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Abstract

Chain-of-Thought (CoT) prompting enhances
the math reasoning capability of large language
models (LLMs) to a large margin. However, the
mechanism underlying such improvements re-
mains unexplored. In this paper, we present
SalaMAnder (Shapley-based Mathematical
Expression Attribution and Metric), a theo-
retically grounded methodology as well as a
mathematically rigorous evaluation metric for
quantifying component-level contributions in
few-shot CoT reasoning. Concretely, we lever-
age the Shapley value for mathematical ex-
pression attribution and develop an efficient
stratified sampling algorithm that significantly
reduces the computational complexity. Be-
sides, we develop the CoSP (Cardinality of
Shapley Positives) metric through covariance
analysis. Comprehensive validation across pop-
ular LLM models and diverse mathematical
benchmarks demonstrates that the CoSP metric
within our SalaM Ander framework exhibits a
robust monotonic correlation with model per-
formance, not only providing theoretical expla-
nations for the empirical success of existing
few-shot CoT but also establishing mathemati-
cally rigorous principles for prompt construc-
tion optimization. Furthermore, we verify the
reliability of the explanation, based on which
we unify the insights of previous work.

1 Introduction

Chain-of-Thought (CoT) reasoning has elicited
powerful mathematical ability within large lan-
guage models (LLMs) reasoning tasks, ranging
from arithmetic problem solving to theorem prov-
ing. Despite the substantial improvements, the
mechanism of how reasoning steps lead to cor-
rect answers remains underexplored, both heuris-
tic speculation(Wang et al., 2023; Chen et al.,
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2024; Wang et al., 2022; Li et al., 2024; Jin et al.,
2024; Pfau et al., 2024) and labor-intensive verifi-
cation(Serrano and Smith, 2019; Bastings and Fil-
ippova, 2020; Madsen et al., 2022; Siddiqui et al.,
2024) lack theoretical investigation.

Prior heuristic-driven approaches analyze the
role of different components by defining cus-
tomized input formats. For instance, Chen et al.
(2024) and Jin et al. (2024) introduce tailored rea-
soning steps during inference and investigate the
impact of step order and length, respectively. While
labor-intensive approaches attempt to explain CoT
actions through ad hoc trial-and-error adjustments
and case-specific manual inspections (Serrano and
Smith, 2019; Bastings and Filippova, 2020; Mad-
sen et al., 2022; Siddiqui et al., 2024). There is
also a Shapley-value-based method (Horovicz and
Goldshmidt, 2024) analyzing token-level attribu-
tion; nevertheless, the exponential computational
complexity and indirect value function design hin-
der it from real-world applications.

In this paper, we propose a unified frame-
work SalaMAnder (short for Shapley-based
Mathematical Expression Attribution and Metric),
introducing two novel ideas for efficient and se-
mantically coherent CoT analysis. First, we de-
note mathematical expressions as atomic units for
Shapley-based attribution, addressing the semantic
fragmentation inherent in traditional token-level
analyses through component-level decomposition.
Then, we develop a novel stratified sampling al-
gorithm, namely SalaMA (Shapley-based Math-
ematical Expression Attribution) that achieves
exponential complexity reduction by decomposing
Shapley calculations according to component or-
der, reducing time complexity from O(2"*!) to
O(2mn?) while maintaining rigorous theoretical
guarantees, where n refers to the number of com-
ponents and m indicates the number of samples.
To supplement SalaMA, we also develop the CoSP
(Cardinality of Shapley Positives) metric based on
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Figure 1: Workflow of the SalaMAnder Framework and CoSP Metric in CoT for LLMs. Initially, the framework
proposes an efficient Shapley value algorithm to attribute the contributions of various mathematical expressions.
These computed Shapley values are then utilized to derive the CoSP metric. Both theoretical derivations and
extensive experiments across multiple models and datasets validate that CoSP exhibits a robust positive correlation
with model inference accuracy. This correlation provides a comprehensive explanation of the underlying mechanisms

driving CoT behavior in LLMs.

the efficient and semantical Shapley estimation.

The proposed CoSP metric within our Sala-
MAnder framework formally establishes the mono-
tonic relationship with model performance. The-
oretically, we provide a rigorous mathematical
analysis of this monotonic relation. Experimen-
tally, we apply SalaMAnder to few-shot learn-
ing scenarios, utilizing popular LLMs (LLaMA-
2-13B-chat (Touvron et al., 2023), LLaMA-3-8B-
Instruct (Grattafiori et al., 2024), and Qwen2.5-7B-
Instruct (Team, 2024)) tested on various mathemat-
ical benchmarks (GSM8K (Ouyang et al., 2022),
MathQA (Amini et al., 2019), AQUA (Ling et al.,
2017), MultiArith (Wang et al., 2018), and SVAMP
(Patel et al., 2021)) to compute the Pearson correla-
tion coefficient. Then we further evaluate the relia-
bility of the explanation results. Last, we present
novel insights that not only reinforce the effective-
ness of our methods but also integrate and unify
previous research.

The contributions of this paper can be summa-
rized as follows:

e We propose a unified framework SalaMAn-
der to establish mathematical expressions as
atomic units for Shapley-based attribution,
and we develop a novel stratified sampling
algorithm SalaMA that achieves exponential
complexity reduction while maintaining rigor-
ous theoretical guarantees.

e We present the CoSP metric within our
SalaMAnder framework, which formally es-
tablishes the monotonic relationship with

model performance through rigorous covari-
ance analysis, providing mathematical guar-
antees for the predictive validity.

2 Related Work

CoT Methodologies CoT prompting, introduced
by Wei et al. (2022), explicitly guides LLMs
to generate intermediate reasoning steps, signif-
icantly improving performance on mathematical
and symbolic tasks. Subsequent work expanded
this paradigm through path optimization (e.g.,
Least-to-Most prompting decomposes problems
into subquestions (Zhou et al., 2022); Progressive-
Hint iteratively refines solutions (Zheng et al.,
2023)), automation (e.g., Automatic CoT gener-
ates demonstrations via LLMs (Zhang et al., 2022);
Symbolic CoT Distillation transfers CoT ability to
smaller models (Li et al., 2023)), and hybrid ap-
proaches (e.g., CoF-CoT combines coarse-to-fine
prompting for multi-domain tasks (Nguyen et al.,
2023); Deductive Verification adds formal consis-
tency checks (Ling et al., 2023)). Despite these
advances, most methods rely on heuristic designs
without theoretical guarantees, and their efficacy
varies significantly across domains—mathematical
tasks benefit more from structured CoT than open-
ended reasoning.

Mechanistic Studies of CoT Reasoning The
existing literature on CoT mechanisms unfolds
through complementary empirical and theoretical
lenses. Empirical studies (Wang et al., 2022; Li
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etal., 2024; Jin et al., 2024; Wang et al., 2023; Pfau
et al., 2024; Chen et al., 2024) have explored vari-
ous strategies to enhance the robustness, safety, and
structural integrity of CoT reasoning. For instance,
self-consistency mechanisms (Wang et al., 2022)
improve the reliability of reasoning outputs by ag-
gregating multiple reasoning paths, while efforts
to mitigate toxicity (Li et al., 2024) ensure safer
commonsense reasoning. Additionally, research on
step length (Jin et al., 2024), step relevance and
logical order (Wang et al., 2023), hidden state dy-
namics (Pfau et al., 2024), and premise sequence
order (Chen et al., 2024) underscores the impor-
tance of prompt design and structural factors in
optimizing CoT performance.

Another set of literature attempts to explain CoT
through ad hoc trial-and-error adjustments (Ser-
rano and Smith, 2019; Bastings and Filippova,
2020; Madsen et al., 2022; Siddiqui et al., 2024).
For instance, (Bastings and Filippova, 2020) and
(Siddiqui et al., 2024) utilize attention maps and
saliency score to analyze CoT, respectively. There
is also a Shapley-value-based method (Horovicz
and Goldshmidt, 2024) analyzing token-level attri-
bution, nevertheless, the exponential computational
complexity and indirect value function design hin-
der it from real-world applications.

3 Method

In this section, we introduce the SalaMAnder
framework, designed to explain the mathemati-
cal reasoning mechanisms of CoT in LLMs using
Shapley values. We introduce our method in three
sections: an introduction to Shapley values, the
SalaMAnder sparse computation of these values,
and the CoSP metric for evaluating CoT reasoning
contributions.

3.1 Preliminary: Shapley Values (Fair
Attribution of CoT Constituents)

Shapley values, originating from cooperative game
theory, offer a principled method for fairly distribut-
ing the total gains of a coalition among its individ-
ual players based on their contributions (Shapley,
1953).

Formally, consider a set of players N =
{1,2,...,n} and a reward function v : 2V — R
that assigns a real-valued payoftf to every possible
coalition of players. The Shapley value ¢;(v) for

player ¢ is defined as:
sl(n—s—1)!

SCN\(i) n!

Po(i) = [w(SU{i}) —v(S)]
where S is any subset of NV that does not include
playeri, and s = |S|,n = | N| respectively denotes
the number of players in subset .S and set V.

We can further derive from the above expression:

o)== Y (,il) (S U {i}) — v(S)]

"y Us

n—1
_ % S By (S U {i}) — 0(9)]
r=0

1
= —6r11(i) (1)

where ¢, (i) = Es—, [v(S U {i}) — v(S)] denotes
the (r + 1)th order shapley value of component i.

Researchers have proven that the Shapley value
is a unique unbiased method to fairly allocate over-
all reward to each player with four properties: lin-
earity, dummy, symmetry, and efficiency (Weber,
1988). For simplicity, we use ¢(i) by ignoring the
superscript of ¢, (i) in the following manuscript
without causing ambiguity.

In our framework, each component of the CoT,
such as individual mathematical expressions or a
single word, is treated as a player in the cooperative
game. The reward function v(S) corresponds to a
performance metric of the LLM (e.g., correctness,
or inference logits) when only the components in
subset S are included in the CoT. Consequently, the
Shapley value ¢(7) quantifies the average marginal
contribution of each component to the overall rea-
soning performance across all possible subsets of
components.

The feasibility of our method is guaranteed by
the non-essential requirement for independence
among components in the mathematical definition
of the Shapley value and the value function, al-
though low feature independence truly has some
problems. But in our specific context, expressions
tend to carry distinct semantic roles, with rare high-
level redundancy between them. Consequently, the
computed Shapley values can effectively reflect the
true contribution of each component in the reason-
ing process.

3.2 SalaMA: Efficient Sparse Shapley
Computation for CoT Components

Although calculating exact Shapley values for each
component presents significant computational chal-
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lenges, the exponential growth in the number of
possible subsets with respect to the number of com-
ponents renders exact computation infeasible for
practical applications. To address the limitation,
we propose SalaMA (Shapley-based Mathematical
Expression Attribution) mechanism, an efficient
algorithm designed to approximate Shapley values
with high accuracy while substantially reducing
computational overhead.

The Players We define each player in the game,
i.e. each component in the demonstration as a math-
ematical expression rather than individual words
or tokens. This decision is motivated by the ob-
servation that single words or tokens can vary in
meaning across different contexts, making their
attribution inconsistent and less meaningful. Math-
ematical expressions, in contrast, maintain their
semantic integrity across diverse reasoning scenar-
ios, providing a more stable and universally ap-
plicable unit for analysis. Additionally, aggregat-
ing tokens into coherent mathematical expressions
significantly reduces the number of components,
thereby mitigating the computational complexity
associated with Shapley value calculations. This
aggregation not only enhances computational effi-
ciency but also ensures that the attribution analysis
remains interpretable and relevant to the model’s
problem-solving mechanisms.

The Reward Function We adopt a reward func-
tion that combines the model’s prediction confi-
dence logits with the correctness of the prediction,
formulated as

L
v(S) = (i ZInge(yeIS)) T(yprea(S) = y*)

/=1
L
ypred(s) = @ yé(s)
/=1

2

where 1 5™/ Tog pp(ye|S) represents the average
confidence score of the model’s prediction by av-
eraging the logits associated with the result tokens
generated when including component subset .S, I(-)
is a binary indicator, and €p indicates the string
concatenation operation.

This formulation ensures that the value func-
tion directly reflects the impact of each compo-
nent on the model’s performance, addressing the
limitations of alternative metrics such as attention,
saliency scores or binary correctness. Attention or

saliency scores do not provide a direct attribution to
the final outcome and can be complex to interpret
(Serrano and Smith, 2019; Bastings and Filippova,
2020; Madsen et al., 2022; Siddiqui et al., 2024),
while a binary correctness metric lacks the sen-
sitivity needed to capture nuanced contributions.
By integrating confidence logits with correctness,
the reward function balances sensitivity and direct
attribution, facilitating a more accurate and inter-
pretable estimation of each component’s contribu-
tion.

Efficient Shapley Computation Algorithm The
proposed algorithm systematically approximates
the Shapley values for CoT components through
a structured algorithmic workflow. In exact Shap-
ley value computation, for each component 1, it
is necessary to evaluate v(S U {i}) — v(S) across
all subsets S C N{i}, leading to a computational
complexity of O(2"+1), where n is the number of
components. This exponential complexity becomes
prohibitively expensive as the number of compo-
nents increases. To mitigate this, SalaMA reduces
the number of necessary inferences by employing
a stratified sampling approach based on the order
of Shapley values.

Specifically, the SalaMA mechanism decom-
poses the Shapley value calculation by order. For
an r-th order Shapley value ¢,, SalaMA randomly
samples 7 — 1 other mathematical expressions from
the set N/{i}. The number of such samples is de-
noted by sp, with a maximum limit of m, indicat-
ing sp = min(m, (Zj)) In the original demon-
stration, aside from the mathematical expressions,
other components (referred to as the "whiteboard")
are always present and remain constant across dif-

ferent subsets.

During inference, for each sampled subset .S’ of
size r — 1, SalaMA constructs two distinct demon-
strations: one containing S' U {7}, and another con-
taining S, all combined with the whiteboard. These
demonstrations are then fed into the model to ob-
tain the corresponding reward functions v (.S U {i})
and v(S), respectively. By iterating over multi-
ple orders and different samples within each or-
der, SalaMA aggregates the marginal contributions
across various subset configurations. The approxi-
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Algorithm 1: SalaMA: Sparse Shapley
Value Computation
Function SalaMA(N,v,n, m):

Initialize ¢[i] < 0 (Vi € N), H « ;

foreach i € N do

for r = 1tondo

sp <+ min(m, (’;:11))

for s =1to spdo
S < Sample(r — 1, N \ i);
vg < MemEval(S,H);
vsui < MemEval(S Ui, H);
¢li] += (vsui—vs)/(spn);

end

end
end
return ¢;

Procedure MemEval(S, H):
if S ¢ H then
| H[S] + v(S);
end
return H[S];

mated Shapley value can be derived from Eq. (1):

1 1
8(0) = - 3 Eory (S U {i} = o(S))]
r=0
n—1 m
= 3 S (ST UL (S B
r=0 t=1

To further enhance computational efficiency,
SalaMA maintains a hash table H to store and re-
trieve the results of previously computed subsets
S. This caching mechanism avoids redundant in-
ferences by storing v(.S) for each evaluated subset
S. Consequently, the computational complexity of
SalaMA is reduced to O(2 - sp - n?) < O(2mn?),
which is significantly lower than the exact Shapley
value computation’s O(2"+1). The whole work-
flow is shown in Algorithm. 1. We also conduct
experiments on the computation complexity and
error magnitude of Shapley value in Appendix C,
indicating that it is entirely feasible to achieve a
trade-off between computational complexity and
estimation accuracy with appropriate hyperparame-
ter selection.

3.3 CoSP: Performance-Aligned Causal
Explanation Rationale

We introduce CoSP (Cardinality of Shapley
Positives), a metric defined as the number of ex-
pressions within a demonstration that exhibit posi-
tive average Shapley values minus a weighted non-
positive average Shapley values across multiple
experiments.

Formally, for a demonstration comprising a set
of n expressions N, CoSP is defined as:

CoSP = |{¢>( Dlé(i) > 0} -

_ZH
=1+ A)Zn(qz(i) >0) — An
i=1

M{e(i)]o(i) < 0}
= A 1(¢(d) < 0)

where ¢(i) is the average Shapley value of the i-th
expression, computed over m different problem
instances tested using the same demonstration for-
mulated as (i) = L S| ¢®)(4), I(-) is the in-
dicator function, returmng 1 if the condition inside
is true and O otherwise, and A > 0 is the penalty
severity for the number of expressions with nega-
tive Shapley values. And we assume that during the
m CoT reasoning precesses, for each expression 7,
there is ) (i) ~ N (s, 02).

A positive average Shapley value (4(i) > 0) in-
dicates that the corresponding mathematical expres-
sion contributes positively to the model’s reasoning
performance; conversely, a non-positive one leads
to negative contribution or no contribution. There-
fore, CoSP comprehensively quantifies the number
of expressions that actively enhance or degrade the
model’s efficacy in solving problems. A higher
CoSP suggests that a greater subset of expressions
within the CoT is beneficial while a smaller subset
harmful, correlating with improved model perfor-
mance. Specifically, we define CoSP-0 and CoSP-
1, with A equals to 0 and 1, respectively.

To substantiate the relationship between CoSP
and performance, we formalize the following two
theorems under specific statistical assumptions.

Theorem 1 Both CoSP-0 and CoSP-1 have posi-
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LLaMA 2 (1) LLaMA 3 (1) Qwen 2.5 (1)
CoSP-0 CoSP-1 SSV  NoE CoSP-0 CoSP-1 SSv NoE CoSP-0 CoSP-1 SSV NoE

1-shot

GSMSK 0.76 0.65 0.32  0.76 0.70 0.18 -0.14  0.71 0.64 0.62 0.54 043

MathQA 0.44 0.62 0.63 -0.08 0.37 0.28 0.19 0.10 -0.16 0.28 0.11  -0.22

AQUA 0.40 0.46 044 -0.31 -0.21 0.48 0.39 -040 -0.63 -0.03  -0.03 -0.67

MultiArith 0.60 0.52 0.02 0.53 0.74 0.44 0.44 0.09 0.78 0.71 0.80 -0.04

SVAMP 0.49 0.28 021 0.14 0.17 0.21 0.08 -0.35 0.56 0.50 0.56 -0.32
2-shot

GSMSK 0.75 0.35 0.14 0.75 0.49 0.26 0.24 0.45 0.80 0.48 0.51 0.13

MathQA 0.36 0.46 0.35 -0.11 -0.20 0.01 0.07  -0.05 -0.20 -0.14 -0.03 -0.06

AQUA 0.56 0.51 048 -047 0.09 -0.04 -0.22  -0.50 0.22 0.52 0.55 -0.19

MultiArith -0.04 -0.07 -0.20 -0.31 0.82 0.39 0.58 -0.24 0.44 0.18 0.16  0.06

SVAMP 0.23 0.05 -0.13  -0.02 0.47 0.44 -0.19  -0.17 0.69 0.61 0.53  -0.02
4-shot

GSMSK 0.77 0.61 0.12 0.52 0.26 0.37 -0.15  -0.20 0.80 0.58 0.52  0.31

MathQA 0.29 -0.26  -0.46 -0.01 0.40 0.28 -0.02  -0.67 0.18 -0.33 -0.52  0.14

AQUA 0.80 0.77 -0.10  -0.11 -0.08 0.20 0.02 -0.19 -0.31 -0.11 -0.05 -0.43

MultiArith 0.54 0.33 042 0.22 0.80 0.23 -0.001 -0.47 0.67 0.51 024 -044

SVAMP 0.63 0.31 022 0.61 0.10 0.07 0.36  -0.17 0.22 -0.03 -0.14  -0.13

Average 0.51 0.37 0.16 0.14 0.33 0.25 0.11  -0.14 0.31 0.29 0.25 -0.10

Table 1: The correlation coefficients between different metrics and model inference accuracy across multiple datasets
and models of few-shot tasks. For each dataset and each model, the largest correlation is bolded, indicating the
best interpretation method. Here we use ‘LLaMA 2’, ‘LLaMA 3’, and ‘Qwen2.5’ in short for LLaMA-2-13B-
chat(Touvron et al., 2023), LLaMA-3-8B-Instruct(Grattafiori et al., 2024), and Qwen2.5-7B-Instruct(Team, 2024).

tive correlation with the model performance:

Z Var

Cov(Perf,CoSP-0) = (64 —J_) Z Var(X;
i=1

Z Var(X

Cov(CoSP, Perf)=(1+ A (04 —

Cov(Perf,CoSP-1) = 2(64 —
C))

where the meaning of 6., d_, X; will be explained
in the proof.

Theorem 2 CoSP-0 has a positive correlation with
the number of expressions n, while CoSP-1 has a
negative correlation with n:

n+1
E[CoSP,41] = (1 + \) sz (n+ 1)\
[COSPn] + Ppy1 — A )
E[CoSP-0y+1] — E[CoSP-0,] = ppt1 >0
E[COSP-1n+1] — E[COSP-]H] = Pn+1 — 1<0
(6)

The proof of Theo. 1 and Theo. 2 is applied in
Appendix. A.

The number of expressions n in the CoT is of-
ten indicative of the complexity or difficulty of
the reasoning task. Generally, increased reason-
ing difficulty generally leads to better model per-
formance (OpenAl, 2024), provided that the addi-
tional complexity is constructively leveraged. Our
Theo. 2 aligns with this observation by showing
that a higher number of expressions n results in
a higher CoSP-0, which in turn, per Theo. 1, cor-
relates with enhanced model performance. This
consistency underscores the validity of CoSP as a
metric that not only accounts for the quantity of
reasoning steps but also their qualitative impact on
model efficacy.

4 Experiments

This section presents a comprehensive evaluation
of the proposed SalaMAnder framework, demon-
strating its applicability across various settings. Ap-
pendix B describes the experimental settings, and
Sec 4.1 utilizes SalaMAnder in few-shot learning
scenarios to assess the validity of our explanation
method and metric. In Sec 4.2, we further evalu-
ate the reliability of explanation results. Sec 4.3
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Figure 2: The CoSP-0 value and test accuracy of models.
The strong consistency in their variation patterns further
confirms the reliability of our explanation results.

presents novel insights that not only reinforce the
effectiveness of our methods but also integrate and
unify previous research, and Sec 4.4 provides qual-
itative analysis of the explanation.

Besides, we conduct experiments on the com-
putation complexity and error magnitude of the
calculation of Shapley value in Appendix C, indi-
cating that it is entirely feasible to achieve a trade-
off between computational complexity and estima-
tion accuracy, thus guiding the selection of sample
num. Appendix D illustrates ablation studies on
the hyperparameters and Appendix E presents ad-
ditional experimental results. And we show the
cases used in Sec 4.3 in Appendix F, more cases in
Appendix G, and the qualitative analysis cases in
Appendix H.

4.1 Attribution Validity: CoSP Metric
Verification in Few-Shot Learning

To evaluate the practical applicability of the pro-
posed SalaMA method and the CoSP metric, we
applied them to few-shot learning scenarios across
multiple mathematical datasets and foundational
language models to assess the correlation between
CoSP and model performance (accuracy), thereby
validating the effectiveness of our framework.

We meticulously constructed demonstrations to
ensure a uniform distribution of mathematical ex-
pressions. Specifically, for one-shot learning tasks,
we constructed demonstrations by selecting 35
question-answer (Q-A) pairs from the training sets
of the GSMS8K, MathQA, and AQUA datasets. Be-
cause the MultiArith and SVAMP datasets include
answers composed solely of single mathematical
expressions, we instead selected 35 Q-A pairs from
the GSMS8K dataset to serve as demonstrations.

These one-shot demonstrations were evenly dis-
tributed, with five Q-A pairs each containing be-
tween one and seven mathematical expressions.
For 2-shot demonstrations, the total number of
expressions ranged from 2 to 10, resulting in 14
unique demonstrations by accounting for multiple
combinations where applicable (e.g., a total of 6
expressions could be achieved by combinations
2+4 or 3+3). 4-shot demonstrations contained 4-
16 total expressions, with one unique combination
retained per expression count to minimize computa-
tion, producing 13 distinct demonstration sets. This
methodology ensured that both one-shot and few-
shot demonstrations maintained a balanced and
uniform distribution of mathematical expressions,
thereby isolating the effect of expression quantity
on model performance.

We then utilize the proposed SalaMA method to
few-shot learning to get various metrics: CoSP-0,
CoSP-1, SSV (the sum of averaged shapley value,
ie. > | ¢(i)), NoE(number of expressions, i.e.
n). The correlations of these metrics and model
inference accuracy across diverse datasets and mod-
els in 1, 2, 4-shot scenarios are shown in Tab. 4,
and Tab. 2 record the correlations averaged among
different models.

Observed from Tab. 4, CoSP-0 is the best inter-
pretation metric for all models, and the interpreta-
tion validity of CoSP-0/CoSP-1 is much better than
the other metrics. According to Tab. 2, CoSP-0
serves as the best interpretation metric for GSM8K,
MultiArith, and SVAMP, while CoSP-1 for AQUA.
For MathQA, CoSP-0 serves as the best interpreta-
tion metric in 1 or 2-shot learning, while CoSP-1
the best in 4-shot learning.

4.2 Explanation Reliability: Large-Scale
Testing Assessment of CoSP Explanations

To further assess the reliability of our CoSP expla-
nations, we conducted comprehensive validation
experiments using the entire test set of the GSM8K
dataset with both the LLaMA 2 and LLaMA 3
models. This focused approach ensures generality
while maintaining computational feasibility. We
selected four demonstrations for each model where
the CoSP-0 scores for LLaMA 2 is 173, 121, 280,
235, while for LLaMA 3 is 264, 220, 344, 334.
The experimental outcomes consistently demon-
strated a strong positive correlation between CoSP-
0 scores and model accuracy for both LLaMA 2 and
LLaMA 3 according to Fig. 2, with the experimen-
tal results of MathQA and AQUA shown in Fig. 4 in
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1-shot (1) 2-shot (1) 4-shot (1)
CoSP-0  CoSP-1 SSV  NoE CoSP-0 CoSP-1 SSV NoE CoSP-0 CoSP-1 SSV  NoE
GSM8K 0.70 0.48 024  0.63 0.68 0.36 033 044 0.61 0.52 0.16 021
MathQA 0.22 0.39 0.31 -0.07 -0.01 0.11 0.13 -0.07 0.29 -0.10 -0.33  -0.18
AQUA -0.15 0.30 0.27 -0.46 0.29 0.33 027 -0.39 0.14 0.29 -0.04  -0.24
MultiArith 0.71 0.56 0.02 042 0.41 0.17 0.18 -0.16 0.64 0.36 022 -0.23
SVAMP 0.41 0.33 028 -0.18 0.46 0.37 0.07 -0.07 0.32 0.12 0.15  0.10

Table 2: The correlation coefficients averaged among various models in few-shot tasks. For each dataset, the largest
correlation is bolded, indicating the best interpretation method.

ori High ori High
Low Low

Wr-res Wr-res

Wr-pros Wr-pros

(a) LLaMA2 demol (b) LLaMA3 demol

ori High ori High
Low Low

wWr-res Wr-res

Wr-pros Wr-pros

(c) LLaMA2 demo2 (d) LLaMA3 demo2

Figure 3: Accuracy of demonstrations for low and high CoSP-0 expressions after four types of modifications in the
test set across different models and demos: (a) LLaMA2-demol, (b) LLaMA3-demol, (c) LLaMA2-demo2, and (d)
LLaMA3-demo?2. The observed results indicate that the accuracy curve for low CoSP-0 expressions encompasses
that for high CoSP-0 expressions in almost all scenarios, highlighting that alterations on low CoSP-0 expressions
yield overall better performance outcomes compared to alterations on high CoSP-0 expressions.

Appendix E. Specifically, for LLaMA 2, the demon-
stration with a CoSP-0 score of 280 achieved the
highest accuracy, followed by demonstrations with
scores of 235, 173, and 121, in descending order of
performance. Similarly, for LLaMA 3, the demon-
stration with a CoSP-0 score of 344 yielded the
highest accuracy, followed by those with scores of
334, 264, and 220. This consistent pattern across
both models indicates that demonstrations with
higher CoSP-0 scores significantly enhance the rea-
soning capabilities of the models, while those with
lower scores contribute less effectively.

To be mentioned, the strong consistency in
CoSP-0 and model accuracy not only confirms the
reliability of the explanation results provided by
SalaMAnder, but also reveals a potential applica-
tion in the systematic selection of few-shot demon-
strations, rather than random sampling.

4.3 Analytical Extensibility: Discovery of
Novel Insights in CoT

Building upon our previous findings that high
CoSP expressions contribute maximally, while low
ones contribute minimally to model reasoning, we
sought to uncover novel insights into the dynamics
of CoT reasoning processes. Specifically, we ap-
plied four distinct altering to the expression with
the highest and lowest CoSP-0 to assess their im-
pact on model performance. 1) Removed the ex-

pression. 2) Replaced the expressions with non-
informative placeholders, i.e., ‘...". 3) Introduced
calculation errors, for example, converting from ‘2
+3=5"to ‘2+3=6’. 4) Introduced process errors,
for example, converting from 2 + 3 =5 to ‘4 +
7 =11". And we selected two demonstrations and
conducted these experiments on GSM8K datasets,
with both the LLaMA 2 and LLaMA 3 models. The
original demonstration is presented in Appendix F,
where different expressions of CoSP in different
colors. Additional experiments on MathQA and
AQUA are illustrated in Appendix E and more
cases are shown in Appendix G for reference.

Figures 3 depict the effect of these alterations
on the accuracy of the test set for low and high
CoSP expressions across different demonstrations
and models. It was consistently observed across
almost all experiments that the performance curves
for low CoSP expressions encapsulated those for
high CoSP expressions.

The results suggest that modifications to low
CoSP expressions lead to better performance out-
comes compared to modifications to high CoSP
expressions. This finding further corroborates our
initial hypothesis: low CoSP expressions exert min-
imal influence on model reasoning, whereas high
ones significantly contribute.

Additionally, our experimental findings reveal
several intriguing phenomena. Notably, the re-

8565



moval of certain expressions, the substitution of ex-
pressions with non-informative filler tokens (such
as “...), and the introduction of errors in either
the result or process of expressions do not nec-
essarily lead to significant degradation in model
performance. This outcome resonates with prior
studies(Pfau et al., 2024; Wang et al., 2023).

4.4 Qualitative Analysis

We qualitatively illustrate why some demonstra-
tions have higher CoSP values and are beneficial
for model reasoning, while others are not. We an-
alyze both the entire demonstration level and the
individual expression level.

As for the CoSP of the entire demonstration,
consider Example 1 and Example 2: the first con-
tains more expressions and exhibits a richer logical
structure, thus providing more informative signals
for the model’s reasoning. The second involves
simpler computations (only division and compar-
ison operations) and fails to convey a meaningful
reasoning pattern, resulting in a smaller positive
contribution. These examples can be found in Ap-
pendix H.

For the individual expression level, consider Ex-
ample 3, where the expression 6/3 = 2 has a low
CoSP value, whereas => (z3+z4+x5+x6)/4 =
85 has a high one. The former computes an irrele-
vant intermediate variable (in this case, one third
of the strings), which does not contribute meaning-
fully to the final answer. In contrast, the latter is
directly linked to the final solution and builds upon
previous computations, making it highly relevant to
the reasoning process, thus yielding a higher CoSP.
Example 3 is shown below:

Example3

Question:

the average length of 6 strings is
80 cm. if the average length of one
third of the strings is 70 cm, what
is the average of the other strings ?

a)75. ,b)85. ,c) 9. ,d) 94.
, € ) 100.

Answer:

edit : given
(x1 +x2 ... +x6 )/ 6 = 80

( x1 +x2 ... + x6 ) = 480 = =
> eq 1 now given avg length
of one third strings is 70

that means out 6/ 3 =2
strings. let the avg length of
two strings be ( x1 +x2 ) / 2 =170

( x1 + x2 ) = 140 . - - > eq

2 . now we are asked to find
the average of the remaining i
e . ( x3 + x4 + x5+ x6 )

substitute eq 2 in eq 1 then we

get 140 + x3 + x4 + x5 + x6 = 480
= > x3 + x4 + x5 + x6 = 340 now
divide 340 by 4 we get 85

=> (x3+x4+x5+x6)/4=285 =
avg length of remaining strings . the
correct option is b.

5 Conclusion

In this paper, we propose SalaMAnder, a novel
framework for understanding and optimizing
Chain-of-Thought (CoT) reasoning in large lan-
guage models (LLMs). By introducing a theoret-
ically grounded methodology based on Shapley
value attribution and developing the CoSP (Car-
dinality of Shapley Positives) metric, we have
established a mathematically rigorous approach
to quantifying component-level contributions in
CoT reasoning. Extensive validation across vari-
ous LLM models and mathematical benchmarks
demonstrates that the CoSP metric within our Sala-
MAnder framework strongly and monotonically
correlates with model performance. This correla-
tion not only theoretically explains the empirical
success of the existing few-shot CoT but also pro-
vides rigorous guidelines for optimizing prompt
construction. Furthermore, it can be utilized to dis-
cover novel insights resonating with prior studies.

Limitations

While SalaMAnder is theoretically a general ap-
proach, we are currently focusing on mathematical
reasoning problems because they are highly repre-
sentative of few-shot CoT reasoning. In the future
we aim to expand the application of SalaMAnder
to a broader array of tasks.

Due to computational resource constraints, our
experiments are currently confined to LLMs with a
parameter scale between 7 billion and 13 billion.
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A The proof of Theorems

We have three assumptions necessary for the proof:

1. The positive contribution of any expression
has a significant lower bound:

| 5+ > O7 s.t.
pi > 04 - I(p; > 0)

2. The non-positive contribution of any expres-
sion has a lower bound:

34_ <0, s.t.

i > 6L < 0) = 5 - (1= I(pz; > 0))

3. The contributions of different expressions are
mutually independent when applied to differ-
ent problems:

Cov(gt*
(Vi#3j,1

OR

<k <

(7)) =
m, k 7é l)

Here is the proof of Theo. 1:

Proof 1 As illustrated in Sec. 3.3:

To simplify the expression, we define a positive
contribution indicator X; = 1(¢(i) > 0). Thus:

CoSP = ixi —)\i(l e
i=1 =1
:(1+A)§:Xi—m 7
=1

And we define the model performance Per f by
summing the expected shapley value of all expres-
sions:

Perf =Y E[p(i)] =D ®)
1=1 =1

Thus we can further derive the expression of Per f:

Perf:Zui+Zui>Zé++Z(5_

1€S54 1¢S5y 1€Sy ¢S+

= 6 0(pi > 0)+ Y 6T <O
i=1 =1

:Z5+H(Mz' > 0)
i=1
+3 61— T > 0))
=1
=nd_ +Z(§+- /,LZ>0)
CoSP + n\

indicating a linear functional relationship between
a lower bound of model performance and CoS P.
And the coveriance between ; and X; is:
Cov(pi, Xi) = E[pi Xi] — B[ E[X;]
where p; > 04 X; +6-(1
two assumptions.
We define a residual item €; > 0, s.t. :

— X;) based on the first

pi =04 X +0-(1—-X;) + ¢
Then
Blju:Xi) =0, BIXZ] + 6_E[(1 — X;) X
=04 + E[QXZ]

The second equation is because X;(1— X;) = 0.
And

Elps] = 6+ E[X;] + 0-_E[1 — Xi] + Elei]
Thus
Cov(pi, Xi) =6+ E[X7] + E[6; X;] — 0. E*[X;]—
O_E[XG|E[1 — X;] + E[X;]E[e]
Since E[X;] = E[X?], and E[1 — X;] = 1 —E[X}],
then

[X]
= E[X;] - E2[X;]
= E[X7] - E*[X;]
= Var(XZ-)
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Then

Cov(pi, X;) = (64 — 6_)Var(X;) + Cov(e;, X;)

(10)

Based on the third assumption, we have:

n

ZZCOV i, (1 4+ X)X

=1 j=1

= i Cov(pi, (L+ M) X; — N

i=1

= (1+ X)) Covl(ps, X;)

i=1
Z Var(

And since the residual €; has little relevance with
X, the sum of the covariance tends to 0. Thus

Z Var(X,

(1)

Specifically, we define CoSP-0 and CoSP-1, with
A equals to 0 and 1, respectively. Then

=(0+—6-) ZVar

Cov(Perf,CoSP)

= (14N |6y —6_

Cov(Perf,CoSP) = (14 \)(04 —6_

>0

Cov(Perf,CoSP-0)

(12)

Z Var(X

13)

Cov(Perf,CoSP-1) =2(d4 —

Thus CoSP has a positive correlation with
model performance.
O
Here is the proof of Theo. 2:

Proof 2 Since X; = I(¢(i) > 0), then X; follows
a Bernoulli distribution:

pi=P(X; = 1) = o() (14)
0
where ®(-) is the standard normal distribution cu-
mulative function.
Thus the expected value of CoS P with n expres-

sions is:

(1 +A)zn:q>(ﬂ) —nA

o
i=1 ¢

Z(l—l-)\)Zpi—n)\
i=1

E[CoSP,] =

15)

Thus the expected value of CoSP with n + 1
expressions is:

n+1

(1+A) Zpl

= E[COSPn] + Pnt1 — A

[COSPTH_l n + 1
(16)
—A) . . :
Therefore, CoSP-0 increases monotonically with
the number of expressions n, while CoSP-1 de-
creases monotonically with n.
O

n
(X5) + Z Cov(e;, X
i=1
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B Experimental Settings

To evaluate the effectiveness of the proposed
SalaMA method and the CoSP metric, we con-
ducted experiments using three foundational large
language models and five representative mathemat-
ical datasets. The selected models, LLaMA-2-13B-
chat (Touvron et al., 2023), LLaMA-3-8B-Instruct
(Grattafiori et al., 2024), and Qwen2.5-7B-Instruct
(Team, 2024) were drawn from various model fam-
ilies, each featuring distinct architectures and pa-
rameter sizes. This ensures that our analysis of
CoSP and SalaMA is broadly applicable across
different model paradigms.

For the datasets, we utilized GSM8K (Ouyang
et al., 2022), MathQA (Amini et al., 2019), AQUA
(Ling et al., 2017), MultiArith (Wang et al., 2018),
and SVAMP (Patel et al., 2021). These datasets
were selected for their representativeness in the
mathematical question-answering domain, encom-
passing a range of difficulties where MathQA and
AQUA are approximately equivalent and more chal-
lenging than GSMS8K, which is in turn more dif-
ficult than MultiArith and SVAMP. Specifically,
GSMSK consists of grade-school level math prob-
lems, MathQA includes complex multi-step rea-
soning questions, AQUA focuses on arithmetic
and algebraic tasks, MultiArith provides multi-step
arithmetic word problems, and SVAMP introduces
adversarial variations to traditional arithmetic prob-
lems. This selection ensures comprehensive cover-
age of various aspects and complexities inherent in
mathematical QA tasks.

C The Trade-off Between Computation
Complexity and Error Magnitude

As illustrated before, The computational complex-
ity of the Shapley value is O(2"*1), while the
complexity of our proposed SalaMa method is
O(2mn?) where m denotes the number of sam-
ples, and n indicates the number of mathematical
expressions. We evaluate the model inference cost
and the relative error between the estimated and
true Shapley values under different sampling set-
tings. We randomly select a demonstration with
n = 8 to illustrate the trade-off between efficiency
and accuracy, where the maximum number of com-
binations at each order is (7) = 35 according to

Eq. (1).

m 5 15 25 35

error(%) 62 45 12 0

Table 3: The computation complexity and relative error
of Shapley value.

As shown in Tab. 3, it is entirely feasible to
achieve a trade-off between computational com-
plexity and estimation accuracy by selecting ap-
propriate hyperparameters. For example, setting
the sample number to 25 allows us to significantly
reduce the computational cost while maintaining
high precision in Shapley value estimation.
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D Ablation Study on Hyperparameters

In this section, we conduct ablation studies on the
hyperparameter A, which indicates the penalty to
the mathematical expressions of negative contribu-
tion. A = 0 shows no penalty and only encourages
positive contributions, while A = 1 demonstrates
that equal attention is given to both positive and
negative contributions. Thus a feasible value of A
isin [0, 1]. Here we conduct this ablation study on
LLaMA2-13B on various mathematical datasets,
with the same experimental setup as in Sec 4.1.

LLaMA 2 (1)

CoSP-0  CoSP-0.5 CoSP-0.8 CoSP-1
GSMSK 0.76 0.77 0.75 0.65
MathQA 0.44 0.58 0.59 0.62
AQUA 0.40 0.49 0.53 0.46
MultiArith ~ 0.60 0.60 0.54 0.52
SVAMP 0.49 0.34 0.27 0.28

Table 4: The correlation coefficients between different
metrics and model inference accuracy across multiple
datasets on LLaMA2-13B-chat on 1-shot task.

As can be observed, when )\ is set within the
range (0, 1), the correlation between CoSP-\ and
model accuracy lies between that of CoSP-0 and
CoSP-1 on almost all datasets, and it changes al-
most monotonically with A. This suggests a smooth
transition in the positive and negative contributions
as the penalty weight is adjusted, further support-
ing the robustness of our approach under different
weighting schemes.

E Additional Experiments

Additional experiments of Sec 4.2 and Sec 4.3 are
shown here.

Fig 4 exhibits the results of LLaMA?2 conducted
on MathQA and AQUA, with the same setups as
Sec 4.2. Fig. 4 illustrates strong consistency in the

LLaMA2 CoSP

200 LLaMA2 acc

100

demol demo2 demo3 demo4

(a) LLaMA?2 on MathQA

300 LLaMA2 CoSP
LLaMA2 acc

demol demo2 demo3 demo4

(b) LLaMA2 on AQUA

Figure 4: The CoSP-0 value and test accuracy of models.
(a) LLaMA?2 on MathQA, (b) LLaMA on AQUA.

model performance and CoSP-O0.

Fig 5 shows the results of LLaMA?2 conducted
on MathQA and AQUA, with the same setups as
Sec 4.3.

ori High ori High
Low Low
rm rm
r-res r-res
dot dot
wr-pros wr-pros
(a) LLaMA2 on MathQA (b) LLaMA2 on AQUA

Figure 5: Accuracy of demonstrations for low and high
CoSP-0 expressions after four types of modifications
in the test set across different models and demos. (a)
LLaMA?2 on MathQA, (b) LLaMA on AQUA.

Fig. 5 indicates that the accuracy curve for low
CoSP-0 expressions encompasses that for high
CoSP-0 expressions in almost all scenarios, high-
lighting that alterations on low CoSP-0 expressions
yield overall better performance outcomes com-
pared to alterations on high CoSP-0 expressions.
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F Selected Demonstrations

This section presents the selected demonstrations in Sec 4.3. Expressions with a light blue background
have the lowest CoSP, those with an orange background have the highest CoSP, and the remaining

expressions are shown with a light green background .

Question:
Sharon wants to get kitchen supplies. She admired Angela’s kitchen supplies which
consist of: 20 pots, 6 more than three times as many plates as the pots, and half
as many cutlery as the plates. Sharon wants to buy: half as many pots as Angela,
20 less than three times as many plates as Angela, and twice as much cutlery as
Angela. What is the total number of kitchen supplies Sharon wants to buy?
Answer:
Angela has 6+3*20=«6+3*%20=66»66 plates. Angela has 1/2%66=«1/2*66=33»33
cutlery. Sharon wants to buy 1/2*20=«1/2%20=10»10 pots. Sharon wants to buy
3x66-20=«3%66-20=178»178 plates. Sharon wants to buy 2*33=«2%*33=66»66 cutlery.
\‘Sharon wants to buy a total of 10+178+66=«10+178+66=254»254 kitchen supplies.

Question:

Brittany, Alex, and Jamy all share 600 marbles divided between them in the ratio
3:5:7. If Brittany gives Alex half of her marbles, what’s the total number of
marbles that Alex has?

Answer:

The total ratio representing the number of marbles is 3+5 +7 = «3+5+7=15»15 .
From the ratio, the fraction representing the number of marbles that Brittany
has is 3/15, which is equal to 3/15%600 = «3/15%600=120»120 marbles.Alex has
5/15%600 = «5/15%600=200»200 marbles.If Brittany gives half of her marbles to
Alex, Alex receives 1/2x120 = 60 marbles.After receiving 60 marbles from Brittany,
\‘Alex has 200+60 = «200+60=260»260 marbles.

.

G More Cases

This section presents more demonstrations, with mathematical expressions with different CoSP shaded in
different colors. The shading rule is the same as Appendix F, where the expressions with highest, medium,
and lowest CoSP are shaded in orange , light green , and light blue .

Additionally, we demonstrate that there is minimal bias in CoSP and the positioning of expressions.
Intuitively, expressions that are closer to the final answer tend to be more important, as they directly
guide the model toward a specific output. In contrast, earlier expressions often represent intermediate or
preliminary steps, which may have less influence on the final outcome. So the contribution of expressions
may have bias with their positions. However, the CoSP of the expression shows low correlation with its
position in the demonstration in most cases, indicating the feasibility of our framework.

Question:

Sasha added 48 cards into a box. Her sister, Karen, then took out 1/6 of the cards
Sasha added. If there are now 83 cards in the box, how many cards were originally
in the box?
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Answer:
Karen took out 48/6 = «48/6=8»8 cards from the box.
Originally, the box had 83-40 = «83-40=43»43 cards.

Question:

Coleen loved sprinkles. At the beginning of the day, she had twelve cans of
sprinkles. After applying sprinkles to her hair, her clothing and her pets, she
had 3 less than half as many cans of sprinkles as she started out with. How many
cans of sprinkles remained?

Answer:

Half of twelve cans of sprinkles is 12/2=«12/2=6»6 cans.

Three less than half as many cans of sprinkles is 6-3=«6-3=3»3 cans of sprinklesi/

Question:

Ali is collecting bottle caps. He has 125 bottle caps. He has red ones and green

ones. If he has 50 red caps, what percentage of caps are green?

Answer:

He has 75 green caps because 125 - 50 = «125-50=75»75

The proportion of caps that are green is .6 because 75 / 125 = «75/125=.6».6
\‘The percentage that are green is 60 because .6 x 100% = «60=60»60%

-

demo6

Question:

Nathan plays amateur baseball. He played for 3 hours for two weeks, every day.

His friend Tobias played for 5 hours every day, but only for one week. How many

hours did Nathan and Tobias play in total?

Answer:

Two weeks are 14 days, so Nathan played for 3 * 14 = «14%3=42»4 hours.

Tobias played for 7 days, so he played a total of 5 * 7 = «5%x7=35»35 hours.
\‘Nathan and Tobias played together for 42 + 35 = «42+35=77»77 hours.

Question:
While bird watching, Gabrielle saw 5 robins, 4 cardinals, and 3 blue jays. Chase
saw 2 robins, 3 blue jays, and 5 cardinals. How many more birds, in percentage,
did Gabrielle saw than Chase?
Answer:
Gabrielle saw 5 + 4 + 3 = «5+4+3=12»12 birds.
Chase saw 2 + 3 + 5 = «2+3+5=10»10 birds.
So, Gabrielle saw 12 - 10 = «12-10=2»2 more birds than Chase.
\‘Therefore, Gabrielle saw 2/10 x 100% = 20% more birds than Chase.

-

o
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Question:

Two alien spacecraft on a sightseeing tour of Earth left New Orleans airport at
3:00 pm to travel the 448-mile distance to Dallas by air. Traveling nonstop, the
first spacecraft landed in Dallas at 3:30 pm, while the second spacecraft landed
in Dallas thirty minutes later. Assuming both spacecraft traveled at constant
speed, what was the difference in speed, in miles per hour, between the two
spacecraft?

Answer:

The first spacecraft flew for 3@ minutes, or 30/60=1/2 hour .

The second spacecraft flew for 30+30=«30+30=60»60 minutes, or 1 hour.

Thus the first spacecraft traveled at a speed of 448 miles in 1/2 hour, or
448/(1/2)=896 miles per hour.

The second spacecraft traveled 448 miles in 1 hour, or 448/1=«448/1=448»448 miles
per hour.

The difference in speed, in miles per hour, between the two spacecraft was
\7896—448=«896—448=448»448 miles per hour.

/

Question:

Julio has four bottles of orange soda and seven bottles of grape soda in his
fridge. His friend Mateo has a bottle of orange soda and 3 bottles of grape soda
in his fridge. If the amount of beverage in each bottle is 2 liters, how many
more liters of soda does Julio have?

Answer:

Julio has 4 x 2 = «4%2=8»8 liters of orange soda

Julio also has 7 x 2 = «7*2=14»14 liters of grape soda.

Julio therefore has a total of 8 + 14 = «8+14=22»22 liters of soda

The amount of orange soda that Mateo has is 1 * 2 = «1%2=2»2 liters of orange
soda

In addition, Mateo has 3 * 2 = «3*2=6»6 liters of grape soda.

In total, Mateo has 2 + 6 = «2+6=8»8 liters of soda.

\‘This means that Julio has 22 - 8 = «22-8=14»14 1liters more of soda

/

Question:
In a class of 30 students, the teacher polls the students on their favorite subject.
1/5 of the students like Math, and 1/3 like English. 1/7 of the remaining students
like Science. The rest don’t have a favorite subject. How many students don’t
have a favorite subject?

Answer:

30 x 1/5 = «30%1/5=6»6 students like Math.

30 x 1/3 = «30%1/3=10»10 students like English.

So, 6 + 10 = «6+10=16»16 students like either Math or English.

Thus, 30 - 16 = «30-16=14»14 students neither like Math nor English.

Since 1/7 of the remaining like Science, therefore 14 x 1/7 = «14x1/7=2»2
students like Science.

\‘Hence, 14 - 2 = «14-2=12»12 students neither likes the 3 subjects.
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H Qualitative Analysis Examples

This section presents Example 1 and Example 2 used in Sec 4.4.

Examplel

Question:

a, b, k start from the same place and travel in the same direction at speeds of
30 km / hr, 40 km / hr, 60 km / hr respectively. b starts three hours after a. if
b and k overtake a at the same instant, how many hours after a did k start? a )
3,b)45,c)6,d)d)55,e)e)s5

Answer:

"the table you made doesn’t make sense to me. all three meet at the same point
means the distance they cover is the same. we know their rates are 30, 40 and
60. say the time taken by b is t hrs. then a takes 3 + t hrs. and we need
to find the time taken by k. distance covered by a = distance covered by b
30 x (3+t) =40 *tt=9 hrs distance covered by b = distance covered by
k 40 x t = 60 * time taken by k time taken by k = 40 x 9 / 60 = 6 hrs time taken
by a=3+t=3+9 =12 hrs time taken by k = 6 hrs so k starts 12 - 6 = 6
hrs after a . ( answer c )"

-

J

Example2

Question:

Question: of 70 players on a football team, 46 are throwers. the rest of the team
is divided so one third are left - handed and the rest are right handed. assuming
that all throwers are right handed, how many right - handed players are there
total? a )54 , b )59, c)63,d)71 ,e) 62

Answer:

"total = 70 thrower = 46 rest = 70 - 46 = 24 left handed = 24 / 3 = 8 right
handed = 16 if all thrower are right handed then total right handed is 46 + 16 = 62
\‘so e. 62 is the right answer”

/
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