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Abstract

Prior research indicates that although large lan-
guage models (LLMs) can precisely articulate
the theoretical probability distributions associ-
ated with optimal strategic choices, their ac-
tual decision-making systematically diverges
from these prescriptions—a phenomenon we
define as the cognition—behaviour gap in LLMs.
For example, in a Rock—Paper—Scissors (RPS)
game, LLMs correctly identify the strategy
of Nash equilibrium as selecting each action
(Rock, Paper, Scissors) with equal probabil-
ity %, but their observed choices systemati-
cally deviate from this uniform distribution.
Through a comprehensive evaluation of 20
state-of-the-art LLMs, we identify two criti-
cal insights: (1) we demonstrate that intrin-
sic biases inherited from pre-training corpora
alone are insufficient to explain the observed
deviations; (2) we introduce a semantic-free
paradigm that strips away intrinsic biases to iso-
late pure positional bias-LLMs exhibit distinct
position preferences—for example, ol favours
the first option, DeepSeek-V3 peaks the middle
and DeepSeek-R1 shows a bimodal bias toward
first and last positions. Our findings advocate
innovation to bridge the gap between strategic
reasoning and decision-making in LLMs.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in strategic reasoning tasks,
from solving mathematical games (Ahn et al.,
2024) to simulating negotiations (Bianchi et al.,
2024). However, existing research shows that the
stochastic decision-making of LLMs remains de-
ficient (Van Koevering and Kleinberg, 2024), and
LLMs deviate from ideal randomness in tasks as
simple as coin-flipping (Van Koevering and Klein-
berg, 2024), dice-rolling (Liu, 2023), and pseudo-
random number generation (Hopkins and Renda,
2023). In particular, such deviations persist when
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Reasoning
As the opponent prepares to

take a shot, I should mix my
strategy: randomly select one
direction from three option with

an equal probability —.

Given this reasoning, I'll
select my action.
I choose: Right.

Actual Decision

Woo, it always goes
right to save the ball.
P2

(b) Behaviour

Left Center Right

Figure 1: A toy example in an embodied-intelligence
setting: two LLM-driven robots face off in a penalty
shootout.

LLMs explicitly attempt to approximate mixed-
strategy Nash equilibrium (Silva, 2024; Poje et al.,
2024). For instance, in the Rock—Paper—Scissors
(RPS) game, (Xu et al., 2024) reports that GPT-4
correctly identifies the Nash equilibrium as uniform
randomization (33.3% per action) yet selects Rock
in 67% of 100 independent trials—approximately
twice the theoretical frequency.

This limitation may pose an obstacle to real-
world deployments, for instance, LLM-driven
agents in embodied intelligence. Consider a simpli-
fied, illustrative scenario involving two robots en-
gaged in a penalty shootout, as depicted in Figure 1.
In this hypothetical situation, an LLM-controlled
goalkeeper correctly identifies the Nash equilib-
rium strategy, which is diving left, center, or right
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with equal probability. But if its actual decisions
skew, say, 70% to the right, an opposing kicker
can learn and exploit that bias, dramatically under-
mining the goalkeeper’s effectiveness. We call this
mismatch between what the LLMs know and what
they do as the "cognition—behaviour gap".

Initially, Meister et al. (2024) attributes such
gaps to failures in probabilistic sampling despite
correct distributional reasoning. A prevailing expla-
nation further links these failures to intrinsic biases
inherited from pre-training corpora (Xu et al., 2024;
Guo et al., 2024). However, the evidence remains
tentative: existing results cover only a narrow set of
models and experimental designs, and no system-
atic, cross-model analysis has cleanly disentangled
corpus-level effects from other confounders, which
motivates the present investigation.

In this work, we center our analysis on RPS,
whose unique mixed-strategy Nash equilibrium
prescribes uniform random play. We comprehen-
sively evaluate 20 state-of-the-art LLMs to ex-
amine how LLMs fail to emulate this stochastic
decision-making. We find that nearly all advanced
LLMs (e.g., GPT-4.5 (OpenAl, 2025a), DeepSeek-
R1 (Guo et al., 2025)) exhibit systematic biases,
with empirical action distributions deviating from
the probability distributions they explicitly derive.
We establish two insightful findings:

(1) Intrinsic biases in pre-training corpora
alone fail to explain the gap. We first examine
whether LLM choice reflects token frequencies in
their training data, but we found a clear mismatch-
most LLMs over-selected rock despite paper be-
ing most common in corpora. Thus, we introduce
a semantic-free prompting paradigm by replacing
each action with a random 10-character string to
remove all lexical-frequency and semantic cues.
Empirical results show that LLMs continue to ex-
hibit pronounced choice skews, confirming that
corpus-level intrinsic biases alone cannot explain
the cognition—behaviour gap in LLM stochastic
decision-making.

(2) Positional bias exerts a significant influ-
ence. By removing the semantic bias (Lin and
Li, 2025) and lexical frequency bias (Zhao et al.,
2021) introduced by the tokens, we are the first to
isolate pure positional bias in stochastic decision-
making. Under these conditions, distinct LLMs
display characteristic position preferences—for ex-
ample, ol favours the first option, DeepSeek-V3
peaks on middle entries, and DeepSeek-R1 shows
a bimodal bias toward the initial and last positions.

The remainder of this paper is structured as fol-
lows: Section 2 synthesises related work on the gap
of randomness behaviour in LLMs. Section 3 in-
troduces the background of our research. Section 4
presents empirical results to declare our findings.
Section 5 discusses the positional-bias failure in
stochastic choices and outlines practical mitiga-
tions. Section 6 concludes our empirical findings.

2 Related Work

Recent work has highlighted significant challenges
in LLMs’ abilities to generate truly random sam-
ples. For instance, when GPT-4 "rolls" a virtual
die, it outputs some faces far more often than the
theoretical é frequency. In longer sequences, the
marginal distribution becomes nearly uniform, yet
adjacent numbers repeat less often than chance
would predict (Liu, 2023). Even the ostensibly
simpler task of producing binary sequences is af-
fected: GPT-4 and LLaMA 3 reproduce human-like
cognitive biases in simulated coin flips, whereas
GPT-3.5 exhibits behaviour that more closely ap-
proximates randomness (Van Koevering and Klein-
berg, 2024). These errors persist even when models
are asked to sample from arbitrary target distribu-
tions (Hopkins and Renda, 2023), suggesting that
the difficulty is agnostic to output space. The gap
is also evident in game-theoretic settings. In RPS,
for example, Xu et al. (2024) show that GPT-4
correctly states the uniform mixed-strategy Nash
equilibrium yet still chooses rock in 67% of in-
dependent rounds—roughly twice the prescribed
33% frequency. A similar mismatch has been doc-
umented in other game scenarios like Matching
Pennies, Chicken Games, etc. across GPT-3.5 and
GPT-4 (Silva, 2024; Poje et al., 2024), indicating
a consistent failure to translate theoretical distribu-
tions into action.

Xu et al. (2024) attributes the cognition-
behaviour gap, in which the mismatch between
LLMs’ stated understanding of probability and
their generated outputs to intrinsic bias inherited
from the pre-training corpora. Several studies doc-
ument a "frequency effect” as the factor of intrinsic
bias, where token prevalence in pre-training cor-
pora systematically skews LLM outputs (Lovering
et al., 2024; Wei et al., 2021; McCoy et al., 2024).
Building upon this claim, we want to uncover
how more frequent words can dominate stochas-
tic generation even when uniform randomness is
prescribed. Recent work has brought attention to
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positional bias—the tendency of LLMs to favour
answer options based on their placement within the
prompt (Pezeshkpour and Hruschka, 2023). For
example, Lovering et al. (2024) show that when
LLMs are asked to choose between two colours,
GPT-40-mini consistently selects the first option,
while LLaMA-3.1-8B favours the second. How-
ever, such colour preference questions inherently
engage corpus-driven biases about common colour
associations. To further study it, we disentangle the
source of biases and accurately measure the impact
of positional bias on LLM decision-making.

Prior works have identified and mitigated LLM
selection biases in multiple-choice question (MCQ)
tasks (Pezeshkpour and Hruschka, 2023). For ex-
ample, (Wei et al., 2024) proposed grey-box proba-
bility calibration and a black-box two-hop querying
strategy to counter option-order biases. (Choi et al.,
2024) further introduced a black-box Bias Node
Pruning method to remove internal bias parame-
ters, as well as an Auxiliary Option Injection tech-
nique that adds a dummy "I don’t know" choice to
flatten the selection distribution. However, these
approaches assume an objectively correct answer
and often require numerous model queries or direct
model access, making them less applicable to our
scenarios, where all options are equally valid (e.g.,
RPS) and efficiency is paramount.

3 Background

3.1 Rock-Paper-Scissors

Rock—Paper—Scissors (RPS)—also known as
Rochambeau or Jan-Ken-Pon—is a canonical game
whose unique solution is a mixed-strategy Nash
equilibrium. In RPS, each participant’s strategy
space in RPS is given by:

S={R,P,S}, ()

where R represents action option Rock, P repre-
sents Paper, S represents Scissors. The game rules
establish a cyclic dominance: R beats S, S cuts
P, and P wraps R; identical actions result in a
tie. Each player has a probability F; to choose an
action ¢, where i € {R, P, S}.

After confirming that every LLM can identify
the mixed-strategy Nash equilibrium of RPS (i.e.,
a uniform P, = 1 distribution over {R, P, S}), we
evaluate whether they can implement it. For each
LLM, we run T" independent rounds ( 7' = 100
in our experiments). In every round ¢, LLM is

required to commit a single action 4; € {R,P,S}.
We define the empirical selection frequencies:

T
- 1 ‘ .
P, = T;I{At:z}, i€ {R,P,S}.
U
We then compare the vector P = (Pg, Pp, Ps)
111

with the ideal uniform vector (3, 5, 5) in the game
round ¢ though a probabilistic analysis framework.
The resulting divergence scores measure how far
each LLM’s decision departs from equilibrium-
consistent, truly random play.

3.2 Evaluation of Stochastic Processes

Inspired by (Gupta et al., 2025), we adopt an evalu-
ation of stochastic processes framework that quan-
tifies the divergence between the theoretical uni-
form distribution %—%—% in RPS and the empirical
choice distribution produced by LLMs. Given a
fixed prompt, Pys(A | prompt) represents the con-
ditional probability of action A estimated by the
LLM M in a 100-trial sampling procedure. To han-
dle potential invalid actions outside of .S, the linear
normalization approach is used:

~ Py (A | prompt
> ares Pr (A" | prompt)
To quantify the discrepancy between the normal-
ized empirical distribution Py;(A) and the target

distribution P*(A) prescribed under rational play,
we compute the Total Variation Distance (TVD):

5(P Pa) = 5 SOIP(A) - Pa(A)]. @)
AeS

3)

where (5<P*, PM) € [0,1]; a value of O denotes

perfect alignment, whereas larger values indicate
greater divergence from the expected distribution.
In the context of RPS, the strategic distribution
is P*(A) = 1,VA € {R,P,S}, and hence,

5(P*,PM) c[0,2].
4 Experiment

We begin with a case study to visualize action dis-
tributions of 20 LLMs to confirm the presence
of a cognition—behaviour gap. Then, we exam-
ine its underlying determinants by systematically
analysing two factors: (1) intrinsic bias inherited
from pre-training corpora, and (2) positional bias
arising from the ordering of answer options within
prompts. More experiments, discussions, and ex-
planations can be found in Appendix A.
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4.1 Experiment Setup

Models. The evaluated architectures encompass
canonical and Long Chian-of-Thought (CoT) rea-
soning LL.Ms. Selected models include GPT-4.5-
preview-2025-02-27 (OpenAl, 2025a), 03-mini
(OpenAl, 2025b), 01-2024-12-17 (Jaech et al.,
2024), 01-mini-2024-09-12, GPT-40-2024-08-06
(Hurst et al., 2024), GPT-4-turbo (Achiam et al.,
2023), GPT-3.5-turbo (Ye et al., 2023), Claude-3-
7-sonnet-20250219 (Anthropic, 2025), Claude-3-
5-sonnet-20240620 (Anthropic, 2024b), claude-3-
haiku-20240307 (Anthropic, 2024a), Gemini-2.0-
pro-exp-02-05 (Google DeepMind, 2025), Gemini-
2.0-flash, Gemini-1.5-pro-latest (Team et al.,
2024), Gemini-1.5-flash-latest, Meta-LLaMA-3.1-
8B-Instruct (Grattafiori et al., 2024), Meta-LLaMA -
3.1-405B-Instruct, DeepSeek-V3-250324 (Liu
et al., 2024), DeepSeek-R1-250120 (Guo et al.,
2025), Grok-3 (xAl, 2025), and Qwen-2.5-max
(Team, 2024).

Configurations. All model evaluations were
conducted in a vanilla state using the official API
interface!. To ensure statistical significance, each
experimental scenario was tested on 100 indepen-
dent games, with a new session established for
each call to eliminate any contextual interference.
We conduct an initial experiment involving 1,000
independent generations from the LLMs in Ap-
pendix A.1. The results show that 100 runs are
sufficient to approximate the model’s output distri-
bution. The experimental parameters were fixed at
temperature = 1, top-p = 1, and repetition penalties
were disabled, ensuring nondeterministic genera-
tion and consistent experimental settings.

4.2 Cognition-Behaviour Gap

In this section, we corroborate the finding of (Meis-
ter et al., 2024) that LLMs are better at describ-
ing probability distributions than at sampling from
them. we tested the individual LLMs using the
same Prompt? provided by (Xu et al., 2024).

'All API accesses strictly followed the license agreements
and terms of service of respective API providers (OpenAl, An-
thropic, Google, Meta, etc.), used solely for academic research
purposes without commercial benefit. Our experimental proto-
col complied with all prescribed usage limitations, including
rate limits, output restrictions, and content policies outlined in
each provider’s academic access terms.

*Noted that RPS in real Prompt is expressed as
Rock-Paper-Scissors, and {R,P,S} are Rock, Paper,
Scissors, respectively.
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Figure 2: The choice distribution of LLMs when play-
ing Rock-Paper-Scissors. The x-axis lists the evaluated
LLM models, while the y-axis reports the share of rock,
paper, and scissors selections that normalized over
100 independent games.

Models TVD () Models TVD ()
GPT-4.5-preview 0.257 Gemini-2.0-flash 0.277
03-mini 0.647 Gemini-2.0-pro 0.233
ol-mini 0.287 Gemini-1.5-flash 0.567
ol 0.203 Gemini-1.5-pro 0.657
GPT-40 0.163 LLaMA-3.1-8B 0.247
GPT-4-turbo 0.107 LLaMA-3.1-405B 0.313
GPT-3.5 0.217 DeepSeek-V3 0.507
Claude-3.7 0.637 DeepSeek-R1 0.397
Claude-3.5 0.333 Grok-3 0.213
Claude-3 0.537 Qwen-2.5-Max 0.667

Table 1: The mean total variation distance (TVD, |)
across tested LLMs, larger values indicate greater diver-
gence from the expected probability %

Prompt: You are playing the RPS game.
You should first reason about the Nash equi-
librium of this game, and then choose one
action from {R, P, S} based on your rea-
soning. Please choose an exact action.

In the experimental results, all tested LLMs cor-
rectly state that the unique equilibrium in RPS is
to choose {R, P, S} with equal probability %, an
example is provided in Appendix A.2. We then
compare this uniform benchmark with the action
choice frequencies over 100 independent rounds.
Figure 2 plots the empirical distributions, while
Table 1 reports the numerical results that record
the mean total variation distance, ¢, between each
model’s output and the theoretical baseline. It is
striking to find that several models like GPT-03-
mini, Claude-3.7, and Grok-3 exhibit extreme skew
(0 > 0.6), effectively locking onto a single action.
These quantitative results substantiate the gap in
stochastic decision-making.
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4.3 Intrinsic Bias

Recent work has documented a frequency effect,
whereby token frequency in pre-training corpora
systematically biases LLLM outputs (Lovering et al.,
2024; Wei et al., 2021; McCoy et al., 2024). We
therefore hypothesize that LLMs’ stochastic deci-
sions will reflect these frequency priors: actions
labelled by higher-frequency tokens should be cho-
sen more often. We expect LLMs to dispropor-
tionately favour actions whose labels appear most
frequently in their training data. Since the pre-
training corpora of closed-source LL.Ms are inac-
cessible, we estimate their token-frequency priors
using large public datasets as proxies. Prior work
shows that GPT-40 and Gemini 1.5 Pro replicate
the lexical frequency ordering of the Corpus of
Contemporary American English (COCA) with
near-perfect fidelity (Davies, 2025), validating this
proxy approach for assessing the relative frequen-
cies of rock, paper, and scissors.

Building on this insight, we analyze the
occurrence frequency of rock, paper, and
scissors in open-source corpora hosted on
English-Corpora.org®, Google Books n-grams®,
Colossal Clean Crawled Corpus (C4) (Raffel et al.,
2020)°, RedPajama (Weber et al., 2024) ¢, Dolma
(Soldaini et al., 2024)”. The result places paper
first, rock second, and scissors third.

If the occurrence frequency of rock, paper, and
scissors constitutes the main reason for stochas-
tic decision-making of LLMs, then they should
over-produce P. However, our experiments reveal
that the majority of LLMs disproportionately select
‘R, even though paper is the most frequent token in
reference corpora. This finding indicates that token
frequency alone cannot account for the observed
bias. We therefore turn to a second form of intrinsic
bias: semantic salience arising from human cogni-
tive associations. For example, rock is commonly
linked to strength metaphors in language (Zhang
etal., 2021) and exhibits a mild selection advantage
among human players in RPS games (Dyson et al.,
2016). Such semantic priors may drive the persis-
tent rock preference in LLM decision-making.

To isolate non-lexical factors, we introduce
a semantic-free paradigm in which each ac-

3https://www.english—corpora.org//
4https://books.google.com/ngrams/
Shttps://huggingface.co/datasets/allenai/c4
https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T
"https://huggingface.co/datasets/allenai/dolma

Corpus Name rock paper scissors

English Corpora

COCA 87,552 126,476 4,195
COHA 41,262 73,508 2,206
Google Books (American English) 7,000,769 19,070,293 511,265
Google Books (British) 2,307,015 5,225,572 120,782
n-gram Language Models

Cc4 10,670,341 23,690,184 492,327

72,721,463
113,672,854

106,761,993
274,465,797

1,406,924
4,943,023

RedPajama

Dolma

Table 2: Open-source corpora.
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1.0
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0.6
0.4
0.2
0.0

B grfnrzsosi

antic-Free option

B orxtlwsjuf bvmfdwqdes

Figure 3: The choice distributions of LLMs in a
semantic-free variant of Rock—Paper—Scissors game,
where a randomly-generated, semantic-free string re-
places each action label.

tion label is replaced by a randomly gener-
ated, non-pronounceable 10-character string (i.e.,
orxtlwsjuf, grfnrzsosi, bvmfdwqgdes). The
rest of the prompt, including the RPS rules and
the prescription of the mixed-strategy Nash equi-
librium, remains unchanged (see Appendix A.2).
As Figure 3 shows, the models’ choices remain
far from the uniform distribution. This finding
indicates that, although intrinsic biases—whether
due to word frequency or semantic associa-
tions—undeniably shape LLM choices, they alone
are insufficient to explain the persistent divergence
from the uniform mixed-strategy equilibrium.

4.4 Positional Bias

Inspired by Pezeshkpour and Hruschka (2023),
which demonstrates that LLMs are highly sensi-
tive to option order and, when uncertain, tend to
favour specific positions. However, their experi-
ments are confined to reasoning tasks rather than
stochastic decision-making. We therefore extend
the investigation to a purely stochastic setting, test-
ing whether positional bias similarly distorts LLM
decision-making on randomness.
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Figure 4: The choice distribution variations of LLMs across Rock-Paper-Scissors Prompt order permutations
Six lexical permutations were used to describe the game in the prompt. The x-axis lists the evaluated LLM models,
while the y-axis reports the share of rock, paper, and scissors selections that normalized over 100 independent

games. Panels (a)—(d) use the same x-axis and y-axis labels as panels (e) and (f).

4.4.1 Rock-Paper-Scissors

Firstly, we extend experiments on RPS games to ex-
amine the existence of positional bias. We conduct
a fully crossed model experiment incorporating all
six permutations of the R/P/S triad. The canonical
R-P-S sequence serves as the control condition,
while the remaining five permutations constitute
the treatment set. Every prompt follows a fixed

template:

Prompt: You are playing the [RPS/R-
SP/PSR /PRS/SPR/SRP] game.  You
should first reason about the Nash
equilibrium of this game, and then
choose one action from [{R,P,S}/

{S,R,P}] based on your reasoning.
Please choose an exact action.

{R,S,P}/{P,S,R}/{P,R,S}/{S,P,R}/

As aresult, we find that even if we change lex-
ical permutations, all the tested LLMs can still
recognize the mixed-strategy Nash equilibrium and
believe that the rational choice should be to select
8623

each action with a probability of % Figure 4 shows
that the empirical action frequencies of most LLMs
shift across the six prompt permutations, confirm-
ing that option order—the hallmark of positional
bias—influences their decisions. Diverse decision
patterns emerged among several models:

Rock preference:11 of the 20 evaluated LLMs
consistently favour R across all six permutations
of option order, indicating a stable bias that is unaf-
fected by re-ordering.

Median preference: Qwen 2.5 Max consistently
selects the middle-positioned action, choosing R or
‘P near 100% frequency when centrally placed, but
exhibiting a bimodal distribution when S occupies

the middle position.

Counter pattern: Interestingly, GPT-4.5-
preview systematically chooses the action that de-
feats the first item in the prompt sequence. When
the list starts with R, the model selects in P =
70%+10% of trials; when it starts with P, it shifts
to S (= 50%+1%); and when it starts with S, it
moves to R (= 75%=+2% ). Qualitative inspec-
tion of the model’s response suggests that it im-
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Figure 6: The six lexical permutations used to describe the game illustrate the positional bias on LLMs’
decision-making. Each subfigure reports the normalised choice distribution across LLMs. The replaced element for
rock, paper, scissors are orxtlwsjuf, qrfnrzsosi, or bvmfdwqdes, respectively.

plicitly treats the first-listed option as the oppo-
nent’s likely move and therefore responds with the
counter-action that would win.

In this experiment, we retained intrinsic bias,
which continues to skew LLMs toward R—but
permuted the positions of the answer options. The
resulting shifts in choice distributions reveal the
additional influence of positional bias.

4.4.2 Semantic-Free Paradigm

To further disentangle the effect of positional bias
in Prompt from the confounding influence of in-
trinsic biases in the corpus, we continue to imple-
ment the semantic-free paradigm to illustrate this
effect. Under this controlled setting, we permute
the order of the three actions and compare the re-
sulting choice distributions across models. Because
of page-length constraints, this part of the exper-
iments is restricted to four models: GPT-4o, ol,
DeepSeek-V3, and DeepSeek-R1.

As depicted in Figure 6, our evaluation across

six permutation conditions reveals that none of the
tested LLMs achieved a uniform distribution. In-
stead, three distinct position-dependent patterns
emerged as introduced in the previous context:
(1) ol and DeepSeek-R1 exhibited ascending-
order preference, selecting the first-position option
with 55%-77% probability when "String 1" led
the sequence, and diminished to 2%-36% when
"String 1" moved to terminal positions, demon-
strating position-index correlated sensitivity; (2)
GPT-40 and DeepSeek-V3 consistently preferred
median-position options across all valid permuta-
tions; This positional bias dominance persists even
when intrinsic biases are eliminated, confirming
spatial encoding’s critical role in LLM decision-
making. Moreover, Long CoT reasoning models
(ol and DeepSeek-R1) consistently over-select the
first option in the sequence, whereas GPT-40 and
DeepSeek-V3 reliably favour the middle option.
However, this three-option game offers limited ev-
idence of positional bias. To bolster our findings,
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Length  Sequence Models (%)
40 ol V3 RI
nalmozkzhf 41 70 14 73
4 glgfwlklnw 33 6 4 0

riwpharsgy 26 15 82 19
vfjhmayacd O 9 0 8

jjhgelerzs 13 53 9 57
hcgefmxrac 12 6 0
5 ulggtnwpwg 66 22 90
yfhodxulzn 7 19 1
dozxichhrn 2 0 0

oxaatanhzh 18 48 20 60

Powmvo

nrpjvitdeb 8 2 0 1
6 jmakgkoepx 24 17 77 4
zgpkjexdwt 41 23 3 3
vyangddyfn 7 0 0 0
jkaawzkgya 2 10 O 32
crrzedsfrk 20 71 27 73
zsydssgddt 7 1 0 0
oeoaiylxad 31 7 12 0
7 xgranflukp 15 20 45 5
vcwoazslgz 14 1 0 0
cmorbvkjzi 8 0 3 11
jmllurvola 5 0 13 11

Table 3: Results of the extended-sequence experiment:
for each LLM, the percentage frequency with which op-
tions are selected across 4-, 5-, 6-, and 7-option games.

we extend our experiments to games with larger
action sets to examine whether this bias persists or
changes as the choice space grows.

4.4.3 Multi-option Games

To clarify whether positional bias in LLM decisions
arises from absolute positions or relative ordering,
we extend our experiments to n-option sequential
games (n = 4, 5, 6, 7) with unique uniform mixed-
strategy Nash equilibrium solutions, where the the-
oretical solution of each action evolves as % The
experimental prompt builds upon the previous de-
sign outlined in Appendix A.2, with the modifi-
cation of the cycle patterns’ length. As shown in
Table 3, once the prompt contains more than four
options (n > 4), all models largely discard their
earlier ordinal preferences, and all models tend to
abandon ordinal preferences. Specifically, GPT-40
and DeepSeek-V3 redistribute decision weights to-
ward the first-position selection while maintaining
primary preference on median indices. Further, we
find that o1 exhibits stabilized first-position selec-
tion probability and secondarily prefers third and
fourth elements, whereas DeepSeek-R1 develops a
bimodal distribution peaking at terminal positions

of the sequence. These findings demonstrate that,
in longer sequences, position preference rather than
relative order drives LLM action selection in uni-
form play, thereby highlighting positional rather
than ordinal mechanisms as the core contributor to
stochastic decision-making.

4.5 Support Experiments

The supplementary material provides additional
experimental blocks that extend our findings.

(1) Model scale does not mitigate randomness
deficits. In Appendix A.3, we compare LLMs of
increasing model scale within the same architecture
family and find that larger scales do not reduce
the cognition—behaviour gap in RPS. Thus, simply
scaling up an LLM is insufficient to eliminate its
shortcomings in stochastic decision-making.

(2) Generalization to other mixed-strategy
games. In Appendix A.4, we extend our evaluation
to two additional mixed-strategy games—Matching
Pennies and Morra. The cognition—behaviour gap
persists in both cases, confirming that the random-
ness shortfall is not peculiar to RPS but generalises
across diverse strategic settings

(3) Temperature tuning. In Appendix A.5, we
vary the LLM sampling temperature—from low
(deterministic) to high (high-entropy) settings— to
examine whether LLMs’ decision is influenced by
output entropy. Our results indicate that the cogni-
tion—behaviour gap persists across the temperature
range, indicating that observed biases cannot be
attributed to the entropy of the sampling step.

(4) Prompt-design sensitivity. In Appendix A.6,
we demonstrate that prompt designs featuring re-
peated terminology or embedded human-centric
stereotypes significantly alter model decisions.
These findings emphasize the necessity of care-
ful prompt hygiene in tasks involving strategic
decision-making by LLMs.

(5) Effect of Human cognitive bias . In Ap-
pendix A.7, we aim to examine how a specific form
of intrinsic bias—human cognitive bias—shapes
the stochastic decision-making behaviour of LLMs.
Guided by Social Role Theory (Eagly and Wood,
2012), we prompt each LLLM to adopt specific de-
mographic identities encompassing gender and age.
The resulting choice distributions systematically
mirror established human cognitive biases, con-
firming that LLM agents inherit and express hu-
man cognitive priors from training data in their
decision-making processes.

(6) Effect of Language Context. In Ap-
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pendix A.8, we examine whether language modu-
lates an LLM’s randomness. We extend the RPS
experiment with prompts in English, Chinese, and
Japanese. Despite the choice probabilities slightly
shifting, the ranking of actions remains unchanged,
indicating that the bias persists across languages,
likely because semantically equivalent tokens map
to similar internal representations.

5 Discussion

Our study identifies a failure mode in LLMs’
stochastic decision-making: models can state the
uniform mixed-strategy Nash equilibrium yet still
choose systematically non-uniform actions, and
these choices are strongly affected by positional
bias in the prompt. We next examine two MCQ
debiasing techniques in this setting, namely Grey-
Box Probability Weighting (GBP) (Wei et al., 2024)
and Black-Box Auxiliary Option Injection (AOI)
(Choi et al., 2024), to test whether methods devel-
oped for MCQ tasks transfer to label-free, uniform-
target stochastic decision making. Both methods
are adapted to a uniform-target, label-free RPS
protocol; the experimental details appear in Ap-
pendix A.9. In brief, neither method moves the
empirical distribution closer to the uniform mixed-
strategy target; deviations persist, and for several
models the TVD even increases under AOI or GBP.

To mitigate the failure in LLMs’ stochastic
decision-making, we outline two possible direc-
tions aimed at reducing this pathology. (1) Verbal-
ized probability calibration (VPC). Apply VPC
to uniform target games: elicit a probability vec-
tor over the n options and apply a light post-hoc
calibration (e.g., temperature or isotonic regression
with simplex projection) so the expectation leans to-
ward 1/n (Tian et al., 2023; Wang et al., 2024). (2)
Test-time positional retrieval. Preparing a small
annotated reference set could guide option ordering,
potentially damping order sensitivity with a single
model call (Cobbina and Zhou, 2025). Resolving
these basic failures in stochastic choice may trans-
late into more reliable LLM agents in complex,
high-stakes settings, where robust randomization
decisions are required.

6 Conclusion

After the evaluation of twenty contemporary LLMs,
two sources of bias emerge that limit truly random
choice. Intrinsic bias from pre-training regular-
ities, which pulls probability mass toward high-

frequency or semantically salient options. In ad-
dition, positional bias occurs where the placement
of options in the prompt alters choice probabili-
ties. Together, they produce a persistent cognition-
behaviour gap: models can state the uniform
Mixed-strategy Nash equilibrium, yet their sam-
ples remain non-uniform, and in many cases, po-
sition alone is sufficient to shift the distribution
away from uniform. How to make LLMs achieve
robust randomization for stochastic decisions, es-
pecially under black-box constraints and realistic
cost budgets, remains an open challenge.
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Limitations

While this study provides critical insights into
LLMs’ stochastic decision-making deficiencies,
several limitations need to be considered:

(1) Narrow Scope of Game Environments.
Our analysis focuses primarily on RPS-like games,
which have a unique mixed-strategy Nash Equilib-
rium. While these are canonical examples, they
represent simplified decision spaces with discrete
actions and perfect symmetry. Therefore, this de-
cision strategy of choosing actions with equilib-
rium probability is easily deducible. Real-world
strategic scenarios often involve continuous action
spaces, imperfect information, and asymmetric re-
wards, which may elicit different failure patterns.

(2) Static Experimental Design. Our evalua-
tion relies on single-round decision paradigms with
independent trials. Real strategic interactions typi-
cally involve adaptive play across multiple rounds
where opponents learn and counter-strategize. Un-
fortunately, our experiments cannot allow for a con-
trolled analysis of sequential rounds in gameplay,
as LL.Ms can leverage historical context to artifi-
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cially regulate their own randomness. For example,
Liu (2023) prompts GPT-4 to generate a sequence
of 280 random numbers, and the resulting distribu-
tion is notably closer to uniform, suggesting that
access to prior context enables the model to self-
correct and effectively approximate randomness.

(3) Limited Model Diversity. Despite evaluat-
ing 20 state-of-the-art models, our study excludes
less prominent architectures (e.g., CodeGemma for
programming tasks) and smaller-scale models (<8B
parameters).

(4) Lack of Mitigation Strategies. While we di-
agnose the problem space, we do not propose tech-
nical solutions to correct the cognition-behaviour
gap. Recent work suggests contrastive decoding
may reduce positional bias, but systematic evalua-
tion remains future work.

Risk

The positional biases we identify create systematic
patterns that adversaries could reverse-engineer to
manipulate LLM-powered systems (e.g., gaming
Al negotiation agents by strategically ordering op-
tions). Practitioners might attribute positional bias
effects to semantic preferences or domain knowl-
edge gaps, leading to misguided mitigation.
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A Appendix

A.1 A Thousand Trail Experiment

In the main text, each experiment was probed with
100 independent generations. To assess whether
this sample size accurately captures the model’s ac-
tion distribution, we replicated the procedure with
1,000 independent trials. As shown in Table 4, the
ten 100-trial subsets exhibit only minor variation
in action frequencies. The aggregate 1,000-trial
run yields proportions for Rock, Paper, and Scis-
sors that are virtually identical to the per-subset
means, and within any 100-trial subset the count
for a given action deviates by no more than £5
from its expected value. These results indicate that
a 100-trial sample is sufficient to characterise the
statistical distribution of the LLMs’ decisions.

A.2 Prompt Design

In this section, we explain how we prompt each
LLM in the experiment, and provide an example
response from GPT-4o.

Rock-Paper-Scissors

Prompt: You are playing the Rock-Paper-
Scissors game. You should first reason
about the Nash equilibrium of this game,
and then choose one action from Rock, Pa-
per, and Scissors based on your reasoning.
Please choose an exact action.

Response: In the game of Rock-Paper-
Scissors, a Nash equilibrium occurs when
each player chooses each of the three possi-
ble actions (Rock, Paper, or Scissors) with
equal probability, meaning each action is
chosen 1/3 of the time. This ensures that
no player has an advantage over the oth-
ers, given that the game is symmetric and
each choice can be directly countered by
another. Since the optimal strategy in terms
of Nash equilibrium is to randomize and
choose each action with equal likelihood,
no action is better than the others to guaran-
tee a win against an opponent also playing
optimally. Therefore, in this instance, I will
randomly choose one of the three actions.
Let’s say I choose "[Action]".

Semantic-Free Paradigm
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Rock-Paper-Scissors Sequence

Game Rounds

wqdes. The rules follow a cyclic pattern:
[orxtlwsjuf defeats qrfnrzsosi, qrfnrzsosi
defeats bvmfdwqdes, and bvmfdwqdes de-
feats orxtlwsjuf.] If both players select the
same element, the round is a tie. You should
first reason about the Nash equilibrium of
this game, and then choose one action from
[orxtlwsjuf, qrfnrzsosi, and bvmfdwqdes]
based on your reasoning. Please choose an
exact action.

Response: This game is similar to the
classic Rock-Paper-Scissors game, featur-
ing three choices with cyclical dominance.
In such games, each player has no pure strat-
egy that guarantees a win, so the Nash equi-
librium involves players randomizing their
choices. This means each player chooses
one of the three elements with a probability
of 1/3. Now, applying this randomization
strategy in practice, I’'ll randomly choose
one of three actions: I choose "[Action]".
NOTE: The blue text is re-ordered to for-
mulate the six lexical permutations.

Order Action 1-100 101-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900 901-1000  Total
R-P-S Rock 41 39 43 50 47 43 43 38 47 41 432
Paper 46 44 42 36 36 42 35 45 36 32 394
Scissors 13 17 15 14 17 15 22 17 17 27 174
R-S-P  Rock 47 46 52 44 55 43 55 43 49 48 482
Paper 27 44 33 35 24 43 33 42 29 34 344
Scissors 26 10 15 21 21 14 12 15 22 18 174
P-S-R  Rock 73 64 72 72 65 72 73 80 71 76 718
Paper 12 14 8 10 7 8 5 6 14 8 92
Scissors 15 22 20 18 28 20 22 14 15 16 172
P-R-S Rock 66 79 67 80 73 71 82 74 80 80 752
Paper 21 8 13 7 10 11 6 10 6 8 100
Scissors 13 13 20 13 17 18 12 16 14 12 148
S-P-R  Rock 70 65 73 68 68 61 65 69 66 59 664
Paper 27 34 27 27 30 37 31 27 31 34 305
Scissors 3 1 0 5 2 2 4 4 3 7 31
S-R-P Rock 93 92 89 89 94 91 96 92 92 89 917
Paper 6 7 9 9 5 9 3 8 8 10 74
Scissors 1 1 2 2 1 0 1 0 0 1 9
R=Rock, P=Paper, S=Scissors, Total Rounds = 1,000
Table 4: GPT-40 Rock-Paper-Scissors experiment complete record.
. GPT Series Claude Series
Prompt: You are playing a strategy game, =T P .
which is pla}yed between two players, each oo */" Lo \W
of whom simultaneously chooses one of F o2 L ) — ¢ o i
three elements to compete with another o \/ oa = o
p]ayer: Orxtlwsju‘ﬁ ql:-fnrzsosi, Or bvmfd_ RPS RSP PSR PRS SPR SRP b PRS SPR SRP
(@) (b)

Figure 7: Total variation distance (TVD) between the
baseline and the empirical choice distribution for each of
the six possible lexical permutations. Results are shown
for successive checkpoints in the GPT and Claude
model families. TVD remains high—and in several
cases increases—as model size and generation advance,
indicating that scaling has not yet closed the cogni-
tion—behaviour gap in stochastic decision-making.

A.3 Model Scale Does Not Mitigate
Randomness Deficits

In the main text experiments, we observe an inter-
esting phenomenon: as models become increas-
ingly intelligent (larger model scale), the flaws
in their stochastic decision-making capabilities do
not improve. For instance, in both the GPT and
Claude model series, despite successive iterations
and upgrades, their stochastic decision-making abil-
ities have not demonstrated corresponding enhance-
ments. Building on our three-option RPS tests, we
evaluate six permutation variants to measure mean
TVD from the uniform baseline. Figure 7 compares
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LLaMa 3 Series

Qwen 2.5 Series

Figure 8: Results are shown for successive checkpoints
in the LLaMa-3 and Qwen-2.5 families.

GPT-series and Claude-series checkpoints. Sur-
prisingly, later generations—GPT-4.5 and Claude-
3.7—exhibit larger TVD values than GPT-3.5 and
Claude-3, indicating that greater in-context reason-
ing capability does not translate into more faithful
random sampling.

To control for architecture while varying scale,
we run the same experiment on LLaMA-3 models
(8B, 70B, 405B) and Qwen-2.5 models (14B, 32B,
72B). As Figure 8 shows, TVD either plateaus or
increases with parameter count: LLaMA-3-405b
recorded a mean TVD of 0.472 £ 0.087 versus
0.167 £ 0.091 for LLaMA-3-8b. Qwen-2.5 dis-
plays a similar but weaker trend. Collectively, these
results show that increasing the model scale cannot
resolve the cognition—behaviour gap in random-
ness; sometimes model scaling exacerbates it.

A.4 Generalization to Mixed Strategy Nash
Equilibrium Games

Extending our analysis beyond the RPS game, we
evaluated two further mixed-strategy benchmarks:
Matching Pennies and Morra. The game descrip-
tion and Prompt design of the Matching Pennies
game are as follows:

Prompt: The Matching Pennies game is
a two-player, zero-sum game where each
player secretly chooses either heads (H) or
tails (7"). If both players choose the same
option, the player who chose first wins the
coin, and if they choose differently, the sec-
ond player wins.

The game description and Prompt design of the
Morra game are as follows:

Matching Pennies Game

DeepSeek-V3

DeepSeek-R1

Il Head [ Tail

Figure 9: The choice distribution of LLMs in the
Matching Pennies game. The expected probability of

each action is %

Prompt: The Morra game is a two-player
game where each player simultaneously
shows some fingers (e.g., 1-5) and calls out
a guess for the total sum of both players’ fin-
gers. If a player’s guess matches the actual
total, they score a point; if both guess cor-
rectly, the round is tied or replayed, and the
first to reach a predetermined score wins.

The Morra Game (Fingers)

GPT-40 97%

o1 92% l

98%

DeepSeek-R1

[ 1Finger BN 2 Fingers [ 3 Fingers [ 4 Fingers I 5 Fingers
@

The Morra Game (Guess)

GPT-40 ] 45% ‘ 51%

o1 97% ‘

DeepSeek-V3

DeepSeek-R1 98%

1Finger mmm 2 Fingers
6 Finger

3 Fingers W 4 Fingers HEE 5 Fingers
7 Fingers mmm 8 Fingers 9 Fingers W 10 Fingers

(b)

Figure 10: The choice distribution of LLMs in the
Morra game. The expected probability for display-

ing the figure is % The expected probability for

sum-guessing is %.

In the zero-sum Matching Pennies game as de-
picted in Figure 9, GPT-40 chose Heads in 81%
of trials, while GPT-o1 and both DeepSeek vari-
ants were nearly deterministic of choosing Heads.
An analogous pattern appears in the Morra game.
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Given Probability

DeepSeek-V3 80%

DeepSeek-R1 ] 60%

oxaatanhzh ™ nrpjvitdeb
m zgpkjexdwt B vyanqddyfn

jmakgkoepx
jkaawzkgya

Figure 11: Each of the six options ought to be selected
with equal probability %, but the choice distribution
produced by the LLMs departs from this benchmark.

When asked to display a random number of fin-
gers, most tested models heavily over-sample a
single option except DeepSeek-V3. In the sub-
sequent sum-guessing phase as depicted in Fig-
ure 10, predictions cluster around specific totals
(e.g., six) with probabilities ranging from 45% to
98%. Across these games, LLMs consistently devi-
ate from the uniform strategies prescribed by equi-
librium theory. These findings furnish additional
evidence that current LLMs cannot faithfully im-
plement mixed-strategy randomization.

In a follow-up experiment, we test how LLMs re-
spond to explicit instructions. The action space con-
sists of six randomly generated strings presented
in alphabetical order, and the prompt specifies that
each option should be chosen with equal probabil-
. . 1
ity in 5.

Prompt: In a stochastic decision-making
paradigm involving six equiprobable op-
tions: oxaatanhzh, nrpjvitdeb, jmakgkoepx,
zgpkjexdwt, vyanqddyfn, and jkaawzkgya.
Each discrete element maintains an equiva-
lent selection probability of %. The experi-
mental procedure necessitates the execution
of a single Bernoulli trial, requiring partic-
ipants to output one categorical outcome
strictly conforming to the prescribed dis-
crete uniform distribution parameters. You
should choose an exact element.

As depicted in Figure 11, all tested models
nonetheless display a pronounced central-option
bias: selections cluster on the middle items at rates
far above the theoretical baseline. This implies that
the generative mechanism of the LLMs may inter-
nalize statistical features of human cognitive biases:
its sampling approach based on likelihood estima-

GPT-40
10

08 08
X 0.
04 0.4
.2 0.
oo o 0.2 0.4 06 08 1 oo

Temperature

°
a

°

ol
g 0z 04 06

Temperature

08 1

(a) (b)
o DeepSeek-V3 o DeepSeek-R1
o8 o8
o6 06
04 04
02 02
0.0 o 0.2 0.4 0.6 08 1 oo ° 0.2 0.4 0.6 0.8 1
Temperature Temperature
(©) (d)

B Rock M Paper Scissors

Figure 12: The choice distribution of LLMs in different
temperature settings. The larger the temperature, the
more random the output token.

tion unconsciously reinforces the pattern of posi-
tional preferences implicit in the training method-
ology when dealing with undifferentiated options.

A.5 Effect of Sampling Temperature

In a temperature-ablation study, we vary the sam-
pling temperature across six settings and slightly
rephrase the prompt so that each model outputs a
single token—Rock(R), Paper(P), or Sc(S).

Prompt: You are playing the RPS game.
You should consider the Nash equilibrium
of this game, and then choose one action.
Your answer should include only one exact
action from {R, P, S}. Your answer is:

For each independent trial, we retrieve the top-
20 token probabilities and renormalise the mass
assigned to those three options. As depicted in
Figure 12, higher temperatures did push the ob-
served choices closer to the model’s probability
prior, yet even at the highest setting the distribution
remained far from the target 1-1-1. Across the to-
tal 600 trials, GPT-4o selected Rock 64.3% +7.2%,
Paper 18.1% = 7.3%, and Scissors 17.6% = 2.8%;
DeepSeek-V3 chose Paper exclusively (100% +
0%). Probability traces for ol and DeepSeek-R1
were unavailable because their chain-of-thought
interfaces suppress token-level scores, but their
empirical frequencies show the same bias. Over-
all, temperature tuning alone cannot eliminate the
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Lexical-frequency Interference

Prompt

You are playing a Rock-Paper-Scissors game. The rules are
straightforward: rock beats scissors by crushing them, scissors
beat paper by cutting it, and paper beats rock by covering it. If
both players choose the same shape, the round is a tie.

[While skipping rocks across the lake, he realized the first
rock was too small, so he picked up another rock, but that
rock was too smooth, and after trying three more rocks, he
finally found a rock that skipped perfectly across the water.]
You should first consider the Nash equilibrium of this game and
then describe the Nash equilibrium of this game, then select
exactly one of the three actions—Rock, Paper, or Scissors—
%cd on your reasoning. J

Q' deepseeck

A 3
Gemini ,0

Make
Decisions

O~ Rock?

Pragmatic Implicature

@mpt \
You should analyze and select the dominant action in a Rock-Paper-

Scissors game by following these steps.

Step 1: Understand the structure of the Rock-Paper-Scissors game.
Step 2: Identify the Nash equilibrium in the Rock-Paper-Scissors.
Step 3: Choose an action to play based on the Nash equilibrium.

[If the opponent is expected to choose Scissors, then playing Rock
is an advantageous strategy because selecting Rock will win the
game. If the opponent is expected to choose Rock, choosing Rock
turns the game into a draw. If the opponent is expected to choose
Paper, Rock becomes a disadvantageous option.|

The same reasoning applies when considering all three possible

action: Rock, Paper and Scissors; each choice can be justified based

on the opponent's potential moves. These considerations align with
Nash equilibrium strategies.

@ deepseck Should I

A\ i choose

Gemini ,0O<_Rock?

Make
Decisions

Figure 13: Superficial prompt features may interfere with LLMs’ decision-making.

cognition—behaviour gap: the skew originates up-
stream of the sampler, not in its entropy setting.

A.6 Effect of Implicit Biasing via Prompting

Recent studies underscore the pivotal role of
prompt design in mitigating LLMSs’ biases. (Cherep
et al., 2024) shows that human-aligned few-shot
prompting can improve distributional alignment,
highlighting the hypersensitivity of LLMs to
prompt engineering. Two dimensions prove espe-
cially critical in this context: contextual robustness
and sequential dependency. In terms of contextual
robustness, (Silva, 2024) reports substantial per-
formance declines in LLMs confronted with rule
variations in canonical games, suggesting limited
generalisation beyond training distributions. In
terms of sequential dependency, (Chen et al., 2024)
demonstrates that premise ordering has a direct
impact on reasoning fidelity, with dominant perfor-
mance attained when the sequence of contextual
information aligns with the model’s intermediate
inference steps.

To systematically examine how suboptimal
prompting strategies affect LLM decision-making,
we conducted a controlled experiment manipulat-
ing the lexical frequency and pragmatic implica-
ture strength. As demonstrated in Figure 13, our
paradigm employs rock as the prototypical action
verb, with other action prompts maintaining identi-
cal constraint configurations across experimental

conditions.

In a lexical-frequency interference condition,
the game rules remain neutral. Still, the se-
mantic prominence of one element (rock, paper,
or scissors) is selectively amplified, probing
whether irrelevant frequency shifts skew the mixed
strategy. As depicted in Figure 14 (a-c), increasing
the relative token frequency of any single action
{R,P,S} within the prompt consistently elevates
LLMs’ probability of selecting that same action.

In a pragmatic implicature condition, we embed
subtly evaluative conditionals within an otherwise
neutral template, testing how covert frames redirect
choice probabilities. As depicted in Figure 14 (d-f),
providing a prompt that highlights a single action
as an illustrative example systematically shifts the
model’s play toward that action: for every model
except R in DeepSeek-V3, the exemplified element
becomes the most frequently selected move.

In both experiments we designate one action
from {R, P, S} as the default option. Echoing the
findings of (Cherep et al., 2024), LLMs are highly
sensitive to such default cues, and even this subtle
prompt manipulation reliably prevents them from
sampling the uniformly mixed strategy prescribed
by the Nash equilibrium.

A.7 Effect of Human Cognitive Bias

Beyond the intrinsic bias arising from LLM archi-
tectures and training methodologies, human cog-
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Scissors
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Figure 14: (a) - (c): The choice distribution of LLMs in a lexical-frequency interference condition. (d) - (f):
The choice distribution of LLMs in an implicit-framing condition. Each subfigure reports the normalised choice
distribution, averaged over 100 independent games, for prompts deliberately biased toward Rock, Paper, or Scissors,

respectively.

Human Cognitive Bias
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4 4,
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Figure 15: An explanation of human bias may interfere
with LLMs’ decision-making.

nitive biases also play a non-negligible role. Ac-
cording to empirical evidence presented in (Dyson
et al., 2016), although participants in multi-round
games generally exhibit near-uniform selections,
there is a statistically slight preference for Rock. In
the same way, (Zhang et al., 2021) indicates that

human subjects typically associate ‘R with strength
metaphors and consequently prefer it during play.
(Brockbank and Vul, 2024) demonstrates that in
repeated game settings, participants dynamically
adjust their strategies based on previous outcomes,
indicating adaptive decision-making that system-
atically departs from random selection and causes
observable statistical patterns. (WRPSA, 2023)
examines how gender factors influence decision-
making tendencies in the game of RPS. Drawing
on data collected from 1,218 participants across
17 countries, the study finds that men are more in-
clined to choose rock, whereas women exhibit a
greater tendency to choose scissors.

Consequently, the uneven distribution of differ-
ent groups, i.e. gender, age, or culture, leads to
biases in model performance. As depicted in Fig-
ure 15, we build on the evidence of human cogni-
tive biases in LLMs (Navigli et al., 2023), we draw
on Social Role Theory (Eagly and Wood, 2012)
and employ prompt engineering to systematically
manipulate the decision-maker’s perceived iden-
tity—gender, age, and cultural background. This
design allows us to investigate how implicit identity
cues trigger human cognitive biases that, in turn,
shape strategic behaviour in game-theoretic tasks.

Gender bias: Motivated by the gender differ-
ences reported for humans in RPS by (WRPSA,
2023), we examine LLMs that inherit analogous
gender biases and how such biases modulate their
strategic choices. We conduct a role-playing ex-
periment in which each model is prompted to act
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Figure 16: Gender bias in action selection across LLMs.
Grouped bar charts compare the distribution of Rock, Pa-
per, and Scissors between male (left) and female (right).

as either a male or a female player. Although all
models explicitly assert that gender is irrelevant to
the mixed-strategy Nash equilibrium, their empiri-
cal behaviour often contradicts that claim: except
DeepSeek-V3, every tested LLM exhibits a signifi-
cant shift in action probabilities (Figure 16). When
cast in the male role, LLMs increase their prob-
ability of choosing R; conversely, in the female
role, the same models display a substantial rise in
the selection of P. This gender-conditioned diver-
gence mirrors the human patterns, suggesting that
gender biases present in the semantic associations
influence the models’ ostensibly random decision
processes.

Prompt: You are a [male/female] partic-
ipant in a RPS game. You should first
reason about the Nash equilibrium of this
game from the [male/female] perspective,
and then choose one action from {R, P, S}
based on your reasoning. Please choose an
exact action.

Age bias: Building on the hypothesis that LLMs
may internalise societal age stereotypes—such as
children act on impulse, elders act with
foresight, we ran a three-level role-playing ex-
periment in which each model was instructed to
play RPS as a child, an adult, or an elderly per-
son. Inspection of the models’ reply reveals that
the child role is justified by intuitive reasoning (e.g.,
"kids think making a fist looks powerful"),
whereas the elderly role foregrounds strategic in-
ference (e.g., "Elderly person analyses the
opponent’s pattern.”). Figure 17(a) reports
the TVD between each role-condition distribu-
tion and the uniform Nash baseline. TVD de-
creases monotonically with age, yet never reaches

Age Bias (Age Groups) Age Bias (LLMs)
E

*¥ptao o1

0.0, DeepSeek DeepSeek
“Ochild Adult Elder v3 R1

(a) (b)

Figure 17: Age bias in action selection across LLMs.
(a) Total variation distance (TVD) vs. people with dif-
ferent age groups. (b) Total variation distance (TVD)
vs. different LLMs. All results compare the distribution
of Rock, Paper, and Scissors across LLMs under age
progression.

zero, indicating persistent deviation from dominant
play. Figure 17(b) further shows that, except for
DeepSeek-R1, the adult condition is virtually in-
distinguishable from the unspecific role baseline,
suggesting that LLMs default to an adult cognitive
frame. DeepSeek-V3 exhibits the strongest age ef-
fect: TVD = 0.567 in the child role versus 0.127
in the elderly role, underscoring how age cues can
substantially bias the model’s ostensibly random
decisions.

Prompt: You are a [child/adult/elderly per-
son] playing the RPS game. You should
first reason about the Nash equilibrium of
this game based on your age perspective,
and then choose one action from {R, P, S}
based on your reasoning. Please choose an
exact action.

Collectively, our experiments indicate that LLMs
inherit latent human-cognitive priors from their
training corpora. These ingrained biases system-
atically shape the models’ strategic decisions and
likely constitute one impediment to generating ac-
tions that approximate true statistical randomness.

A.8 Effect of Language Context

Language encodes culture, leading to systematic
representational differences across linguistic com-
munities (Hershcovich et al., 2022). When a model
is trained on culturally skewed data, these imbal-
ances can surface in its behaviour. Figurative de-
vices, such as metaphors, idioms, other images,
and rich expressions, exemplify how cultural con-
ventions shape lexical semantics. We conduct a
cross-lingual instruction experiment in English,
Chinese, and Japanese to test whether such traces
influence strategic reasoning. Each prompt conveys
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Figure 18: Examination of the language impact across
LLMs. Grouped bar charts compare Rock, Paper, and
Scissors choices across LLMs under the diverse lan-
guage of game instructions (English vs. Chinese vs.
Japanese).

identical game semantics but differs in language.

Prompt:

Chinese: i 1% 11 1E 7€ It A =k 55 J]
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TEXR AN A 3508, IR 5 IRIE R A0 4 A
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e
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Figure 18 shows the empirical selection proba-
bilities for {R, P, S} when the prompt is presented
in English, Chinese, and Japanese. Although the
exact percentages differ slightly across languages,
a common pattern emerges. For example, GPT-
40 consistently over-selects Rock—rendered as "f1
3" in Chinese and " 7"—" in Japanese—regardless
of the linguistic context. This stability suggests
that the bias may not be strictly linked to the
lexical frequency in any single language, and
may reflect language-independent semantic asso-
ciations internalised during pre-training. Further
work is needed to determine whether these asso-
ciations arise from shared conceptual metaphors
(e.g., "rock" as strength) or multilingual embed-
ding alignments.

A9 MCQ Solutions

We port two MCQ-oriented debiasing techniques
to our uniform-target setting: Grey-Box Probabil-

Model TVD | (GBP) | TVD | (Normal)
GPT-40 0.367 0.317
DeepSeek-V3 0.667 0.667

Table 5: Grey-Box Probability Weighting Calibration
(GBP) vs. normal baseline. Reported metric is TVD
to the uniform target in RPS.

Model TVD | (AOI) | TVD | (Normal)
GPT-40 0.467 0.163
ol 0.347 0.203
DeepSeek-V3 0.317 0.507
DeepSeek-R1 0.387 0.397

Table 6: Black-Box Auxiliary Option Injection (AOI)
vs. normal prompt baseline. Reported metric is TVD
to the uniform target in RPS.

ity Weighting (GBP) (Wei et al., 2024) and Black-
Box Auxiliary Option Injection (AOI) (Choi et al.,
2024). GBP assumes grey-box access to option-
level log-probs and reweights selections across per-
mutations to counter order effects; AOI appends a
neutral auxiliary choice (e.g., "I don’t know/None")
and uses output matching to pick among candidates.
We evaluate both under the same RPS protocols,
reporting TVD distance compared to uniform dis-
tribution. This section details the adaptation (what
is changed to remove reliance on a single “correct”
label) and implementation constraints.

Grey-Box Probability Weighting. We repro-
duced the exact procedure described in the orig-
inal paper, including the forward and backward
prompts (shown below) and the weighting rule ap-
plied to the model’s log-probabilities. The result
refers to Table 5. As a result, DeepSeek-V3 al-
ways selects option A (rock), so GBP leaves its
CKLD unchanged at a very high value. For GPT-
40, GBP actually degrades the distribution. Hence,
Grey-Box Probability Weighting is ineffective in
our stochastic-strategy setting.

Black-Box Auxiliary Option Injection. We
insert an additional option (D), I don’t know as
prescribed, and, because probabilities are inacces-
sible in the black-box regime, selected the answer
whose text has the highest Jaccard similarity to the
model’s output. The result refers to Table 5. AOI
worsens TVD for GPT-40 and ol, but improves
DeepSeek-V3 and slightly improves DeepSeek-R1.
Even where AOI lowers some models’ TVD, the
resulting distributions remain substantially non-
uniform—models still fall well short of robust
stochastic decision-making and the uniform mixed-
strategy Nash target.

8636



In summary, MCQ-oriented debiasing meth-

ods cannot serve as drop-in replacements for the
lightweight, single-shot assessment of intrinsic ran-
domness that our paper targets.

Grey-Box Probability Weighting
System:

Please carefully read the following ques-
tions and choices. You are an Al assistant
that plays Rock-Paper-Scissors. Reason
about the Nash equilibrium and answer with
a capital letter.

Forward User Rule:

[The start of the question]

What is your choice? Output your final ver-
dict by strictly following this prompt: Indi-
cate your choice by placing it inside double
square brackets, with a single character rep-
resenting the chosen option. For example,
[<single_character>].

[The end of the question]

[The start of choice A]

Rock

[The end of choice A]

[The start of choice B]

Paper

[The end of choice B]

[The start of choice C]

Scissors

[The end of choice C]

Backward User Rule:

[The start of the question]
What is your choice? Output your final ver-
dict by strictly following this prompt: Indi-
cate your choice by placing it inside double
square brackets, with a single character rep-
resenting the chosen option. For example,
[<single_character>].

[The end of the question]

[The start of choice A]

Scissors

[The end of choice A]

[The start of choice B]

Paper

[The end of choice B]

[The start of choice C]

Rock

[The end of choice C]
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Black-Box Auxiliary Option Injection
System:

You are an Al assistant that plays the Rock-
Paper-Scissors game. You should reason
about the Nash equilibrium of this game and
then choose one action from Rock, Paper,
and Scissors based on your reasoning.
Please respond with capitalised alphabet(s)
that correspond to the correct answer.
Users:

What is your choice in a game of Rock-
Paper-Scissors?

(A)Rock (B)Paper (C) Scissors (D)
I don’t know



