
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 8578–8597
November 4-9, 2025 ©2025 Association for Computational Linguistics

Representing LLMs in Prompt Semantic Task Space

Idan Kashani and Avi Mendelson and Yaniv Nemcovsky
Technion - Israel Institute of Technology

Department of Computer Science
idan-kashani@cs.technion.ac.il

Abstract

Large language models (LLMs) achieve im-
pressive results over various tasks, and ever-
expanding public repositories contain an abun-
dance of pre-trained models. Therefore, identi-
fying the best-performing LLM for a given task
is a significant challenge. Previous works have
suggested learning LLM representations to ad-
dress this. However, these approaches present
limited scalability and require costly retraining
to encompass additional models and datasets.
Moreover, the produced representation utilizes
distinct spaces that cannot be easily interpreted.
This work presents an efficient, training-free
approach to representing LLMs as linear oper-
ators within the prompts’ semantic task space,
thus providing a highly interpretable represen-
tation of the models’ application. Our method
utilizes closed-form computation of geometri-
cal properties and ensures exceptional scalabil-
ity and real-time adaptability to dynamically
expanding repositories. We demonstrate our
approach on success prediction and model se-
lection tasks, achieving competitive or state-
of-the-art results with notable performance in
out-of-sample scenarios.

1 Introduction

LLMs have recently emerged with remarkable ca-
pabilities, revolutionizing multiple diverse fields,
including medical information processing (Zheng
et al., 2024; Jin et al., 2024), software engineer-
ing (Etsenake and Nagappan, 2024; Jiang et al.,
2024; Jimenez et al., 2024), and scientific re-
search (Frieder et al., 2024; Zhang et al., 2024a;
Li et al., 2024b). Moreover, open-source LLMs
are widespread and have fueled a rapidly grow-
ing ecosystem of publicly-available models and
benchmarks used to assess their capabilities. Cur-
rently, the most prominent platform hosting these
resources is Hugging Face (Wolf et al., 2019), serv-
ing as a centralized repository for nearly one mil-
lion pre-trained models and hundreds of thousands

of benchmarks. Such open-access repositories fa-
cilitates LLMs’ large-scale deployment and pro-
motes their continuous innovation across diverse
applications.

The demand for LLM-based applications is ever-
increasing, and new, diverse models with improved
capabilities are constantly being produced. How-
ever, this rapid growth and diversity present a sub-
stantial challenge: identifying the best-performing
models. This challenge entails recognizing the
most suitable model for producing a response to
specific queries, or on average over queries in a
given dataset. Hand-selecting these models would
require careful analysis and clear annotation of
their properties, which are not widely available.

A common approach is to rely on benchmark re-
sults to select suitable models (Chang et al., 2023).
A benchmark consists of a dataset and an eval-
uation metric designed to assess specific model
capabilities, such as domain expertise (Hendrycks
et al., 2021; Yu et al., 2024), reasoning skills (Par-
mar et al., 2023; Veličković et al., 2022; Talmor
et al., 2019), agentic abilities (Liu et al., 2024), or
safety (Zhang et al., 2024c; Li et al., 2024a; Chao
et al., 2024). While such benchmarking provides
an initial assessment of models, it often involves
a complex and time-consuming process to select a
suitable model for a given prompt.

A primary challenge with conventional bench-
marks lies in their reporting of aggregated per-
formance scores, derived from a static corpus of
domain-specific prompts. Such global metrics can
be unreliable for guiding selection over queries that
substantially diverge from the evaluation samples.
Moreover, model proficiency often varies consider-
ably across different prompts even within the same
domain (Zhuo et al., 2024; Miller, 2024). Typical
benchmark outputs tend to obscure these instance-
level performance nuances, thereby failing to pro-
vide the granular detail essential for precise, query-
specific model selection. Furthermore, the per-

8578



ceived capabilities of LLMs can be skewed by in-
herent biases and sensitivities within benchmarks,
resulting from particular prompt structures (Cao
et al., 2024; Pezeshkpour and Hruschka, 2024)
or the methodologies behind leaderboard rank-
ings (Perlitz et al., 2024; Alzahrani et al., 2024).
Beyond these limitations in granularity, relying on
isolated benchmarks does not assess the collective
insights available from the broader landscape of
evaluation tools.

Performance prediction methods aim to pre-
dict models’ performance on unseen prompts and
tasks based on prior information. While such meth-
ods similarly utilize benchmarks, they differ in
explicitly estimating models’ performance over
given queries, and aim to be applicable in scenar-
ios where obtaining queries’ labels is expensive
or impractical. These approaches are particularly
relevant to out-of-sample (OOS) settings, where
the queries originate from datasets entirely unseen
by the performance prediction estimators. Such
settings introduce an additional layer of complex-
ity, as generalization to unknown datasets is highly
challenging.

A recent work has suggested the approach of
LLM embeddings for performance prediction and
subsequent model selection (Zhuang et al., 2025).
This approach aims to represent both LLMs and
prompts in a joint space. The performance estima-
tion is then computed via the corresponding embed-
dings of the model and query. However, current ap-
proaches utilize a distinct representation space that
depends on their training data, thereby requiring
costly retraining to include additional benchmark
results. In this context, we denote the setting of
real-time success prediction and subsequent model
selection as aiming to apply to newly published
models with minimal delay.

Our work builds on the promising direction of
using LLM embeddings for performance predic-
tion. We aim to represent LLMs as linear operators
within the prompts’ semantic task space, thus pro-
viding a highly interpretable representation of the
models’ application. We consider models’ appli-
cation on queries as semantic-space translations
from input to output. We then utilize a closed-form
computation to represent the difference between
the model’s induced and the desired translation,
which produces the corresponding label. Our ap-
proach is training-free, requires negligible compu-
tational resources, and can be adapted to additional
benchmarks in real-time. Moreover, we produce

task-oriented embeddings with clear semantic in-
terpretations relevant to diverse downstream tasks
and OOS scenarios. Below we outline our main
contributions:

1. We present a novel approach to represent
models directly within the semantic task of
prompt embeddings. This direct representa-
tion presents a more intuitive and semantically
grounded understanding of model-task rela-
tionships, enabling a more efficient and inter-
pretable analysis of models’ suitability.

2. We utilize our representations for performance
prediction, presenting an efficient and dynam-
ically expandable evaluation of models. Our
method utilizes closed-form computation, is
training-free, and can be seamlessly expanded
to additional models and benchmarks with
negligible computational cost. Hereby, we
enable real-time suitability analysis over the
rapidly growing models-benchmarks ecosys-
tem.

3. We evaluate our method on performance pre-
diction and model selection tasks over mul-
tiple settings and achieve state-of-the-art or
comparable results. Moreover, our semanti-
cally grounded approach outperforms all pre-
vious baselines on OOS settings, indicating
its robustness in diverse real-world scenarios.

2 Related Work

Previous LLM performance prediction works
present various settings and approaches. Some
works aim to analyze the behavior and performance
of given models rather than directly predict their
performance over given queries. A common setting
discusses the assessment of model performance
via per-sample output analysis, where approaches
leverage confidence scores (Garg et al., 2022),
self-correction capabilities (Jawahar et al., 2024),
or transferability estimation (Bao et al., 2019; You
et al., 2021; Bassignana et al., 2022). Another
seeks to predict the broader capabilities of models
through statistical analysis (Papadopoulos et al.,
2007), or by deriving scaling laws from pretraining
data (Chen et al., 2025). Although such approaches
provide important perspectives, they are typically
not applicable to the scope of this work.

Another set of methods trains auxiliary models
to predict performance, for example, by training
an assessor model which uses an LLM’s results

8579



on fixed set of few reference prompts alongside
target prompt intrinsic features to minimize eval-
uation costs (Pacchiardi et al., 2025), or by ap-
plying collaborative filtering to learn latent model
and task factors from historical performance meta-
data (Zhang et al., 2024b; Drori et al., 2019; Zhang
et al., 2023). These methods primarily contribute a
trained predictive model designed to operate with
specific inputs for the LLM in question. Our work,
however, has a different underlying framework and
is focused on deriving pre-computed, explicit vec-
tor representations for each LLM within an estab-
lished library, using its comprehensive performance
profile on source datasets.

The line of research most pertinent to our
objective of creating explicit model representa-
tions from performance data involves learning
joint embeddings for LLMs and prompts. Em-
bedLLM (Zhuang et al., 2025) stands out as a key
contribution in this domain. It employs an encoder-
decoder architecture to learn informative repre-
sentations from a large dataset of model-prompt
interactions. While this work presents a signif-
icant step towards real-time performance predic-
tion and subsequent model selection, it requires
costly retraining to encompass additional models
and benchmarks. Moreover, EmbedLLM’s rep-
resentations utilize an arbitrary space that lacks
semantic grounding.

Our approach builds on the promising direction
of using LLM embeddings for performance predic-
tion, but aims to be dynamically expanding while
representing LLMs within the prompts’ semantic
task space.

3 Method

We now detail our approach to creating linear, in-
terpretable, and scalable representations for LLMs.
We enable efficient performance prediction and
model selection by embedding each LLM as a vec-
tor aligned with the prompts it successfully com-
putes.

Formally, our goal is to derive a linear repre-
sentation E(M)i ∈ Rdprompt for each LLM Mi

in a given pool L = {Mi}Mi=1. This embedding
E(M)i is conceptualized as a vector in the dprompt-
dimensional prompt embedding space. Specifically,
E(M)i represents the “success hyperplane nor-
mal”, namely a normal to a model-specific hyper-
plane that ideally separates between prompts where
modelMi succeeds from those where it fails. The

Figure 1: The projection of a prompt embedding E(p)
on a model embedding E(M)i yields a score predicting
the model’s success on that prompt.

orientation of E(M)i thus signifies a direction in
the prompt space associated with success for that
particular model. Consequently, the success of
modelMi on a prompt q is estimated by:

ˆSucc(Mi, q) = E(M)i · E(q). (1)

Here, E(q) ∈ Rdprompt is the vector embed-
ding for a given target prompt q, generated using
the same pre-trained Sentence Transformer as the
source prompts.

Conceptually, an LLM’s success on a given
prompt is a highly complex function of that
prompt’s semantic embedding, f(E(q)). Our
method does not attempt to model f in its entirety.
Instead, we seek the best linear operator, repre-
sented by the vector E(M)i, that approximates
the average outcome of this function with respect
to the success-failure dichotomy. This approach
is predicated on the well-established property of
high-dimensional embedding spaces where seman-
tic relationships can be represented as linear vector
operations, a principle first established for word
vectors (Mikolov et al., 2013) and since extended
to produce robust sentence-level semantic repre-
sentations (Reimers and Gurevych, 2019). The
strong empirical success of our method suggests
that this first-order linear approximation is suffi-
cient to capture the most significant variance in
model performance, offering a favorable trade-off
between model fidelity and the exceptional scala-
bility our approach provides.

Due to the linearity of our approach, the aggre-
gate success score for a model on a benchmark can
be efficiently computed by averaging the embed-
dings of the benchmark’s prompts to form a single

8580



Figure 2: Model embeddings creation time vs. number of prompt samples (left) and models (right), on CPU and
GPU (logarithmic scale).

benchmark vector, then taking its dot product with
the model’s embedding.

3.1 Data and System Formulation

To estimate these model embeddings E(M), we
utilize:

• A set of N source prompts pj with correspond-
ing ground-truth answers aj , from Dsrc =
{(pj , aj)}Nj=1.

• The observed performance of each of the M
LLMs from pool L on these prompts.

Prompt Embeddings. Each prompt pj is trans-
formed into an L2 normalized vector embedding
E(pj) ∈ Rdprompt using a pre-trained Sentence
Transformer. This type of architecture (e.g., based
on (Devlin et al., 2019; Schroff et al., 2015)) is
chosen for its efficiency and established ability to
capture semantic content relevant for comparing
text sequences. These prompt embeddings form
the rows of a matrix Dsrc ∈ RN×dprompt .

Performance Matrix. Benchmarks results mea-
sure a certain property of a model with respect to
a dataset. Success is determined using an exact
match criterion between a modelMi’s output for
prompt pj and the target answer aj . This binary
outcome (success/failure) is encoded in a perfor-
mance matrix Psrc ∈ RM×N , where:

Psrcij =

{
1, ifMi(pj) = aj

−1, otherwise.

The Linear System. Given our conceptualiza-
tion of model embeddings (Equation (1)), the rela-
tionship E(M)i · E(pj) ≈ Psrcij should hold for
all models and prompts. This can be expressed in

matrix form as the linear system we aim to solve
for E(M):

E(M)(Dsrc)
⊺ ≈ Psrc. (2)

3.2 Computing Linear LLM Representations

We solve the linear system (Equation (2)) for
E(M). Since the matrix (Dsrc)

⊺ (derived from
prompt embeddings) is typically non-square and
may be non-invertible, we employ its regularized
Moore-Penrose pseudoinverse (Moore, 1920; Bjer-
hammar, 1951; Penrose, 1955; Ben-Israel and Gre-
ville, 2003), computed via Singular Value Decom-
position (SVD) (Eckart and Young, 1936). The
regularization is crucial for stability and to improve
generalization to unseen data:

• Singular Value Thresholding: Singular val-
ues (σii) from the SVD of Dsrc that fall below
a predefined threshold, ε, are effectively set to
zero before forming the pseudoinverse compo-
nents1. This mitigates numerical instabilities
from near-zero singular values. We found
the choice of this threshold (ε) significantly
affects results, especially for OOS settings
(Appendix A).

• Tikhonov Regularization: We apply
Tikhonov regularization to smooth the
inversion. This is achieved by incorporating
the regularization term 2λ with the squared
singular values when deriving the effective
inverse singular values (Tikhonov, 1943;
Hoerl and Kennard, 1970a,b).

1Not to be confused with the numerical tolerance threshold
t = machine precision ·max(N, dprompt) ·max(diag(Σ)). In
our experiments, ε > t.

8581



The closed-form solution for the model embed-
dings E(M) is:

E(M) = Psrc(D
+
src)

⊺ = PsrcUΣ′V⊺, (3)

where Dsrc = UΣV⊺ is the SVD of the prompt
embedding matrix. The diagonal matrix Σ′ is de-
rived from the singular values σii in Σ, with its
elements are given by:

σ′
ii =

{
0, if σii < ε

σii

σ2
ii+2λ

, otherwise
(4)

σ′
ij = 0, for i ̸= j.

The resulting model embedding matrix E(M) is
of size M × dprompt. This linear, training-free com-
putation makes our approach highly efficient and
directly interpretable within the prompt’s semantic
space.

3.3 Scalability Analysis
The primary computational cost is the SVD of Dsrc
(dimensions N × dprompt), which has a complexity
of O(Nd2prompt) and is thus linear in N for a fixed
dprompt. The subsequent matrix multiplication to ob-
tain E(M) is linear in both M and N . This results
in significantly better overall scalability compared
to EmbedLLM, whose training time typically ex-
hibits much steeper growth with increasing M or
N . Further efficiency can be achieved by applying
iterative methods to update (D+

src)
⊺, such as the

Newton-Schulz iteration (Appendix C).
The method also offers theoretical stability for

distributed systems. Since the embeddings are
based on the semantic space of prompts, adding
new prompts to a dataset is expected to induce only
minor changes to existing model embeddings. This
leads to minimal discrepancies in the embeddings
over time across different servers.

4 Experiments

This section presents a comprehensive empirical
evaluation of our method over the tasks of real-
time success prediction and subsequent model
selection. We first present the experimental setting
in Section 4.1, and continue to discuss the results
in Section 4.2. In addition, we present an ablation
study of our method in supplementary Appendix A.
Our evaluation aims to answer three key research
questions:

• (RQ1) How does our method compare to ex-
isting approaches, regarding predicted success
and model selection?

• (RQ2) How does the scalability of our pro-
posed method compare to previous work?

• (RQ3) Does our method present a viable ap-
proach to predict success in OOS settings?

4.1 Experimental Setup
4.1.1 Core Evaluation Tasks and Metrics
Success Prediction. This task presents a binary
classification problem, i.e., given an LLM and a
prompt, will the model successfully complete the
task defined by the prompt? The task performance
metrics are then:

• AUC (Area Under the ROC Curve): Mea-
sures the ability to distinguish between suc-
cess and failure, irrespective of a specific clas-
sification threshold.

• Accuracy: The fraction of correct suc-
cess/failure predictions.

• Benchmark Score Correlation: The Pearson
correlation between our method’s estimated
success scores for a model across a bench-
mark’s prompts (which can be computed ef-
ficiently as presented in Section 3) and the
model’s actual ground-truth accuracy on that
benchmark.

Model Selection. In this task, given sets of mod-
els and test prompts, methods aim to accurately
rank the models according to their expected success
over the prompts. The task performance metrics
are then:

• Accuracy: The proportion of test prompts
for which the best-ranked (selected) model
produces a successful response.

• Recall: The proportion of “solvable” prompts
over which the top-ranked model succeeds.
This metric evaluates the selector’s ability to
choose a successful model for prompts that
at least one model in the pool can solve. It
directly measures how the selected model’s
performance compares to the best possible
outcome on a per-prompt basis

4.1.2 Models & Datasets Environments
Our experiments were conducted on four distinct
environments, each comprising specific sets of
models, source prompts used for methods’ execu-
tion, and target prompts used for evaluation. These
are derived from two primary sources:

8582



Figure 3: Success Prediction ROC curves describe the true positive rate vs. the false positive rate across thresholds.

1. EmbedLLM Benchmark Environment:

• Models: 112 LLMs from the Em-
bedLLM framework, covering both
general-purpose and domain-specific ar-
chitectures.

• Source & Target prompts: Source
and target prompts are randomly sam-
pled in either in-sample or OOS sce-
narios from over 80 prominent bench-
marks, such as MathQA (Amini et al.,
2019), SocialQA (Sap et al., 2019),
PIQA (Bisk et al., 2020), LogiQA (Liu
et al., 2020), ASDiv (Miao et al.,
2020), GSM8K (Cobbe et al., 2021),
MMLU (Hendrycks et al., 2021), Truth-
fulQA (Lin et al., 2021), MedM-
CQA (Pal et al., 2022), and GPQA (Rein
et al., 2024). For the EmbedLLM en-
vironment, both in-sample and OOS re-
sults are the average of 10 independent
trials. In each trial, a new random seed
is used to sample the source and target
prompts from the available benchmarks.
The error margins in Table 1 and the
shaded regions in the ROC curves of Fig-

ure 3 represent the standard deviation
across these 10 trials.

• In-Sample Scenario: Test prompts and
source prompts are sampled may origi-
nate from the same datasets.

• Out-of-Sample (OOS) Scenario: Test
datasets are excluded from the datasets
library, that is used as source prompts for
the method. This scenario represents a
more complex generalization task.

2. LoRA-Finetuned T5 Models Environment:

• Models: A set of 92 T5-large FLAN
encoder-decoder models. These mod-
els were finetuned on FLAN v2
datasets (Chung et al., 2024) using the
LoRA technique (Hu et al., 2022) by
Huang et al. (2024).

• Source Datasets: The 92 FLAN v2
datasets used for the original LoRA train-
ing (listed in Appendix D).

• Target Datasets (OOS): BIG-Bench
Hard (BBH) (Suzgun et al., 2023), a suite
of 23 challenging tasks for LLMs.

• Evaluation Scenarios: Performance is

8583



evaluated in either OOS zero-shot or
OOS one-shot settings. One demonstra-
tion prompt is sampled per dataset for
the one-shot.

4.1.3 Baselines and Method Configuration
Prompt Embeddings. We utilize two pre-trained
Sentence Transformer models to generate L2 nor-
malized prompt embeddings:

• MiniLM-L6-v2 (dprompt = 384) (Wang et al.,
2021)2

• MPNet-v2 (dprompt = 768) (Song et al.,
2020)3

Previous art. Our method is compared against
two primary baselines, following the EmbedLLM
paper (Zhuang et al., 2025):

1. k-Nearest Neighbors (kNN): Configured
with k = 5. For success prediction on a target
prompt, kNN identifies the k nearest prompts
in the source data via prompt embedding sim-
ilarity. The average success rate of the target
model on these neighbors is then the predicted
score. This evaluation metric is then utilized
in model selection by selecting the candidate
LLM with the maximal score.

2. EmbedLLM: Evaluated using the provided
framework.

A comparison with an additional static base-
line, “Best Source Performer”, is provided in Ap-
pendix B.

Our Configuration. We utilize the regulariza-
tion parameter λ = 1 in all the compared settings.
The optimal singular value threshold ε is then de-
termined via the ablation study presented in Ap-
pendix A.

4.2 Experimental Results
4.2.1 Success Prediction
In Table 1 and Figure 3, we present the compari-
son of our method to previous art over the success
prediction task. Our method achieves a better ratio
between true positives and false positives compared
to previous art. Moreover, it outperforms all previ-
ous art over AUC, Accuracy, and Benchmark Score

2https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

3https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

Correlation, substantially so in the OOS scenar-
ios (EmbedLLM (OOS), BBH 0-shot, and BBH
1-shot). This may suggest that our semantically
grounded approach effectively captures fundamen-
tal model-task alignment and is better suited for
generalization to unseen datasets. The high bench-
mark score correlation further indicates that our
lightweight, per-prompt success predictions accu-
rately aggregate to reflect overall benchmark per-
formance.

4.2.2 Model Selection
In Table 1, we present a comparison of our method
to previous art over the model selection task. Our
method outperforms all previous art in the OOS
setting. For the in-sample settings, our results are
comparable to the best-performing training-based
EmbedLLM approach. Furthermore, as shown
in Appendix B (Table 2), our dynamic selection
approach outperforms a static “Best Source Per-
former” baseline, notably so in in-sample settings.

4.2.3 Scalability Evaluation
In Figure 2, we present the computational time
comparison of our method and previous art. The
computation was executed on Intel(R) Xeon(R)
CPU and NVIDIA L40S GPU. Our approach
presents a negligible increase in computation time
for an increasing number of models, which aligns
with our expected asymptotically linear computa-
tion time described in Section 3.3.

5 Discussion

5.1 Conclusions
This work has introduced a novel approach for
representing LLMs as linear operators within the
prompts’ semantic task space. To do so, we con-
sider models’ application on queries as semantic-
space translations from input to output. We then
define the representations as a linear mapping from
input to the task’s performance metric, and com-
pute them via matrix inversion. The resulting rep-
resentations then present a semantic interpretation
of LLMs’ application compared to the task’s goal,
and are utilized for performance predictions and
subsequent model selection.

The suggested approach is training-free and
scales to increasing number of models and bench-
marks with negligible computational cost. More-
over, as the computation is based on matrix inver-
sion, it can be extended to encompass additional
models and benchmarks without recomputing the

8584

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2


Table 1: Comparison of success prediction and model selection across methods and prompt embedding dimension.

Success Prediction Model Selection
Environment Method dim AUC Accuracy Benchmark Score Correlation Accuracy Recall

EmbedLLM

kNN
384

0.7158± 0.0019 0.6855± 0.0009 0.7665± 0.0139 0.5261± 0.0029 0.5762± 0.0033
EmbedLLM 0.7509± 0.0018 0.7076± 0.0013 0.9030± 0.0022 0.6269± 0.0024 0.6867± 0.0030
Ours 0.7538± 0.0019 0.7115± 0.0015 0.9248± 0.0027 0.6221± 0.0020 0.6814± 0.0027

kNN
768

0.7285± 0.0019 0.6937± 0.0014 0.7498± 0.0123 0.5335± 0.0031 0.5844± 0.0033
EmbedLLM 0.7714± 0.0018 0.7183± 0.0014 0.9266± 0.0022 0.6410± 0.0018 0.7022± 0.0025
Ours 0.7736± 0.0018 0.7232± 0.0013 0.9485± 0.0025 0.6355± 0.0012 0.6961± 0.0014

EmbedLLM (OOS)

kNN
384

0.6366± 0.0224 0.6205± 0.0262 0.6971± 0.0531 0.4779± 0.0426 0.5198± 0.0448
EmbedLLM 0.6580± 0.0259 0.6466± 0.0266 0.8310± 0.0323 0.5667± 0.0635 0.6165± 0.0688
Ours 0.6696± 0.0214 0.6480± 0.0242 0.8451± 0.0300 0.5879± 0.0441 0.6393± 0.0413

kNN
768

0.6404± 0.0211 0.6230± 0.0216 0.6860± 0.0311 0.4807± 0.0365 0.5229± 0.0372
EmbedLLM 0.6848± 0.0239 0.6622± 0.0247 0.8663± 0.0292 0.5694± 0.0640 0.6194± 0.0682
Ours 0.6983± 0.0240 0.6694± 0.0153 0.8820± 0.0322 0.5916± 0.0436 0.6435± 0.0435

BBH 0-shot (OOS)

kNN
384

0.4573 0.3251 −0.2376 0.2014 0.4766
EmbedLLM 0.4394 0.3297 −0.1408 0.2275 0.5383
Ours 0.6284 0.4351 0.3734 0.2491 0.5896

kNN
768

0.5301 0.3351 0.1353 0.1971 0.4664
EmbedLLM 0.4769 0.2937 −0.0766 0.2113 0.5002
Ours 0.6139 0.3838 0.3862 0.2491 0.5896

BBH 1-shot (OOS)

kNN
384

0.4858 0.4132 −0.0528 0.3330 0.7012
EmbedLLM 0.5353 0.4347 0.1116 0.3408 0.7178
Ours 0.6546 0.5034 0.5569 0.3405 0.7171

kNN
768

0.5550 0.4390 0.2757 0.3251 0.6846
EmbedLLM 0.5178 0.3298 −0.0562 0.3274 0.6895
Ours 0.6097 0.4631 0.3843 0.3381 0.7119

pre-existing ones. Hereby, requiring minimal com-
putation to apply to newly published models and
benchmarks, which is a crucial property in the
rapidly evolving model-benchmark ecosystem. Fur-
thermore, our method achieves state-of-the-art or
comparable results over various performance pre-
diction and model selection tasks, and outperforms
previous OOS baselines.

Model repositories’ continuous and rapid expan-
sion underscores the critical need for scalable solu-
tions. Such solutions must allow users to efficiently
estimate LLM properties and select models suit-
able for their specific purposes and operational con-
straints. We have demonstrated the efficiency and
scalability of our embedding creation process, ben-
efits directly attributable to the simplicity of the un-
derlying linear operations. While our current work
focuses on dense performance matrices, the under-
lying linear algebraic framework is amenable to
future extensions, potentially incorporating matrix-
completion techniques to handle scenarios with
sparser performance data. These characteristics
support efficient retrieval and search over extensive
collections of models, datasets, and tasks.

Conceptually, we have advanced the understand-
ing of LLM performance through the “success hy-
perplane normal” lens. Our embedding effectively
captures the correlation between models’ responses
to various prompts and their corresponding mea-

sured performance. This semantic representation
allows models, inputs, and task success criteria to
be considered within a shared semantic framework,
offering clearer insights into model-task alignment.
Furthermore, maintaining a consistent representa-
tion space for models enables the parallel compu-
tation of our approach across distributed models’
repositories.

This work lays the foundation for a continuous
deployment process composed of benchmarking,
embedding, and storing the embeddings as infor-
mative metadata of the models in the repository.
This allows retrieval of LLMs based on predefined
properties, thus supporting large-scale, accessible
LLMs for practical applications. By utilizing the di-
versity of pre-existing models and benchmarks, we
enable the identification of suitable models while
minimizing the effort and environmental impact
associated with training new models.

5.2 Future Work
Our approach to embedding LLMs in a task-
oriented space opens several promising avenues
for future research. A possible direction is to ex-
amine properties other than success, such as safety,
efficiency, stylistic alignment, and personalization.
Models would then be retrieved based on aggre-
gated criteria, which enables the consideration of
multiple desired properties. Similarly, we can ex-
tend our approach to encompass multiple tasks and

8585



Figure 4: A per-benchmark breakdown of Success Prediction (Accuracy and AUC) and Model Selection (Recall)
in the EmbedLLM OOS environment for embedding dimensions 384 (top) and 768 (bottom). Our training-free
method delivers performance competitive with the EmbedLLM baseline at a fraction of the computational cost.

produce representations that better interpret mod-
els’ applications by considering distinct success
metrics and corresponding behaviors. Finally, we
propose applying our method to dynamic task rout-
ing in multi-agent systems, where its training-free,
scalable, and interpretable nature is uniquely suited
for embedding the output of one agent to select
the next, enabling more adaptive and explainable
problem-solving pipelines of specialized LLMs.

6 Limitations

This work proposes representing LLMs as em-
beddings in semantic task spaces, where the em-
bedding encodes their corresponding performance.

The models’ embedding then corresponds to suc-
cessfully answered queries and enables an efficient
and explainable search of well-performing models.
We can then consider the semantic vectors of mod-
els as representing their corresponding semantic
translation between inputs and outputs. However,
our suggested representation only regards a single
task and its corresponding information, which may
be insufficient to represent the complex semantic
translation of LLMs. Moreover, our representation
does not consider the models’ architectures or in-
ference complexity in any way, and future work
could extend it to also consider model efficiency in
addition to performance.

8586



References
Norah Alzahrani, Hisham Alyahya, Yazeed Alnumay,

Sultan AlRashed, Shaykhah Alsubaie, Yousef Al-
mushayqih, Faisal Mirza, Nouf Alotaibi, Nora Al-
Twairesh, Areeb Alowisheq, M Saiful Bari, and
Haidar Khan. 2024. When benchmarks are targets:
Revealing the sensitivity of large language model
leaderboards. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 13787–
13805, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357–2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yajie Bao, Yang Li, Shao-Lun Huang, Lin Zhang,
Lizhong Zheng, Amir Zamir, and Leonidas Guibas.
2019. An information-theoretic approach to trans-
ferability in task transfer learning. In 2019 IEEE In-
ternational Conference on Image Processing (ICIP),
pages 2309–2313.

Elisa Bassignana, Max Müller-Eberstein, Mike Zhang,
and Barbara Plank. 2022. Evidence > intuition:
Transferability estimation for encoder selection. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
4218–4227, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Adi Ben-Israel and Thomas N.E. Greville. 2003. Gen-
eralized Inverses: Theory and Applications, 2nd edi-
tion. Springer, New York.

Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
34(05):7432–7439.

Arne Bjerhammar. 1951. Application of calculus of
matrices to method of least squares: with special
reference to geodetic calculations. Transactions of
the Royal Institute of Technology, Stockholm, 49:1–
86.

James R. Bunch and Christopher P. Nielsen. 1978. Up-
dating the singular value decomposition. Numerische
Mathematik, 31(2):111–129.

Bowen Cao, Deng Cai, Zhisong Zhang, Yuexian Zou,
and Wai Lam. 2024. On the worst prompt perfor-
mance of large language models. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.
2023. A survey on evaluation of large language mod-
els. Preprint, arXiv:2307.03109.

Patrick Chao, Edoardo Debenedetti, Alexander Robey,
Maksym Andriushchenko, Francesco Croce, Vikash
Sehwag, Edgar Dobriban, Nicolas Flammarion,
George J. Pappas, Florian Tramèr, Hamed Hassani,
and Eric Wong. 2024. Jailbreakbench: An open ro-
bustness benchmark for jailbreaking large language
models. In The Thirty-eight Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track.

Yangyi Chen, Binxuan Huang, Yifan Gao, Zhengyang
Wang, Jingfeng Yang, and Heng Ji. 2025. Scal-
ing laws for predicting downstream performance in
LLMs.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex
Castro-Ros, Marie Pellat, Kevin Robinson, and 16
others. 2024. Scaling instruction-finetuned language
models. Journal of Machine Learning Research,
25(70):1–53.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Iddo Drori, Lu Liu, Yi Nian, Sharath C. Koorathota,
Jie S. Li, Antonio Khalil Moretti, Juliana Freire, and
Madeleine Udell. 2019. Automl using metadata lan-
guage embeddings. Preprint, arXiv:1910.03698.

Carl Eckart and Gale Young. 1936. The approximation
of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218.

Deborah Etsenake and Meiyappan Nagappan. 2024. Un-
derstanding the human-llm dynamic: A literature
survey of llm use in programming tasks. Preprint,
arXiv:2410.01026.

Simon Frieder, Julius Berner, Philipp Petersen, and
Thomas Lukasiewicz. 2024. Large language models
for mathematicians. Preprint, arXiv:2312.04556.

8587

https://doi.org/10.18653/v1/2024.acl-long.744
https://doi.org/10.18653/v1/2024.acl-long.744
https://doi.org/10.18653/v1/2024.acl-long.744
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.1109/ICIP.2019.8803726
https://doi.org/10.1109/ICIP.2019.8803726
https://doi.org/10.18653/v1/2022.emnlp-main.283
https://doi.org/10.18653/v1/2022.emnlp-main.283
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1007/BF01397471
https://doi.org/10.1007/BF01397471
https://openreview.net/forum?id=Mi853QaJx6
https://openreview.net/forum?id=Mi853QaJx6
https://arxiv.org/abs/2307.03109
https://arxiv.org/abs/2307.03109
https://openreview.net/forum?id=urjPCYZt0I
https://openreview.net/forum?id=urjPCYZt0I
https://openreview.net/forum?id=urjPCYZt0I
https://openreview.net/forum?id=BDisxnHzRL
https://openreview.net/forum?id=BDisxnHzRL
https://openreview.net/forum?id=BDisxnHzRL
http://jmlr.org/papers/v25/23-0870.html
http://jmlr.org/papers/v25/23-0870.html
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/1910.03698
https://arxiv.org/abs/1910.03698
https://arxiv.org/abs/2410.01026
https://arxiv.org/abs/2410.01026
https://arxiv.org/abs/2410.01026
https://arxiv.org/abs/2312.04556
https://arxiv.org/abs/2312.04556


Saurabh Garg, Sivaraman Balakrishnan, Zachary Chase
Lipton, Behnam Neyshabur, and Hanie Sedghi.
2022. Leveraging unlabeled data to predict out-of-
distribution performance. In International Confer-
ence on Learning Representations.

William W Hager. 1989. Updating the inverse of a
matrix. SIAM review, 31(2):221–239.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Arthur E. Hoerl and Robert W. Kennard. 1970a. Ridge
regression: Applications to nonorthogonal problems.
Technometrics, 12(1):69–82.

Arthur E. Hoerl and Robert W. Kennard. 1970b. Ridge
regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2024. Lorahub: Ef-
ficient cross-task generalization via dynamic loRA
composition. In First Conference on Language Mod-
eling.

Ganesh Jawahar, Muhammad Abdul-Mageed, Laks Lak-
shmanan, and Dujian Ding. 2024. LLM performance
predictors are good initializers for architecture search.
In Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 10540–10560, Bangkok,
Thailand. Association for Computational Linguistics.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large
language models for code generation. Preprint,
arXiv:2406.00515.

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? Preprint,
arXiv:2310.06770.

Qiao Jin, Nicholas Wan, Robert Leaman, Shubo Tian,
Zhizheng Wang, Yifan Yang, Zifeng Wang, Guangzhi
Xiong, Po-Ting Lai, Qingqing Zhu, Benjamin Hou,
Maame Sarfo-Gyamfi, Gongbo Zhang, Aidan Gilson,
Balu Bhasuran, Zhe He, Aidong Zhang, Jimeng Sun,
Chunhua Weng, and 4 others. 2024. Demystify-
ing large language models for medicine: A primer.
Preprint, arXiv:2410.18856.

Lijun Li, Bowen Dong, Ruohui Wang, Xuhao Hu, Wang-
meng Zuo, Dahua Lin, Yu Qiao, and Jing Shao.
2024a. SALAD-bench: A hierarchical and compre-
hensive safety benchmark for large language models.

In Findings of the Association for Computational
Linguistics: ACL 2024, pages 3923–3954, Bangkok,
Thailand. Association for Computational Linguistics.

Sihang Li, Jin Huang, Jiaxi Zhuang, Yaorui Shi, Xi-
aochen Cai, Mingjun Xu, Xiang Wang, Linfeng
Zhang, Guolin Ke, and Hengxing Cai. 2024b. Scil-
itllm: How to adapt llms for scientific literature un-
derstanding. Preprint, arXiv:2408.15545.

Stephanie C. Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulqa: Measuring how models mimic human
falsehoods. In Annual Meeting of the Association for
Computational Linguistics.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 3622–3628. Interna-
tional Joint Conferences on Artificial Intelligence
Organization. Main track.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng
Shen, Tianjun Zhang, Yu Su, Huan Sun, and 3 others.
2024. Agentbench: Evaluating LLMs as agents. In
The Twelfth International Conference on Learning
Representations.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984, Online.
Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word
representations in vector space. In International Con-
ference on Learning Representations.

Evan Miller. 2024. Adding error bars to evals: A
statistical approach to language model evaluations.
Preprint, arXiv:2411.00640.

Eliakim Hastings Moore. 1920. On the reciprocal of the
general algebraic matrix. Bulletin of the American
Mathematical Society, 26(9):394–395.

Lorenzo Pacchiardi, Lucy G Cheke, and Jose
Hernandez-Orallo. 2025. 100 instances is all you
need: predicting LLM success by testing on a few
instances.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan
Sankarasubbu. 2022. Medmcqa: A large-scale multi-
subject multi-choice dataset for medical domain ques-
tion answering. In Proceedings of the Conference
on Health, Inference, and Learning, volume 174 of
Proceedings of Machine Learning Research, pages
248–260. PMLR.

8588

https://openreview.net/forum?id=o_HsiMPYh_x
https://openreview.net/forum?id=o_HsiMPYh_x
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=TrloAXEJ2B
https://openreview.net/forum?id=TrloAXEJ2B
https://openreview.net/forum?id=TrloAXEJ2B
https://doi.org/10.18653/v1/2024.findings-acl.627
https://doi.org/10.18653/v1/2024.findings-acl.627
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2410.18856
https://arxiv.org/abs/2410.18856
https://doi.org/10.18653/v1/2024.findings-acl.235
https://doi.org/10.18653/v1/2024.findings-acl.235
https://arxiv.org/abs/2408.15545
https://arxiv.org/abs/2408.15545
https://arxiv.org/abs/2408.15545
https://api.semanticscholar.org/CorpusID:237532606
https://api.semanticscholar.org/CorpusID:237532606
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://openreview.net/forum?id=zAdUB0aCTQ
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:5959482
https://arxiv.org/abs/2411.00640
https://arxiv.org/abs/2411.00640
https://openreview.net/forum?id=UoWslU6hsX
https://openreview.net/forum?id=UoWslU6hsX
https://openreview.net/forum?id=UoWslU6hsX
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html


Harris Papadopoulos, Volodya Vovk, and Alex Gam-
merman. 2007. Conformal prediction with neural
networks. In 19th IEEE International Conference on
Tools with Artificial Intelligence(ICTAI 2007), vol-
ume 2, pages 388–395.

Mihir Parmar, Neeraj Varshney, Nisarg Patel, Santosh
Mashetty, Man Luo, Arindam Mitra, and Chitta Baral.
2023. Logicbench: A benchmark for evaluation of
logical reasoning.

Roger Penrose. 1955. A generalized inverse for matri-
ces. Mathematical Proceedings of the Cambridge
Philosophical Society, 51(3):406–413.

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv,
Liat Ein-Dor, Eyal Shnarch, Noam Slonim, Michal
Shmueli-Scheuer, and Leshem Choshen. 2024. Ef-
ficient benchmarking (of language models). In Pro-
ceedings of the 2024 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 2519–2536, Mexico City,
Mexico. Association for Computational Linguistics.

Pouya Pezeshkpour and Estevam Hruschka. 2024.
Large language models sensitivity to the order of op-
tions in multiple-choice questions. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 2006–2017, Mexico City, Mexico. Asso-
ciation for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social IQa: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4463–
4473, Hong Kong, China. Association for Computa-
tional Linguistics.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

G. Schulz. 1933. Iterative Berechnung der reziproken
Matrix. Zeitschrift für Angewandte Mathematik und
Mechanik (ZAMM), 13(1):57–59.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. Mpnet: Masked and permuted pre-
training for language understanding. In Advances in
Neural Information Processing Systems, volume 33,
pages 16857–16867. Curran Associates, Inc.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 13003–13051, Toronto,
Canada. Association for Computational Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Andrey N. Tikhonov. 1943. On the stability of inverse
problems. In Doklady Akademii Nauk SSSR, vol-
ume 39, pages 195–198.

Petar Veličković, Adrià Puigdomènech Badia, David
Budden, Razvan Pascanu, Andrea Banino, Misha Da-
shevskiy, Raia Hadsell, and Charles Blundell. 2022.
The CLRS algorithmic reasoning benchmark. In
Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 22084–22102.
PMLR.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2021. MiniLMv2: Multi-head self-
attention relation distillation for compressing pre-
trained transformers. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2140–2151, Online. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and 1 others. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng
Long. 2021. Logme: Practical assessment of pre-
trained models for transfer learning. In Proceedings
of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine
Learning Research, pages 12133–12143. PMLR.

Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao,
Daniel Zhang-Li, Xin Lv, Hao Peng, Zijun Yao, Xi-
aohan Zhang, Hanming Li, Chunyang Li, Zheyuan
Zhang, Yushi Bai, Yantao Liu, Amy Xin, Kaifeng
Yun, Linlu GONG, Nianyi Lin, Jianhui Chen, and 16

8589

https://doi.org/10.1109/ICTAI.2007.47
https://doi.org/10.1109/ICTAI.2007.47
https://openreview.net/forum?id=7NR2ZVzZxx
https://openreview.net/forum?id=7NR2ZVzZxx
https://doi.org/10.18653/v1/2024.naacl-long.139
https://doi.org/10.18653/v1/2024.naacl-long.139
https://doi.org/10.18653/v1/2024.findings-naacl.130
https://doi.org/10.18653/v1/2024.findings-naacl.130
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.1002/zamm.19330130109
https://doi.org/10.1002/zamm.19330130109
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://proceedings.mlr.press/v162/velickovic22a.html
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://proceedings.mlr.press/v139/you21b.html
https://proceedings.mlr.press/v139/you21b.html


others. 2024. KoLA: Carefully benchmarking world
knowledge of large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Qiang Zhang, Keyang Ding, Tianwen Lyv, Xinda Wang,
Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao Wang,
Xiaotong Li, Zhuoyi Xiang, Kehua Feng, Xiang
Zhuang, Zeyuan Wang, Ming Qin, Mengyao Zhang,
Jinlu Zhang, Jiyu Cui, Tao Huang, Pengju Yan, and 6
others. 2024a. Scientific large language models: A
survey on biological & chemical domains. Preprint,
arXiv:2401.14656.

Qiyuan Zhang, Fuyuan Lyu, Xue Liu, and Chen Ma.
2024b. Collaborative performance prediction for
large language models. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2576–2596, Miami, Florida,
USA. Association for Computational Linguistics.

Shujian Zhang, Chengyue Gong, Lemeng Wu,
Xingchao Liu, and Mingyuan Zhou. 2023. Automl-
gpt: Automatic machine learning with gpt. Preprint,
arXiv:2305.02499.

Zhexin Zhang, Leqi Lei, Lindong Wu, Rui Sun,
Yongkang Huang, Chong Long, Xiao Liu, Xuanyu
Lei, Jie Tang, and Minlie Huang. 2024c. Safety-
Bench: Evaluating the safety of large language mod-
els. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15537–15553, Bangkok,
Thailand. Association for Computational Linguistics.

Yanxin Zheng, Wensheng Gan, Zefeng Chen, Zhen-
lian Qi, Qian Liang, and Philip S. Yu. 2024. Large
language models for medicine: A survey. Preprint,
arXiv:2405.13055.

Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li,
Jiantao Jiao, and Kannan Ramchandran. 2025. Em-
bedLLM: Learning compact representations of large
language models. In The Thirteenth International
Conference on Learning Representations.

Jingming Zhuo, Songyang Zhang, Xinyu Fang,
Haodong Duan, Dahua Lin, and Kai Chen. 2024.
ProSA: Assessing and understanding the prompt sen-
sitivity of LLMs. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
1950–1976, Miami, Florida, USA. Association for
Computational Linguistics.

8590

https://openreview.net/forum?id=AqN23oqraW
https://openreview.net/forum?id=AqN23oqraW
https://arxiv.org/abs/2401.14656
https://arxiv.org/abs/2401.14656
https://doi.org/10.18653/v1/2024.emnlp-main.150
https://doi.org/10.18653/v1/2024.emnlp-main.150
https://arxiv.org/abs/2305.02499
https://arxiv.org/abs/2305.02499
https://doi.org/10.18653/v1/2024.acl-long.830
https://doi.org/10.18653/v1/2024.acl-long.830
https://doi.org/10.18653/v1/2024.acl-long.830
https://arxiv.org/abs/2405.13055
https://arxiv.org/abs/2405.13055
https://openreview.net/forum?id=Fs9EabmQrJ
https://openreview.net/forum?id=Fs9EabmQrJ
https://openreview.net/forum?id=Fs9EabmQrJ
https://doi.org/10.18653/v1/2024.findings-emnlp.108
https://doi.org/10.18653/v1/2024.findings-emnlp.108


A Finding the optimal epsilon

We present the hyper-parameter tuning of ε for each discussed setting. Increasing ε results in filtering
directions, that correspond to lower variance of the prompt embeddings. We can notice increasing epsilon
can improve all metrics in the OOS scenario, until at some point it starts to decrease. This can be attributed
to the cleaning of noise and the maintenance of dominant singular directions. Another noticeable trend in
two of the datasets is that the task of model selection, where false positives are more problematic than
false negatives, requires a larger ε, than the one required for success prediction.

SS S

S SS

S S

Figure 5: The effect of ε on the performance metrics discussed in our work.

8591



B Comparison with static selection

This section provides a comparative analysis of our dynamic model selection method against a static
baseline termed the “Best Source Performer” (BSP). The BSP baseline identifies the single LLM from
the available pool that achieved the highest overall accuracy across all prompts within the defined source
dataset (Dsrc) for each specific evaluation environment. This pre-selected model is then used uniformly
for all test prompts in that environment. This comparison serves to benchmark our per-prompt selection
strategy against a strong, globally-optimized static choice based on performance over the known source
data.

Table 2 presents the Accuracy and Recall metrics. The results generally show that our dynamic selection
approach offers advantages, particularly in in-sample scenarios, while maintaining robust and competitive
performance against the BSP baseline in OOS settings. This highlights the value of adaptive, per-prompt
model selection.

Table 2: Comparison of our model selection method (’Ours’) against a static ’Best Source Performer’ baseline. The
’Best Source Performer’ is the single model achieving the highest overall accuracy on the entire source prompt
library (i.e., Dsrc from Section 3.1) for each environment. Performance is reported across different evaluation
environments and prompt embedding dimensions for our method.

Environment Method dim Accuracy Recall

EmbedLLM
Best Source Performer – 0.5759± 0.0020 0.6309± 0.0026
Ours 384 0.6221± 0.0020 0.6814± 0.0027
Ours 768 0.6355± 0.0012 0.6961± 0.0014

EmbedLLM (OOS)
Best Source Performer – 0.5885± 0.0444 0.6398± 0.0414
Ours 384 0.5879± 0.0441 0.6393± 0.0413
Ours 768 0.5916± 0.0436 0.6435± 0.0435

BBH 0-shot (OOS)
Best Source Performer – 0.2491 0.5896
Ours 384 0.2491 0.5896
Ours 768 0.2491 0.5896

BBH 1-shot (OOS)
Best Source Performer – 0.3357 0.7070
Ours 384 0.3405 0.7171
Ours 768 0.3381 0.7119

8592



C Algorithms for Incremental Updates

Adding New Models to the Repository

Adding a new model is highly efficient as it does not require recomputing the expensive pseudoinverse of
the prompt embedding matrix. Calculating a new model’s embedding merely requires a single matrix-
multiplication operation. The existing pseudoinverse, (D+

src)
⊺, which encapsulates the structure of the

source prompt space, is simply reused, only this time with the measured performance of the new model
on the source prompts.

Algorithm 1 Incremental Addition of a New Model
1: Input:
2: The precomputed pseudoinverse of the source prompt matrix, (D+

src)
⊺ ∈ RN×dprompt .

3: The performance vector Pnew ∈ R1×N for the new modelMnew on the N source prompts.

4: Procedure:
5: Compute the embedding for the new model, E(M)new, via a single matrix-vector multiplication:

E(M)new = Pnew · (D+
src)

⊺

6: Append the resulting vector E(M)new ∈ R1×dprompt as a new row to the existing model embedding
matrix E(M).

Computational Complexity: The cost of this operation is dominated by the matrix-vector multiplication,
which is O(N · dprompt). Since dprompt is fixed (e.g., 384 or 768), the complexity is linear in the number of
source prompts, N . This cost is negligible compared to retraining-based approaches.

Adding New Source Prompts to the Library

Adding new source prompts is more complex than adding models because it alters the source prompt
matrix Dsrc, invalidating the precomputed pseudoinverse (Dsrc

+)⊺. The most direct approach is to
recompute the SVD of the new, larger prompt matrix, an operation with a complexity of O(N · d2prompt).
For the dataset sizes explored in our scalability experiments (Figure 2), this direct recomputation was
already so efficient that it resulted in nearly constant update times.

However, for large-scale systems where N is exceptionally large, an even greater asymptotic effi-
ciency can be achieved by using incremental update methods. One such approach is to compute the
pseudoinverse via the normal equations. This involves inverting the square matrix A = Dnew

⊺Dnew.
The Tikhonov regularization already present in our main method (Equation (4)) is equivalent to inverting
A = Dnew

⊺Dnew+2λI, which conveniently ensures the matrix is always invertible and well-conditioned.
For this task, a classic iterative solver like the Newton-Schulz iteration (Schulz, 1933) can be used.

8593



Algorithm 2 Incremental Update of Model Embeddings via Newton-Schulz

1: Input:
2: Old source matrices: Dsrc ∈ RN×dprompt , Psrc ∈ RM×N .
3: Old computed inverse: Asrc

−1 = (Dsrc
⊺Dsrc + 2λI)−1 ∈ Rdprompt×dprompt .

4: New data to add: Dadded ∈ RNadd×dprompt , Padded ∈ RM×Nadd .
5: Iteration count for refinement, k.

6: Procedure:
7: Concatenate matrices to form the new set:

8: Dnew ←
[

Dsrc

Dadded

]
∈ R(N+Nadd)×dprompt

9: Pnew ←
[
Psrc Padded

]
∈ RM×(N+Nadd)

10: Form the new matrix to be inverted:
11: Anew ← Dnew

⊺Dnew + 2λI

12: Use the previous inverse as a strong initial guess for the new inverse: X0 ← Asrc
−1.

13: for i = 0 to k − 1 do
14: Xi+1 ← Xi(2I−AnewXi) ▷ Refine the inverse using Newton-Schulz iteration
15: end for
16: Let the converged inverse be Anew

−1 ← Xk.

17: Compute the new pseudoinverse:
18: Dnew

+ ← Anew
−1Dnew

⊺

19: Compute the final updated model embeddings:
20: E(M)new ← Pnew(Dnew

+)⊺

21: Output: The updated model embedding matrix, E(M)new ∈ RM×dprompt .

Computational Complexity: The dominant cost in Algorithm 2 comes from the Newton-Schulz loop.
Each iteration involves matrix multiplications of size (dprompt × dprompt), leading to a complexity of
O(k · d3prompt) for the loop. This is asymptotically more efficient than the full SVD recomputation
(O(Nnew ·d2prompt)) when the number of prompts Nnew is significantly larger than the embedding dimension
dprompt.
Alternative Methods: In addition to Newton-Schulz, there are other established methods for updating the
pseudoinverse that are valid for our use, such as updating the SVD directly via rank-one updates (Bunch
and Nielsen, 1978) or using the Sherman-Morrison-Woodbury formula for low-rank updates (Hager,
1989). The existence of these techniques offers additional scalability, confirming that our framework is
theoretically well-suited for massive, dynamically expanding systems.

8594



D FLAN v2 Models and Datasets

We present the full list of 92 FLAN v2 datasets.

1. adversarial_qa_dbidaf_based_on

2. adversarial_qa_dbert_answer_the_following_q

3. adversarial_qa_dbidaf_question_context_answer

4. adversarial_qa_dbidaf_tell_what_it_is

5. adversarial_qa_droberta_tell_what_it_is

6. amazon_polarity_User_recommend_this_product

7. anli_r1

8. app_reviews_categorize_rating_using_review

9. bool_q

10. dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to

11. definite_pronoun_resolution

12. dream_baseline

13. dream_read_the_following_conversation_and_answer_the_question

14. drop

15. duorc_ParaphraseRC_answer_question

16. duorc_ParaphraseRC_movie_director

17. duorc_ParaphraseRC_Youtubeing

18. duorc_SelfRC_generate_question_by_answer

19. duorc_SelfRC_Youtubeing

20. duorc_SelfRC_title_generation

21. gem_e2e_nlg

22. gem_web_nlg_en

23. glue_cola

24. glue_mrpc

25. glue_sst2

26. glue_wnli

27. wiki_hop_original_choose_best_object_interrogative_2

28. imdb_reviews_plain_text

29. kilt_tasks_hotpotqa_complex_question

30. lambada

8595



31. math_dataset_algebra_linear_1d

32. sciq_Multiple_Choice_Question_First

33. newsroom

34. ropes_prompt_beginning

35. qasc_is_correct_1

36. qasc_is_correct_2

37. qasc_qa_with_combined_facts_1

38. qasc_qa_with_separated_facts_3

39. qasc_qa_with_separated_facts_5

40. quac

41. quail_context_description_Youtube_text

42. quail_context_Youtube_description_id

43. quail_context_Youtube_description_text

44. quail_context_question_description_answer_id

45. quail_context_question_description_answer_text

46. quail_description_context_Youtube_id

47. quail_no_prompt_text

48. quarel_choose_between

49. quarel_do_not_use

50. quarel_heres_a_story

51. quarel_logic_test

52. quarel_testing_students

53. quartz_having_read_above_passage

54. quartz_read_passage_below_choose

55. quoref_Find_Answer

56. quoref_Found_Context_Online

57. quoref_Guess_Title_For_Context

58. race_high_Select_the_best_answer

59. race_middle_Is_this_the_right_answer

60. race_middle_Select_the_best_answer

61. race_middle_Taking_a_test

62. ropes_prompt_bottom_hint_beginning

8596



63. sciq_Direct_Question_Closed_Book_

64. social_i_qa_Generate_the_question_from_the_answer

65. squad_v1.1

66. squad_v2.0

67. super_glue_wic

68. super_glue_wsc.fixed

69. trec

70. true_case

71. web_questions_get_the_answer

72. wiki_bio_comprehension

73. wiki_bio_guess_person

74. wiki_bio_key_content

75. wiki_bio_who

76. wiki_hop_original_choose_best_object_affirmative_1

77. wiki_hop_original_choose_best_object_interrogative_1

78. wiki_hop_original_generate_subject

79. wiki_qa_automatic_system

80. wiki_qa_found_on_google

81. wiki_qa_Is_This_True_

82. wiki_qa_Jeopardy_style

83. wiki_qa_Topic_Prediction_Answer_Only

84. wiqa_effect_with_label_answer

85. wiqa_what_is_the_final_step_of_the_following_process

86. wiqa_what_might_be_the_last_step_of_the_process

87. wiqa_what_is_the_missing_first_step

88. wmt16_translate_ro-en

89. wiqa_which_of_the_following_is_the_supposed_perturbation

90. wmt16_translate_tr-en

91. word_segment

92. yelp_polarity_reviews

8597


