
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 8502–8530
November 4-9, 2025 ©2025 Association for Computational Linguistics

LLM Distillation for Efficient Few-Shot Multiple Choice Question
Answering

Patrick Sutanto* 1, Joan Santoso* 1, Esther Irawati Setiawan1, Aji Prasetya Wibawa2

1Department of Informatics, Institut Sains dan Teknologi Terpadu Surabaya (ISTTS)
2Electrical Engineering and Informatics Universitas Negeri Malang

patrick.s21@mhs.istts.ac.id {joan, esther}@istts.ac.id aji.prasetya.ft@um.ac.id

Abstract

Encoder models offer efficiency for specific
tasks, but their performance depend on data
availability. While Large Language Models
(LLMs) excel at few-shot learning, their di-
rect application in real-world scenarios is of-
ten hindered by their high computational cost.
To address this challenge, we propose a sim-
ple yet effective approach that uses LLMs for
data generation and scoring to improve encoder
only model performance. We evaluate this
framework on few-shot Multiple Choice Ques-
tion Answering (MCQA), an important task
where acquiring labeled data is costly. Our
approach utilizes LLMs to create MCQA ques-
tions and choices (exploring both direct JSON
and decomposed generation methods) and as-
signs probability scores to these choices. This
generated data and the LLM scores are then
used to fine-tune smaller and more efficient
DeBERTa-v3-base using distillation loss. Ex-
tensive experiments on the MMLU benchmark
demonstrate that our method improves accu-
racy from 28.9% to 39.3%, representing a gain
of over 10% compared to a baseline finetuned
directly on 5-shot examples. This shows the ef-
fectiveness of LLM-driven data generation and
knowledge distillation for few-shot MCQA.

1 Introduction

Large Language Models (LLMs) have significantly
advanced Natural Language Processing (NLP)
(Brown, 2020), demonstrating strong capabilities
in few-shot and even zero-shot learning (Cheung
et al., 2023). However, their large size, includ-
ing powerful open-source versions (Achiam et al.,
2023; Liu et al., 2024), makes direct deployment
costly and impractical for many real-world appli-
cations. Techniques such as pruning (Fang et al.,
2024), quantization (Frantar et al., 2022), and distil-
lation (Gu et al., 2024) aim to mitigate these issues.
Yet, these approaches typically produce smaller

* Equal contribution.

versions of the same large model architecture. This
can limit efficiency gains during inference, partic-
ularly when only a specific task is required. Fur-
thermore, adapting these large models to specific
tasks via fine-tuning remains computationally ex-
pensive, hindering their use in resource-constrained
scenarios.

Encoder models have shown powerful capability
in many NLP tasks, including classification, In-
formation Retrieval, Natural Language Inference
(NLI), and Named Entity Recognition (NER) (De-
vlin, 2018; Reimers and Gurevych, 2019; He et al.,
2020). Compared to LLMs, encoder models of-
fer efficiency advantages due to their significantly
smaller size, requiring fewer resources for fine-
tuning on specific tasks. However, these models
often require a significant amount of labeled train-
ing data to perform well. Obtaining high-quality
training data for encoder models can be expensive,
which limits their applicability when available data
is limited.

To address the challenge of limited data for en-
coder models, distilling knowledge from LLMs
into these smaller models is a promising strat-
egy. Current approaches often rely on using the
LLM to generate synthetic data or augment exist-
ing datasets for training the smaller model (Yu et al.,
2023; Sharma et al., 2023). However, we posit that
relying solely on data generation limits the depth of
knowledge transferred and typically results in per-
formance significantly lower than training on real
data. To bridge this gap, we argue that combining
LLM-driven data generation with probability-based
distillation is crucial.

While methods for data generation and LLM
knowledge distillation have been studied indepen-
dently (Long et al., 2024; Ko et al., 2024), research
investigating their combination remains limited. To
explore this combined framework, we focus on the
task of few-shot multiple choice question answer-
ing (MCQA) (Hendrycks et al., 2020). MCQA is

8502

extensively used to evaluate model performance,
and obtaining sufficient labeled data for it can be
difficult and costly. Furthermore, MCQA is a cru-
cial task in natural language understanding with
wide applications in domains such as medicine (Jin
et al., 2021), law (Zheng et al., 2021), and educa-
tion (Liang et al., 2018).

This work introduces a framework combining
LLM-driven data generation and probability dis-
tillation for few-shot MCQA tasks, focusing on
straightforward techniques to establish the poten-
tial of this approach. We employ probability-based
distillation, a fundamental technique. For data gen-
eration, we explore two methods: 1) generating
structured JSON data, which can yield high quality
but is prone to parsing errors, and 2) a decomposed
approach generating questions, correct answers,
and distractors sequentially, which avoids parsing
issues potentially at the cost of data quality. Com-
paring these methods allows us to analyze the effect
of generated data quality on the student encoder
model. We emphasize that this study focuses on
these foundational techniques and exploring more
complex generation or distillation methods, while
active research areas, is outside the scope of this
paper.

Extensive experiments on the Massive Multi-
task Language Understanding (MMLU) bench-
mark demonstrate the effectiveness of our proposed
framework. Our approach significantly boosts the
performance of an encoder-only baseline model
(DeBERTa-base-v3 trained on only 5 examples),
achieving a 10.4 percentage point absolute improve-
ment in accuracy (from 28.9% to 39.3%). Remark-
ably, LLM distillation enables this relatively small
DeBERTa model to surpass the 5-shot MMLU per-
formance of significantly larger models, including
LLaMA-7B (35.1%) and Flan-T5-250M (35.9%) –
the latter having been extensively trained on a large
multi-task instruction dataset. This highlights the
potential of our method to achieve strong MCQA
performance with smaller, more efficient mod-
els. Furthermore, our distilled DeBERTa model
achieves results comparable to a 4-bit quantized
LLaMA-3.2-1B model, while maintaining the in-
herent efficiency advantages of the encoder archi-
tecture.

We outline our contributions as follows:

• We propose a framework utilizing LLM-
generated data and probability distillation to
train efficient encoder-only models for few-

shot MCQA.

• We analyze structured (JSON) versus decom-
posed LLM data generation strategies, demon-
strating that distillation is crucial for robust
few-shot performance.

• Our method significantly boosts few-shot
MCQA accuracy on MMLU and achieves re-
sults competitive with, or surpassing, much
larger models in this setting.

2 Related Works

Multiple Choice Question Answering (MCQA)
Data Generation. Generating synthetic data for
MCQA has been explored previously (Singh Bha-
tia et al., 2013; Araki et al., 2016), often relying
on external resources like Wikipedia (Rodriguez-
Torrealba et al., 2022) or knowledge graphs (Yu
et al., 2024). While recent work has investigated
using LLMs for zero-shot MCQA data generation
(Cheung et al., 2023), these approaches typically
involve human supervision to ensure quality, lim-
iting the scalability of data creation (Kıyak and
Emekli, 2024). In contrast, our work focuses on
leveraging LLMs to generate large-scale MCQA
datasets automatically, with the aim of distilling
their knowledge into efficient encoder-only models
for few-shot learning.

Few-Shot Multiple Choice Question Answer-
ing (MCQA). Few-Shot MCQA remains a chal-
lenging problem, as achieving strong performance
often requires large, computationally expensive lan-
guage models (Anil et al., 2023b; Touvron et al.,
2023; Achiam et al., 2023; Anil et al., 2023a).
While efficient encoder-only models have shown
promise (Sileo, 2024; Ghosal et al., 2022), they
typically rely on extensive multi-task training with
hundreds of datasets. However, acquiring large-
scale MCQA datasets can be costly and time-
consuming (Welbl et al., 2017; Yu et al., 2024).
In this work, we aim to enable effective few-shot
MCQA with encoder-only models by leveraging
LLM-generated data and knowledge distillation,
addressing the limitations of both data scarcity and
computational cost.

LLM Distillation. LLM distillation aims to
transfer knowledge from large language models
into smaller, more efficient ones (Hinton et al.,
2015; Xu et al., 2024). A common approach in-
volves generating training data with LLMs and
then fine-tuning smaller models on this data. This

8503

approach has proven successful in various tasks
like classification (Chung et al., 2023), instruc-
tion following (Li et al., 2023), and more (Chen
et al., 2022; Yehudai et al., 2024; Long et al.,
2024). However, most research focuses on dis-
tilling into smaller but similar language models
(Gu et al., 2024), primarily by creating synthetic
datasets (Kim and Rush, 2016; Agarwal et al.,
2024). Directly distilling LLM representations is
challenging (Xu et al., 2024), and distilling into
different model architectures, such as encoder-only
models, remains largely unexplored. This gap is
particularly pronounced in the context of few-shot
MCQA, where the potential of distilling LLMs into
encoder-only models remains largely unexplored.
While some work has investigated LLM distillation
for other tasks, such as semantic search (Liao et al.,
2024), to our knowledge our work is the first to sys-
tematically explore a combined approach of data
generation and probability score-based distillation
for enhancing encoder-only models specifically for
few-shot MCQA.

3 Method

Our method addresses few-shot MCQA by lever-
aging the power of LLMs to generate synthetic
training data and then distilling their knowledge
into a smaller, more efficient encoder-only model,
such as DeBERTa. An overview of our method can
be seen in Figure 1. We first generate an MCQA
dataset and obtain probability scores for each an-
swer choice using the LLM. These scores serve
as soft targets to guide the training of the encoder
model, which learns from both the generated data
and the distilled LLM knowledge through distilla-
tion losses. This approach enables us to enhance
the performance of the encoder model in few-shot
scenarios while reducing the computational cost as-
sociated with deploying compute-intensive LLMs.

3.1 LLM data generation for MCQA

Generating high-quality training data is crucial for
effective few-shot MCQA. In this subsection, we
explore two distinct strategies for leveraging LLMs
to create synthetic MCQA datasets: (1) direct gen-
eration in JSON format, and (2) a decomposed
approach that separates question, positive answer,
and negative answer generation. While the direct
JSON approach can potentially yield higher-quality
data when successful, it can also suffer from pars-
ing issues that reduce the amount of usable data.

The decomposed approach, however, avoids the
potential parsing issues associated with the JSON
method by generating data in a simpler, unstruc-
tured format. We detail both methods below and
empirically evaluate their impact on the student
model’s performance in Section 4. We also include
all the prompts we used in Appendix F.

3.1.1 JSON
In our first approach, we attempt to directly gen-
erate MCQA data in JSON format using few-shot
examples. The JSON structure includes the ques-
tion (string), choices (array of strings), and the
answer (integer representing the index of the cor-
rect choice). This format implicitly requires the
LLM to generate the question first, followed by the
answer choices, and finally, the index of the correct
answer. However, our experiments reveal that this
structured generation process can be challenging
for LLMs. They may not consistently adhere to the
strict JSON format, leading to parsing errors and a
reduction in the amount of usable data. To address
this limitation, we propose a decomposed gener-
ation method that bypasses the need for parsing
JSON output.

3.1.2 Decompose
Our second approach termed the decomposed gen-
eration method, breaks down the MCQA data gen-
eration process into three distinct stages: question
generation, positive answer generation, and nega-
tive answer generation. For each stage, we utilize a
few-shot dataset containing questions, positive an-
swers, negative answers, and relevant topics. This
decomposition eliminates the need for complex
parsing of LLM output, which can be prone to er-
rors when enforcing structured formats like JSON.
While this approach might potentially lead to a
slight decrease in individual data point quality, it
significantly reduces data loss due to parsing fail-
ures, ultimately yielding a larger volume of usable
training data. For simplicity, we focus on generat-
ing data within a single topic, such as high school
programming or abstract algebra, ensuring readily
available background information. We leverage the
few-shot examples and topic information to guide
the LLM in generating new MCQA instances.

Question Generation. The first stage of the de-
composed generation method focuses on creating
new questions. We prompt the LLM with instruc-
tions like "Create a question about {topic}!", where
{topic} is replaced with the chosen subject (e.g.,

8504

5-shot MCQA
example

JSON data generation

Decompose Data
Generation

Or

Question Generation

Positive Generation

Negative Generation

Step 1
LLM Data Generation

Step 2
LLM Scoring

Which type of rock is
formed from cemented
sand?
A. slate
B. sedimentary
C. igneous
D. metamorphic
Answer:

LLM Probability Score :
[(A)18.3%, (B)46.9%, (C)14.9%,

(D)19.9%]

Training with
Distillation

Step 3
Finetune Student

Figure 1: Framework for Few-Shot MCQA using LLM-Generated Data and Distillation.

high school programming). To guide the LLM and
ensure the generated questions are relevant and
similar in style to the target domain, we provide a
few-shot prompt consisting of examples randomly
sampled from the few-shot dataset. We also adjust
the LLM’s temperature parameter during this stage
to encourage diversity in the generated questions
and prevent overfitting to the provided examples.

positive answer generation. The second stage
focuses on generating the correct answers (positive
examples) for the questions created in the previous
stage. Similar to question generation, we employ
few-shot prompting to guide the LLM. We provide
examples of questions and their corresponding cor-
rect answers from the few-shot dataset. Then, we
present the newly generated questions to the LLM,
prompting it to generate relevant and accurate pos-
itive answers based on the provided context and
examples.

negative answer generation. The final stage
of data generation focuses on creating plausible
but incorrect answer choices (negative examples)
for each question. We use few-shot prompting to
guide the generation process. To ensure diversity,
we generate N negative examples sequentially for
each question, prompting the LLM in each itera-
tion to produce a distinct answer, considering all
previously generated ones. This iterative approach
helps create a diverse set of negative examples for
each MCQA instance.

3.2 LLM distillation

After generating the MCQA dataset, we train an
encoder model Eθ on this data. The encoder
model comprises a pre-trained encoder, which
maps strings to vector representations, followed
by a linear layer that outputs scalar values. For

each choice c ∈ C associated with a question, we
concatenate the question and the choice and feed
it into the encoder, obtaining the output ŷencc ∈ R.
We train Eθ using the standard cross-entropy loss :

LCE(p, p̂) = − 1

C

C∑

c=1

pclog(p̂c)

where p̂c denotes the model’s predicted probability
for choice c, and pc is the corresponding ground
truth probability, which is a one-hot vector indi-
cating the correct answer. We then define the loss
function Lgenerate for training the encoder model
using the generated positive answers as labels. This
loss function is given by Lgenerate = LCE(p, p̂),
where p̂c is computed using softmax as:

p̂c =
exp(ŷencc)

∑C
c′=1 exp(ŷ

enc
c′)

.

Label scoring. We employ an LLM to score
each question and its associated choices, following
the approach described in (Robinson and Wingate,
2023). We present the question and all choices to
the LLM, with each choice uniquely indexed using
characters (e.g., A, B, C). The prompt is designed
to elicit a single character as the LLM’s output,
representing its predicted answer. We record the
LLM’s score for each unique character, denoted as
ŷLLMc , where c represents a choice c ∈ C associ-
ated with a question.

The LLM score ŷLLMc represents the likelihood
of the LLM generating the unique character cor-
responding to choice c, given the question and all
answer choices with their identifiers. Formally:

ŷLLMc ∝ PC(c | x),
where x is the input string containing the ques-
tion and all answer choices, each marked with its

8505

unique identifier. This scoring method has been
shown to improve LLM performance on MCQA
tasks (Robinson and Wingate, 2023).

Training using distillation loss. We leverage
the LLM scores to guide the training of the encoder
model through distillation loss. Following the origi-
nal distillation framework (Hinton et al., 2015), we
define the distillation loss as Ldistill = LCE(p, p̂)
where p represents the soft target probabilities de-
rived from the LLM scores:

pc =
exp(ŷLLMc)

∑C
c′=1 exp(ŷ

LLM
c′)

.

and p̂ represents the encoder model’s predicted
probabilities, as previously defined. By using the
LLM’s soft target probabilities as a guide, the dis-
tillation loss encourages the encoder model to learn
a similar probability distribution over the answer
choices, effectively transferring knowledge from
the LLM to the smaller encoder model.

4 Experiments

We conduct experiments to evaluate the effec-
tiveness of our proposed framework for few-shot
MCQA. We use a dataset consisting of only 5
MCQA examples covering the same topic, em-
ploying Llama-3.1-8B-Instruct 1 as the LLM for
data generation and scoring, and DeBERTa-base-
v3 (184M parameters) 2 as the efficient encoder-
only student model. We chose DeBERTa-base-v3
due to its strong performance and relatively small
size, making it suitable for resource-constrained
scenarios.

We train the DeBERTa-base-v3 model for 500
iterations with a learning rate of 1e-5, using a batch
size of 4 and gradient accumulation for 2 steps,
which is equal to using a batch size of 8. For the
decompose generation method we set the number
of negative examples to be 5 for all experiments,
except explicitly mentioned. We average the re-
sults across 5 different random seeds for all ex-
periments. Unless otherwise specified, we gener-
ate 1024 MCQA examples from the initial 5-shot
dataset for training using the temperature of 2. We
first evaluate our approach on the MMLU bench-
mark in Section 4.1 and then conduct an ablation
study on the ARC datasets in Section 4.2 to analyze
the impact of different components of our method.

1https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-
Instruct

2https://huggingface.co/microsoft/deberta-v3-base

4.1 MMLU benchmark

We evaluate our approach on the Massive Mul-
titask Language Understanding (MMLU) bench-
mark (Hendrycks et al., 2020), a widely used bench-
mark for assessing few-shot MCQA performance
in LLMs. MMLU comprises 57 datasets cover-
ing diverse topics, each divided into development
(dev), validation, and test splits. We utilize only
the 5-shot dev set for data generation in all our
experiments.

On the MMLU benchmark, we evaluate both
the JSON and decomposed data generation meth-
ods, both with and without knowledge distil-
lation from the LLaMA-3.1-8B-Instruct model
(Dubey et al., 2024). Our evaluation includes com-
parisons against a range of baselines, including
the LLaMA-3.1-8B-Instruct teacher model itself,
smaller LLMs like LLaMA-7B (Touvron et al.,
2023), and Gemma-2-2B-it (Team et al., 2024) 3,
the encoder-decoder model Flan-T5-base (Chung
et al., 2024), and a strong encoder-only model,
Tasksource DeBERTa-base 4, which was fine-tuned
on a large multi-task dataset (Sileo, 2024).

Table 1 presents the few-shot MCQA results
on the MMLU benchmark. As expected, directly
training DeBERTa-base-v3 on only 5 examples
yields near-random accuracy because of overfit-
ting. Using LLM-generated data significantly im-
proves performance, with the decomposed and
JSON methods achieving average gains of 4.2 and
4.3 points, respectively. However, incorporating
LLM-generated soft labels via distillation leads
to even more substantial improvements, boosting
accuracy by an additional 5.3 points for the decom-
posed method and 6 points for the JSON method.
This suggests that while LLMs may generate some
incorrect answers during data creation, the distilla-
tion process allows them to effectively relabel these
instances, leading to a more accurate training sig-
nal for the student model. This observation aligns
with findings in (Robinson and Wingate, 2023),
which demonstrate that framing answer generation
as a multiple-choice task can enhance LLM perfor-
mance.

Our distilled DeBERTa-base-v3 model (184M
parameters) achieves encouraging results. Its per-
formance approaches that of significantly larger
models like LLaMA-7B (over 30 times larger) and

3https://huggingface.co/google/gemma-2-2b-it
4https://huggingface.co/sileod/deberta-v3-base-

tasksource-nli

8506

Method Model
Size

STEM Social
Science

Humanities Other Average

LLaMA-7B † 7B 34.0 30.5 38.3 38.1 35.1
Flan-T5-250M † 248M 30.1 44.0 33.9 38.9 35.9
LLaMA-3.2-1B-Instruct 4 bit 1B 35.7 45.6 42.2 40.6 40.3
Gemma-2-2b-it 2B 46.8 66.9 61.6 61.3 57.7
LLaMA-3.1-8B-Instruct 8B 58.4 75.2 71.3 70.0 67.5
DeBERTa 5-shot 184M 28.7 27.1 29.8 29.8 28.9
Decompose generate 184M 27.5 36.7 35.3 35.4 33.1
JSON generate 184M 28.5 36.2 35.6 35.4 33.3
Decompose distill 184M 31.6 42.4 42.6 40.3 38.4
JSON distill 184M 32.5 43.2 44.3 40.6 39.3
Tasksource 184M 35.6 55.4 54.4 50.8 47.5
Tasksource + decompose 184M 36.6 55.1 51.9 49.1 46.8
Tasksource + JSON 184M 37.2 56.3 54.1 50.1 48.0

Table 1: 5-Shot MCQA Performance on the MMLU Benchmark. Results for LLaMA-7B and Flan-T5-250M
(marked with †) are taken from the original papers, which may have different training setups.

Flan-T5-250M (extensively fine-tuned on a multi-
task dataset). While our method does not yet match
top instruction-tuned LLMs such as Gemma-2-2B-
it or the LLaMA-3.1-8B-Instruct teacher model,
its performance is comparable to a 4-bit quantized
LLaMA-3.2-1B-Instruct, particularly notable given
DeBERTa’s significantly lower memory footprint
during inference. These findings highlight the po-
tential of our approach to achieve strong perfor-
mance with smaller, more efficient models, making
it particularly attractive for resource-constrained
settings

Although our method currently lags behind
the Tasksource DeBERTa-base model, which was
trained on a massive multi-task dataset including
MMLU, our data generation and distillation tech-
niques hold the potential to boost its performance
further. Fine-tuning Tasksource DeBERTa-base
with our JSON-generated data and distillation re-
sults in a 0.5-point average improvement. Inter-
estingly, fine-tuning with data from the decom-
posed method leads to a performance decrease,
indicating that the pre-trained Tasksource model
may be more sensitive to data quality and favors
the higher-quality data generated by the JSON ap-
proach, which benefits from an implicit filtering
mechanism. This is supported by our analysis of
the dataset statistic in Appendix E.3 and also the
example in Appendix G

Considering that our approach generates only
1,024 training instances from a mere 5 initial exam-
ples, the observed performance gains suggest that

our method effectively distills knowledge from the
significantly larger LLaMA-3.1-8B-Instruct model
into the smaller DeBERTa-base-v3. While these
results are promising, they also highlight opportuni-
ties for further research and improvement, such as
exploring more advanced data generation and dis-
tillation techniques to further bridge the gap with
state-of-the-art models.

4.2 Ablation Study

In this section, we conduct an ablation study on the
ARC-easy and ARC-Challenge benchmarks (Clark
et al., 2018) to analyze the impact of different com-
ponents of our proposed method. We use a 5-shot
learning setup, randomly selecting 5 examples from
the training set to generate 1024 data points, which
are then scored using LLaMA 3.1-8B-Instruct. We
train DeBERTa-base-v3 models on the generated
data and scores.

We investigate several key aspects. First, we ex-
amine the effect of the number of generated data
points, as detailed in Section 4.2.1. Second, in Sec-
tion 4.2.2, we analyze the impact of using smaller
LLMs for data generation and scoring. This sec-
tion also includes a comparison with a paraphrasing
baseline.

4.2.1 Effect of Number of generated data
To analyze the impact of the number of generated
data points, we evaluate models trained on datasets
of varying sizes: [16, 32, 64, 128, 256, 512, 1024].
We use a cumulative approach, where each larger

8507

16 32 64 128 256 512 1024
Number of data

40

50

60

70

Ac
cu

ra
cy

Real Data
Decompose
Decompose Distill
JSON
JSON Distill
5-shot baseline

(a) Arc-Easy

16 32 64 128 256 512 1024
Number of data

20

30

40

50

Ac
cu

ra
cy

Real Data
Decompose
Decompose Distill
JSON
JSON Distill
5-shot baseline

(b) Arc-Challenge

Figure 2: Effect of Generated Data Size on Few-Shot MCQA Accuracy. The figure compares the performance of
DeBERTa-base-v3 trained on varying amounts of generated data (using both JSON and Decompose methods), with
and without LLM distillation, against a baseline trained on real data from the ARC-Easy (a) and ARC-Challenge (b)
datasets.

dataset includes all the data points from the smaller
datasets. For instance, the 32-sample dataset con-
sists of the initial 16 samples plus 16 new sam-
ples. This ensures that any observed performance
changes can be directly attributed to the increase
in training data. We compare the performance of
models trained on: (1) real data from the ARC
training set, (2) generated data, and (3) generated
data augmented with LLM distillation.

Figure 2 presents the results of this analysis. We
observe that both data generation and LLM dis-
tillation are crucial for improving performance in
the few-shot setting. Training DeBERTa-base-v3
with only 5 examples leads to high variance across
different random seeds, indicating instability due
to limited data. Leveraging generated data substan-
tially improves performance and reduces variance.
Additionally, the inclusion of LLM distillation fur-
ther boosts accuracy and reduces variance, demon-
strating the complementary benefits of these tech-
niques. Our approach significantly outperforms the
5-shot baseline, demonstrating its effectiveness in
leveraging limited data for few-shot MCQA.

We generally observe increasing performance
with larger amounts of generated data, particu-
larly when combined with LLM distillation. No-
tably, LLM distillation consistently boosts accu-
racy across all data sizes and generation methods,
demonstrating its robustness and effectiveness. Al-
though our method does not surpass the perfor-
mance of a model trained on abundant real data,
achieving comparable results with significantly less
real data is significant. Using JSON-generated data
and distillation, we achieve accuracy similar to

training on 512 real samples for ARC-Easy and
256 real samples for ARC-Challenge. This high-
lights the potential of our approach to reduce the
reliance on extensive, expensive real-world MCQA
datasets.

4.2.2 Effect of Generation and Scoring
Method

We further investigate the influence of the LLM
used for data generation and scoring. Table 2
presents the results for data generated by LLaMA-
3.1-8B-Instruct and the smaller Gemma-2-2B-it.
Interestingly, our approach achieves comparable
performance with both LLMs, suggesting that even
smaller LLMs can effectively generate and score
data for our framework. Notably, using the JSON
generation method with both LLMs yields similar
results, although the success rate of JSON parsing
varies significantly. We hypothesize that this is
because the JSON format acts as an implicit filter,
discarding poorly formatted data, which is more
likely to occur with the smaller Gemma model. Fur-
thermore, we observe that distillation consistently
improves performance across all LLM and genera-
tion method combinations, indicating its ability to
refine potentially noisy labels from the generated
data.

We also compare our method to a baseline that
uses paraphrasing to augment the 5-shot data. We
show the prompt we use in Appendix F. While para-
phrasing has proven effective for various NLP tasks
(Feng et al., 2021), our results demonstrate that
LLM-based data generation is significantly more
effective for few-shot MCQA. We use LLaMA-
3.1-8B-Instruct to paraphrase the questions and

8508

Generation Method
ARC-Easy ARC-Challenge

Generate Distill SR Generate Distill SR
LLaMA-3.1-8B JSON 61.9 ± 0.8 69.8 ± 0.3 0.52 43.6 ± 0.9 48.6 ± 0.9 0.66
Gemma-2-2b JSON 50.6 ± 4.9 68.2 ± 0.6 0.21 40.1 ± 2.6 48.0 ± 0.7 0.28
LLaMA-3.1-8B Decomp. 64.3 ± 2.1 67.8 ± 1.0 1.0 39.4 ± 2.2 45.3 ± 1.1 1.0
Gemma-2-2b Decomp. 61.6 ± 2.4 60.0 ± 1.5 1.0 37.7 ± 2.2 43.9 ± 1.2 1.0
Paraphrase 52.8 ± 3.0 42.2 ± 8.6 1.0 36.6 ± 3.1 41.8 ± 2.5 1.0

Table 2: Impact of Generation and Scoring Methods on Performance. The table shows the accuracy of different
language models on ARC-Easy and ARC-Challenge datasets, using various generation and scoring methods. "SR"
denotes the success rate of JSON parsing. "Decomp." indicates a decomposition-based generation method. All
models utilize instruction-tuned versions.

choices in the 5-shot dataset via few-shot prompt-
ing. Even when using data generated by the smaller
Gemma-2-2B-it model, our approach substantially
outperforms the paraphrasing baseline on both
ARC datasets. This highlights the importance of
generating new data, rather than simply rephrasing
existing examples, to enhance data diversity and
improve performance in few-shot settings.

4.3 Binary Classification Extensions
To assess the broader applicability of our frame-
work, we adapt it to a binary classification setting.
This setting mirrors real-world scenarios of vali-
dating the correctness of a single candidate answer
for a given question. We investigate two distinct
methods for this setting. First, we train a model
with binary cross-entropy (BCE) loss and sigmoid
activation on the final layer, using data generated
by the LLaMA-3.1-8B-Instruct using JSON format.
Second, we use a simple heuristic approach. We
train the model exactly as in the MCQA setting.
During the evaluation, we search for a constant
threshold using the same data by averaging the
logits produced by the model for each question-
answer pair across all choices. During inference, if
the logit for a pair is above the threshold, the pair
is classified as correct.

For evaluation, we reframe the ARC dataset as a
binary classification task to determine the correct-
ness of question-answer pairs. We use the binary
F1-score metric to handle the imbalance between
correct and incorrect pairs. Results are presented in
Table 3. As expected, using only 5-shot examples
performs poorly, while training on real binary data
achieves good results. Interestingly, models trained
in the MCQA setting and then classified using the
heuristic approach outperform the models trained
directly with BCE loss on generated data. Fur-

thermore, models trained with distillation and then
classified using the heuristic demonstrate smaller
variance and even outperform models trained on
real binary data on the ARC-Challenge dataset. We
hypothesize that the heuristic, by leveraging the
full probability distribution learned during MCQA
training, allows the model to develop a more nu-
anced representation of correctness.

4.4 Student Model Distillation Temperature

In the distillation process, we can control the tem-
perature of the softmax function applied to both the
student model’s predictions and the teacher LLM’s
likelihood scores:

pc =
exp(ŷc/r)∑C

c′=1 exp(ŷc′/r)
.

Where r denotes the temperature. A temperature of
0 is equivalent to using hard labels from the teacher
model (selecting the most probable answer). Table
4 presents the results of varying the distillation
temperature.

Our analysis of the distillation temperature re-
veals two key benefits. First, using a temperature
of 0 (hard labels) significantly outperforms using
the original generated labels, confirming that the
teacher model effectively corrects labeling noise in-
troduced during data generation. Second, employ-
ing soft labels (temperature > 0) yields a further
performance gain, underscoring the importance of
distilling the teacher’s full probability distribution
to guide the student. Finally, we find the frame-
work is robust to the specific temperature value, as
performance remains consistent across all positive
temperatures tested.

8509

Method ARC-Easy ARC-Challenge
1024 real data binary 56.81 ± 1.47 40.25 ± 4.08
5 real data binary 27.01 ± 10.09 14.23 ± 9.64
1024 JSON binary 48.86 ± 1.42 32.20 ± 6.93
1024 JSON MCQA heuristic 49.50 ± 1.35 42.38 ± 0.54

Table 3: Results on Binary Classification Tasks

Temperature
ARC-Easy ARC-Challenge

Decompose JSON Decompose JSON
Generated 64.3 ± 2.1 61.9 ± 0.8 39.3 ± 2.2 43.6 ± 0.9

0.0 64.9 ± 1.4 66.8 ± 0.7 42.5 ± 1.4 46.7 ± 0.9
0.5 67.4 ± 0.5 69.2 ± 0.9 45.1 ± 0.7 48.2 ± 1.0
1.0 67.8 ± 1.0 69.8 ± 0.3 45.4 ± 1.2 48.6 ± 0.9
1.5 67.8 ± 1.7 69.7 ± 1.0 44.2 ± 1.0 45.4 ± 1.2
2.0 67.9 ± 0.5 69.5 ± 0.5 45.4 ± 1.2 48.1 ± 1.2

Table 4: Effect of the distillation temperatures on generated data.

4.5 Additional Experiment Results

Further experimental results and analyses are de-
tailed in Appendix C. We present teacher model per-
formance on the ARC datasets (Appendix C.1). Hy-
perparameter analyses reveal that while higher gen-
eration temperatures improve performance, they re-
duce JSON parsing success rates (Appendix C.2);
however, the framework is robust to the number
of choices generated by the decomposed method
(Appendix C.3). Comparisons with lightweight
LLMs (Appendix C.4) show our distilled De-
BERTa performs comparably to a 5-shot, 4-bit
quantized 1B parameter LLaMA model, signifi-
cantly outperforming its 0-shot counterpart. Cross-
dataset evaluation (training on ARC-Easy, test-
ing on MMLU, Appendix C.5) confirms perfor-
mance gains stem from acquiring domain-specific
knowledge, not merely learning the MCQA for-
mat. Finally, Appendix E provides analyses of
the generated datasets, demonstrating that the de-
composed generation approach is generally faster
(Appendix E.1), the generated data is novel and
distinct from training/test sets (Appendix E.2), and
JSON-generated data exhibits token length statis-
tics more similar to real data (Appendix E.3)

5 Conclusion

This work demonstrates the effectiveness of
leveraging LLMs for both data generation and
probability-based distillation to enable strong few-

shot MCQA performance in smaller, more effi-
cient encoder-only models. Our findings show
this combination is crucial for improving perfor-
mance over using only LLM-generated data, sig-
nificantly reducing the gap compared to training
on real data. Our approach achieves encouraging
results on the MMLU benchmark (+10.4% abso-
lute gain over a 5-shot baseline), even approaching
the performance of significantly larger models like
LLaMA-7B and Flan-T5-250M, despite their more
extensive training. Furthermore, our distilled De-
BERTa model performs comparably to few-shot re-
sults from lightweight LLMs like a 4-bit quantized
LLaMA-1B model, while offering substantial mem-
ory efficiency advantages during inference. This
highlights the potential of our method to achieve
strong performance with more compact and compu-
tationally efficient models. This work also demon-
strates that using distillation is crucial to close the
gap between training on real and artificial data.

However, a performance gap remains compared
to models trained with large-scale multi-task data,
suggesting opportunities for further improvement.
Future work will focus on bridging this gap by ex-
ploring more advanced data filtering techniques
to enhance the quality of the generated data and
investigating novel distillation strategies to max-
imize knowledge transfer from LLMs to smaller
models. Additionally, extending our approach to
effectively handle longer-context MCQA tasks is a
crucial direction for future research.

8510

6 Limitations

Our work relies on a robust, instruction-tuned LLM,
which is currently readily available in English but
might be less accessible in other languages. This
language dependence, coupled with the reliance on
strong LLM capabilities, could limit the generaliz-
ability of our method to scenarios where suitable
LLMs are unavailable or less powerful.

Despite significant improvements over the naive
5-shot baseline, our method still exhibits a substan-
tial performance gap compared to models trained
with extensive data and multi-task learning, as well
as the teacher LLM itself. Bridging this gap by ex-
ploring more advanced data generation techniques,
incorporating diverse knowledge sources, or devel-
oping more effective distillation strategies remains
a promising direction for future research.

Another limitation of our approach is the poten-
tial for bias in the LLM-generated data. LLMs are
trained on massive text corpora, which inevitably
contain societal biases. These biases can be re-
flected in the generated questions and choices, po-
tentially leading to a biased downstream encoder
model. This inherited bias could result in unfair
or discriminatory outcomes when the model is de-
ployed in real-world applications. Mitigating this
bias is a crucial area for future work.

A further limitation is that our current work
focuses on MCQA tasks with relatively short
question-and-answer contexts, which are easier for
current LLMs to generate and score effectively.
We observed increased noise in the generated data
when dealing with longer contexts, evidenced by
a performance degradation when fine-tuning the
Tasksource DeBERTa-base model on generated
data for longer-context MMLU tasks. This sug-
gests that generalizing our approach to tasks involv-
ing longer contexts will require further research.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Pi-
otr Stanczyk, Sabela Ramos Garea, Matthieu Geist,
and Olivier Bachem. 2024. On-policy distillation
of language models: Learning from self-generated
mistakes. In The Twelfth International Conference
on Learning Representations.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023a. Gemini: A family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 1.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023b. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Jun Araki, Dheeraj Rajagopal, Sreecharan Sankara-
narayanan, Susan Holm, Yukari Yamakawa, and
Teruko Mitamura. 2016. Generating questions and
multiple-choice answers using semantic analysis of
texts. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: Technical Papers, pages 1125–1136.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint ArXiv:2005.14165.

Zeming Chen, Qiyue Gao, Antoine Bosselut, Ashish
Sabharwal, and Kyle Richardson. 2022. Disco: Dis-
tilling counterfactuals with large language models.
arXiv preprint arXiv:2212.10534.

Billy Ho Hung Cheung, Gary Kui Kai Lau, Gordon
Tin Chun Wong, Elaine Yuen Phin Lee, Dhananjay
Kulkarni, Choon Sheong Seow, Ruby Wong, and
Michael Tiong-Hong Co. 2023. Chatgpt versus hu-
man in generating medical graduate exam multiple
choice questions—a multinational prospective study
(hong kong sar, singapore, ireland, and the united
kingdom). PloS one, 18(8):e0290691.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

John Joon Young Chung, Ece Kamar, and Saleema
Amershi. 2023. Increasing diversity while main-
taining accuracy: Text data generation with large
language models and human interventions. arXiv
preprint arXiv:2306.04140.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

8511

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg
Heinrich, Jeff Pool, Jan Kautz, Pavlo Molchanov,
and Xinchao Wang. 2024. Maskllm: Learnable semi-
structured sparsity for large language models. arXiv
preprint arXiv:2409.17481.

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation ap-
proaches for nlp. arXiv preprint arXiv:2105.03075.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Deepanway Ghosal, Navonil Majumder, Rada Mihal-
cea, and Soujanya Poria. 2022. Two is better than
many? binary classification as an effective approach
to multi-choice question answering. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 10158–10166,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024.
Minillm: Knowledge distillation of large language
models. In The Twelfth International Conference on
Learning Representations.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng,
Hanyi Fang, and Peter Szolovits. 2021. What disease
does this patient have? a large-scale open domain
question answering dataset from medical exams. Ap-
plied Sciences, 11(14):6421.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Diederik P Kingma. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Yavuz Selim Kıyak and Emre Emekli. 2024. Chatgpt
prompts for generating multiple-choice questions in
medical education and evidence on their validity: a
literature review. Postgraduate medical journal, page
qgae065.

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-
Young Yun. 2024. Distillm: Towards streamlined
distillation for large language models. arXiv preprint
arXiv:2402.03898.

Quentin Lhoest, Albert Villanova Del Moral, Yacine
Jernite, Abhishek Thakur, Patrick Von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, et al. 2021. Datasets: A commu-
nity library for natural language processing. arXiv
preprint arXiv:2109.02846.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke
Zettlemoyer, Omer Levy, Jason Weston, and Mike
Lewis. 2023. Self-alignment with instruction back-
translation. arXiv preprint arXiv:2308.06259.

Chen Liang, Xiao Yang, Neisarg Dave, Drew Wham,
Bart Pursel, and C Lee Giles. 2018. Distractor gen-
eration for multiple choice questions using learning
to rank. In Proceedings of the thirteenth workshop
on innovative use of NLP for building educational
applications, pages 284–290.

Zihan Liao, Hang Yu, Jianguo Li, Jun Wang, and Wei
Zhang. 2024. D2llm: Decomposed and distilled large
language models for semantic search. arXiv preprint
arXiv:2406.17262.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao
Ding, Gang Chen, and Haobo Wang. 2024. On llms-
driven synthetic data generation, curation, and evalu-
ation: A survey. arXiv preprint arXiv:2406.15126.

Michal Lukasik, Srinadh Bhojanapalli, Aditya Menon,
and Sanjiv Kumar. 2020. Does label smoothing mit-
igate label noise? In International Conference on
Machine Learning, pages 6448–6458. PMLR.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Joshua Robinson and David Wingate. 2023. Leveraging
large language models for multiple choice question
answering. In The Eleventh International Conference
on Learning Representations.

Ricardo Rodriguez-Torrealba, Eva Garcia-Lopez, and
Antonio Garcia-Cabot. 2022. End-to-end genera-
tion of multiple-choice questions using text-to-text
transfer transformer models. Expert Systems with
Applications, 208:118258.

Saket Sharma, Aviral Joshi, Yiyun Zhao, Namrata
Mukhija, Hanoz Bhathena, Prateek Singh, and
Sashank Santhanam. 2023. When and how to para-
phrase for named entity recognition? In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7052–7087.

Damien Sileo. 2024. tasksource: A large collection
of NLP tasks with a structured dataset preprocess-
ing framework. In Proceedings of the 2024 Joint

8512

https://doi.org/10.18653/v1/2022.emnlp-main.691
https://doi.org/10.18653/v1/2022.emnlp-main.691
https://doi.org/10.18653/v1/2022.emnlp-main.691
https://openreview.net/forum?id=yKbprarjc5B
https://openreview.net/forum?id=yKbprarjc5B
https://openreview.net/forum?id=yKbprarjc5B
https://aclanthology.org/2024.lrec-main.1361
https://aclanthology.org/2024.lrec-main.1361
https://aclanthology.org/2024.lrec-main.1361

International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 15655–15684, Torino, Italia.
ELRA and ICCL.

Arjun Singh Bhatia, Manas Kirti, and Sujan Kumar
Saha. 2013. Automatic generation of multiple choice
questions using wikipedia. In Pattern Recognition
and Machine Intelligence: 5th International Confer-
ence, PReMI 2013, Kolkata, India, December 10-14,
2013. Proceedings 5, pages 733–738. Springer.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. 2024. A survey on knowledge dis-
tillation of large language models. arXiv preprint
arXiv:2402.13116.

Asaf Yehudai, Boaz Carmeli, Yosi Mass, Ofir Arviv,
Nathaniel Mills, Assaf Toledo, Eyal Shnarch, and
Leshem Choshen. 2024. Genie: Achieving human
parity in content-grounded datasets generation. arXiv
preprint arXiv:2401.14367.

Han-Cheng Yu, Yu-An Shih, Kin-Man Law, Kai-
Yu Hsieh, Yu-Chen Cheng, Hsin-Chih Ho, Zih-
An Lin, Wen-Chuan Hsu, and Yao-Chung Fan.
2024. Enhancing distractor generation for multiple-
choice questions with retrieval augmented pretrain-
ing and knowledge graph integration. arXiv preprint
arXiv:2406.13578.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng,
Alexander J Ratner, Ranjay Krishna, Jiaming Shen,

and Chao Zhang. 2023. Large language model as
attributed training data generator: A tale of diversity
and bias. Advances in Neural Information Processing
Systems, 36:55734–55784.

Lucia Zheng, Neel Guha, Brandon R Anderson, Peter
Henderson, and Daniel E Ho. 2021. When does pre-
training help? assessing self-supervised learning for
law and the casehold dataset of 53,000+ legal hold-
ings. In Proceedings of the eighteenth international
conference on artificial intelligence and law, pages
159–168.

A Future Works

This work lays the foundation for several promis-
ing research directions, with the potential to sig-
nificantly advance efficient few-shot learning in
multiple choice question answering and beyond.
Specifically, we identify the following key areas
for future exploration:

Advanced Distillation Techniques. In this
work, we used a simple distillation approach to
establish a clear baseline. Exploring more sophis-
ticated distillation techniques, such as sequence-
level knowledge distillation, attention-based dis-
tillation, or other distillation approach, that could
further enhance performance.

Benchmark Dataset Creation. Our findings
suggest that the JSON generation method coupled
with LLM distillation is a promising approach for
creating high-quality MCQA data. This method
appears to act as an effective filter for select-
ing higher-quality generated examples. Combin-
ing our approach with automated quality filtering
based on perplexity or LLM-based scoring, post-
processing techniques to refine generated text, and
retrieval-augmented generation to incorporate ex-
ternal knowledge could facilitate the creation of
valuable benchmark datasets for few-shot MCQA.
This would require developing robust filtering and
evaluation metrics to ensure the quality and diver-
sity of the generated datasets.

Improving Decomposed Generation. While
the decomposed generation method offers advan-
tages in terms of data generation efficiency, it can
produce noisy data due to longer and less struc-
tured answers. Investigating more sophisticated
prompting techniques could mitigate this limita-
tion. Incorporating constraints into the prompts,
specifying the desired length or format of the an-
swers, could improve the quality of the generated
data. Iterative refinement, where feedback is pro-
vided to the LLM to revise its responses, is another

8513

promising avenue. Additionally, using more di-
verse and representative examples in the few-shot
prompts could guide the LLM towards generating
more appropriate answers.

Applications Beyond MCQA. Our framework
has broader applicability beyond MCQA. Within
NLP, it could be applied to tasks like text classifica-
tion, sequence tagging, or any task where efficient
few-shot learning is desirable. In these applications,
the LLM could generate synthetic training exam-
ples and provide soft labels or confidence scores to
guide the training of a smaller model. Furthermore,
with the advancements in Vision-Language Mod-
els (VLLMs), our approach could be extended to
vision tasks. For example, in Visual Question An-
swering (VQA), the VLLM could generate image
captions, which could then be used to synthesize
images with a generative model. The VLLM could
also generate the question and possible answers.
The generated VQA data, along with the VLLM’s
confidence scores for each answer, can then be used
to distill the knowledge into a smaller, more effi-
cient vision-language model or even a specialized
VQA architecture.

B Implementation Details

We implemented our method using the Transform-
ers library (Wolf et al., 2020) for loading and inter-
acting with the LLMs and encoder models, and the
Datasets library (Lhoest et al., 2021) for loading
and processing the datasets. This appendix pro-
vides detailed information about the computational
resources, data generation process, and model train-
ing procedure

B.1 Computation Resources
The experiments were conducted using three ma-
chines:

• Two machines: AMD Ryzen 5 2600 Six-Core
Processor, NVIDIA RTX 3090 24GB GPU.

• One machine: AMD Ryzen Threadripper
1920X 12-Core Processor, two NVIDIA RTX
3090 24GB GPUs.

B.2 Data generation Details
We utilize instruction-tuned LLMs that follow the
standard System, User, and Assistant role format.
The System role sets the overall instructions for the
model’s behavior, the User role provides specific
commands or prompts, and the Assistant role gener-
ates the model’s responses. Our 5-shot prompting

approach includes the few-shot examples as the
first five User-Assistant interactions. Subsequent
User prompts are then used to elicit new responses
from the LLM for data generation or scoring.

JSON Generation: For the JSON generation
method, we use a straightforward 5-shot prompting
approach. The full prompt examples for ARC-Easy
and ARC-Challenge are shown in Tables 17 and
18, respectively. All five examples in the prompt
use the same question, but we shuffle their order to
encourage diversity in the generated outputs.

Decomposed Generation: The decomposed
generation method follows a similar 5-shot prompt-
ing structure as the JSON approach. However, we
divide the generation process into three distinct
stages: (1) question generation, (2) positive an-
swer generation, and (3) negative answer gener-
ation. Each stage utilizes a separate prompt, as
shown in Tables 19, 20, and 21, respectively.

Most data generation tasks could be run
on a single NVIDIA RTX 3090 GPU. How-
ever, certain MMLU tasks with longer se-
quences, such as high_school_european_history,
high_school_us_history,
high_school_world_history, professional_law, pro-
fessional_medicine, and security_studies, required
two RTX 3090 GPUs to avoid out-of-memory
errors.

When using the JSON generation method, we
encountered challenges with certain datasets that
required significantly longer generation times to
obtain 1024 usable data points. This was primarily
due to a combination of long sequences and low
parsing success rates. The affected datasets and
the number of usable data points we were able to
obtain are as follows:

• college_mathematics: 512

• formal_logic: 538

• high_school_european_history: 327

• high_school_us_history: 305

• high_school_world_history: 765

After generating the MCQA data (questions,
choices, and answers), we use the LLM to score
each choice. Table 22 shows an example of the
scoring prompt, which includes the 5-shot exam-
ples and the newly generated data. To obtain the
scores, we extract the logits (pre-softmax outputs)
corresponding to the unique character identifiers

8514

for each choice. To avoid out-of-memory errors
during scoring, we limit the prompt length to 1024
tokens when using a single GPU and 3200 tokens
when using two GPUs. This is necessary because
some generated instances can contain very long
sequences

B.3 Model training details
We train the DeBERTa-base-v3 model, which takes
a question and a choice as input, for all our exper-
iments. The model uses the pooled output of the
encoder, which is then fed into a linear layer to pro-
duce a scalar output. We train the model using the
Adam optimizer (Kingma, 2014) for 500 iterations,
with a batch size of 4 and gradient accumulation
for 2 steps (effectively a batch size of 8). This
allows the model to be exposed to approximately
4000 MCQA examples during training. We use a
learning rate of 1e-5.

Before training, we filter the dataset to avoid
out-of-memory errors during training. We use the
DeBERTa tokenizer to count the number of tokens
for the concatenation of each question and its cor-
responding choices. If the total number of tokens
for any question-choice pair exceeds a predefined
maximum (max_tokens), we discard that data point.
For most experiments, we set max_tokens to 320.
However, for MMLU tasks with longer sequences,
we increased max_tokens to 480.

C Additional Results

This appendix provides supplementary results and
analyses to complement the findings presented in
the main paper. It is organized as follows:

• Section C.1: Baseline and Teacher Model
Performance on ARC Datasets. This sec-
tion presents the performance of the 5-shot
baseline, the teacher LLMs, and our pro-
posed method on the ARC-Easy and ARC-
Challenge datasets.

• Section C.2: Effect of Generation Hyperpa-
rameters. This section presents the impact of
varying the temperature during data genera-
tion on student performance.

• Section C.3: Effect of Number of Negative
Examples (Decomposed Method). This sec-
tion analyzes the influence of the number of
negative examples generated per question on
the performance of the decomposed genera-
tion method.

• Section C.4: Lightweight LLM Comparison.
This section compares the memory usage and
performance of our method with lightweight
LLMs.

• Section C.5: Learning MCQA Format vs. Do-
main Knowledge. This section investigates
whether our approach primarily teaches the
model the MCQA format or if it also improves
domain-specific knowledge.

C.1 Baseline and Teacher Performance on
ARC-E and ARC-C

Table 5 presents the performance of the 5-shot De-
BERTa baseline, the teacher LLMs (LLaMA-3.1B-
Instruct and Gemma-2-2b-it), and our proposed
method on the ARC-Easy and ARC-Challenge
datasets. Consistent with the MMLU results,
LLM distillation significantly improves perfor-
mance over the 5-shot baseline. However, a notable
gap remains between our student models and the
teacher LLMs, as well as the Tasksource DeBERTa-
base model, which benefited from extensive multi-
task training. This highlights the potential for fur-
ther improvement in our approach, particularly in
terms of bridging the gap with models trained on
larger, more diverse datasets.

C.2 Effect of Generation Hyperparameters

We now analyze the influence of the temperature
hyperparameter, which controls the diversity of the
generated data, on the performance of our approach.
Table 6 presents the results for both the JSON and
decomposed generation methods across different
temperature settings. We observe that temperature
plays a crucial role, and increasing it generally
leads to improved performance. This highlights the
importance of data diversity for effective few-shot
MCQA, demonstrating that even simple techniques
like temperature control can significantly impact
the quality of the generated data.

While increasing the temperature doesn’t always
consistently improve performance when using only
the generated data, the benefits become much more
pronounced when combined with distillation loss.
We hypothesize that this is because LLMs can intro-
duce noise into the generated data, and distillation
helps mitigate this noise by encouraging the student
model to learn a smoother probability distribution
over the answer choices, similar to label smooth-
ing, which has been shown to improve robustness
to noisy labels (Szegedy et al., 2016; Lukasik et al.,

8515

Method ARC-Easy ARC-Challenge
Tasksource 72.8 ± 0.0 51.2 ± 0.0
Tasksource + JSON distill 74.5 ± 0.5 54.7 ± 1.0
Gemma-2-2b-it 89.6 ± 0.0 73.7 ± 0.0
Llama-3.1B-Instruct 93.3 ± 0.0 82.6 ± 0.0
deberta 5-shot baseline 26.5 ± 13.8 37.1 ± 5.0
Decompose generate 64.3 ± 2.1 39.3 ± 2.2
Decompose distill 67.8 ± 1.0 45.3 ± 1.1
JSON generate 61.9 ± 0.8 43.6 ± 0.9
JSON distill 69.8 ± 0.3 48.6 ± 0.9

Table 5: Result on arc-easy and arc-challenge.

Generation
Method

Temperature
ARC-Easy ARC-Challenge

Generate Distill SR Generate Distill SR

Decompose
0.5 60.9 ± 1.6 59.7 ± 2.1 1.0 34.1 ± 4.9 37.9 ± 4.1 1.0
1.0 63.2 ± 1.6 66.4 ± 1.1 1.0 39.6 ± 2.2 41.9 ± 1.7 1.0
2.0 64.3 ± 2.1 67.4 ± 0.4 1.0 39.4 ± 2.2 45.4 ± 1.2 1.0

JSON
0.5 50.5 ± 4.1 54.9 ± 8.0 1.0 36.7 ± 1.9 34.6 ± 4.4 1.0
1.0 61.5 ± 1.2 65.1 ± 0.9 0.99 41.9 ± 3.1 41.7 ± 2.3 1.0
2.0 61.9 ± 0.8 69.8 ± 0.3 0.52 43.6 ± 0.9 48.6 ± 0.9 0.66

Table 6: Effect of Generation Temperature on Few-Shot MCQA Performance. The table compares the performance
of the Decompose and JSON generation methods, with and without distillation, across different temperature settings.
SR denotes the success rate of JSON parsing.

2020). To further investigate this, we experimented
with replacing the soft labels from the LLM with
hard labels (choosing the most probable answer)
but observed inferior performance compared to us-
ing the full probability distribution, we provide the
results in Appendix 4.4. This highlights the impor-
tance of leveraging the soft labels provided by the
LLM for effective knowledge distillation.

While the JSON generation method can yield
better performance at higher temperatures, it of-
ten comes at the cost of a lower usable data rate
due to parsing errors. Many generated instances
must be discarded because they don’t adhere to the
strict JSON format. In contrast, the decomposed
method consistently achieves competitive perfor-
mance without requiring any parsing. Even when
reducing the temperature for JSON generation to
1 to improve the parsing success rate, its perfor-
mance still falls short of the decomposed method.
This demonstrates that the decomposed approach
offers a more robust and efficient alternative.

For the decomposed generation method, we also
investigated the effect of varying the number of
negative examples generated per question. The re-

sults, presented in Appendix Table 7, demonstrate
that our method is robust to changes in this param-
eter. We did not perform this ablation study for the
JSON generation method because it does not allow
for controlling the number of choices.

C.3 Effect of number of negative in
Decompose method

We investigated the effect of varying the number
of negative examples generated per question for
the decomposed generation method. The results,
presented in Table 7, show no significant perfor-
mance difference across the range of negative exam-
ples tested on both ARC-Easy and ARC-Challenge.
This suggests that the decomposed method is ro-
bust to the number of negative choices used during
data generation.

C.4 Lightweight LLM Comparison
To compare our method with a lightweight LLM,
we evaluated the LLaMa-3.2-1B-Instruct and
Gemma-2b-it models. We analyzed the memory
usage of both LLMs, both with and without 4-bit
quantization, and compared them to the encoder-
only DeBERTa-base model during inference. We

8516

Negative
Number

ARC-Easy ARC-Challenge

Generate Distill Generate Distill
3 61.3 ± 1.6 67.4 ± 0.4 38.4 ± 2.2 46.3 ± 0.1
4 62.8 ± 1.5 67.7 ± 1.3 38.7 ± 1.5 47.0 ± 0.5
5 62.2 ± 1.6 67.5 ± 1.8 37.4 ± 1.6 46.5 ± 0.3
6 62.9 ± 1.8 67.2 ± 0.1 39.3 ± 1.8 47.1 ± 0.5

Table 7: Effect of the number of negatives in decompose method.

measured memory consumption using the vmlDe-
viceGetMemoryInfo function from pynvml, feed-
ing each model sequences of 128 to 4096 random
tokens. Results are shown in Table 8. We ob-
serve that even with a lightweight 1B parameter
LLM and 4-bit quantization, the LLM memory
usage is still greater than DeBERTa-base. We be-
lieve this is caused by the larger activation sizes of
LLMs, which are not quantized during inference,
thus requiring more memory. LLMs also often
require longer input sequences than encoder-only
models due to instructions, concatenated choices,
and few-shot examples. This can lead to input
sequences that are significantly longer, further in-
creasing memory requirements.

Table 9 shows the performance comparison.
Quantization reduces LLM performance, as ex-
pected. To compare at similar memory footprints,
we also evaluated LLMs without few-shot prompt-
ing. Performance degrades significantly, particu-
larly for the smaller LLaMa-3.2-1B-Instruct. We
observer that the memory usage of DeBERTa is
most similar to that of LLaMA-3.2-1B-Instruct
with 4-bit quantization. Compared to this model,
DeBERTa achieves comparable performance on
MMLU, within 1 percentage point. When consid-
ering similar sequence lengths during inference,
DeBERTa significantly outperforms the 4-bit quan-
tized LLaMA-3.2-1B-Instruct model. This reduced
memory footprint and potentially faster inference
speed makes DeBERTa a more attractive option for
deployment on resource-constrained devices.

C.5 Is the results only from learning MCQA
format?

A potential concern is that the performance gains
observed with our method might stem solely from
learning the structure and format of MCQA, rather
than improving actual question-answering ability.
To investigate this, we conducted the following
cross-evaluation experiment. We used LLaMa-3.1-

8B-Instruct to generate 1024 ARC Easy examples
using the JSON generation method, along with cor-
responding LLM-generated scores for distillation.
We then trained a DeBERTa-v3-base model on this
generated ARC Easy data with distillation, using
the same hyperparameters as our main experiments.
We compared its performance on MMLU with a
model trained directly on MMLU-generated data
with distillation and the 5-shot baseline. Results
are shown in Table 10.

Training on the ARC Easy-generated data
significantly improved performance over the 5-
shot baseline. However, the model trained on
MMLU-generated data performed significantly bet-
ter, achieving an average accuracy of 39.3%, com-
pared to 37.9% for the model trained on ARC Easy
generated data. This gap suggests that our method
is not merely teaching the model the MCQA for-
mat, but is also enabling it to acquire task-specific
knowledge relevant to the MMLU datasets. There-
fore, we conclude that the improvements observed
from our method stem from both an improved un-
derstanding of the MCQA format and, crucially,
an enhanced ability to answer questions within the
specific domains covered by MMLU

D Numerical Results

This appendix provides supplementary numerical
data supporting the results presented in the main
paper. Section D.1 details the quantitative impact
of varying the number of generated data points
on model performance, corresponding to Figure 2.
Section D.2 presents a comprehensive breakdown
of the MMLU benchmark results, disaggregated by
subject area, to provide a more granular analysis of
our method’s performance.

D.1 Effect of number of generated data

Table 11 provides the numerical results correspond-
ing to Figure 2, showing the effect of the number
of generated data points on model performance. As

8517

Sequence
Length

DeBERTa-
base

LLaMA
1B

LLaMA
1B 4 bit

Gemma
2B

Gemma
2B 4 bit

128 1.701 3.576 2.211 6.351 3.444
256 1.728 3.773 2.421 6.705 3.912
512 1.768 4.134 2.794 7.393 4.585
1024 2.060 4.872 3.507 8.792 5.971
2048 3.152 6.235 4.870 11.610 8.699
4096 6.600 9.157 7.741 17.050 14.207

Table 8: Memory usage comparison of LLMs and encoder only method based on sequence length in GB.

Method STEM Social
Science

Humanities Other Average

Gemma-2-2b-it(5-shot) 46.8 66.9 61.6 61.3 57.7
Gemma-2-2b-it 4 bit(5-shot) 45.2 64.5 59.1 57.5 55.2
Gemma-2-2b-it 4 bit(0-shot) 42.6 58.6 56.2 54.9 51.9
LLaMA-3.2-1B-Instruct(5-shot) 36.5 47.8 46.3 45.1 43.1
LLaMA-3.2-1B-Instruct 4 bit(5-shot) 35.7 45.6 42.2 40.6 40.3
LLaMA-3.2-1B-Instruct 4 bit(0-shot) 29.4 33.7 26.7 29.1 29.6
DeBERTa-v3 + JSON distill (5-shot) 32.5 43.2 44.3 40.6 39.3
Tasksource + JSON distill(5-shot) 37.2 56.3 54.1 50.1 48.0

Table 9: Performance Comparison with small and 4-bit LLMs

Method STEM Social
Science

Humanities Other Average

Trained on MMLU generated 32.5 43.2 44.3 40.6 39.3
Trained on Arc-E 5-shot 22.0 22.8 21.9 22.5 22.3
Trained on Arc-E generated 32.3 40.5 41.4 40.3 37.9

Table 10: Cross-Datasets Evaluation Comparison

JSON Generated Data Training Dataset Test Dataset

JS
ON

 G
en

er
at

ed
 D

at
a

Tr
ai

ni
ng

 D
at

as
et

Te
st

 D
at

as
et

1.000 0.923 0.935

0.923 1.000 1.000

0.935 1.000 1.000

ARC-Easy Maximum Semantic Similarity

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

(a) Arc-Easy

JSON Generated Data Training Dataset Test Dataset

JS
ON

 G
en

er
at

ed
 D

at
a

Tr
ai

ni
ng

 D
at

as
et

Te
st

 D
at

as
et

1.000 0.945 0.888

0.945 1.000 0.997

0.888 0.997 1.000

ARC-Challenge Maximum Semantic Similarity

0.90

0.92

0.94

0.96

0.98

1.00

(b) Arc-Challenge

Figure 3: Maximum Cosine Similarity Observed between Generated Questions and the Training/Test Sets on
ARC-Easy and ARC-Challenge. Similarity is calculated between question embeddings, excluding choices.

8518

Dataset Method 8 16 32 64 128 256 512 1024

ARC-
E

Real data 31.9 52.7 59.5 64.6 67.6 68.7 68.0 71.2
Decompose generate 46.3 52.9 56.0 57.9 59.2 62.1 62.1 64.3
Decompose distill 44.8 57.6 59.8 57.2 62.5 65.4 67.4 67.8
JSON generate 22.1 43.5 46.3 55.0 55.3 58.1 59.6 61.9
JSON distill 54.7 53.8 59.3 59.5 64.3 65.4 67.1 69.8

ARC-
C

Real data 38.7 38.9 41.4 44.7 46.1 48.8 50.3 53.6
Decompose generate 32.1 30.3 33.8 36.4 36.0 39.5 39.4 39.4
Decompose distill 36.8 41.4 42.5 43.3 42.1 44.2 43.9 45.4
JSON generate 20.8 21.5 28.1 32.9 35.4 41.1 43.8 43.6
JSON distill 19.9 29.7 35.5 39.3 39.3 44.0 46.9 48.6

Table 11: Effect of number of generated data againts performance and its comparison with real data

expected, increasing the amount of generated data
generally leads to improved performance, particu-
larly when combined with LLM distillation.

D.2 MMLU Detailed Results

Tables 12 and 13 present the detailed results for our
method on the MMLU benchmark, corresponding
to the aggregated results discussed in Section 4.1.
Table 12 shows the results for MMLU tasks 0-39,
while Table 13 shows the results for tasks 40-56.

E Generated Dataset Analysis

This appendix provides an in-depth analysis of the
datasets generated using our proposed methods.
Section E.1 compares the time efficiency of the de-
composed and JSON generation approaches. Sec-
tion E.2 evaluates the semantic similarity between
generated questions and those in the training and
test sets to assess the novelty and quality of the
generated data. Section E.3 presents key statistical
properties of the generated datasets, such as token
length distributions.

Section E.3.

E.1 Generation Duration Comparison

This section analyzes the time required to gener-
ate data using LLaMA 3.1-8B-Instruct for a subset
of MMLU and ARC datasets. We selected five
MMLU datasets: High School European History,
High School US History, High School World His-
tory, Sociology, and US Foreign Policy. The first
three represent tasks with particularly long con-
texts, which we found to be the most challenging
for data generation and required two GPUs. Soci-
ology, US Foreign Policy, ARC-Easy, and ARC-
Challenge are included to provide estimated gener-
ation times for more typical tasks.

To maximize GPU utilization, we adjusted the
batch size for data generation, noting that larger
batch sizes generally lead to faster generation but
are constrained by GPU memory. We estimate the
time based on generating at least 200 data points.
Table 14 shows the chosen batch size for each
dataset, along with the number of generated data
points, the resulting model performance, the time
taken to generate a single data point (in seconds),
and the estimated total generation time (in hours).

As shown in Section E.3, the decomposed
method generally requires smaller batch sizes due
to the longer sequences it produces. However, de-
spite using smaller batch size and the longer se-
quences, the decomposed method often achieves
faster overall data generation. This is attributed to
the lower parsing success rate of the JSON method,
which requires generating and then discarding a
significant portion of the data. As a result, gener-
ating a complete dataset with the JSON method
often takes longer. Notably, for datasets with very
long sequences and low parsing success rates, the
decomposed method can even yield higher perfor-
mance while using a similar computational budget
for data generation. This highlights a key advan-
tage of the decomposed approach: its ability to
efficiently generate usable data, even if the individ-
ual data points might be of slightly lower quality.

E.2 Datasets Semantic Similarity

To address potential test set contamination, where
LLM might have memorized or overfit to the test
set during pretraining, and to assess the quality
of the generated dataset, we analyzed the seman-
tic similarity between the generated, training, and
test set questions using the Sentence Transformers

8519

5-shot Decomp.
generate

Decomp.
distill

JSON
distill

Tasksource
JSON

Abstract Algebra 22.4 24.2 26.0 27.2 27.6
Anatomy 24.9 34.5 36.6 34.4 41.5
Astronomy 20.1 29.1 36.2 35.1 40.5
Business Ethics 30.0 42.8 49.4 49.4 54.8
Clinical Knowledge 30.9 31.6 39.3 41.6 54.9
College Biology 23.6 33.8 36.1 36.2 42.2
College Chemistry 27.0 25.4 29.2 26.8 30.6
College Computer Science 36.2 26.2 32.0 33.2 37.0
College Mathematics 27.8 22.4 22.0 24.8 27.2
College Medicine 25.2 31.0 35.5 37.6 46.9
College Physics 25.9 16.7 23.3 25.7 30.6
Computer Security 42.6 38.2 50.0 53.8 63.6
Conceptual Physics 25.4 35.2 35.3 34.3 38.5
Econometrics 25.6 24.2 23.7 21.6 27.0
Electrical Engineering 27.7 27.3 32.4 38.2 44.3
Elementary Mathematics 24.1 24.9 28.3 25.7 30.4
Formal Logic 28.7 33.2 23.5 24.6 26.8
Global Facts 20.4 23.4 30.4 26.4 26.8
High School Biology 23.7 38.8 42.1 40.2 51.6
High School Chemistry 28.8 24.0 26.5 30.0 31.2
High School Computer Science 24.8 28.6 34.2 35.4 49.8
High School European History 25.6 39.3 49.2 50.8 66.1
High School Geography 26.8 44.7 48.6 48.1 66.8
High School Government And Politics 32.3 45.2 52.0 54.0 71.9
High School Macroeconomics 26.8 32.2 42.1 39.9 50.9
High School Mathematics 29.8 15.2 25.6 26.5 27.3
High School Microeconomics 28.3 27.9 36.5 34.0 50.3
High School Physics 25.0 25.0 26.8 28.3 27.2
High School Psychology 33.9 39.3 48.3 51.1 67.7
High School Statistics 28.1 27.1 30.4 30.6 35.2
High School Us History 24.8 40.8 50.4 45.5 59.6
High School World History 33.7 46.4 53.1 51.5 70.1
Human Aging 24.8 31.7 33.6 30.6 48.9
Human Sexuality 32.2 38.2 40.8 46.6 55.7
International Law 44.8 29.3 56.4 65.6 66.0
Jurisprudence 24.3 30.2 44.6 49.3 64.4
Logical Fallacies 29.4 46.1 51.5 55.5 63.7
Machine Learning 26.6 27.1 28.4 30.4 29.8
Management 32.0 40.8 47.2 51.1 64.5
Marketing 43.8 49.1 60.0 61.7 77.4

Table 12: Result on MMLU[:40] datasets.

8520

5-shot Decomp.
generate

Decomp.
distill

JSON
distill

Tasksource
JSON

Medical Genetics 30.6 42.8 40.8 41.0 42.0
Miscellaneous 37.8 50.6 52.7 53.1 66.7
Moral Disputes 28.4 28.0 39.3 41.8 55.5
Moral Scenarios 24.3 24.2 24.1 24.4 33.0
Nutrition 25.6 33.9 38.1 41.8 53.1
Philosophy 30.9 40.1 42.4 43.2 54.8
Prehistory 26.4 34.9 40.6 42.4 53.8
Professional Accounting 24.2 25.0 29.2 28.7 36.5
Professional Law 24.1 27.9 31.0 30.5 33.0
Professional Medicine 26.0 29.8 34.6 28.7 39.3
Professional Psychology 22.9 31.3 34.7 35.3 45.8
Public Relations 26.9 41.1 44.7 42.0 57.6
Security Studies 31.8 40.2 37.8 41.3 50.9
Sociology 30.0 33.4 48.0 50.3 65.1
Us Foreign Policy 40.4 42.8 52.0 53.8 65.6
Virology 24.7 28.7 32.8 36.1 39.8
World Religions 42.3 38.9 47.8 50.8 56.1
Humanities 29.8 35.3 42.6 44.3 54.1
STEM 27.1 27.6 31.6 32.5 37.2
Social Science 29.8 36.7 42.4 43.2 56.3
Others 28.9 35.5 40.3 40.6 50.1
All Average 28.7 33.1 38.4 39.3 48.0

Table 13: Result on MMLU[40:] datasets.

Dataset Name Generation
Method

Distill
Avg

Batch
Size

Data
Counts

Generate
Time(S)

Estimate Total
Time(H)

High School
European History

Decompose 49.2 4 1024 31.9 9.06
JSON 50.8 6 327 90.4 8.21

High School US
History

Decompose 50.4 4 1024 19.8 5.63
JSON 45.5 6 305 74.6 6.32

High School
World History

Decompose 53.1 4 1024 11.9 3.39
JSON 51.5 8 765 32.9 6.99

Sociology Decompose 48.0 10 1024 3.2 0.91
JSON 50.3 10 1024 5.0 1.43

US Foreign Policy Decompose 52.0 8 1024 4.0 1.13
JSON 53.8 10 1024 5.4 1.55

ARC-Easy Decompose 67.8 4 1024 3.7 1.04
JSON 69.8 4 1024 4.3 1.24

ARC-Challenge Decompose 45.4 4 1024 3.3 0.94
JSON 48.6 4 1024 3.7 1.04

Table 14: The comparison of performance and generation time on some subset of MMLU, with also ARC-Easy and
ARC-Challenge.

8521

all-MiniLM-L6-v2 model 5. For each generated
question, we calculated the embedding of the ques-
tion, excluding the choices. Then, we computed
the maximum cosine similarity between this em-
bedding and the embeddings of all questions in the
training and test sets. We then averaged these max-
imum similarities across all generated questions to
obtain an overall measure of similarity.

Figure 4 shows the average maximum similarity
scores. The average maximum similarity between
generated questions and the test set is 0.590 for
ARC-Easy and 0.539 for ARC-Challenge. These
values are comparable to the similarity between
the training set and test set (0.581 and 0.534, re-
spectively). If the generated questions were simply
copies from the training set, the similarity to the
training set would be much higher, and the sim-
ilarity to the test set would likely also be higher.
The observed comparable similarity scores suggest
the generated questions are novel and not mere
duplicates.

To further identify any potential near duplicates,
we also examined the maximum similarity scores
between the generated questions and the training
or test sets. Figure 3 shows these maximum sim-
ilarity scores. The maximum similarity between
the generated data and the test sets is noticeably
lower than the maximum similarity between the
training and test sets. This further supports our
claim that the generated data does not simply repli-
cate the test set questions. The training dataset
exhibits near-duplicate questions (similarity near
1), whereas our generated data does not exhibit
such high similarity to the test set (around 0.93 and
0.88). The observed semantic similarity between
generated and real questions suggests that the LLM
is generating questions that are relevant to the tar-
get domain and similar in style and complexity to
real exam questions. This provides evidence for
the quality of the generated data.

E.3 Generated Dataset Statistic

This section analyzes the statistical properties of
the MMLU datasets generated using both the JSON
and decomposed methods. We compare the aver-
age and standard deviation of token length in the
real, JSON-generated, and decomposed-generated
datasets, calculated by concatenating the question
and all choices and tokenizing them with the De-

5https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

BERTa tokenizer. Additionally, we report the pars-
ing success rate for the JSON generation method.

Table 15 presents the statistics of the generated
MMLU datasets. Notably, the decomposed method
produces data with a significantly higher average
token length compared to both the real data and
the JSON-generated data. This is likely due to the
decomposed method’s lack of an inherent filtering
mechanism, leading to the generation of more noisy
and potentially irrelevant content. For instance,
the decomposed method frequently generates ex-
cessively long answers, as illustrated in Table 24,
where the LLM produced a very long positive an-
swer not typically found in the real data. In contrast,
the JSON generation method, by directly mimick-
ing the structure and style of the few-shot exam-
ples, tends to generate higher-quality data with
lengths closer to the real data. However, despite
the increased noise in the decomposed data, decom-
pose generation method surprisingly yields strong
performance after applying LLM distillation, as
demonstrated in our main experiments.

F Prompt List

This section provides the prompts used for data
generation and scoring in our experiments. Ta-
bles 17 and 18 show the JSON generation prompts
and the 5-shot examples for ARC-Easy and ARC-
Challenge, respectively. For the decomposed gen-
eration method, Table 19 presents the question gen-
eration prompt, Table 20 shows the positive answer
generation prompt, and Table 21 illustrates the neg-
ative answer generation prompt. For paraphrase
baseline, the prompt is shown in Table 23. Finally,
Table 22 provides an example of the prompt used
for scoring the choices with the LLM.

G Generation Example

This section provides examples of the MCQA data
generated by our proposed methods. We also note
on Decompose generation method, the answer will
always be the first choice, as it is the first one to
be generated. Our training method with DeBERTa
is agnostic to choice permutation, thus using same
label over all training data will not have any im-
pact on student model training. Table 24 illustrates
a case where the decomposed method generated
a noisy positive answer with an excessively long
sequence. Table 25 shows an example where the
JSON generation method produced an incorrect la-
bel, but the LLM scoring was able to identify the

8522

Dataset Name Real
Length

Decompose
Length

JSON
length

JSON
Parseable

Abstract Algebra 62 ± 19 198 ± 141 62 ± 22 12.7
Anatomy 57 ± 19 93 ± 45 60 ± 19 42.9
Astronomy 70 ± 26 173 ± 57 104 ± 45 40.5
Business Ethics 79 ± 31 127 ± 46 108 ± 38 39.6
Clinical Knowledge 57 ± 16 120 ± 70 69 ± 24 49.5
College Biology 72 ± 35 107 ± 52 78 ± 29 43.1
College Chemistry 72 ± 33 199 ± 113 85 ± 32 20.0
College Computer Science 105 ± 47 155 ± 49 106 ± 44 13.4
College Mathematics 77 ± 30 216 ± 101 94 ± 33 4.9
College Medicine 102 ± 151 134 ± 73 75 ± 29 52.7
College Physics 76 ± 20 151 ± 80 81 ± 27 27.6
Computer Security 66 ± 40 78 ± 31 65 ± 27 49.8
Conceptual Physics 43 ± 12 81 ± 38 62 ± 22 56.0
Econometrics 98 ± 38 157 ± 74 94 ± 36 30.4
Electrical Engineering 44 ± 11 118 ± 75 65 ± 19 39.4
Elementary Mathematics 56 ± 22 214 ± 110 69 ± 29 22.7
Formal Logic 107 ± 43 308 ± 108 92 ± 36 5.2
Global Facts 49 ± 17 80 ± 44 55 ± 18 44.0
High School Biology 74 ± 31 99 ± 59 62 ± 22 51.7
High School Chemistry 77 ± 35 177 ± 109 65 ± 24 32.7
High School Computer Science 106 ± 62 127 ± 47 80 ± 35 34.5
High School European History 334 ± 117 457 ± 184 267 ± 157 13.6
High School Geography 47 ± 15 83 ± 36 58 ± 22 54.1
High School Government And Politics 68 ± 21 116 ± 48 72 ± 27 50.8
High School Macroeconomics 63 ± 18 102 ± 41 68 ± 25 48.0
High School Mathematics 70 ± 28 205 ± 124 77 ± 29 10.8
High School Microeconomics 70 ± 24 102 ± 43 78 ± 29 44.6
High School Physics 95 ± 38 189 ± 112 80 ± 25 19.5
High School Psychology 61 ± 31 116 ± 56 75 ± 28 48.6
High School Statistics 115 ± 42 181 ± 60 110 ± 47 17.5
High School Us History 296 ± 71 382 ± 171 256 ± 144 12.7
High School World History 332 ± 126 262 ± 144 134 ± 81 17.7
Human Aging 46 ± 13 73 ± 29 59 ± 18 45.4
Human Sexuality 55 ± 24 83 ± 38 64 ± 23 52.8
International Law 86 ± 23 222 ± 52 116 ± 42 39.2
Jurisprudence 68 ± 25 91 ± 46 62 ± 20 54.2
Logical Fallacies 66 ± 28 88 ± 33 66 ± 23 45.1
Machine Learning 77 ± 39 153 ± 65 95 ± 43 41.3
Management 42 ± 10 67 ± 32 55 ± 18 48.4
Marketing 60 ± 16 87 ± 36 67 ± 23 58.4

Table 15: Statistics of MMLU[:40] datasets.

8523

JSON Generated Data Training Dataset Test Dataset

JS
ON

 G
en

er
at

ed
 D

at
a

Tr
ai

ni
ng

 D
at

as
et

Te
st

 D
at

as
et

1.000 0.646 0.590

0.549 1.000 0.581

0.548 0.653 1.000

ARC-Easy Average Semantic Similarity

0.6

0.7

0.8

0.9

1.0

(a) Arc-Easy

JSON Generated Data Training Dataset Test Dataset

JS
ON

 G
en

er
at

ed
 D

at
a

Tr
ai

ni
ng

 D
at

as
et

Te
st

 D
at

as
et

1.000 0.617 0.539

0.541 1.000 0.534

0.533 0.610 1.000

ARC-Challenge Average Semantic Similarity

0.6

0.7

0.8

0.9

1.0

(b) Arc-Challenge

Figure 4: Average Maximum Cosine Similarity between Generated Questions and the Training/Test Sets on ARC-
Easy and ARC-Challenge. Similarity is calculated between question embeddings, excluding choices.

Dataset Name Real
Length

Decompose
Length

JSON
length

JSON
Parseable

Medical Genetics 51 ± 13 83 ± 41 63 ± 23 56.3
Miscellaneous 45 ± 25 60 ± 35 39 ± 11 56.9
Moral Disputes 67 ± 22 158 ± 68 97 ± 40 45.6
Moral Scenarios 101 ± 7 198 ± 92 126 ± 47 11.3
Nutrition 64 ± 26 135 ± 63 92 ± 39 38.5
Philosophy 60 ± 29 78 ± 32 56 ± 17 55.3
Prehistory 63 ± 24 130 ± 44 92 ± 32 33.7
Professional Accounting 96 ± 30 172 ± 83 103 ± 41 25.9
Professional Law 249 ± 95 424 ± 184 214 ± 108 22.5
Professional Medicine 169 ± 62 232 ± 148 139 ± 52 22.1
Professional Psychology 75 ± 32 123 ± 59 85 ± 36 44.5
Public Relations 56 ± 29 98 ± 47 66 ± 23 45.6
Security Studies 152 ± 70 290 ± 81 203 ± 100 35.4
Sociology 66 ± 19 92 ± 40 72 ± 27 49.0
Us Foreign Policy 59 ± 15 140 ± 49 74 ± 26 41.0
Virology 52 ± 26 83 ± 32 69 ± 24 52.8
World Religions 38 ± 8 69 ± 33 46 ± 14 42.8

Table 16: Statistic of MMLU[40:] datasets.

8524

System: You are a bot that excel at creating question about the given topics, and will create question in JSON format!
Few-Shot Example 1:
User: create a question about grade school science!
Assistant: {’question’: ’Which of the following materials would best slow the transfer of heat?’, ’choices’: [’aluminum’,
’copper’, ’glass’, ’wood’], ’answer’: 3}
Few-Shot Example 2:
User: create a question about grade school science!
Assistant: {’question’: ’In which environment is white fur color an advantage for survival?’, ’choices’: [’desert’,
’grassland’, ’arctic tundra’, ’temperate forest’], ’answer’: 2}
Few-Shot Example 3:
User: create a question about grade school science!
Assistant:{’question’: ’The mathematical model for calculating speed is shown below. Speed = distance/time. An
airplane traveled 700 kilometers in two hours during a trip. What was the average speed of the plane during the trip?’,
’choices’: [’5.8 kilometers per hour’, ’350 kilometers per hour’, ’1400 kilometers per hour’, ’84,000 kilometers per
hour’], ’answer’: 1}
Few-Shot Example 4:
User: create a question about grade school science!
Assistant:{’question’: ’The aloe plant can absorb a lot of water during a rain shower. The extra water is stored in its
leaves. The ability to store water in its leaves is most likely an adaptation to which type of environment?’, ’choices’:
[’one near the ocean’, ’one with dry conditions’, ’one with a variety of organisms’, ’one that receives a lot of sunlight’],
’answer’: 1}
Few-Shot Example 5:
User: create a question about grade school science!
Assistant:{’question’: "Near Earth’s equator, water generally exists naturally in the liquid and gas states. In which other
part of Earth is water usually found naturally in only two states?", ’choices’: [’Indian Ocean’, ’interior of Africa’, ’South
Pole’, ’Tropic of Cancer’], ’answer’: 2}

User: create a question about grade school science!
Assistant:

Table 17: Examples of the MCQA data generation prompt using JSON method and the five data used as few-shot
example on ARC-Easy.

System: You are a bot that excel at creating question about the given topics, and will create question in JSON format!
Few-Shot Example 1:
User: create a question about grade school science!
Assistant: {’question’: ’Which characteristic can a human offspring inherit?’, ’choices’: [’facial scar’, ’blue eyes’, ’long
hair’, ’broken leg’], ’answer’: 1}
Few-Shot Example 2:
User: create a question about grade school science!
Assistant: {’question’: ’Many horses grow a heavy coat in autumn and shed that coat in spring. Scientists were not
sure if temperature or the amount of daylight per day (called the photoperiod) caused the change. So, they conducted an
experiment and concluded that the change in photoperiod was responsible for the biological changes. Shedding caused
by which set of conditions would have helped them arrive at this conclusion?’, ’choices’: [’a constant photoperiod,
but varied temperatures’, ’a varied photoperiod, and varied temperatures’, ’a constant photoperiod, and a constant
temperature’, ’a varied photoperiod, but a constant temperature’], ’answer’: 3}
Few-Shot Example 3:
User: create a question about grade school science!
Assistant:{’question’: ’Which is evidence of a chemical reaction?’, ’choices’: [’the light produced by magnesium when
burned’, ’the evaporation of water from a solution’, ’the fizzing of a soft drink’, ’the heat from a light bulb’], ’answer’: 0}
Few-Shot Example 4:
User: create a question about grade school science!
Assistant:{’question’: ’A class is studying the density of rock samples. What scientific equipment do they need to
determine the density of the rock samples?’, ’choices’: [’microscope and balance’, ’beaker and graduated cylinder’,
’graduated cylinder and balance’, ’microscope and graduated cylinder’], ’answer’: 2}
Few-Shot Example 5:
User: create a question about grade school science!
Assistant:{’question’: ’Which energy resource is non-renewable?’, ’choices’: [’oil’, ’solar’, ’water’, ’wind’], ’answer’:
0}

User: create a question about grade school science!
Assistant:

Table 18: Examples of the MCQA data generation prompt using JSON method and the five data used as few-shot
example on ARC-Challenge.

8525

System: You are a bot that excel at creating question about the given topics!
User: create a question about grade school science!
Assistant: Which of the following materials would best slow the transfer of heat?
User: create a question about grade school science!
Assistant: The mathematical model for calculating speed is shown below. Speed = distance/time. An airplane traveled
700 kilometers in two hours during a trip. What was the average speed of the plane during the trip?

(Other 5 shot example)

User: create a question about grade school science!
Assistant:

Table 19: Examples of the question generation prompt.

System: You are a bot that excel at answering question and will answer all question correctly(answer shortly)!
User: Which of the following materials would best slow the transfer of heat?
Assistant: wood
User: The mathematical model for calculating speed is shown below. Speed = distance/time. An airplane traveled 700
kilometers in two hours during a trip. What was the average speed of the plane during the trip?
Assistant: 350 kilometers per hour

(Other 5 shot example)

User: The aloe plant can absorb a lot of water during a rain shower. The extra water is stored in its leaves. The ability to
store water in its leaves is most likely an adaptation to which type of environment?
Assistant:

Table 20: Examples of the positive answer generation prompt.

System: You are a bot that always answer question with possible but wrong answer and reply with diverse answer(answer
shortly)!
User: Answer the question with wrong but possible answer and use different answer from the Forbidden Answer!
Question: Which of the following materials would best slow the transfer of heat?
Forbidden Answer :
- wood
- copper
Answer:
Assistant: aluminum
User: Answer the question with wrong but possible answer and use different answer from the Forbidden Answer!
Question: The mathematical model for calculating speed is shown below. Speed = distance/time. An airplane traveled
700 kilometers in two hours during a trip. What was the average speed of the plane during the trip?
Forbidden Answer :
- 350 kilometers per hour
- 1400 kilometers per hour
- 5.8 kilometers per hour Answer:
Assistant: 84,000 kilometers per hour

(Other 5 shot example)

User: Answer the question with wrong but possible answer and use different answer from the Forbidden Answer!
Question: The aloe plant can absorb a lot of water during a rain shower. The extra water is stored in its leaves. The
ability to store water in its leaves is most likely an adaptation to which type of environment?
Forbidden Answer :
- one with dry conditions
Answer:
Assistant:

Table 21: Examples of the negative answer generation prompt.

8526

User: Which of the following materials would best slow the transfer of heat?
A. aluminum
B. copper
C. glass
D. wood
Assistant: D
User: The mathematical model for calculating speed is shown below. Speed = distance/time. An airplane traveled 700
kilometers in two hours during a trip. What was the average speed of the plane during the trip?
A. 5.8 kilometers per hour
B. 350 kilometers per hour
C. 1400 kilometers per hour
D. 84,000 kilometers per hour
Assistant: B

(Other 5 shot example)

User: The aloe plant can absorb a lot of water during a rain shower. The extra water is stored in its leaves. The ability to
store water in its leaves is most likely an adaptation to which type of environment?
A. one near the ocean
B. one with dry conditions
C. one with a variety of organisms
D. one that receives a lot of sunlight
Assistant:

Table 22: Examples of the LLMs MCQA scoring prompt.

System: You are a bot that excel at paraphrasing.
Few-Shot Example 1:
User: paraphrase this : AI is transforming various sectors by taking over tasks that used to require human labor. While
this advancement can lead to greater efficiency and cost savings, it also sparks worries about job loss and the moral
considerations surrounding AI-driven choices.
Assistant: Artificial intelligence is revolutionizing industries by automating tasks that were previously performed by
humans. This technology has the potential to increase efficiency and reduce costs, but it also raises concerns about job
displacement and the ethical implications of AI decision-making.
Few-Shot Example 2:
User: paraphrase this : Despite the challenges they faced during the project, the team managed to deliver a high-quality
product that exceeded the client’s expectations.
Assistant: Even with the obstacles encountered throughout the project, the team successfully produced a top-notch
product that went beyond what the client had anticipated.
Few-Shot Example 3:
User: paraphrase this : Happy
Assistant: Joyful
Few-Shot Example 4:
User: paraphrase this : What are the main factors that contribute to climate change, and how do they each affect the
environment?
Assistant: What key elements drive climate change, and what impact does each one have on the environment?
Few-Shot Example 5:
User: paraphrase this : The project lead is Sarah.
Assistant: Sarah is leading the project.

Table 23: Few-shot prompt for paraphrase baselines.

8527

correct answer. We also include few generation
example on MMLU datasets, which is shown in
Table 26 to Table 30

8528

What is 6 basic physical changes but isn’t considered chemical is happening? Example of these include, Melting Ice
changing shape into a water molecules without making atoms get mixed up or recombine, also making a ball of dough
gets compressed
Choice 1) Those examples are of physical changes. 6 examples are:
1. Melting
2. Boiling
3. Freezing
4. Compressing
5. Changing shape (or compressing) a ball of dough
6. Evaporation
Choice 2) Dissolving sugar in water
Choice 3) Sublimation
Choice 4) evaporation
Choice 5) Changing the color of a white shirt.
Choice 6) melting a metal statue in a fire.
Answer : 1

Table 24: example of Decompose Generation with positive choice containing long sequences instead of short
answer.

Plants make a sweet tasty treat in large organs called ______ inside their stems.
A. fruits
B. seeds
C. roots
D. leave
Initial Answer : B
LLM Probability Score : [(A) 35.1%, (B) 21.4%, (C) 21.3%, (D) 22.2%]

Table 25: example of Wrong label when generating data directly with JSON method and how distillation could
helps.

To categorize a viral reemergercy does it need specific molecular features such as sequence of a certain nucleocapsid,
structure of its envelope, specific replication methods and what one or a different option.
A. Yes, including serologic cross-reactivity with other members of the same virus.
B. The presence of a tail of variable length
C. The virus being of aquatic origin
D. Mutual seroneutralization with another reemerging virus
E. The presence of a peculiarly patterned nucleic acid methylation
F. The virus being of terrestrial origin
Initial Answer : A
LLM Probability Score : [(A) 33.4%, (B) 12.3%, (C) 7.8%, (D) 22.2%, (E) 17.9%, (F) 6.4%]

Table 26: Generated data example using Decompose generation method with MMLU dataset Virology.

Loss of which bodily function is most directly attributed to the gradual decrease in dopamine receptors associated with
aging?
A. Motivation
B. Regulation of body temperature
C. Regulation of appetite
D. Coordination
E. Memory
F. Regulation of sleep
Initial Answer : A
LLM Probability Score : [(A) 28.4%, (B) 8.7%, (C) 15.8%, (D) 14.7%, (E) 16.0%, (F) 16.3%]

Table 27: Generated data example using Decompose generation method with MMLU dataset Human Aging.

8529

This question refers to the following information.
We may imagine, if we please, that all white inhabitants of this Province (for, at present, the inhabitants do neither read
nor talk but for white People). that these white inhabitants were all the owners in their Own right as to goods (money
goods) except so few that we do not want and those but a Hand ful they having lost all and taken this Course to beg and
Stealing: which is as clear that I believe even from all Accounts as that some have and will go farther than to Stealers
which is as great as the devil would for one to make himself King of Virginia... They have some hopes some way or an
oother to get that Land on the Sea side.
And yet they all Conceived a Jealousi[e] to take the best Part, especially about this Town and River. in that part so far we
have kept clear their Town and as to them Land all those who were from this year from North England but there were
and was the most averse than the rest... The greatest Body went out of the River... to which this place has yet seen, but of
which one and twenty of this Colony have fallen in.
The first written passage about early American Settlement, is attributed to:
A. Captain John Smith
B. William Bradford
C. John Rolfe
D. John Winthrop
E. Christopher Newport
F. William Penn
Initial Answer : A
LLM Probability Score : [(A) 23.8%, (B) 15.5%, (C) 18.5%, (D) 18.2%, (E) 11.7%, (F) 12.3%]

Table 28: Generated data example using Decompose generation method with MMLU dataset High School US
History.

As per studies, which vitamin deficiency, linked to malnutrition in aged patients is commonly reported
A. Vitamin A deficiency
B. Vitamin C Deficiency
C. Vitamin D Deficiency
D. Biotin Deficiency
Initial Answer : C
LLM Probability Score : [(A) 7.5%, (B) 14.5%, (C) 69.6%, (D) 8.5%]

Table 29: Generated data example using JSON generation method with MMLU dataset Human Aging.

According to UK nutritional reference intakes (RNI), what amount of water for adults aged over 16, considering a
temperature of 22- 27°C was stated (as of 2020)?
A. At least 30 mL. day/ per day for a normal inactive woman’s diet
B. On average 2ltr water per person per year
C. 75 mL.day /per person per dayfor an active healthy adult diet
D. Less than none
Initial Answer : B
LLM Probability Score : [(A) 29.7%, (B) 13.3%, (C) 49.0%, (D) 8.1%]

Table 30: Generated data example using JSON generation method with MMLU dataset Nutrition.

8530

