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Abstract

Reinforcement learning (RL) on self-generated
data has emerged as a promising paradigm for
improving reasoning in large language mod-
els (LLMs). However, RL relies on accurate
reward signals, which are scarce in many do-
mains, making it critical to train models that
can generalize to unseen problems. Existing
methods often focus on task-specific or domain-
specific reasoning, lacking consideration for
generalization and may degrade performance
on other tasks. To address this, we distinguish
between abstract plans, representing high-level
problem-solving strategies, and concrete solu-
tions, proposing that learning plans develops
transferable general reasoning capabilities and
promotes better generalization. Building on
this insight, we propose PlanLearn, a frame-
work that combines plan-based search with
Step-level Advantage Preference Optimization
(Step-APO) to optimize plan learning. Exper-
imental results show that PlanLearn, trained
exclusively on GSM8K and MATH, not only
significantly improves in-domain performance
but also enhances out-of-domain benchmarks,
such as HumanEval (+12.2%), GPQA (+8.6%),
ARC-C (+4.0%), MMLU-STEM (+2.2%), and
BBH (+1.8%). The code is available at https:
//github.com/tianlwang/Planlearn.

1 Introduction

Large language models (LLMs) have achieved
significant success through scaling in pre-
training (OpenAl et al., 2024; Dubey et al., 2024).
To further unblock the potential of LLMs, re-
cent efforts extend this scaling paradigm to post-
training, where reinforcement learning (RL) on
self-generated data has emerged as a new learn-
ing paradigm (e.g., STaR (Zelikman et al., 2022),
ReST (Gulcehre et al., 2023)). Notably, systems
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Figure 1: Teaching LLMs to Plan, Not Just Solve. Exist-
ing methods primarily focus on teaching LLMs to solve
task-specific or domain-specific problems, which limits
their generalization to unseen tasks and can degrade per-
formance on other tasks. We propose teaching LLMs to
learn plans—high-level problem-solving strategies—to
foster transferable reasoning skills and improve general-
ization across reasoning tasks.

like OpenAlI’s ol (OpenAl, 2024) demonstrate that
large-scale RL can teach models to think more
systematically, significantly enhancing their rea-
soning capabilities. Additionally, recent research
works (Xie et al., 2024; Feng et al., 2023; Chen
et al., 2024) leverage Monte Carlo Tree Search
(MCTS) (Kocsis and Szepesvari, 2006) to collect
high-quality reasoning paths, which RL then uses
for iterative self-improvement.

However, RL requires accurate reward signals
to guide the learning process; for example, ground
truth answers are available to evaluate correctness
in mathematical tasks, but obtaining such high-
quality supervision remains challenging in many
domains. To build a general reasoner, it is crucial
to enhance the model’s generalization ability. Most
existing methods (Feng et al., 2023; Chen et al.,
2024) focus on enhancing task-specific or domain-
specific reasoning capabilities, such as in math-
ematics or coding, often relying on task-specific
fine-tuning, which hampers generalization and may
degrade performance on other tasks (Wang et al.,
2024). Furthermore, unlike traditional RL, which
operates in a limited action space, LL.Ms function
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Figure 2: Illustration of PlanLearn. Left: Plans represent abstract thinking for problem-solving, which allows for
better generalization, whereas concrete solutions often limit it. Right: PlanLearn searches within the action space
on high-level abstract plans using MCTS and obtains advantage estimates for step-level preferences. PlanLearn
can then identify and learn critical steps that provide a clear advantage over others.

within a vast search space. This expansive scope,
combined with the high inference latency of LLMs,
limits both the diversity and quality of explored
reasoning paths.

To enhance generalization, we propose teaching
LLMs to plan, not just solve. Specifically, we dis-
tinguish two components in reasoning traces (Wei
et al., 2023; Wang et al., 2023): 1) Abstract Plans:
High-level strategies expressed in natural language,
focusing on general reasoning patterns like de-
termining applicable knowledge, breaking down
problems, and analyzing key information. 2) Con-
crete Solutions: Implementations derived from
the plan—such as mathematical formulas, code,
or symbolic solutions—are closely tied to task-
specific skills. For example, outlining how to imple-
ment code is an abstract plan, while the actual code
is a solution. Based on this distinction, we empha-
size searching and learning on plans so that models
develop a human-like thinking process and gener-
alized problem-solving skills, rather than memo-
rizing concrete solutions, thus improving general-
ization (illustrated in Figure 2 Left). Furthermore,
with the challenge of a vast search space for rea-
soning paths, plan-based search enables more di-
verse exploration of high-level strategies, whereas
solutions-based search may limit diversity, as dif-
ferent solutions may share the same underlying
thought.

To enable effective plan learning, existing prefer-

ence optimization methods face challenges. Direct
Preference Optimization (DPO) (Rafailov et al.,
2023) struggles with complex multi-step reasoning
tasks due to its inability to capture fine-grained
supervision. Recent works propose Step-level
DPO (Setlur et al., 2024; Lai et al., 2024) to learn
step-level preferences, but their reliance on heuris-
tics to select preference pairs and treat all pairs
equally limits model optimization. To address this,
we propose a method to identify and learn criti-
cal plan steps (i.e., steps that provide greater ad-
vantages over others) for improving the model’s
reasoning ability, as illustrated in Figure 2 Right.

Thus, we introduce PlanLearn, which consists
of two key components:

1. Searching on plan, specifically, we devise a
step-by-step plan to solve the problem, with the
final step providing the concrete solution based on
the plan. Using MCTS to explore diverse plan steps
in multi-step reasoning tasks, it creates a plan tree,
where high-quality plan step preferences are de-
rived from the final outcome. This process enables
the exploration of high-level strategies, helping
the model acquire task-agnostic skills and improve
generalization across different tasks.

2. Learning critical plan steps through Step-level
Advantage Preference Optimization (Step-APO),
which builds upon DPO. Step-APO integrates ad-
vantage estimates for step-level preference pairs
obtained via MCTS. This enables the model to
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learn fine-grained preferences between steps, boost
critical plan steps, and de-emphasize erroneous
ones.

To conclude, our contributions are: 1) We dis-
tinguish the roles of abstract plans and concrete
solutions in reasoning traces and their impact on
generalization. We propose that searching and RL
on high-level abstract plans can enhance model
generalization. 2) We introduce a novel approach
PlanLearn, which leverages MCTS to explore di-
verse plan steps, distinguishing it from existing
methods that focus on exploring solutions, and
uses our Step-APO to learn step-level plan prefer-
ences, thereby helping the model effectively iden-
tify and learn critical steps. 3) Extensive experi-
ments show that PlanLearn enhances reasoning
capabilities and generalization across tasks, achiev-
ing significant improvements in both in-domain
and out-of-domain tasks.

2 Methods

In this section, we introduce our PlanLearn, which
boosts model performance via an iterative pro-
cess of plan-based search and step-level preference
learning. We first introduce our plan-based MCTS,
which enables the LLM to explore diverse plan
strategies in the vast search space. Next, we present
our Step-APO in detail to further explore the poten-
tial of step-level preference learning in multi-step
reasoning tasks. Finally, we describe how we itera-
tively optimize the policy and value models.

2.1 Plan-based MCTS

MCTS builds a reasoning tree iteratively and au-
tonomously explores step-level reasoning traces,
which can be used to optimize LLMs. Existing
methods (Chen et al., 2024; Xie et al., 2024) that
leverage MCTS to collect data for training usually
focus on exploring solution steps within the entire
search space or on simultaneously exploring both
plans and solutions. We propose searching on high-
level abstract plans, expressed in natural language,
as a universal interface across tasks. These plans
represent abstract thinking for problem-solving,
such as determining which knowledge to apply
or how to decompose a problem, enabling models
to develop broader, task-agnostic capabilities that
enhance generalization.

Specifically, we design a two-shot prompt
(See Appendix E) to guide the model in answering
questions in two parts: (1) a step-by-step abstract

plan to solve the problem, and (2) a concrete solu-
tion based on the plan. We obtain a plan tree and
high-quality plan step preferences through itera-
tive search with MCTS, in which each intermediate
edge corresponds to a plan step and the final edge
represents the concrete implementation.

Given the plan tree, each node represents a state

s¢, and each edge represents an action a;, which
corresponds to a reasoning step that leads to the
next state s;11. Under the same parent node, dif-
ferent sibling nodes form a set of step-level pref-
erence pairs, with each node having its own value
V (s¢) representing the expected future reward un-
der state s;. These values can be obtained through
the MCTS process, which involves four key opera-
tions: selection, expansion, evaluation, and backup.
To enhance efficiency, we use a value model to as-
sess the expected returns from the partial reasoning
paths, with the final integration of both policy and
value models guiding the search process. Next, we
describe the four steps of MCTS.
Selection: We use the PUCT algorithm (Rosin,
2011) to select nodes in the search tree with the fol-
lowing formula, where IV represents the visit count,
mo(ay|s¢) represents LLMs’ generation probability,
Cpuct 18 a constant that balances exploitation and
exploration:

N(St)

1 + N(st,at) ’ (1)

arg n;z}x Q(st,ar) + cpuctmo(ass:)
Expansion: We expand the selected node by using
the current states as the prompt, which contains
the question and all previously generated steps, to
guide the model in generating the next step candi-
dates via temperature sampling.
Evaluation: During evaluation, the terminal node,
which contains the concrete solution, is assessed by
comparing the final answer with the ground truth,
while the values of non-terminal nodes, which con-
tain plan steps, are predicted by the value model for
efficiency, instead of relying on resource-intensive
rollout.
Backup: After evaluation, we perform a bottom-up
backpropagate from the evaluated node back to the
root. We update the visit count N, the state value
V, and the transition value () as follows:

Q(st,ar) < r(st,ar) + V(sey1), 2
Vi(st) « ZN(SHI)Q(Stvat)/ZN(SHl)a 3)

N(st) < N(se) + 1. )
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2.2 Step-APO to Learn Critical Plan Steps

Existing preference learning methods, such as
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) face challenges in learning critical
steps due to their inability to capture fine-grained
supervision. Recent works propose Step-level
DPO (Hwang et al., 2024; Lai et al., 2024) to learn
step-level preferences, but its reliance on heuris-
tics, such as marking the first error step as dis-
preferred, limits the richness of paths learned and
model optimization. Given the large variations in
advantage differences across different data pairs,
we propose Step-APO, which introduces advantage
estimates for preference pairs into DPO. This en-
ables the model to more effectively learn critical
intermediate plan steps, thereby further improving
its reasoning capabilities. Next, we will provide its
derivation and analysis from the perspective of its
gradient.

2.2.1 Preliminaries

The Classical RL Objective RLHF ap-
proaches (Ziegler et al., 2020; Bai et al.,
2022; Ouyang et al., 2022) usually first learn
a reward function from human feedback, then
optimize it with a policy gradient-based method
like PPO (Schulman et al.,, 2017) with an
entropy-bonus using the following multi-step RL
objective:

T
n}rz:XEatN,,g(“st) [Z (r(se,ar)+KLy)
=0

KL; = Slog mret(ac|st),

S0 NP(SO)} ' 5)

where r(s;,a;) denotes the step-level reward
function. KL; is a KL penalty that aims to ensure
the learned policy 7y does not deviate significantly
from the reference policy 7f, which is typically
produced via supervised fine-tuning.
Direct Preference Optimization DPO (Rafailov
et al., 2023) uses the well-known closed-form opti-
mal solution, which establishes a mapping between
the reward model and the optimal policy under the
KL divergence, obtaining the reward as:

r(x,y) = Blog " (y|x) — Blog mef(y|x) — Z(x), (6)

where x denotes the prompt and y denotes the
response, 7* is the optimal policy, and Z(x) is the
partition function that normalizes it.

By substituting Equation 6 into the Bradley-
Terry preference model and leveraging the max-

imum likelihood objective, DPO derives the loss:

Lopo(o; Trer) = —E(x yw y1yop [loga (u(x, v, yl)ﬂ ,

w l
w o glog FEYTIX) mo(y' [ %)
u(x,y",y") = Blog ety [ %) B ety [ %)
@)
where o denotes the logistic function, and y" and
y! denote the preferred and dis-preferred responses

to the prompt x.

2.2.2 Deriving the Step-APO Objective

In the general maximum entropy RL set-
ting (Ziebart, 2010), the optimal policy 7*(als)
of multi-step RL objective in Equation 5 is:

T (ay|sy) = (@ (a0 =V (s:)/5 ®)

where QQ*(s, a) is the optimal Q-function which
models the expected future reward from (s;,a;)
under 7*. The optimal value function V* estimates
the expected future reward under state s;, and it’s a
function of Q* (Rafailov et al., 2024).

Under the reward r with a KL divergence penalty,
the relationship between Q-function and step-level
reward function can be established with the Bell-
man equation as follows:

Q*(st,at) = r(st,at)+6logwref(at|st)+V*(st+1). (9)

By log-linearizing the optimal policy in Equa-
tion 8 and substituting in the Bellman equation
from Equation 9 (Nachum et al., 2017; Rafailov
et al., 2024), we have below equation which is pre-
cisely the optimal advantage function A*(s,a) =

Q*(s,a) = V*(s):

7" (atlst)

Tref(atlst)

Blog =r(se,ar) + V' (si41) — V' (se). (10)
Unlike DPO utilize response-level Bradley-Terry
model, we introduce step-level Bradley-Terry pref-
erence model to learn fine-grained step-level pref-
erence:

exp (r(s,a"))
exp (r(s,av)) + exp (r(s,al))’

p'(a¥ = a'ls) = (11)

By substituting Equation 10 into Equation 11 and
leveraging the negative log-likelihood loss, we de-

rive the objective for Step-APO:

Lstep-ap0 (763 Tref) = —E(g, aw alynp [logo (U(St,ai”,afs))] ;

w mo(ai’ | st) mo(ay | st)
s =41 —B1
ua(St/ & 7at) /6 8 Wref(a}fﬂ | St) B o8 7rref(azls | St)
—V(si1) + Visiy),
(12)
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where V (s,;) — V (sl ) denotes the advantage
of s¥, | over s ; from the same start state.

To understand the difference between our Step-
APO and other step-level DPO, we analyze the
gradient of the Lsep-apo:

VoLsep-aro = —PE[o( — ua(se, ay’, af:)ﬂ

13)
Vologm(al | s:) — Velogm(al | s¢)].

Intuitively, the gradient increases the likelihood
of preferred completions aj’ and decreases that of
dispreferred ones al, with weights determined by
the preference and advantage differences. Impor-
tantly, besides the examples are weighed by how
much higher the 7y (s, a;) = 5 log % incor-
rectly orders the completions, the examples are also
weighted by how much higher the advantage of a}’
is compared to a}. This allows for assigning differ-
ent optimization weights and emphasizes critical
steps. Our experiments prove the importance of

this weighting.

2.3 TIterative Training of Policy and Value
Model

Our approach employs iterative training for policy
and value models. The policy model, denoted as
7y, and the value model, denoted as vy, are two
separate models adapted from the same base model.
We add a value head for the value model, which is
randomly initialized in the first round. However, as
the MCTS simulations proceed in the first round,
rewards from terminal nodes are back-propagated
to the intermediate nodes, reducing the negative
impact of the random value initialization.

For policy model training, we first perform su-
pervised fine-tuning (SFT) using the correct paths
collected from MCTS. We then apply our Step-
APO (12) using step-level preference data also col-
lected from MCTS. Notably, V' (s¥.;) and V(s ;)
in Equation 12, obtained from MCTS, represent the
values of the corresponding states. The difference
between these values reflects the advantage differ-
ence of the two actions under the same previous
state s¢:

Alse,a)’) — A(se,ap) =
Qst,af) = Vist) — (Qse,at) = Vis))  (4)
= V(sth1) = V(sita)-

For value model optimization, we use a mean
squared error (MSE) loss between the value

model’s prediction and values from MCTS. With
the updated policy and value models, we advance
to the next round of MCTS and iterate the training
process to further enhance the models.

3 Experiments

In this section, we conduct a comprehensive evalu-
ation of PlanLearn across two in-domain datasets
and five out-of-domain (OOD) datasets to address
the following research questions:

e RQ1 (subsection 3.2): When trained exclu-
sively on mathematical reasoning data, does
PlanLearn achieve superior performance com-
pared to existing methods on both in-domain and
out-of-domain reasoning tasks?

¢ RQ2 (subsection 3.3): Does plan-based learning
effectively enhance the generalization capabili-
ties of models across diverse reasoning tasks?

* RQ3 (subsection 3.4): Does Step-APO provide
a more effective optimization strategy for plan
learning compared to existing approaches?
Furthermore, we explore the construction of step-

level preference data to enhance generalization ca-

pabilities (subsection 3.5) and demonstrate the gen-
eralizability of PlanLearn across different models

(subsection 3.6).

3.1 Implementation Details

We iteratively generate data using MCTS and train
our policy and value models over two rounds. In
each round, the policy model generates plan steps
and concrete solutions via MCTS, while the value
model assists in evaluating the intermediate steps.
At the end of each round, the generated data is used
to train both the policy and value models.

Model Architecture We employ the
DeepSeekMathBase-7B  (Shao et al., 2024)
as our initial policy model and add a randomly
initialized value head to this model, serving as the
initial value model. We then optimize these two
distinct models independently and use the updated
models for the next round of data generation.
Datasets We construct our training data using the
training sets from GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b) datasets. GSM8K
comprises 7,473 training and 1,319 test problems,
while MATH includes 7,500 training and 5,000
test problems. From these datasets, we exclusively
extracted question-answer pairs from the training
sets, omitting the human-annotated solutions. This
resulted in a total of 15k question-answer pairs for
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Model In-Domain

Out-of-Domain

MATH GSM8K HumanEval ARC-C GPQA BBH MMLU-stem
DeepseekMath-Base 35.18 63.23 40.90 52.05 2575 58.79 52.74
STaR 37.33 69.98 43.29 5345  28.78 60.04 54.33
Self-Explore-MATH 37.86  78.39% 41.46 54.01 33.83  60.04 54.04
AlphaMath - - 49.39 53.41 33.33  56.63 55.31
PlanLearn (Round 1 SFT) 36.30 63.79 42.68 5444 2878 59.68 54.58
PlanLearn (Round 1 Step-APO)  40.56 71.06 46.34 55.55 31.31 60.18 55.15
PlanLearn (Round 2 SFT) 39.16 69.75 48.78 5495  29.79 59.93 55.44
PlanLearn (Round 2 Step-APO)  41.64 73.77 53.05 56.06 3434 60.54 54.93

Table 1: Main results on in-domain and out-of-domain reasoning tasks. Baseline results on MATH and GSM8K are
reproduced. * denotes results from Self-Explore-GSMS8K. - indicates that the model uses Python code interpreter
and is not comparable with our method. Best results are bolded.

our training data.

Training Data Generation via MCTS For each
problem, we employ MCTS to generate multiple
step-level plans and the concrete solution. During
the MCTS expansion phase, we expand 5 child
nodes for the root node and 3 child nodes for other
nodes. The search is conducted with a maximum
depth of 6. We apply a temperature of 0.7 to en-
courage diverse generation.

In the first round, we generate data from a subset
of 5k question-answer pairs, consisting of 4k from
the MATH and 1k from GSMS8K, for efficiency.
We carefully design prompts and 2-shot demonstra-
tions to guide the model’s output (see Appendix E
for details). We perform a large number of MCTS
simulations, specifically 200, in this phase to mit-
igate the impact of the random initialization of
the value model. Starting from the second round,
with the fine-tuned models from the first round,
we utilize the full set of 15k question-answer pairs
for data generation. A 2-shot prompt formatted in
XML is used, and we perform 100 MCTS simula-
tions.

Training Data Construction We utilize the state
value V' of each node in MCTS to construct pref-
erence data. For plan step preference data, we cat-
egorize sibling nodes as “preferred"” if their value
is greater than O and “dispreferred" if their value
is less than 0, forming preference pairs from any
combination. For concrete solution step data, we
randomly select one preference pair for each par-
ent node to construct the dataset. This is based
on our experimental findings that an excess of so-
lution data can negatively impact performance on
OOD reasoning tasks, whereas increasing the em-
phasis on plan data improves performance in both
mathematical and other reasoning tasks (see subsec-

tion 3.5). We provide the statistics for the generated
data in two rounds in Appendix B.

Training Details For the policy model, we first
randomly select up to four correct responses per
problem for supervised fine-tuning (SFT). Next,
we employ step-level preference data from MCTS
to train the model with our Step-APO algorithm.

For the value model, we use state value V' from
MCTS for partial responses as labels to update the
model. This allows the value model to score both
partial plans and complete responses.

Notably, because the value difference for final so-
lution step preference pairs is 2, while the average
value difference for other plan steps ranges between
0.6 and 0.8, we apply a scaling factor of 0.3 to the
values of solution steps in Step-APO. In the second
round of training, we utilize the data from the sec-
ond round to train the base model, rather than the
Round 1 model. The training hyperparameters are
provided in Appendix D.

3.2 Main Results

We evaluate our method on both mathematical tasks
and OOD reasoning tasks, as shown in Table 1.

Baseline Our baseline includes DeepseekMath-
Base-7B (Shao et al., 2024), along with three addi-
tional baselines, STaR (Zelikman et al., 2022), Self-
Explore (Hwang et al., 2024), AlphaMath (Chen
et al.,, 2024). We reran STaR by repeated sam-
pling Chains of Thought (CoTs) using the same
model and data as ours. The latter two baselines
are developed based on DeepSeekMath-Base and
utilize solution-centric search methods, employing
the GSM8K and MATH datasets, distinguishing
them from our proposed plan-based search method-

ology.
In-domain tasks We evaluate PlanLearn in-
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domain capabilities on MATH (Hendrycks et al.,
2021b) and GSMB8K (Cobbe et al., 2021). Details
of the datasets and evaluation can be found in Ap-

pendix C.
On in-domain tasks, PlanLearn demonstrated
significant performance improvements over

DeepseekMath-Base on both the MATH and
GSMS8K datasets. Compared to Self-Explore,
which leverages human-annotated rational data
and extensive self-generated data for fine-tuning,
PlanLearn does not use any human-annotated
rational data and relies solely on the model’s
self-exploration with much less SFT data. While
Self-Explore performs better on simpler tasks
like GSMS8K, possibly due to the use of golden
rationales and more SFT data, our method
significantly outperforms it on more challenging
tasks like MATH, which requires more complex
self-exploration of reasoning paths. These results
underscore the efficacy of plan-based learning
in enhancing the model’s in-domain reasoning
capabilities.

In both rounds, Step-APO consistently improves

results over SFT. Additionally, Round 2 outper-
forms Round 1 in both SFT and Step-APO, demon-
strating that the updated policy and value models
generate better data through MCTS, further improv-
ing performance.
Out-of-domain reasoning tasks We select five
benchmarks for evaluating OOD reasoning: Hu-
manEval (Chen et al., 2021), ARC-C (Clark et al.,
2018), GPQA (Rein et al., 2023), BBH (Suzgun
et al., 2022), and MMLU-STEM (Hendrycks et al.,
2021a). We employ few-shot prompting to evalu-
ate these benchmarks. Details of the datasets and
evaluation can be found in Appendix C.

As shown in Table 1, PlanLearn also achieves
significant improvements on OOD tasks, with aver-
age improvements of 5.7%, 4.1%, 3.1%, and 2.2%
compared to the base model, STaR, Self-Explore-
MATH, and AlphaMath, respectively. This demon-
strates that PlanLearn enhances the model’s gen-
eralization ability across diverse reasoning tasks.
Compared to AlphaMath, which was trained on the
same 15k dataset for 3 rounds, our performance on
these OOD reasoning tasks is much better. Notably,
AlphaMath even shows a decrease in performance
on certain tasks, such as a 2.2% drop in BBH.

Unlike baseline methods that focus on concrete
solutions within the vast reasoning action space of
LLMs, PlanLearn concentrates on exploring the
action space on high-level abstract plans. These

plans embody abstract problem-solving strategies,
enabling models to develop broader, task-agnostic
abilities that enhance generalization.

3.3 Effectiveness of Plan-based Learning

To validate whether plan-based learning enhances
generalization, we compare plan-based MCTS with
non-plan-based MCTS within the Round 1 SFT set-
ting, evaluating on HumanEval, ARC-C, and BBH
benchmarks. The results are shown in Table 2. The
results demonstrate that MCTS-based searching for
high-level abstract plans consistently outperforms
searching for concrete solutions, showing stronger
generalization capabilities.

Model HumanEval ARC-C BBH
DeepseekMath-Base 40.90 52.05 58.79
w/o plan learning 38.41 53.00 59.03
w/ plan learning 42.68 54.44 59.68

Table 2: Effectiveness of plan-based learning.

We observed that SFT model with non-plan-
based data resulted in a performance decline on
HumanEval, consistent with the 2.2% drop in
BBH performance shown by AlphaMath in Table 1.
These results suggest that existing approaches fo-
cusing on task-specific learning significantly limit
OOD generalization and may hurt performance on
other tasks. In contrast, plan-based learning con-
sistently improves performance across OOD tasks,
highlighting its effectiveness.

3.4 Effectiveness of Step-APO

To investigate the effectiveness of Step-APO,
we compared the performance of Instance-DPO,
TDPO (Zeng et al., 2024), Step-DPO, and Step-
APO using data obtained from the first round of
MCTS. Instance-DPO involves preference learn-
ing on the model’s complete response based on
the correctness of the final answer. Step-DPO
and Step-APO, on the other hand, performs finer-
grained learning on each step within the model’s
response. The difference is that Step-APO incor-
porates advantage estimates for preference pairs
obtained through MCTS, while Step-DPO does not.
TDPO improves DPO by extending it to the token
level and incorporates forward KL divergence con-
straints for each token, improving alignment. All
four preference learning strategies were applied to
the model after supervised fine-tuning (SFT). The
experimental results are summarized in Table 3.

8537



Model In-Domain Out-of-Domain
MATH GSM8K HumanEval ARC-C GPQA BBH MMLU-stem
SFT 36.30 63.79 42.68 54.44 28.78  59.68 54.58
Instance-DPO  37.72 69.29 43.90 54.61 2424  60.13 54.42
TDPO 39.12 69.90 48.78 54.61 28.29  59.94 54.08
Step-DPO 37.89 69.83 42.68 54.44 2525 59.44 54.68
Step-APO 40.56 71.06 48.78 55.55 3131 60.18 55.15
Table 3: Effectiveness of Step-APO.
MATH GPQA BBH
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Figure 3: Impact of data construction. We outline different strategies for constructing Step-APO preference data
based on the value V' of each node in MCTS: 1 plan pair (selecting the plan step with the maximum positive V" and
the plan with the minimum negative V'), 1 solution pair (randomly selecting one correct and one incorrect solution
step), all plan pairs (selecting all combinations of plan steps with positive and negative V'), and all solution pairs
(selecting all combinations of correct and incorrect solution steps).

The results show that TDPO and Step-APO out-
perform Instance-DPO and Step-DPO across both
in-domain and OOD tasks, primarily due to their
distinct mechanisms: Instance-DPO fails to capture
fine-grained preferences in reasoning processes,
while Step-DPO, despite introducing step-wise su-
pervision, treats all step pairs equally without ac-
counting for advantage differences between steps,
thereby restricting its optimization capability. Al-
though TDPO performs better than Instance-DPO,
it underperforms Step-APO, which we attribute
to TDPO’s focus on token-level decision quality,
whereas Step-APO explicitly models advantage dis-
parities between steps and prioritizes high-value
reasoning steps, ultimately validating its superior-
ity in multi-step reasoning scenarios.

3.5 Data Construction

To investigate how to construct step-level prefer-
ence data, we use MATH as a representative in-
domain task and BBH and GPQA as representative
OOD tasks to compare three methods. The experi-
mental results are shown in Figure 3.

Initially, we construct preference data by creat-
ing at most one pair for all sibling nodes: for plan
steps, we select the plan with the highest positive
value and the plan with the lowest negative value;
for solution steps, we randomly select one correct
and one incorrect solution. Using Step-APO on

this data, we observe performance improvements
over the SFT model in both in-domain and OOD
reasoning tasks. Next, we enhance the plan step
data by selecting all combinations of plans with
positive and negative values while keeping the so-
lution step data unchanged, which leads to further
performance gains across both task types. However,
continuously expanding the solution step data re-
sults in decreased model performance. Ultimately,
we adopt the strategies of using all plan pairs and
one solution pair for our experiments.

3.6 Generalizability Across Different Models

To further demonstrate the effectiveness of
PlanLearn across different models, we conducted
experiments on Qwen2.5-3B (Hui et al., 2024)
and Llama-3-8B (Meta, 2024). We adhered to the
Round 1 setup, utilizing MCTS to generate data
from a 5,000-sample subset comprising 4,000 pairs
from the MATH dataset and 1,000 from GSMS8K.
Both models were then optimized using SFT and
Step-APO.

As shown in Table 4, the results demonstrate
that PlanLearn yields significant performance im-
provements after a single round of optimization.
For Qwen-2.5-3B, we observe average gains of
4.2% on in-domain tasks and 3.6% on out-of-
domain (OOD) tasks. Similarly, Llama3-8B ex-
hibits an average improvement of 3.4% on in-
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Model In-Domain Out-of-Domain

MATH GSM8K HumanEval ARC-C GPQA BBH MMLU-stem
Qwen-2.5-3B 40.82 76.33 40.24 56.94 2525 56.82 61.50
+ PlanLearn(Round 1)  44.55 81.05 48.78 59.85 27.78 58.25 63.88
Llama-3-8B 18.16 49.17 37.80 57.94 2727 62.92 55.82
+ PlanLearn(Round 1)  20.24 53.90 40.24 60.24 34.34 64.08 56.83

Table 4: Additional results on Qwen2.5-3B and Llama-3-8B.

domain benchmarks and 2.8% on OOD bench-
marks. This demonstrates the robustness and strong
generalization capabilities of PlanLearn across dif-
ferent models.

4 Conclusion

Developing a general reasoner through RL remains
an open and important research question. In this
work, we propose searching and learning on high-
level abstract plans to enhance model generaliza-
tion, rather than focusing on concrete solutions that
often limit generalization. PlanLearn enhances
transfer performance on diverse out-of-domain
tasks, underscoring its value for future research
in generalizable reasoning.

Limitations

While PlanLearn demonstrates promising gener-
alization when trained on mathematical reasoning
tasks and evaluated across a variety of reasoning
benchmarks, its effectiveness has so far been vali-
dated primarily in a math-centric training setting.
Future work may explore whether PlanLearn’s
benefits extend to scenarios where the training data
comes from domains beyond mathematics, such
as code-related or commonsense reasoning tasks.
This would help further assess whether plan-based
learning provides consistent advantages regardless
of the training domain.

Ethical Considerations

Our research focuses on improving the reasoning
capabilities of LLMs through plan-based learning,
which may contribute to more robust and gener-
alizable Al systems. However, we acknowledge
that such advancements could also be misused or
lead to unintended consequences if applied without
appropriate oversight. We encourage future work
and deployment of our method to adhere to estab-
lished ethical guidelines and prioritize the broader
societal implications.

All experiments are conducted using publicly
available and open-source datasets as well as open-
source models, which supports transparency, repro-
ducibility, and fairness in Al research, and aligns
with our commitment to responsible scientific prac-
tice.
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A Discussion on Related Work

Search-Guided Reasoning in LLMs Recent ad-
vancements (Feng et al., 2023; Chen et al., 2024;
Xie et al., 2024) in enhancing LLM reasoning ca-
pabilities have focused on integrating Monte Carlo
Tree Search (MCTS) to collect trajectories and train

models, resulting in notable improvements in rea-
soning tasks. MCTS strikes a balance between ex-
ploration and exploitation, utilizing its look-ahead
ability to obtain high-quality step-level supervi-
sion. For example, AlphaMath (Chen et al., 2024)
employs MCTS to automatically generate process
supervision, leading to significant improvements
in mathematical reasoning. However, these MCTS-
based training methods face challenges such as
vast search spaces, limited solution diversity for
LLMs. Furthermore, there is limited research on
how these methods generalize to other reasoning
tasks and enhance overall reasoning capabilities.
To address these issues, we propose a method for
searching over plan steps and learning critical plan
steps for problem-solving, which aims to enhance
generalization in reasoning tasks.

Post-Training on Self-Generated Data for Rea-
soning Improvement Table 5 summarizes the
key distinctions between our approach and exist-
ing self-improvement methods in reasoning. These
methods all improve reasoning ability through post-
training on self-generated data, but differ in terms
of search methods, supervision granularity, search
space, and generalization capabilities across tasks.
Direct Preference Optimization (DPO) Algo-
rithms DPO (Rafailov et al., 2023) uses instance-
level preference data for model optimization but
has notable limitations. It struggles with multi-
step reasoning tasks because it cannot effectively
correct specific errors within the reasoning pro-
cess (Hwang et al., 2024). Moreover, training on
model-generated positive data can amplify spuri-
ous correlations from incorrect intermediate steps,
leading to poor generalization (Setlur et al., 2024).
Recent work proposes step-level DPO (Setlur et al.,
2024; Lai et al., 2024) to address these issues
by providing the fine-grained error identification
needed for improving reasoning capabilities. For
example, Self-Explore (Hwang et al., 2024) iden-
tifies the first incorrect step in a solution and con-
structs step-level preference data to guide model
improvement. Unlike these heuristic methods, we
propose Step-APO to fully leverage step-level rea-
soning data and maximize optimization potential.
Discussions around 'abstract plans'" and
""thoughts' We conceptualize "thoughts" in works
like Quiet-STaR (Zelikman et al., 2024) as in-
corporating various types of information, such as
high-level plans, concrete solution attempts, self-
correction, and reflections. Our core contribution is
to systematically isolate which components within
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Method Search Method Supervision Search Space Generalization
STaR (Zelikman et al., 2022) Repeated sampling Response-level Concrete solutions X
Self-Explore (Hwang et al., 2024) Repeated sampling Step-level Concrete solutions X
TS-LLM (Feng et al., 2023) MCTS Response-level Concrete solutions X
AlphaMath (Chen et al., 2024) MCTS Response-level Concrete solutions X
ALPHALLM (Tian et al., 2024) MCTS Response-level Concrete solutions X
MCTS-DPO (Xie et al., 2024) MCTS Step-level Concrete solutions X
PlanLearn MCTS Step-level Abstract plans v

Table 5: Key differences between existing self-improvement methods and our approach.

Round Num  Avg Depths

Pos:Neg Plan Pairs Count

Solution Pairs Count

Round 1 4.18
Round 2 3.80

1:3.16
1:1.23

18742
24707

16506
24633

Table 6: Statistic for the generated data in two rounds.

this stream of thought are most critical for gener-
alization. Our findings reveal that learning from
explicit, high-level problem-solving strategies ("ab-
stract plans") is substantially more effective for
transferring reasoning skills than learning from the
concrete solution steps.

B Statistic for the generated data

We list the statistic for the generated data in two
rounds in Table 6. Round 2 generates more correct
responses, indicating a stronger policy and value
model.

C Evaluation Details

In-domain Tasks For our PlanLearn, we evalu-
ated in-domain reasoning capabilities using a zero-
shot setting on the MATH and GSMS8K datasets.

* MATH: Comprising 5,000 intricate
competition-level problems, aimed at eval-
uating the models’ capability to perform
complex mathematical reasoning.

* GSMSK: Containing 1,320 diverse grade
school math problems, designed to assess ba-
sic arithmetic and reasoning skills in an edu-
cational context.

We utilized vLLM (Kwon et al., 2023) for in-
ference during evaluation and employed the math
evaluation toolkit (Zhang et al., 2024) to assess
model-generated answers. For other baseline mod-
els, results were reproduced on our machine using
the configurations and codes from the original pa-
pers.

Out-of-domain Reasoning Tasks For all mod-
els, we employed few-shot prompting through the
Im-evaluation-harness (Gao et al., 2024) to evaluate
performance on ARC-C (25-shot), BBH (3-shot),
and MMLU-stem (5-shot). Following Yue et al.
(2024), we utilized 5-shot prompting to evaluate
the GPQA diamond subset. Following Chen et al.
(2021), we utilized zero-shot setting to evaluate
performance on HumanEval.

* HumanEval: HumanEval is a widely used
benchmark for code generation tasks. It pro-
vides descriptive prompts for each problem,
prompting LL.Ms to generate corresponding
code. It contains 164 problems.

* ARC-C: ARC includes questions derived
from various grade-level science exams, de-
signed to test models’ ability to handle both
straightforward and complex scientific queries.
The challenge subset contains 1,172 test ques-
tions.

* GPQA: Providing “Google-proof” questions
in the fields of biology, physics, and chemistry,
GPQA is designed to test deep domain ex-
pertise and reasoning under challenging con-
ditions. We use the diamond subset, which
contains 198 difficult problems.

* BIG-Bench Hard (BBH): Comprising 23
tasks previously identified as challenging for
language models in the BIG-Bench bench-
mark, BBH contains a total of 6,511 challeng-
ing problems, aimed at evaluating the capa-
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bilities of large language models (LLMs) in
solving these tasks.

* MMLU-STEM: Spanning 57 subjects across
multiple disciplines, MMLU evaluates the
breadth and depth of a model’s knowledge in a
manner similar to academic and professional
testing environments. We select the STEM
subset, which contains 3,130 problems.

D Implementation Details

All models in our experiments were trained on 8
* NVIDIA H100 GPUs. We implement our Step-
APO in Llama Factory (Zheng et al., 2024) and
use Llama Factory as the training framwork. We
use VLLM (Kwon et al., 2023) as the inference
framework. We train all models with DeepSpeed
ZeRO Stage? (Rajbhandari et al., 2021), Flash At-
tention 2 (Dao, 2023). The key hyperparameter of
PlanLearn is listed in Table 7.

Hyperparameter Value

Cpuct 1.5
Simulations N 200 (for round 1) or 100
Expand child nodes 5 (for root) or 3
Temperature 0.7

Max depth 6

SFT batch size 512

SFT learning rate le-5

SFT epochs 5 (forround 1) or 3
Step-APO batch size 64
Step-APO 0.3
Step-APO learning rate le-6
Step-APO epochs 2
Solution step scaling factor 0.3

Lr scheduler type cosine
Warmup ratio 0.1

Table 7: Key hyperparameters of PlanLearn.

E Prompt used in MCTS

Prompts for Round 1 and Round 2 are listed below.

Round 1 2-shot prompt

You are a powerful agent with
advanced reasoning and planning
capabilities. Answer the questions
as best you can.

' 'Remember:

1. Your answer should have two
sections: "Plans” and "Detailed
Implementation”.
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2. In the "Plans” section, you
should outline step-by-step plans
for solving the problem. These
plans might include extracting key
information, forming
sub-questions, analyzing aspects,
etc. Each step should introduce
new insights, avoid overly
abstract or generic actions. End
each step with "<endstep>".

3. In the "Detailed
Implementation” section, provide
detailed steps that correspond to
each plan, and conclude with "The
final answer is
\boxed{answer}.<endsolution>"

The following is a template for
your answer:

Question: The input question
Plans:

Plan 1: Describe the first plan
step.<endstep>

Plan 2: Describe the second plan
step<endstep>

Plan N: Describe the final plan
step<endstep>

Detailed Implementation:
1. Execute the first plan step
2. Execute the second plan step

N. Execute the final plan step
The final answer is
\boxed{answer?}.<endsolution>

The following are 2 demonstration
examples.

Question: Natalia sold clips to 48
of her friends in April, and then
she sold half as many clips in May.
How many clips did Natalia sell
altogether in April and May?

Plans:
Plan 1: Analyze the total number
of clips sold in April.<endstep>




Plan 2: Calculate the number of
clips sold in May by applying the
"half as many"” condition to the
number sold in April.<endstep>
Plan 3: Sum the results from April
and May to determine the overall
total of clips sold over the two
months.<endstep>

Detailed Implementation:

1. Natalia sold 48 clips in April.
2. The number of clips sold in May
is $\frac{483}{2}=24%.

3. The total number of clips sold
in April and May combined is
$48+24=72%.

The final answer is
\boxed{72}.<endsolution>

Question: If $x*2+y”*2=1$, what is
the largest possible value of
$Ix|+lyl$?

Plans:

Plan 1: Understand that the
equation $x*2+y*2=1$ defines a
circle centered at the origin with
a radius of 1. To maximize
$|x|+|y|$, we need to consider
points on this circle that
maximize the sum of the absolute
values of $x$ and $y$.<endstep>
Plan 2: Recognize that $|x|+|y|$
is maximized when both $|x|$ and
$|y|$ are large. The maximum sum
occurs along lines where $x$ and
$y$ contribute equally,
specifically along the lines $y=x$
and $y=-x$.<endstep>

Plan 3: Identify the points of
intersection between the lines
$y=x$ and $y=-x$ with the circle
$x*2+y*2=1%. These points are
expected to yield the maximum
value of $|x|+|y|$.<endstep>

Plan 4: Evaluate $|x|+|y|$ for the
intersection points to determine
the maximum possible
value.<endstep>

Detailed Implementation:

1. The circle $x*2+y*2=1% is
centered at the origin with a
radius of 1. We need to find the
points on this circle that
maximize the sum $|x|+|y]|$.

2. To maximize $|x|+|y|$, the sum
is largest when both $|x|$ and
$|yl$ are large. This occurs along
the lines $y=x$ and $y=-x$, where
$x$ and $y$ contribute equally to
the sum.

3. The intersection points are
$\left(\frac{1}{\sqrt{2}}, \frac{1
H\sqrt{2}}\right)$,
$\left(\frac{1}{\sqrt{2}},-\frac{
1H\sqrt{2}}\right)$,
$\left(-\frac{1}{\sqrt{23}}, \frac{
13{\sqrt{2}}\right)$, and
$\left(-\frac{1}{\sqrt{2}},-\frac,
{13}{\sqgrt{2}}\right)$.

4. For these points, calculate
$|Ix|+|y|$. For
$\left(\frac{1}{\sart{2}}, \frac{1
H\sqgrt{2}}\right)$,
$Ix|+|y|=\sqrt{2}$. The same value
applies to the other points.
Therefore, the maximum value is
$\sqrt{2}$.

The final answer is
$\boxed{\sqrt{2}1}$.<endsolution>
Now! It's your turn.

Round 2 XML 2-shot prompt

<question>

Question: Natalia sold clips to 48
of her friends in April, and then
she sold half as many clips in May.
How many clips did Natalia sell
altogether in April and May?
</question>

<plan>

<step>

Plan 1: Analyze the total number
of clips sold in April.

</step>

<step>
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Plan 2: Calculate the number of
clips sold in May by applying the
"half as many"” condition to the
number sold in April.

</step>

<step>

Plan 3: Sum the results from April
and May to determine the overall
total of clips sold over the two
months.

</step>

</plan>

<solution>

1. Natalia sold 48 clips in April.
2. The number of clips sold in May
is $\frac{483}{2}=24%.

3. The total number of clips sold
in April and May combined is
$48+24=72%.

The final answer is \boxed{72}.
</solution>

<question>

If $x"2+y*2=1%$, what is the
largest possible value of
$Ix|+|y|$?

</question>

<plan>

<step>

Plan 1: Understand that the
equation $x"2+y*2=1$ defines a
circle centered at the origin with
a radius of 1.

To maximize $|x|+|y|$, we need to
consider points on this circle
that maximize the sum of the
absolute values of $x$ and $y.
</step>

<step>

Plan 2: Recognize that $|x|+|y|$
is maximized when both $|x|$ and
$|y|$ are large. The maximum sum
occurs along lines where $x$ and
$y$ contribute equally,
specifically along the lines $y=x$
and $y=-x.

</step>

<step>

Plan 3: Identify the points of
intersection between the lines
$y=x$ and $y=-x$ with the circle
$x*2+y*2=1$. These points are
expected to yield the maximum
value of $|x|+|y].

</step>

<step>

Plan 4: Evaluate $|x|+|y|$ for the
intersection points to determine
the maximum possible value.
</step>

</plan>

<solution>

1. The circle $x*2+y*2=1% is
centered at the origin with a
radius of 1. We need to find the
points on this circle that
maximize the sum $|x|+|y]|$.

2. To maximize $|x|+|y|$, the sum
is largest when both $|x|$ and
$|y|$ are large. This occurs along
the lines $y=x$ and $y=-x$, where
$x$ and $y$ contribute equally to
the sum.

3. The intersection points are
$\left(\frac{1}{\sqrt{2}}, \frac{1
H\sart{2}}\right)$,
$\left(\frac{1}{\sqrt{2}},-\frac{
1H\sqrt{2}}\right)$,
$\left(-\frac{1}{\sqrt{23}}, \frac{
13{\sqrt{2}}\right)$, and
$\left(-\frac{1}{\sqrt{23}},-\frac,
{13}{\sqgrt{2}}\right)$.

4. For these points, calculate
$|Ix|+|y|$. For
$\left(\frac{1}{\sqrt{2}}, \frac{1
H\sqgrt{2}}\right)$,
$Ix|+|y|=\sqrt{2}$. The same value
applies to the other points.
Therefore, the maximum value is
$\sqrt{23}$.

The final answer is
$\boxed{\sqrt{2}}.

</solution>
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