corresponds to the
top-left corner. Set the anchor point (ra, ca) be the
bottom-right corner (H−1, W−1). We construct
three distance matrices capturing standard distance
metrics from the anchor:

DE [r, c] =
√
(ra − r)2 + (ca − c)2, (2)

DM [r, c] = |ra − r|+ |ca − c|, (3)

DC [r, c] = max{ |ra − r|, |ca − c| }. (4)

Each matrix D∗ ∈ RH×W encodes the distance
of token (r, c) from the anchor under the specified
metric. We then define the fused distance matrix
as the elementwise average of the above:

DF [r, c] =
1
3

(
DE [r, c] +DM [r, c] +DC [r, c]

)
.

(5)
which blends the geometric perspectives of Eu-
clidean, Manhattan, and Chebyshev distances into
a single scalar field DF .

Using DF , we induce an ordering of all v im-
age tokens by their fused distance to the anchor.
Let ρ(r, c) denote the rank index of token (r, c) in
ascending order of DF (i.e., ρ(ra, ca) = v for the
anchor itself, and ρ(r, c) = 1 for the farthest token).
We then quantize these ranks into discrete concen-
tric bands, or shells, by applying a floor division
with a fixed shell width ∆ (in number of tokens):

s(r, c) =
⌊ρ(r, c)

∆

⌋
. (6)

where s(r, c) ∈ {0, 1, . . . , bv/∆c} is the shell in-
dex assigned to token (r, c). All tokens that shar-
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(a) Our DAPE-BR pattern (b) LLaVA raster pattern (c) CCA receptive pattern
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


1 2 · · · √
v − 1

√
v√

v + 1
√
v + 2 · · · 2

√
v − 1 2

√
v

...
...

. . .
...

...

v −√
v + 1 v −√

v + 2 · · · v − 1 v




(e) Raster-scan (R[r, c])
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(f) Concentric CCA (C[r, c])

Figure 3: Bottom row: position-index matrices produced by three ordering strategies. Each cells value is the
positional index assigned to that location. Top row: query-patch receptive fields under the same three schemes.
Compared with the strip-like raster of LLaVA (e) and the ring-shaped CCA (f), our DAPE-BR (d) keeps 2-D locality
while shortening the distance to text tokens, thereby suppressing hallucination.

ing the same integer shell index k lie within the
k-th concentric shell around the bottom-right an-
chor. By appropriate choice of ∆, one can control
the granularity of positional grouping: smaller ∆
yields finer-grained shells (approaching the fully
distinct positions of a raster scan), whereas larger
∆ yields coarser shells (approaching the highly
compressed concentric grouping of CCA).

4.2 Causal mask.
Finally, we apply a causal mask to ensure that each
position only attends to preceding positions in the

sequence order. Formally, for any query position
i and key position j (where positions are indexed
in the chosen sequence order):

C(i, j) =




1, if j ≤ i .

0, if j > i .
(7)

i.e., C(i, j) = 1 only when j is not a future position
relative to i. We use C(i, j) to mask out any dij
values for which j > i, thereby that position j (a
future position) does not influence the computation

for position i. The resulting distance matrix that is
strictly lower-triangular, so no information flows
from future to past in the attention process.

By integrating the fused distance measure with
shell quantization and the causal mask, DAPE-BR
constructs a positional index matrix that preserves
2D spatial locality while respecting the sequences
causality. Consequently,this indexed representation
is then used to inform the models attention mech-
anism, allowing it to capture relative positional
relationships more effectively than the standard
raster-scan or the CCA-based approaches.

5 Experiments

All experiments were implemented in PyTorch and
run on NVIDIA A100 80GB GPU hardware. We
evaluate DAPE-BR on the unified LLaVA-v1.5-
7B(Liu et al., 2023b) foundation model across
three complementary benchmarks, each chosen
to stress a different aspect of multimodal ground-
ing. Specifically, we use the POPE(Li et al.,
2023) dataset to test object hallucination suppres-
sion, MMStar(Chen et al., 2024a)dataset to assess
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Table 1: Comparison of decoding and reranking methods on three promptselection settings.

Random Popular Adversarial Average
Model Method Citation Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑

LLaVA-1.5

Sampling 84.27 82.38 81.32 79.54 78.81 77.37 81.46 79.76
Beam Search 87.00 85.40 85.80 84.27 83.50 82.15 85.43 83.94
DOLA ICLR 24 84.78 84.19 79.75 80.61 76.32 76.16 80.20 80.32
VCD CVPR 24 87.20 86.63 84.83 84.55 80.76 81.18 84.26 84.12
OPERA CVPR 24 87.02 85.42 85.79 84.28 83.51 82.15 85.44 83.95
HALC ICLR 24 87.26 87.21 84.06 84.19 79.23 81.02 83.51 84.14
CCA NeurIPS 24 87.70 86.68 86.87 85.64 85.70 84.46 86.86 84.54
CCA (Training Free) NeurIPS 24 88.62 88.09 87.53 86.75 83.36 83.06 86.50 85.97
AGLA CVPR 25 88.54 87.71 85.14 84.68 81.13 81.36 84.93 84.58
TAME ICLR 25 – – – – – – 85.40 85.70
MEMVR ICML 25 – – – – – – 87.00 85.87
RITUAL arXiv2025 88.87 88.81 85.83 86.17 78.80 80.54 84.40 85.17
DAPE-BR(Training Free) (Ours) 90.07 89.40 88.87 88.26 85.80 85.50 88.25 87.71

Table 2: Performance of different methods on the MMStar benchmark.

MMStar
Model Method Average Coarse Percep↑ Fine Percep↑ Inst Reason↑ Log Reason↑ Math↑ Sci & Tech↑

LLaVA-1.5

baseline 30.00 – – – – – –
CCA 34.08 64.03 32.55 38.46 30.10 22.41 16.96
CCA(Training Free) 32.73 54.20 23.89 35.26 30.70 27.55 24.79
DAPE-BR(Training Free) 34.92 61.29 24.23 37.87 30.57 28.30 27.28

Table 3: Performance of different methods on the SQA
benchmark.

Model Method SQA ↑

LLaVA-1.5

baseline 66.80
CCA 69.86
CCA(Training Free) 53.54
DAPE-BR(Training Free) 68.32

image-grounded reasoning accuracy, and SQA(Lu
et al., 2022)dataset to evaluate multi-turn dialog
consistency. This evaluation design ensures that
DAPE-BR is validated across these critical angles,
demonstrating its ability to improve visual ground-
ing and reduce spurious object generation.

5.1 Models and Baselines

We compare our method against standard base-
lines and the latest hallucination-mitigation tech-
niques. These include DOLA (Chuang et al., 2024),
a layer-contrastive decoding strategy; VCD (Leng
et al., 2024), which introduces visual contrastive
decoding; and OPERA (Huang et al., 2024), a
retrospection-based self-correction strategy. We
also compare against HALC (Jiang et al., 2024b),
which uses hallucination-augmented contrastive
learning, and CCA (Xing et al., 2024), the con-
centric causal attention method (we evaluate both
its fine-tuned and training-free variants). Finally,

we include several recent approaches: AGLA (An
et al., 2025), a plug-and-play global/local atten-
tion assembly; TAME (Tang et al., 2025), a de-
coding method based on dynamically intervening
token propagation; MEMVR (Zou et al., 2025), a
memory-space visual retracing mechanism; and
RITUAL (Woo et al., 2025), which applies ran-
dom image transformations during decoding. By
comparing DAPE-BR with all the above methods,
we demonstrate that our training-free positional
alignment yields competitive or superior results in
mitigating object hallucination.

5.2 Results

Overall, DAPE-BR outperforms all training-free
baselines (including the prior state-of-the-art CCA
approach) across all three benchmarks. The im-
provements are consistent and substantial, indicat-
ing that improved positional encoding and anchor-
ing directly translate to reduced hallucinations and
more accurate visual grounding. Compared to CCA
and other methods, DAPE-BR yields higher ac-
curacy and fewer incorrect details in its answers,
demonstrating the generality of our approach for
mitigating hallucinations across diverse tasks.

POPE. DAPE-BR achieves state-of-the-art re-
sults on the POPE benchmark, surpassing every
previously published methodboth training-free and
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Table 4: Ablation experiment on POPE

Random Popular Adversarial Average
Model Method Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑

LLaVA-1.5

Sampling 84.27 82.38 81.32 79.54 78.81 77.37 81.46 79.76
CCA 87.70 86.68 86.87 85.64 85.70 84.46 86.86 84.54
CCA(Training Free) 88.62 88.09 87.53 86.75 83.36 83.06 86.50 85.97
CCA(Training Free)+BR 89.34 88.84 88.17 87.43 84.13 83.84 87.21 86.70
CCA(Training Free)+DAPE 89.27 88.58 88.23 87.62 83.50 83.48 86.97 86.56
DAPE-BR(Training Free) 90.07 89.40 88.87 88.26 85.80 85.50 88.25 87.71

(a) CCA (SFT) (b) CCA (TF)+BR (c) CCA (TF)+DAPE (d) DAPE-BR

Figure 4: For every positional-alignment variant we run LLaVA-1.5-7B on 3 000 imagequery pairs from the
Adversarial split of POPE. From the first decoder layer we extract the self-attention values that flow from visual
tokens to the instruction token, then (1) average them over attention heads, visual tokens, and images, (2) reshape
the resulting 24×24 patch grid, and (3) min-max normalise to [0, 1] for visualisation (brighter stronger information
flow). (a) CCA(SFT) shows a concentric focal peak caused by ring indices; (b) adding the bottom-right anchor
(BR) shifts the focus towards the anchor; (c) adding distance-aware encoding (DAPE) spreads attention more
isotropically; (d) combining DAPE and BR yields the most uniform map, indicating the greatest suppression of
long-range decay and thus the lowest tendency to hallucinate objects.

SFT-based. In particular, our model reaches object-
presence accuracy / F1 scores of 90.07 / 89.40
on Random prompts, 88.87 / 88.26 on Popular
prompts, and 85.80 / 85.50 on the challenging Ad-
versarial prompts.These numbers show that DAPE-
BR says Yes when the object is truly in the image
and No when it is noteven when the prompt tries to
trick the model with scene-related distractors.Cru-
cially, the accuracy drop from Random to Adversar-
ial prompts is only 4.3 pp for DAPE-BR, compared
with 5.3 pp for the strongest training-free baseline
(CCA). This narrower gap highlights DAPE-BRs
superior robustness against hallucination-inducing
prompt biases. Under adversarial conditions it
still posts an F1 of 85.50 , markedly higher than
CCAs 83.06 , proving that DAPE-BR resists be-
ing induced into hallucinating objects that are not
present.

MMStar and SQA. On the vision-indispensable
benchmark MMStar (NeurIPS 2024), researchers
first sampled 22401 items from eight mainstream
multimodal datasets (MMMU, MMBench, Sci-
enceQA, AI2D, SEED, MathVista, etc.(Chen et al.,
2024a)). Automated filtering reduced this pool to

11 607 candidates, from which 1 500 examples that
genuinely require visual information were manu-
ally curated to cover six core competencies and
18 fine-grained skills, eliminating pure-language
shortcuts and training leakage at their root. Com-
pared with the strongest training-free baseline
CCA, DAPE-BR lifts the overall score from 32.73
to 34.92 (+2.2 pp); on the object-presence-critical
Coarse Perception subtask it climbs from 54.20
to 61.29 (+7.1 pp). Other higher-order reasoning
categories such as Instance Reasoning and Sci &
Tech gain a steady 23 pp, while logic reasoning
and fine-grained perception remain on par. These
results show that, in the most challenging settings
that readily expose hallucinations, DAPE-BR can
more precisely locate the real objects in an image
and reason about them. For the SQA task, created
by Microsoft Research, 2022 complex table-QA
items from WikiTableQuestions were split into 6
066 dialog sequences containing 17553 inter-linked
questions, requiring a model to carry context across
turns, avoid self-contradiction, and consistently re-
fer back to previous answers. On this multi-turn
consistency benchmark, DAPE-BR raises accuracy
from 53.54 to 68.32 (+14.8 pp), drastically reduc-
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ing cross-turn forgetting and hallucinated entities
and demonstrating a clear advantage in long-range
context tracking and entity consistency.

5.3 Ablation Study
To understand the contributions of each compo-
nent in DAPE-BR, we perform an ablation study
on the POPE benchmark (results in Table 4). Re-
call that DAPE-BR combines two key innovations:
Distance-Aware Positional Encoding (DAPE) and
Bottom-Right anchoring (BR). We compare four
model variants: a baseline with neither DAPE
nor BR (using a standard positional encoding), a
model with DAPE only(on CCA), a model with
BR anchoring only(on CCA), and the full DAPE-
BR.Their qualitative attention patterns are visu-
alised in Figure 4. And as shown in Table 4 both
components independently improve performance
on object presence queries each alone reduces
hallucination rates compared to the no-DAPE/BR
baseline.

Complementary effect. In particular, using
distance-aware encoding (without BR) already
yields higher accuracy on POPE(Accuracy
+0.71% F1 Score +0.73%), indicating that en-
coding relative spatial distances helps the model
distinguish objects and avoid confusion. Simi-
larly, applying the bottom-right anchoring (without
DAPE) provides a boost(Accuracy +0.47% F1
Score +0.59%), which suggests that changing the
coordinate reference frame can make the positional
indices more informative for the model.Most im-
portantly, the combination of DAPE + BR achieves
the best results, outperforming either component
alone across all POPE metrics (Accuracy +1.75%
F1 Score +1.74%).

Analysis of results. This demonstrates that
DAPE and BR complement each other: distance-
aware encoding and anchor-shifted coordinates to-
gether provide the model with a richer and more
distinct positional signal, leading to the largest re-
duction in hallucinations. We hypothesize that
the DAPE component improves positional index
separability i.e., it ensures that each objects po-
sitional embedding carries unique distance-based
information, making it easier for the model to tell
objects apart and not hallucinate one for another.
Meanwhile, the BR anchoring aligns the coordi-
nate system with the models internal RoPE (Ro-
tary Position Embedding) representation, which
can simplify the geometric learning problem for

Figure 5: We run LLaVA-1.5-7B and DAPE-BR on 3
000 imagequery pairs from POPE (Adversarial split),
extract the self-attention flowing from every image token
to the instruction token in the first decoder layer, average
those values across heads, queries, and images, then
linearise the resulting 24 × 24 patch grid in standard
raster order and min-max normalise the scores to [0, 1].

the transformer. By anchoring positions at the
bottom-right, the spatial embeddings may better
synchronize with how RoPE encodes angles and
distances, thus enhancing the models ability to at-
tend to the correct regions. Together, these effects
explain why DAPE-BR yields the lowest object hal-
lucination: it provides a more discriminative and
well-aligned positional encoding scheme, enabling
the LVLMs to stay grounded in the actual image
content.

Scale selection. In the following Figure 5,DAPE-
BR keeps just H ×W/4 positional IDs the amount
that, on LLaVAs pink curve (which uses the full
H ×W IDs), attain an attention score above 0.2.
These IDs are then evenly re-allocated across all
image tokens, yielding the turquoise curve. In this
way we avoid over-focusing attention on patches
adjacent to the instruction token, retain as much
token discriminability as possible, and at the same
time lessen RoPEs long-term decay.

6 Conclusion

We propose DAPE-BR, a positional-alignment
scheme that mitigates object hallucination in
LVLMs. It adds three light componentsorder-
consistent re-indexing, fused distance-aware patch
encoding, and reverse causal maskingwithout
changing pretrained weights. Across POPE, MM-
Star, and SQA it surpasses prior methods; each
module contributes, and their combination yields
the largest gains. Thus, precise positional realign-
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ment,rather than extra data or fine-tuning, markedly
improves grounding and is expected to extend to
deeper layers, longer sequences, and other multi-
modal models.

Limitations

Although DAPE-BR markedly suppresses object
hallucination, the technique also unveils several
opportunities for future research. We frame these
not as flaws, but as natural extensions that could
amplify the methods impact:

• Scalability to longer contexts. In principle, or-
derconsistent re-indexing should extend to deeper
transformer stacks and longer token streams, yet
rigorous tests on lengthy imagedialog sequences
remain to be carried out.

• Finer or adaptive patch indexing. Allowing the
shell width ∆ or the anchor position to adapt dy-
namically could yield even more precise spatial
grounding for objects that span multiple patches.

• Robustness in edgecase layouts. Extremely
atypical visual compositions may still challenge
the current alignment assumptions. Developing
additional safeguards or theoretical guarantees
is especially important for high-stakes deploy-
ments.

• Data diversity and fairness. Our evaluation
relies on popular benchmarks; validating DAPE-
BR on larger, more heterogeneous image corpora
will help reveal any hidden biases and verify gen-
eralizability.

• Complementary enhancements. DAPE-BR
tackles positional alignment but not fluency or
fine-grained grounding. Combining it with ex-
plicit regionword linking or caption-quality re-
finements could produce fully grounded and elo-
quent outputs.

Taken together, these directions highlight how
precise positional realignment can serve as a foun-
dation for continued progressscaling to longer se-
quences, broader models, and richer taskswithout
the heavy cost of additional data or fine-tuning.
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