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Abstract
Large Language Models (LLMs) have emerged
as a transformative force in artificial intelli-
gence, demonstrating exceptional proficiency
across various tasks. However, their deploy-
ment in resource-constrained environments
and concerns over user data privacy pose
significant challenges. In contrast, Small
Language Models (SLMs) offer computational
efficiency but often lag in performance. To
address these issues, we propose FedCoT, a
federated framework designed for the Chain-
of-Thought (CoT) distillation of knowledge
from LLMs to SLMs, while ensuring the
preservation of clients’ data privacy. FedCoT
ensures secure and efficient knowledge transfer
from an LLM on a high-powered server to an
SLM on a resource-constrained client, while
adhering to privacy requirements. Leveraging
perturbed prompts and rationales generated
through the CoT approach, the framework
enhances the performance of the client’s
SLM without compromising user data privacy
within a multi-task learning framework. We
propose two privacy protection strategies:
the Exponential Mechanism Strategy and the
Adaptive Exponential Mechanism Strategy,
which balance user prompt privacy and the
usability of rationales. Empirical evaluation
on various text generation tasks demonstrates
the effectiveness of FedCoT in training task-
specific SLMs with enhanced performance
while prioritizing data privacy protection. Our
code has been contributed to the FATE open-
source project and is now publicly accessible at
https://github.com/FederatedAI/FATE-LLM/
tree/main/python/ fate_llm/algo/ fedcot

1 Introduction

Large Language Models (LLMs) have risen as a
revolutionary force in artificial intelligence. Promi-
nent LLMs, such as GPT-4 (OpenAI, 2023),
LLaMA (Touvron et al., 2023), and Qwen (Bai
et al., 2023), have garnered the attention of re-
searchers and practitioners alike, demonstrating

unparalleled proficiency across numerous tasks.
Nevertheless, the sheer size of these models
presents significant obstacles for real-world deploy-
ment, particularly in environments with limited
resources (Fan et al., 2025a,b, 2023; Kang et al.,
2023). Meanwhile, as LLMs gain escalating popu-
larity and widespread utilization, privacy concerns
have moved to the forefront, especially when it
comes to user data and LLMs inference. In con-
trast, Small Language Models (SLMs) often exhibit
superior computational efficiency and faster con-
vergence rates, rendering them perfectly suited for
real-time applications or resource-constrained envi-
ronments. Nonetheless, SLMs also possess certain
drawbacks stemming from their performance lim-
itations. The question then arises: How can we
effectively combine the predictive prowess of LLMs
with the nimbleness of SLMs, all while adhering to
privacy requirements?

To address these challenges, we propose FedCoT,
a federated framework designed for the Chain-of-
Thought (CoT) (Wei et al., 2022) distillation of
knowledge from LLMs to SLMs, while ensuring
the preservation of clients’ data privacy. FedCoT
ensures secure and efficient knowledge transfer
from an LLM on a high-powered server to an SLM
on a resource-constrained client. The challenge
lies in maintaining the privacy of client data while
leveraging the server’s LLM to aid in training the
client’s SLM for text generation tasks, thereby el-
evating its performance. FedCoT aims to bridge
this gap, enabling secure and efficient knowledge
transfer between LLM and SLM, and ultimately
enhancing the capabilities of the SLM without com-
promising privacy.

As illustrated in Figure 1(a), within our frame-
work, the process works as follows. Initially, the
client transmits perturbed prompts to the server’s
LLM. These prompts are protected by the FedCoT
prompt encoder, which employs Differential Pri-
vacy (DP) principles (Dwork, 2006; McSherry and
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Talwar, 2007), ensuring privacy protection. Sub-
sequently, the server’s LLM generates perturbed
rationales from these prompts through the CoT ap-
proach and relays them back to the client. Upon
receiving these perturbed rationales, the client’s
rationales decoder reconstructs them into their orig-
inal, aligned form corresponding to the raw prompt.
Ultimately, the client utilizes CoT knowledge dis-
tillation (Hsieh et al., 2023; Li et al., 2023) to train
its Task-Specific SLM. This process leverages both
label data and rationales within a multi-task learn-
ing paradigm (Wei et al., 2022; Hsieh et al., 2023;
Zhang and Yang, 2021). These rationales justify the
predicted labels and serve as insightful guidance
for training smaller and domain-specific models.

Previous endeavors to incorporate DP into lan-
guage models, specifically through DP-SGD (Song
et al., 2013), have primarily centered on navigating
the delicate balance between utility and privacy.
This is achieved by introducing calibrated noise
into gradients or text representations during the
model training process. Nonetheless, these meth-
ods inherently rely on a trusted server to gather
data from data owners for model training (Chen
et al., 2023), significantly limiting their applicabil-
ity in scenarios where such trusted servers are not
available, as is the case in our research context.

Within the FedCoT framework, to achieve a
balance between preserving the privacy of user
prompts and enhancing the usability of rationales,
we introduce two privacy protection strategies: the
Exponential Mechanism Strategy and the Adaptive
Exponential Mechanism Strategy. In the Exponen-
tial Mechanism Strategy, we utilize an exponential
mechanism to obfuscate the prompts (McSherry
and Talwar, 2007; Yue et al., 2021; Chen et al.,
2023), followed by decoding the perturbed ratio-
nales through In-Context Learning (ICL) (Dong
et al., 2024; Tong et al., 2025). In the Adaptive
Exponential Mechanism Strategy, we utilize an
Encoder-Decoder SLM specifically designed to en-
code original prompts into perturbed prompts and
subsequently decode perturbed rationales back into
their original form. To effectively train this uni-
fied Encoder-Decoder SLM, we utilize a multi-task
learning paradigm (Zhang and Yang, 2021), encom-
passing both the encoding and decoding training
processes.

Our contributions are summarized as follows:

• Federated Framework for CoT Distillation
in LLMs. We propose FedCoT, a novel feder-

ated framework that facilitates secure and effi-
cient knowledge transfer from LLM to SLM
in resource-constrained environments. Fed-
CoT leverages CoT knowledge distillation to
enhance Task-Specific SLM within the client.
This process leverages rationales produced by
the LLM on the server, thereby enriching the
client-side SLMs with valuable task-related
knowledge.

• Privacy as a Priority. FedCoT leverages an
Adaptive Exponential Mechanism Strategy tai-
lored for encoding prompt to ensure their ob-
fuscation and decoding perturbed rationales.
The strategies effectively balance user prompt
privacy and the usability of rationales.

• Empirical Evaluation and Enhanced Per-
formance of Task-Specific SLM. Through
experiments on various text generation tasks,
FedCoT demonstrates the effectiveness of
its framework in training task-specific SLM
with enhanced performance. By harnessing
the rationales generated by the server-side
LLM, FedCoT provides valuable task-specific
knowledge to the SLM.

2 Related Work

2.1 Differential Privacy

In this section, We briefly revisit two important
definitions of differential privacy: ϵ-Differential
Privacy and Exponential Mechanism (EM).
ϵ-Differential Privacy. Differential privacy

(DP) (Dwork, 2006) is a rigorous mathematical
framework that provides strong privacy guarantees
for data analysis. It ensures that the output of an
algorithm remains statistically indistinguishable
whether a particular individual’s data is included
or excluded from the dataset. Formally, a random-
ized mechanism M provides ϵ-differential privacy
if for all neighboring datasets D and D′ (differing
in at most one record) and for all sets S of possible
outputs:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] (1)

where ϵ is the privacy budget that controls the level
of indistinguishability.

Exponential Mechanism. The Exponential
Mechanism (McSherry and Talwar, 2007) allows
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(a) Overview of our proposed FedCoT framework. (b) Privacy-Preserving Rationals Generation.

Figure 1: The overview of our proposed FedCoT. The FedCoT comprises four key components: (1) The Prompt
Encoder, which perturbs user prompts to ensure privacy; (2) The LLM, generating perturbed rationales based on
the perturbed prompts; (3) The Perturbed Rationales Decoder, which decodes the perturbed rationales back into a
usable form; (4) The Task-Specific SLM Enhancing via CoT Knowledge Distillation, utilizing both original labeled
data and filtered rationales data for multi-task learning.

for the selection of an outcome from a set of possi-
ble outcomes with probabilities proportional to the
exponential of their utility scores. Formally, given
a utility function u : D × R → R that maps each
dataset D and possible outcome r to a real-valued
score, the Exponential Mechanism M(D,u,R) sat-
isfies ϵ-differential privacy if it selects and outputs
an r ∈ R with probability:

Pr[M(D) = r] ∝ exp

(
ϵu(D, r)

2∆u

)
(2)

where ∆u is the sensitivity of the utility function
(in our work, we use cosine similarity as the utility
function), defined as the maximum change in utility
score when a single record is added or removed
from the dataset:

∆u = max
D,D′,r

|u(D, r)− u(D′, r)| (3)

2.2 Chain of Thought in Large Language
Models

The Chain of Thought (CoT) approach has recently
garnered significant attention in the realm of LLMs,
thanks primarily to its remarkable ability to en-
hance the reasoning capabilities of these models.
This innovative concept was first introduced by
(Wei et al., 2022). Their research demonstrated
that by prompting LLMs to produce a sequence of
intermediary reasoning steps (rationales), the mod-
els’ performance in handling intricate reasoning

tasks could be notably boosted. Since the intro-
duction of CoT, several studies have delved into
its extensions and variations. For example, (Ko-
jima et al., 2022) proposed the use of zero-shot
CoT, where the model is prompted to generate ra-
tionales without relying on prior examples. CoT
has also been applied to various domains, including
arithmetic reasoning (Cobbe et al., 2021), common-
sense reasoning (Klein and Nabi, 2020). Recent
studies by (Hsieh et al., 2023; Ho et al., 2023; Li
et al., 2023), have capitalized on the generated ra-
tionales as a form of insightful supervision to train
smaller and domain-specific models. However,
previous studies have not addressed the domain-
specific data privacy issue that arises when LLMs
and domain-specific smaller models are deployed
across different parties. In our work, we endeavor
to address this significant challenge.

3 The Proposed FedCoT Framework

In this section, we introduce FedCoT, a federated
framework designed for the CoT distillation of
knowledge from LLMs hosted on a high-powered
server to SLMs deployed on a resource-constrained
client. The FedCoT framework can enhance the
performance of SLMs while maintaining client
data’s privacy, leveraging the capabilities of LLM.
We assume the server to be semi-honest, implying
that it may attempt to recover the private data of the
client from the information it observes. We illus-
trate the FedCoT in Figure 1(a), outline its training
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algorithm in Algorithm 1, and detail its resource
requirements in Appendix A.

Algorithm 1 FedCoT
Input:
T : total number of rounds;
P: encoding training datasets;
R: decoding training datasets;
D: task-specific training datasets;
ηϕ: learning rate of Encoder-Decoder SLM;
ηω: learning rate of Task-Specific SLM.
Output: gϕ, fω.

1: ▷ Multi-Task Training for Encoder-Decoder
SLM based on Public Datasets P andR.

2: for each epoch t ∈ [T ] do
3: ϕt+1 ← ϕt − ηϕ∇L1.
4: end for
5: ▷ Generate pp using the updated Encoder.
6: pp = SLMEncoder(p).
7: ▷ Generate perturbed rationales from LLM on

the server.
8: rp = LLM(pp).
9: ▷ Decode perturbed rationales using the up-

dated Encoder-Decoder SLM.
10: r = SLMDecoder(r

p).
11: ▷ Multi-Task Training for Task-Specific SLM

based on Datasets D.
12: for each epoch t ∈ [T ] do
13: ωt+1 ← ωt − ηω∇L2.
14: end for

3.1 Privacy Preserving Prompt Encoder

Before the client transmits its raw prompts to the
server-side LLM, we need the privacy protection
strategy to protect the raw prompts. In this section,
we propose two privacy protection strategies:

1. Exponential Mechanism Encoder Strategy.
In the first strategy, we utilize an exponen-
tial mechanism (McSherry and Talwar, 2007),
which satisfies the criteria for the ϵ-DP. For de-
tailed information about the exponential mech-
anism, please refer to Section 2.1.

Let us consider an Exponential Mechanism
M(·). Given a input prompt p = {xi}Si=1

comprising S tokens, a set X encompassing
all possible input tokens, and a set Y of all
potential output tokens, the mechanism M(·)
is applied to each input token xi ∈ p. If xi
belongs to X , it is replaced with an output

token yi from Y . Through this process, we
obtain a perturbed prompt pp = {yi}Si=1.

2. Adaptive Exponential Mechanism Encoder
Strategy. The tokens within a prompt differ
significantly in terms of their importance and
degree of privacy. Applying a uniform privacy
budget ϵ across all tokens may not lead to the
most optimal solution. To further optimize the
privacy-utility balance, we propose an Adap-
tive Exponential Mechanism Encoder strategy.
This strategy is built upon the first exponen-
tial mechanism. In the Adaptive Exponential
Mechanism Encoder strategy, we utilize an
Encoder-Decoder SLM specifically designed
to encode raw prompts into perturbed prompts
and subsequently decode perturbed rationales
back into their original form. This strategy in-
volves two training process: encoding training
process and decoding training process. In this
section, we mainly focus on encoding training
process.

Initially, an encoding training process is re-
quired for the Encoder-Decoder SLM. For-
mally, let’s denote a public dataset as P =
{(pi, pϵi))}Ni=1, where pi represents raw pri-
vate prompt, pϵi represents perturbed prompt
generated using the first exponential mecha-
nism with a privacy budget of ϵ. In the en-
coding training process, we train the Encoder-
Decoder SLM: gϕ(pi) → pϵi . The details of
encoding training process is illustrated in Al-
gorithm 1.

The Prompt Encoder objective can be formu-
lated as follows:

LEncoder(ϕ;P) = E(p,pϵ)∼PℓCE(gϕ(p), p
ϵ)

(4)
where ℓCE is the cross-entropy loss.

As illustrated in Figure1(b), we can observe an
exemplary comparison between the original prompt
and its perturbed prompt in Step 1 and Step 2.
This perturbed prompt serves as the new, privacy-
enhanced input for further processing.

3.2 Generating Perturbed Rationales from
LLM

When the server-side LLM receives the perturbed
prompt, we leverage the Chain-of-Thought (CoT)
prompting technique introduced by (Wei et al.,
2022) to generate rationales from the LLM using
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this perturbed prompt. These generated rationales,
which are also perturbed, are then transmitted to
the client. For instance, as illustrated in Figure 1(b),
given a perturbed prompt in the Step 2, the LLM
generates perturbed rationales in the Step 3.

3.3 Perturbed Rationales Decoder

Once the client receives the perturbed rationales
from the server-side LLM, it must initiate a "de-
coder" process to decode the rationales. In this
section, we also propose two strategies correspond
to the two protection strategy of the prompt encoder
module:

1. Exponential Mechanism Decoder Strategy.
In the first decoding strategy, which corre-
sponds to Exponential Mechanism Encoder
strategy. Here, we utilize In-Context Learn-
ing (ICL) (Dong et al., 2024; Tong et al.,
2025) with the Encoder-Decoder SLM to de-
code the perturbed rationales. we can input
a sample xi = (p, pp, rp)i into the Encoder-
Decoder SLM to prompt the generation of
rationales, where p represents raw private
prompt, pp represents perturbed prompt and
rp represents perturbed rationales generated
from LLM. (pp, rp)i can be viewed as an ex-
ample for Encoder-Decoder SLM in ICL. This
allows the Encoder-Decoder SLM to generate
rationales ri that are aligned with the original,
unperturbed prompt.

2. Adaptive Exponential Mechanism Decoder
Strategy. In the second decoding strategy,
which corresponds to Adaptive Exponential
Mechanism Encoder strategy. The ratio-
nales decoder module also use the same the
Encoder-Decoder SLM with Section 3.1.

Initially, a decoding training process is re-
quired for the Encoder-Decoder SLM. For-
mally, let’s denote a public dataset as R =
{(xi, ri))}Ni=1, where xi represents an in-
put, where xi = (p, pp, rp)i , p represents
raw private prompt, pp represents perturbed
prompt generated from Encoder-Decoder
SLM, rp represents perturbed rationales gen-
erated from LLM. ri represents the raw ratio-
nale of raw prompt p generated from LLM.
In the decoding training process, we train the
Encoder-Decoder SLM: gϕ(xi)→ ri. The de-
tails of decoding training process is illustrated
in Algorithm 1.

The Rationales Decoder objective can be for-
mulated as follows:

LDecoder(ϕ;R) = E(x,r)∼RℓCE(gϕ(x), r)

(5)

Subsequently, once the decoding training pro-
cess of Encoder-Decoder SLM is finished,
we can input a sample xi = (p, pp, rp)i into
the SLM, where rp represents perturbed ratio-
nales generated from LLM. This allows the
SLM to generate rationales ri that are aligned
with the original, unperturbed prompt.

We approach the training of the Encoder-
Decoder SLM as a multi-task learning prob-
lem encompassing both the encoding and de-
coding training processes.

The multi-task learning objective for the
Encoder-Decoder SLM can be formulated as
follows:

L1 = LEncoder + LDecoder (6)

As illustrated in Figure1(b), we can observe an
exemplary comparison between the perturbed ra-
tionales from LLM and its decoded rationales from
SLM in Step 3 and Step 4. It’s worth noting that al-
though the SLM has the ability to generate aligned
rationales independently, the quality often falls
short due to its limited capabilities. By leverag-
ing the perturbed rationales, we effectively transfer
the powerful capabilities of the server-side LLM
to enhance the Encoder-Decoder SLM, thereby im-
proving the overall quality of the generated ratio-
nales.

3.4 Enhancing Task-Specific SLM via CoT
Knowledge Distillation

In our work, we undertake the training of the
client’s Task-Specific SLM tailored for text gen-
eration tasks. Initially, we elaborate on the preva-
lent framework for learning task-specific models.
Leveraging this established framework, we en-
hance it by integrating rationales produced from
the rationales decoder module into the training pro-
cess. Formally, let’s denote a dataset as D =
{(xi, (yi, ri))}Ni=1, where xi represents an input,
yi represents the associated expected output label,
and ri is the corresponding desired rationale.

We conceptualize learning with rationales as a
multi-task learning problem. Specifically, we train
the model fω(xi)→ (yi, ri) to accomplish not just
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the prediction of task labels but also the generation
of the corresponding rationales based on textual
inputs. This multi-task training ensures that our
model not only produces accurate predictions but
also provides insightful justifications for its deci-
sions. By doing so, we enhance the transparency
and explainability of the model.

The multi-task learning objective for the Task-
Specific SLM can be formulated as follows:

L2 = LLabel + LRationale (7)

where LLabel is the label prediction loss:

LLabel(ω;D) = E(x,y)∼DℓCE(fω(x), y) (8)

and LRationale is the rationale generation loss:

LRationale(ω;D) = E(x,r)∼DℓCE(fω(x), r) (9)

where ℓCE is the cross-entropy loss, fω(.) is the
Task-Specific SLM model.

3.5 Privacy Analysis of FedCoT

The privacy-protection strategies in FedCoT im-
plement a token-level Exponential Mechanism in
feature space, adhering to the ϵ-DP principles. This
mechanism provides mathematically provable pri-
vacy guarantees at the token-level granularity, as
extensively validated in privacy-preserving NLP
research (Yue et al., 2021; Chen et al., 2023; Tong
et al., 2025). Our experimental results further val-
idate this approach: when privacy budget is low,
the rationales generated from perturbed prompts
show significantly lower similarity to those from
original prompts, demonstrating the effectiveness
of our privacy protection while acknowledging the
inherent privacy-utility trade-off.

4 Experiments

4.1 Setup

We have established a scenario to evaluate the per-
formance of the FedCoT framework across a range
of text generation tasks. This setup involves a
client-server architecture, where the client holds
two downstream SLMs: an Encoder-Decoder SLM,
which specializes in encoder-decoder functionali-
ties and a Task-Specific SLM, tailored for specific
tasks. On the server-side, we host a LLM for more
general and powerful text generation capabilities.
Specifically, Table 1 outlines the detailed config-
urations of both the LLM and the SLMs. In our

SLM

Setting LLM Encoder-Decoder Task-Specific

Setting 1 LLaMA3 70B Pythia-1.4B Pythia-1.4B

Setting 2 Qwen1.5-14B Qwen1.5-0.5B Qwen1.5-0.5B

Table 1: LLM and SLMs Setting of FedCoT.

experimental setup, the Encoder-Decoder SLM and
Task-Specific SLM are the identical architecture.

Datasets and Evaluation Metrics. We conduct
an evaluation of FedCoT on 4 QA datasets. Specif-
ically, we include CommonsenseQA (CQA) (Tal-
mor et al., 2019), OpenBookQA (OBQA) (Mi-
haylov et al., 2018), BoolQ (Clark et al., 2019),
ArcE (Clark et al., 2018). For these datasets, we pri-
marily use Accuracy as the evaluation metric. It’s
worth noting that in our experiments, all methods
undergo zero-shot evaluation except FewShot(1-
shot), and we use the lm-evaluation-harness pack-
age (Gao et al., 2023).

Baselines. Since we incorporate two distinct
strategies in the prompt encoder and perturbed ra-
tionales decoder, we denote FedCoT method with
the Exponential Mechanism Strategy as FedCoT-E
and FedCoT method with the Adaptive Exponen-
tial Mechanism Strategy as FedCoT-A. We conduct
a comparative analysis to evaluate the performance
of our FedCoT framework, which comprises both
FedCoT-E and FedCoT-A.

These baselines included:

• FewShot-LLM, which represents the few-shot
capabilities of LLM on the server;

• FewShot-SLM, which represents the few-shot
performance of SLM on the client;

• Standalone, where the client fine-tunes its lo-
cal model using its own private dataset;

• Non-Private, where the client send its raw lo-
cal prompt to server, get rationales from LLM
and fine-tunes its local model like FedCoT,
but without privacy-preserving.

4.2 Main Results
In this section, we undertake a comparative anal-
ysis of the task performance of FedCoT. We as-
sess both the FedCoT-E and FedCoT-A methods
against other baselines on Task-Specific SLM un-
der the privacy budget ϵ = 3. Our experiments
encompass two model configurations: Setting 1
(LLM: LLaMA3-70B, Encoder-Decoder SLM &
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Task-Specific SLM: Pythia-1.4B) and Setting 2
(LLM: Qwen1.5-14B, Encoder-Decoder SLM &
Task-Specific SLM: Qwen1.5-0.5B).

The results, as presented in Table 2, clearly il-
lustrate that both FedCoT-E and FedCoT-A exhibit
significantly better performance when compared to
FewShot-SLM and Standalone methods. Further-
more, FedCoT-A demonstrates notably superior
performance compared to FedCoT-E. Specifically,
take the model Setting 1 as an example, FedCoT-E
surpasses the Standalone method by 4.3%, 3.2%,
7.1%, and 5.1% in the CQA, OBQA, BoolQ, and
ArcE datasets, respectively. Meanwhile, FedCoT-A
demonstrates even greater superiority, exceeding
the Standalone method by 5.7%, 4.6%, 6.7%, and
6% across the same datasets.

Model Method CQA OBQA BoolQ ArcE

Setting 1

FewShot-LLM 70.29 80.66 90.08 82.69

FewShot-SLM 21.19 26.60 52.11 28.91

Standalone 42.43 38.73 73.07 40.33

Non-Private 49.22 46.07 80.61 48.01

FedCoT-E 46.70 41.93 80.02 45.42

FedCoT-A 48.10 43.30 79.77 46.34

Setting 2

FewShot-LLM 80.9 82.8 85.2 80.3

FewShot-SLM 25.7 28.6 59.7 40.7

Standalone 55.7 43.4 78.4 50.3

Non-Private 59.3 55.1 80.5 57.6

FedCoT-E 57.6 50.8 79 52.6

FedCoT-A 58.6 53.1 80.2 56.5

Table 2: We compare the performance of Task-Specific
SLM trained with FedCoT-E (ϵ = 3) and FedCoT-A
(ϵ = 3) against the Task-Specific SLM trained using
baseline methods. We consider two model settings: Set-
ting 1 (LLM: LLaMA3-70B, Encoder-Decoder SLM &
Task-Specific SLM: Pythia-1.4B) and Setting 2 (LLM:
Qwen1.5-14B, Encoder-Decoder SLM & Task-Specific
SLM: Qwen1.5-0.5B)

4.3 Performance Evaluation on various SLMs

In this section, we extend the evaluation of Fed-
CoT’s effectiveness to encompass various client-
side SLMs. These SLMs include LLaMA2-
1.3B (Xia et al., 2024), Qwen1.5-1.8B (Bai et al.,
2023), and OPT-1.3B (Zhang et al., 2022). We
have chosen LLaMA3-70B (Dubey et al., 2024) as
LLM. Table 3 provides a clear illustration of how
FedCoT(with ϵ = 3) consistently outperforms the
Standalone method across various SLMs.

Dataset Method LLaMA2 Qwen1.5 OPT

CQA
Standalone 61.5 57.8 56.42
FedCoT-E 63.03 60.30 57.55
FedCoT-A 64.27 62.21 60.18

OBQA
Standalone 47.53 52.60 40.93
FedCoT-E 51.73 56.40 49.13
FedCoT-A 49.8 57.20 48.4

BoolQ
Standalone 81.65 81.41 72.84
FedCoT-E 83.94 82.59 82.46
FedCoT-A 82.99 82.90 82.68

ArcE
Standalone 40.33 55.58 45.92
FedCoT-E 54.11 61.07 49.67
FedCoT-A 54.66 62.43 50.69

Table 3: We compare the performance of Task-Specific
SLMs, which have been trained with FedCoT-E(ϵ =
3) and FedCoT-A(ϵ = 3), against Standalone across
various SLMs, including LLaMA2-1.3B, Qwen1.5-1.8B
and OPT-1.3B.

4.4 Ablation Study

Influence of Privacy Budgets. We delve into the
influence of privacy budgets on the performance
of FedCoT. To ensure experimental consistency,
we fix the model configuration to Setting 1 (as de-
tailed in Table 1) for all subsequent ablation ex-
periments. Table 4 presents an overview of Fed-
CoT’s performance across a range of privacy bud-
gets (ϵ = 1, 3, 5, 10).

As the privacy budget ϵ increases, the perfor-
mance of both FedCoT-E and FedCoT-A exhibits
a notable uptick. Moreover, FedCoT-A consis-
tently outperforms FedCoT-E under identical pri-
vacy budget conditions (ϵ). When compared along-
side Table 2, it becomes evident that with a privacy
budget escalated to ϵ = 10, FedCoT-E surpasses
the Standalone method by 5.6%, 6.1%, 6.3%, and
6.8% within the CQA, OBQA, BoolQ, and ArcE
datasets, respectively. Similarly, FedCoT-A outper-
forms it by 4.3%, 7.1%, 6.8%, and 7%. Notably,
across all evaluated datasets, at a privacy budget of
ϵ = 10, FedCoT attains performance levels compa-
rable to Non-Private approaches, underscoring its
proficiency and adaptability in striking a balance
between privacy and utility.

Influence of Perturbed Rationales Decoding.
We undertake an analysis to investigate the ef-
fects of perturbed rationales decoding on Fed-
CoT when ϵ = 3. Table 5 offers a comparison
of FedCoT’s performance, contrasting the results
when perturbed rationales decoding is employed
(FedCoT-E w/ and FedCoT-A w/) versus when it
is not (FedCoT-E w/o and FedCoT-A w/o). Specif-
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Method ϵ CQA OBQA BoolQ ArcE

FedCoT-E

1 45.63 42.13 78.91 44.84

3 46.70 41.93 80.02 45.42

5 46.50 43.35 80.17 46.70

10 48.03 44.87 79.37 47.14

FedCoT-A

1 47.31 43.20 79.63 46.65

3 48.10 43.30 79.77 46.34

5 47.96 44.20 79.91 48.08

10 47.74 45.81 79.86 47.30

Table 4: Comparison of the performance of Task-
Specific SLM trained with FedCoT-E and FedCoT-A
across different privacy budgets ϵ.

ically, FedCoT-E w/ surpasses the FedCoT-E w/o
by 2%, 1.3%, 1.5%, and 0.6% in the CQA, OBQA,
BoolQ, and ArcE datasets, respectively. Mean-
while, FedCoT-A w/ demonstrates even greater su-
periority, exceeding the FedCoT-A w/o by 1.8%,
1.6%, 0.7%, and 3% across the same datasets. The
findings unequivocally demonstrate that FedCoT
exhibits superior performance when perturbed ra-
tionales decoding is utilized, as compared to when
it is absent.

Decoding

Method Dataset w/ w/o

FedCoT-E

CQA 46.70 44.79

OBQA 41.93 40.6

BoolQ 80.02 78.5

ArcE 45.42 44.78

FedCoT-A

CQA 48.10 46.26

OBQA 43.30 41.7

BoolQ 79.77 79.06

ArcE 48.08 45.13

Table 5: Comparison of Task-Specific SLM Perfor-
mance in FedCoT: With vs. Without perturbed ratio-
nales decoding.

Perturbed Rationales vs Original Rationales.
We focus on analyzing the quality of the per-
turbed rationales (rp) generated from the perturbed
prompt of LLM based on FedCoT-E and FedCoT-
A methods and compare them with the rationales
(r) generated from raw prompt of the LLM. To
evaluate the similarity between rp and r, we use
TokenRatio metric. A higher TokenRatio indicates a
greater degree of similarity between the perturbed
and original rationales.

TokenRatio(r′
, r). This metric calculates the

unique words(u) in r
′

and counts how many of
these words are also present in r, denoted as i. The
TokenRatio is then calculated as i divided by the
total number of unique words in r

′
(|u|).

As shown in Table 6, with an increase in the
privacy budget ϵ and a corresponding decrease in
perturbation, both the TokenRatio of FedCoT-E
and FedCoT-A have risen notably. Furthermore,
in most of tasks, the TokenRatio of FedCoT-A is
higher than that of FedCoT-E in the same level of
privacy budget ϵ. The experimental results confirm
that the TokenRatio observed in the perturbed ratio-
nales produced by both FedCoT-E and FedCoT-A,
positively correlate with the privacy budget ϵ. This
suggests that as the privacy constraints are relaxed
(higher ϵ values), the perturbed rationales become
more similar to the original rationales.

Method ϵ CQA OBQA BoolQ ArcE

FedCoT-E

1 23.8 33 34.5 26.7

3 30.8 45.26 48.5 44.7

5 43.2 66.3 72.8 67.4

10 48.5 75.8 85.4 74.5

FedCoT-A

1 34.5 37.9 47.1 20.7

3 34.5 49.5 59.6 30

5 45.2 69.6 77.4 36.2

10 48.6 76.12 84.2 38.6

Table 6: We conduct a comparative analysis to assess
the perturbed rationales produced by FedCoT-E and
FedCoT-A methods against the original rationales that
are directly generated from the raw prompt of the LLM.
Metric used: TokenRatio.

Decoded Rationales vs Original Rationales.
We delve into the quality analysis of the decoded
rationales produced by the rationales decoder mod-
ule based on FedCoT-E and FedCoT-A methods.
We compare these decoded rationales against those
generated directly from raw prompt of the LLM.
We utilize the TokenRatio metric to assess their
similarities.

As shown in Table 7, in contrast to FewShot-
SLM, it becomes apparent that the decoded ratio-
nales’ quality based on FedCoT-E and FedCoT-A
methods isn’t solely reliant on the locally decoded
SLM. The perturbed rationales crafted by the LLM
indeed fulfill their intended purpose. When juxta-
posed with Table 6, it’s clear that at comparable ϵ
levels, the TokenRatio for the decoded rationales
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surpass those of the perturbed rationales in the
FedCoT-E and FedCoT-A methods. This under-
scores the effectiveness of the rationales decoder
module in the FedCoT-E and FedCoT-A methods.

Method ϵ CQA OBQA BoolQ ArcE

FewShot-SLM - 42.9 54.5 35.8 28.6

FedCoT-E

1 36 46.33 44.13 32.7

3 39 53.77 53.1 46

5 44.8 67.9 73.9 60.1

10 48.4 75.1 85.4 66.7

FedCoT-A

1 41.1 60.36 62.8 42.19

3 45.8 65.35 64.7 42.99

5 50 75.5 72.9 44.3

10 53.3 78.9 76.6 45.3

Table 7: We conduct a comparative analysis to assess
the decoded rationales produced by FedCoT-E and
FedCoT-A methods against the original rationales that
are directly generated from the raw prompt of the LLM.
Metric used: TokenRatio.

Outperforming Standalone with 50% Data.
We conduct an in-depth analysis to explore the in-
fluence of training data size on model performance.
We compare the FedCoT method with the Stan-
dalone approach, varying the amount of training
data used. Table 8 provides a clear illustration of
how FedCoT(with ϵ = 3) achieves superior perfor-
mance even with significantly fewer training sam-
ples compared to Standalone. More specifically,
when trained on merely 50% of the complete CQA,
OBQA, BoolQ, and ArcE datasets, both FedCoT-E
and FedCoT-A either surpass or closely match the
performance of Standalone method.

5 Conclusions

In this study, we introduce FedCoT, a federated
framework designed to distill knowledge from
LLMs to SLMs in resource-constrained environ-
ments. FedCoT facilitates secure knowledge trans-
fer from LLMs to SLMs by leveraging perturbed
prompts and rationales, thereby enhancing the per-
formance of SLMs without compromising user
privacy. We present two innovative privacy pro-
tection strategies, including an Adaptive Expo-
nential Mechanism strategy, which effectively bal-
ance privacy preservation and the usability of ratio-
nales. Experiments on various text generation tasks
demonstrate FedCoT’s ability to enhance SLM per-
formance with LLM support while prioritizing data
privacy.

Dataset Method 25% 50% 75% 100%

CQA
FedCoT-E 37.74 42.63 44.56 46.7
FedCoT-A 39.28 44.77 44.00 48.1
Standalone - - - 42.43

OBQA
FedCoT-E 32.4 38.27 40.67 41.93
FedCoT-A 34.07 38.08 42.00 43.3
Standalone - - - 38.73

BoolQ
FedCoT-E 69.96 72.26 77.67 80.02
FedCoT-A 69.61 73.73 77.82 79.77
Standalone - - - 73.07

ArcE
FedCoT-E 37.79 41.42 42.22 45.42
FedCoT-A 37.64 41.86 45.28 46.34
Standalone - - - 40.33

Table 8: We compare the performance of Task-Specific
SLM trained with FedCoT-E(ϵ = 3) and FedCoT-A(ϵ =
3) against Standalone, across a range of dataset sizes
from 25% to 100%. The ’-’ indicates a method does not
apply to the corresponding dataset sizes.

Limitations

While our proposed FeCoT framework demon-
strates promising results in privacy-preserving
knowledge transfer from LLMs to SLMs, it is im-
portant to acknowledge several considerations that
could be addressed in future work. Firstly, the
framework’s performance benefits are contingent
upon the server-side LLM’s CoT reasoning capa-
bilities. Although contemporary LLMs like GPT-4
and LLaMA exhibit strong reasoning skills, frame-
works such as FedCoT may encounter limitations
when deployed with less sophisticated LLMs. This
suggests an opportunity for further research to en-
hance FedCoT’s robustness against variability in
LLM reasoning abilities. Secondly, our evaluation
primarily focused on LLaMA and Qwen as the
server-side LLMs, with client-side SLMs includ-
ing Pythia, LLaMA, Qwen, and OPT. While these
models are representative of current state-of-the-art
architectures, extending testing to a more diverse
set of LLMs could provide deeper insights into
FedCoT’s generalizability.
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A FedCoT’s Computational and
Communication Overhead

FedCoT is designed to be efficient and scalable in
resource-constrained environments. The commu-
nication overhead is minimal, with costs compara-
ble to plaintext data transmission. Computational
requirements are equivalent to standard SLM fine-
tuning (SFT) on local tasks. Our experimental vali-
dation was conducted using NVIDIA V100 GPUs,
demonstrating practical deployment feasibility.

B Rationales Generation through CoT

We utilize the rationales data generated by server-
side LLM through chain-of-thought (CoT)(Wei
et al., 2022)(Hsieh et al., 2023) technique to en-
hance the performance of the client’s task-specific
SLM. These rationales justify the predicted labels
and serve as insightful guidance for training smaller
and domain-specific models. Consider the follow-
ing example: when asked “Question:A beaver is
know for building prowess, their supplies come
from where? Answer Choices: (a) british columbia
(b) body of water (c) wooded area (d) pay debts (e)
zoo”. Utilizing the chain-of-thought (CoT) tech-
nique, the LLM can generate intermediate ratio-
nales like, "The answer must be the place where
beavers get their supplies. Of the above choices,
only wooded areas have the supplies that beavers
need.” Such rationales bridge the gap between
the input and the final answer, often encapsulat-
ing valuable task-related knowledge. This knowl-
edge would traditionally require extensive data for
smaller and task-specific models to acquire. There-
fore, we harness these rationales as enriched train-
ing material for small language models, employing
a multi-task training paradigm that encompasses
both label prediction task and rationale prediction
task.

C More on Experimental Details

C.1 Hyperparameter Settings

SLM Parameters. During the training process
for both the Encoder-Decoder SLM and the Task-
Specific SLM, we specifically configured the pa-
rameters. We set the batch size to 32 and employed
the AdamW optimizer. The maximum number of
training steps ranged from 400 to 1500. Addition-
ally, we assigned the values of 0.5 to both α and β.
Furthermore, the learning rates for ηϕ and ηω were
established at 5e-5.
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C.2 Data Splitting
For the datasets CQA/OBQA/BoolQ//ArcE/, all
splits (training, validation, and test) were down-
loaded from HuggingFace (Lhoest et al., 2021).
During the training of the Encoder-Decoder SLM,
we randomly divided the training data into two
equal parts. One part was designated as the public
dataset, while the other part was allocated as the
private dataset for the client.

C.3 Dataset Licenses
For the datasets CQA/OBQA/BoolQ//ARC-E/
were downloaded from HuggingFace(Lhoest et al.,
2021) and under Apache License, Version 2.0.

C.4 Machine Configuration
The experiments were conducted on machines
equipped with 4 and 8 NVIDIA V100 32G.
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