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Abstract

Knowledge distillation (KD) enables the com-
pression of large language models (LLMs) by
transferring knowledge from a high-capacity
teacher model to a resource-efficient student
model, maintaining competitive performance
for tasks such as instruction following. How-
ever, conventional white-box KD methods of-
ten suffer from training-inference mismatches
and suboptimal performance due to the asym-
metric nature of Kullback-Leibler divergence
(KLD) and reliance on computationally expen-
sive student-generated outputs. To address
these challenges, we propose Least-to-Most
Prompting Knowledge Distillation (L2M-KD),
a novel white-box KD method grounded in cur-
riculum learning (CL) and adaptive loss de-
sign. L2M-KD employs a two-pronged ap-
proach: (1) a CL strategy that ranks training
samples by difficulty using Rouge-L scores,
partitioning them into easy-to-hard subsets
across multiple stages, and (2) an adaptive KD
loss that transitions from KLD to skew KLD,
dynamically adjusting teacher guidance to mit-
igate mode-averaging and over-smoothing. Ex-
tensive experiments on instruction-following
tasks demonstrate that L2M-KD outperforms
existing white-box KD methods, achieving
superior student model performance with re-
duced computational overhead by leverag-
ing ground-truth outputs exclusively. Our
findings underscore the efficacy of difficulty-
aware training and adaptive teacher guidance,
offering a computationally efficient and ro-
bust approach to LLM compression. The
code for our method is publicly available at
https://github.com/liuliuyuan6/L.2M-KD.

1 Introduction

Large language models (LLMs) have achieved sig-
nificant progress in text generation, language under-
standing, and inference, driven by increased param-
eter scales and high-quality training data (Ouyang
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Figure 1: Comparison of the proposed L2M-KD method
with white-box KD methods, KLD (off-policy) (Hinton et al.,
2015) and SKL (on-policy) (Ko et al., 2024), based on average
Rouge-L scores across five evaluation sets. Left: GPT-2-1.5B
as the teacher with GPT-2 (125M, 340M, 760M) as student
models. Right: OPT-2.7B as the teacher with OPT (125M,
350M, 1.3B) as student models.

et al., 2022). However, their substantial computa-
tional and memory requirements during inference
limit practical deployment, particularly in resource-
constrained settings like edge computing (Aryan
et al., 2023). This has spurred demand for smaller,
efficient language models (LMs) that maintain com-
petitive performance in tasks such as text genera-
tion (Li et al., 2024b) and tool learning (Gao et al.,
2024). Knowledge distillation (KD) (Hinton et al.,
2015), a technique that transfers knowledge from
a high-capacity teacher model to a smaller student
model, has become a cornerstone for compress-
ing LL.Ms into small LMs, as evidenced by mod-
els like Llama 3.2 (Meta, 2024) and DeepSeek-R1
(DeepSeek-Al, 2025).

KD methods for LLMs are broadly classified
into black-box and white-box approaches (Yang
et al., 2024b). Black-box KD, which leverages only
teacher predictions (Kim and Rush, 2016), gained
traction due to the proprietary nature of models like
GPT-40 (Hurst et al., 2024) and Claude 3.5 (An-
thropic, 2024). However, the emergence of open-
source LLMs, such as DeepSeek-v3 (Liu et al.,
2024) and Qwen 2.5 (Yang et al., 2024a), with
performance rivaling proprietary models (Maslej
et al., 2025), has shifted focus toward white-box
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Figure 2: Overview of Least-to-Most Prompting Knowledge Distillation (L2M-KD), illustrating the curriculum learning
component that ranks training samples by difficulty using Rouge-L scores and partitions them into easy-to-hard subsets across
multiple stages, alongside the adaptive KD loss function that progressively transitions from KLD to SKL to optimize teacher
guidance in alignment with the least-to-most prompting principle.

KD. White-box KD offers enhanced student per-
formance and greater control over the distillation
process. Existing white-box KD methods primar-
ily optimize the divergence function D(- || -) in
the KD loss (Eq. 2), with Kullback-Leibler diver-
gence (KLD) (Hinton et al., 2015) as a standard.
Yet, KLD’s asymmetric nature often induces mode-
averaging (Gu et al., 2023), prompting alternatives
like reverse KLLD (Gu et al., 2023), Jensen-Shannon
divergence (JSD) (Agarwal et al., 2024), and skew
KLD (Ko et al., 2024). These variants, while ef-
fective in specific contexts, lack generalizability
across tasks and datasets, resulting in inconsistent
performance (Agarwal et al., 2024; Ko et al., 2024).

Data curation strategies further influence KD ef-
ficacy, with options including ground-truth outputs
(GTOs) (Hinton et al., 2015), teacher-generated
outputs (TGOs) (Kim and Rush, 2016), and student-
generated outputs (SGOs) (Lin et al., 2020; Agar-
wal et al., 2024). GTOs, though widely used, can
cause training-inference mismatches due to the
student’s limited capacity, while SGO-based on-
policy methods (Gu et al., 2023; Agarwal et al.,
2024) mitigate this but incur significant computa-
tional costs and risk teacher misguidance (Ko et al.,
2024). Thus, a central challenge in white-box KD
for LLMs is to design an effective KD loss and
leverage GTOs exclusively to boost student perfor-
mance without excessive computational overhead.

Despite the prevalence of KLD and GTOs in
white-box KD, their full potential remains under-
exploited, particularly for LLMs. KL’s mode-
averaging tendencies and the computational ineffi-

ciencies of SGO-based methods highlight the need
for a refined approach. We posit that structuring
the training process and dynamically adapting the
KD loss can enhance the effectiveness of KLD
and GTOs, improving student model performance
while sidestepping the limitations of existing meth-
ods. Empirical evidence suggests that student mod-
els benefit from progressive training on samples of
increasing difficulty, paired with tailored teacher
guidance (Bengio et al., 2009).

Drawing inspiration from curriculum learning
(CL) (Bengio et al., 2009) and the educational strat-
egy of least-to-most prompting (Libby et al., 2008),
where guidance scales with task complexity, we
propose a staged KD method. This approach mir-
rors human learning by starting with simpler tasks
and incrementally introducing challenges, adjust-
ing the KD loss to provide optimal teacher guid-
ance at each stage. Our motivation is rooted in the
observation that such a structured process can stabi-
lize knowledge transfer, mitigate mode-averaging,
and maximize the utility of GTOs, offering a com-
putationally efficient alternative to on-policy meth-
ods.

We present Least-to-Most Prompting Knowl-
edge Distillation (L2M-KD), a novel white-box
KD method that combines a CL framework with
an adaptive KD loss to optimize teacher guidance
based on training difficulty (See Fig. 2). L2M-
KD operates in two key phases: (1) a curriculum
learning framework ranks training samples by dif-
ficulty using Rouge-L scores between GTOs and
SGOs, partitioning the dataset into easy-to-hard
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subsets across multiple stages; (2) an adaptive KD
loss transitions from KLD to skew KLD (SKL) (Ko
et al., 2024), increasing teacher prompting as diffi-
culty rises, following the least-to-most prompting
principle.

Our contributions are threefold:

* Staged KD Method: L2M-KD introduces a
difficulty-aware, multi-stage training process
inspired by least-to-most prompting, enhanc-
ing knowledge transfer efficiency.

Adaptive Loss Design: By dynamically ad-
justing the KD loss from KLD to SKL,
L2M-KD addresses mode-averaging and over-
smoothing, aligning teacher guidance with the
student’s learning progression.

Superior Performance: Extensive evalua-
tions show that L2ZM-KD achieves superior
performance for student LMs on instruction
following tasks across multiple white-box KD
approaches, using only GTOs to minimize
computational costs.

2 Background and Rethinking

2.1 Background

White-Box KD for Auto-regressive LMs. In
white-box KD, a student LM is trained to mimic a
larger teacher LM using a dataset of source-target
sequence pairs (z,y). The student optimizes two
objectives: (1) minimizing the cross-entropy loss
between the ground-truth target sequence y and the
student’s conditional distribution gy (y|x), and (2)
minimizing the KD loss, which measures the diver-
gence between the teacher’s token-level distribu-
tion p(y|x) and the student’s distribution gy (y|z).
The cross-entropy loss is defined as:

|y|

Lee == _log qo(yilz, y<i), (D
=1

where gy (y;|z, y<;) is the student’s probability for
token y; given input x and prior tokens y;.
The KD loss is formulated as:

|yl
Lra =Y _ D (p(yilz, y<i) I ao(vilz,y<i)), )
i=1

where D(- || -) quantifies the divergence between
the teacher and student distributions.

The total loss combines both objectives:

Ls - (1 - B)Lce + /BLkd7 (3)

where 5 € [0, 1] balances the contributions of the
cross-entropy and KD losses.

Limitations of the Current Methods. Cur-
rent white-box KD methods primarily focus on
optimizing the divergence function D(- || -) in
Eq. (2), such as KLLD (Hinton et al., 2015). How-
ever, KLD’s asymmetric nature can lead to mode-
averaging, where the student model learns an overly
smooth distribution to cover the teacher’s support
set (Gu et al., 2023). Variants like reverse KLLD (Gu
et al., 2023), JSD (Agarwal et al., 2024), and
skew KLD (Ko et al., 2024) show task-specific
improvements but lack systematic evaluation, re-
sulting in suboptimal performance and variabil-
ity across tasks (Agarwal et al., 2024; Ko et al.,
2024). Data curation strategies also impact KD
effectiveness. Ground-truth outputs (Hinton et al.,
2015) can cause training-inference mismatches due
to the student’s limited capacity compared to the
teacher (Gu et al., 2023). Student-generated out-
puts (SGOs) (Lin et al., 2020; Agarwal et al., 2024)
mitigate this but introduce challenges: overuse in-
creases computational costs (up to 80% of training
time), while underuse degrades performance (Ko
et al., 2024). Balancing SGO usage and selecting
an effective KD loss remain critical challenges for
efficient and robust KD.

2.2 Rethinking KD Loss and GTO Utilization

Empirical Analysis. Despite limitations, KLLD
and GTOs remain foundational in white-box KD
due to their stability across tasks (Hinton et al.,
2015). To explore their potential, we conducted ex-
periments using the Dolly dataset (Conover et al.,
2023), with GPT-2 (1.5B) as the teacher and GPT-2
(0.1B) as the student (Radford et al., 2019), evaluat-
ing ROUGE-L scores (Lin, 2004) on the validation
set (details in Section 4).

Inspired by CL (Wang et al., 2021), we ranked
Dolly training samples by difficulty based on
ROUGE-L scores between SGOs and GTOs, se-
lecting the top 25% (2.5K) as an easy subset and
the bottom 25% (2.5K) as a hard subset. We com-
pared KD performance using KLLD and skew KLD
(SKL) (Ko et al., 2024) as loss functions, and off-
policy (100% GTOs) and on-policy (50% GTOs,
50% SGOs) (Agarwal et al., 2024) data curation
strategies.

8491



a. Different KD Methods on Easy Training Set

[ 1Off Policy
| 10n Policy

_1Off Policy
On Policy

S

11.63

1145

11.31 1127

Rouge-L scores

>

b. Different KD Methods on Hard Training Set

c. Different KD Methods on the Combination Training Sets

[CJOff Policy
[C1On Policy

17

16.32
11.95

11.67 15.89

1552

15126

KLD

10.78 [ 10.81
9
KLD SKL

SKL CL SKL SKL KLD

Figure 3: Results of empirical analysis on the Dolly dataset, comparing ROUGE-L scores for KLD and SKL loss functions
under off-policy and on-policy data curation strategies across easy and hard subsets, alongside the performance of the proposed

two-stage CL-based KD method.

On the easy subset, KLD outperformed SKL
under both data strategies, with no significant dif-
ference between off- and on-policy methods (Fig-
ure 3(a)). Conversely, on the hard subset, SKL out-
performed KLD, and on-policy methods surpassed
off-policy ones (Figure 3(b)). Motivated by these
findings, we proposed a two-stage CL-based KD
method: (1) train with KLD on the easy subset, and
(2) fine-tune with SKL on a mixed easy-hard sub-
set, using the first-stage checkpoint as initialization.
This approach outperformed traditional white-box
KD methods, with SKL and on-policy strategies
showing superior ROUGE-L scores (Figure 3(c)).

Theoretical Analysis. The results in Figure 3(c)
are supported by theoretical insights into the ca-
pacity gap between teacher and student models in
white-box KD. The student’s limited parameters
often lead to a divergence between the teacher’s
and student’s distributions, causing parameter over-
writing, degraded performance, or biased out-
puts (Zhang et al., 2024). The CL-based KD ap-
proach mitigates this by progressing from easy
to hard samples. In the first stage, KLD’s flat-
ter loss landscape stabilizes learning on easy sam-
ples, reducing mode collapse (Li et al., 2024a).
In the second stage, SKL’s sharper landscape on
harder samples prevents over-smoothing, leverag-
ing prior training to maintain stability (Ko et al.,
2024). This staged approach, using KLD and
GTOs, optimizes knowledge transfer without re-
lying on computationally costly on-policy strate-
gies (Wang et al., 2021). Furthermore, theoreti-
cal insights from Shing et al. (2025) suggest that
SKL—which introduces an intermediate teacher
model that interpolates between the output distribu-
tions of the teacher and student—provides a target
distribution of moderate capacity. This interme-
diate target effectively narrows the capacity gap
between teacher and student, thereby mitigating

distributional divergence and reducing the risk of
mode collapse during distillation.

3 Methodology

3.1 Motivation

Inspired by the observations in Section 2.2, we pro-
pose a novel approach to enhance KD by leveraging
a multi-stage training process inspired by educa-
tional psychology. Specifically, we draw on the
concept of least-to-most prompting (Libby et al.,
2008), where a teacher progressively increases the
complexity of guidance to facilitate student learn-
ing. In KD, this translates to a structured cur-
riculum that prioritizes easier training examples
in early stages and gradually introduces more chal-
lenging ones, coupled with adaptive loss functions
that evolve from minimal to maximal teacher guid-
ance.

Our approach is motivated by the distinct proper-
ties of two KD loss functions: KLD and Skew SKL.
KLD enables the student model to directly learn
the teacher’s output distribution without smooth-
ing, which is effective for simpler tasks. In contrast,
SKL introduces smoothing by mixing the teacher’s
and student’s distributions, providing more ro-
bust guidance for complex tasks (Ko et al., 2024).
As demonstrated by Shing et al. (2025), combin-
ing KLLD and SKL within a least-to-most prompt-
ing framework facilitates a gradual and difficulty-
aware transfer of knowledge, aligning loss function
dynamics with the evolving capacity of the student
model across training stages. By the above analysis,
we hypothesize that a staged KD process—where
training examples are ranked by difficulty and loss
functions are adapted to the training stage—can
improve the student model’s performance while
maintaining stability and avoiding computationally
expensive on-policy strategies.
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To this end, we introduce Least-to-Most Prompt-
ing Knowledge Distillation (L2M-KD), a novel KD
method that integrates a CL strategy with adap-
tive loss functions. L2M-KD operates in three key
steps: (1) ranking training examples by difficulty to
create easy-to-hard subsets, (2) conducting multi-
stage training with progressively harder subsets,
and (3) employing adaptive loss functions that tran-
sition from KLD to SKL to simulate least-to-most
prompting.

3.2 Least-to-Most Prompting Knowledge
Distillation

L2M-KD combines a CL framework with an adap-
tive KD loss function to optimize the distillation
process. The method consists of two core compo-
nents: a CL strategy for difficulty-aware sample
ranking and a dynamic loss function that adjusts the
degree of teacher guidance across training stages.
The overall process is outlined in Algorithm 1.

Algorithm 1 L2M-KD: Least-to-Most Prompting
Knowledge Distillation

1: Input: Training dataset D, student model Im, teacher
model Imy

2: Output: Distilled student model Im;

3: D' ={di,da,...,dn} < sort(D) by Rouge-L score

4: Dirain < 0, < 0.1, 81 + 0.7, Bn < 1

5: Imk < lms

6: fori < 1ton do

7. Dirain < _Dtrain Ud;

8: Qi — Q- :;1

90 Bie P~ (BL—PBn) 2%

10: while not converged for p epochs do

11: Imj <« train(Im},Im¢, Dirain, o4, B;) using
Eq. 6

12: end while

13: end for

14: return im}

3.2.1 CL Framework

The CL framework ranks training samples by dif-
ficulty to create a sequence of subsets ranging
from easy to hard. Difficulty is measured using
the Rouge-L score (Lin, 2004) between the SGOs
from a pre-distilled student model and the GTOs
from the given training set, supplemented by the
cross-entropy loss with respect to the ground-truth
response. A higher Rouge-L score indicates an eas-
ier sample, as it reflects greater similarity between
the student’s and teacher’s outputs.

Given a training dataset D) with [V samples, we
partition D into n subsets {dy,ds,...,dy,}, or-
dered from easiest to hardest based on the Rouge-L
scores. Each subset contains approximately | N/n |

or |[N/n| + 1 samples, with any remainder dis-
tributed evenly across the subsets starting from the
easiest. Empirically, we find that n = 4 subsets
provide a robust balance across datasets without
requiring dataset-specific tuning.

Training proceeds in n stages, following a Baby
Step scheduler (Bengio et al., 2009). In stage 1, the
easiest subset d; is used for training. After a fixed
number of epochs or convergence, the next subset
dg is merged with d, and training continues. This
process repeats until all subsets are included, cul-
minating in training on the full dataset D. The pro-
gressive inclusion of harder samples ensures that
the student model builds foundational knowledge
before tackling more complex examples, aligning
with the least-to-most prompting principle.

3.2.2 Adaptive KD Loss Function

The L2M-KD method employs a novel adaptive
KD loss function that dynamically combines KLLD
and SKL to modulate the degree of teacher guid-
ance. The standard KLD is defined as:

Drrp(p |l go) = Ey~yp |log

0 (yl, y<i)

where p is the teacher’s output distribution, gy is
the student’s output distribution, and y is sampled
from p. The SKL, which introduces smoothing, is
expressed as:

Dskr(p |l o) = Dxro(@ | a-p+ (1 —a)-q), (5

where o € [0, 1] controls the mixing ratio of the
teacher and student distributions (Lee, 2001).

In L2M-KD, we introduce an adaptive parameter
«; that varies across training stages to simulate
least-to-most prompting. The adaptive KD loss is
defined as:

Drav—xp(p || @) = Dxro(p || ai-p+(1—as)-qe), (6)

where o; = o - =1 and i € [1,n] denotes the

current training stage. We set & = 0.1 based on
empirical evaluation, ensuring that o; ranges from
0 (equivalent to KLD) in the first stage to « (approx-
imating SKL) in the final stage. This progression
mimics the increasing guidance in least-to-most
prompting, starting with minimal teacher influence
and gradually incorporating more.

To further optimize training, we introduce an
adaptive KD ratio 3; to balance the KD loss and
the cross-entropy loss in the total objective:

i—1
n—1

Bi=P1— (B —Bn) -

; @)
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where 51 = 0.7 and 3, = 1 are empirically de-
termined. This ensures that early stages priori-
tize learning from ground-truth outputs, while later
stages emphasize teacher knowledge, aligning with
the curriculum’s progression.

4 Experiments

4.1 Experimental Setup

We evaluate the L2M-KD method on instruction-
following tasks (Ouyang et al., 2022), where mod-
els generate task-compliant responses from given
instructions. The pipeline involves fine-tuning a
large language model (LLM) as the teacher on
instruction-response pairs, followed by knowledge
distillation (KD) into smaller student models and
performance comparison (Gu et al., 2023).

Base Models. We use two LLM families: GPT-
2 (Radford et al., 2019) (teacher: 1.5B; students:
120M, 340M, 760M) and OPT (Zhang et al., 2022)
(teacher: 2.7B; students: 125M, 350M, 1.3B).
These models are selected for their open avail-
ability and representativeness. Details are in Ap-
pendix 9.1.

Training. We employ the
databricks-dolly-15k dataset (Conover
et al., 2023), comprising 15K human-written
instruction-response pairs. After filtering samples
exceeding context length limits, we split the
dataset into 11.5K training, 1K validation, and
0.5K test samples. Training samples are ranked by
difficulty using Rouge-L scores (Lin, 2004) and
partitioned into n = 4 subsets. All models are
trained for equal total iterations, with on-policy
KD using 50% student-generated outputs (SGOs)
and ground-truth responses, while off-policy
methods apply adaptive balancing with ag = 0.3
and o, = 0. Hyperparameters are tuned using
validation Rouge-L scores. Full training details are
in Appendix 9.2.

Evaluation. We assess distilled models on five
instruction-following datasets: DollyEval (Conover
et al., 2023), SelfInst (Wang et al., 2022a), Vicu-
naEval (Chiang et al., 2023), S-NI (Wang et al.,
2022b), and UnNI (Honovich et al., 2022). Perfor-
mance is measured using Rouge-L scores, averaged
over five generations per prompt with five random
seeds, at a temperature of 1.0. Evaluation details
are in Appendix 9.3.

Baselines. We compare L2M-KD against four
baselines: (1) SFT (supervised fine-tuning on
ground-truth responses), (2) SeqKD (Lin et al.,

2020) (uses teacher-generated outputs), (3) KLD
(Hinton et al., 2015) (Kullback-Leibler divergence
loss), and (4) SKL (Ko et al., 2024) (skew KLD
loss), with an on-policy SKL variant using 50%
SGOs. Baseline details are in Appendix 9.4.

4.2 Results

As shown in Table 1, L2M-KD consistently outper-
forms baseline white-box KD methods across both
GPT-2 and OPT teacher-student setups. For GPT-
2 (teacher: 1.5B; students: 120M, 340M, 760M),
L2M-KD achieves average Rouge-L scores of 21.7,
23.3, and 24.4, respectively, surpassing KLD by
up to 4.0 points and SKL (on-policy) by up to 1.6
points, while exceeding the teacher on multiple
datasets, notably VicunaEval and S-NI. Similarly,
for OPT (teacher: 2.7B; students: 125M, 350M,
1.3B), L2M-KD yields average scores of 20.3, 22.3,
and 25.6, outperforming KLD by up to 3.7 points
and SKL (on-policy) by up to 0.5 points, with sig-
nificant gains over the teacher on S-NI and UnNI,
particularly with the 1.3B student where L2M-KD
achieves 30.1 and 35.8, respectively, compared to
the teacher’s 19.2 and 22.7.

L2M-KD’s superior performance across both
model families underscores the effectiveness of
its difficulty-aware curriculum learning strategy
and adaptive KD loss function, as introduced in
Section 3. By ranking training samples using
Rouge-L scores and transitioning from KLD to
SKL, L2M-KD mitigates mode-averaging and over-
smoothing, aligning teacher guidance with the stu-
dent’s learning progression. Notably, L2M-KD
achieves these gains using GTOs exclusively, avoid-
ing the computational overhead of on-policy meth-
ods like SKL (on-policy), which rely on student-
generated outputs. The consistent outperformance
of the teacher model, particularly with larger stu-
dent models (e.g., GPT-2-760M, OPT-1.3B), high-
lights L2ZM-KD’s ability to maximize knowledge
transfer efficiency. These results validate our hy-
pothesis that a staged KD process with adaptive
teacher guidance can significantly enhance student
model performance while maintaining computa-
tional efficiency, as posited in Section 1.

5 Analysis and Discussion

5.1 Ablation analysis

To elucidate the contributions of L2M-KD’s core
components, we conduct three ablation studies us-
ing the GPT-2 (1.5B teacher, 0.1B student) and
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Table 1: Evaluation of the L2ZM-KD. Rouge-L scores on several benchmarks.

Model #Params KD Methods \DollyEval SelfInst  VicunaEval  S-NI UnNI Avg.
5B Teacher | 276 143 16.3 276 318 235
SFT 233 10.0 147 163 185 166
SeqKD 2.7 10.1 143 164 188 165

oy KLD 2.8 10.8 134 197 220 177
SKL 242 123 15.7 243 240  20.1

SKL (on-policy) |  24.0 122 16.9% 270 273 215

L2M-KD 25.0 12.3 16.5* 272 274 217

SFT 255 13.0 16.0 251 320 223
SeqKD 253 12.6 16.9* 29 302 216

KLD 25.0 12.0 154 237 310 214
GPT-2  340M gy 26.4 15.9% 16.4* 272 298 231
SKL (on-policy) |  26.7 15.3% 17.6* 263 302 232

L2M-KD 26.5 16.0% 17.4% 2.7 302 233

SFT 25.4 12.4 16.1 215 271 205
SeqKD 25.6 14.0 159 2.1  329% 229
eom KLD 25.9 13.4 16.9* 253 317 226
SKL 26.8 15.2% 16.4* 28.1%  32.0%  23.7*

SKL (on-policy) |  27.1 15.7% 16.9* 28.9%  32.1%  24.1%

L2M-KD 27.8* 15.6* 17.1% 20.1%  323% 244

27B  Teacher | 262 112 15.5 192 227 189
SFT 218 8.1 144 135 151 146
SeqKD 20.7 8.9 13.6 168 187 157

sy KLD 20.5 9.2 147 158 182 157
SKL 24.0 11.5% 15.6* 23.0%  245% 197

SKL (on-policy) |  24.3 11.7% 15.9% 235%  246% 200

L2M-KD 247 12.0% 16.3* 23.4%  25.0% 203+

SFT 226 1.1 15.1 193% 217 180
SeqKD 243 10.7 15.5 199+ 226 186

KLD 24.0 12.0% 16.1% 225%  254%  200*

OPT  350M  gpp 25.0 12.7% 16.3* 26.2%  287F  21.8%
SKL (on-policy) |  25.3 13.1% 16.9* 264  289%  22.1%

L2M-KD 25.7 13.4% 17.4* 26.2%  288%  22.3*

SFT 25.0 13.1% 155 25.0%  272%  21.1%
SeqKD 26.3% 13.2% 16.7% 2465 278% 217

| sg  KLD 25.4 13.0% 16.2% 253%  294%  21.9%
: SKL 28.0% 16.5* 17.4% 20.8%  350%  253*
SKL (on-policy) |  28.3* 16.6* 17.7% 30.1%  35.5%  25.6*

L2M-KD 28.4* 16.5* 175 30.9¢  358% 258"

Note: All KD methods not otherwise indicated are off-policy. Results represent the mean performance across five random seeds. The highest scores
among student models are bolded, while instances where the student model outperforms the teacher are marked with a superscript *. Avg. refers to

the average ROUGE-L score across the five evaluation datasets.

OPT (2.7B teacher, 0.1B student) model families
across five evaluation datasets. These studies ex-
amine the impact of the adaptive KD ratio j3;, the
least-to-most prompting strategy, and the control
parameter o, respectively, with performance mea-
sured via Rouge-L scores.

Impact of Adaptive KD Ratio. We evaluate
the adaptive KD ratio 5; (Eq. 7), which balances
cross-entropy and KD losses across stages. Ta-
ble 2 shows that L2M-KD with 3; consistently
outperforms both the variant without /3; and the
SKL baseline across all datasets, particularly on
VicunaEval and UnNI. This highlights 3;’s role in
dynamically adjusting teacher guidance, optimiz-

ing the student’s learning from both ground-truth
and teacher knowledge.

Table 2: Performance comparison of L2M-KD with and
without adaptive KD ratio on the five evaluation datasets.

Model Evaluation Dataset

# Params KD Methods ‘ DE SI VE SN UnNI

GPT-2 SKL 24.2 12.3 15.7 24.3 24.0
L2M-KD (w/o 3) 24.6 12.3 15.9 26.6 27.0

(1.5B/0.1B) L2M-KD 25.0 12.3 16.5 27.2 274

OPT SKL 24.0 11.5 15.6 23.0 24.5
L2M-KD (w/o 3) 24.5 11.9 15.8 23.3 24.7

(2.7B/0.1B) L2M-KD 24.7 12.0 16.3 23.4 25.1

Note: ‘w/o 3’ indicates that the adaptive KD ratio (/3;, see Eq. 7) were not
used in the L2M-KD methods. ‘DE’, ‘SI’, “VE’, ‘S-NI" and ‘UnNI’ indicates
five evaluation datasets - DollyEval, SelfInst, VicunaEval, S-NI, and UnNI,
respectively.
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Impact of Prompting Strategy. We compare
the least-to-most (L2M) prompting strategy (KLD
to SKL) against a most-to-least (M2L) variant. As
shown in Table 3, L2M-KD (L2M) surpasses both
L2M-KD (M2L) and SKL, with notable gains on
S-NI and UnNI for GPT-2, validating that progres-
sively increasing teacher guidance aligns with the
curriculum learning framework (Section 3.2) and
enhances knowledge transfer.

Table 3: Results showing the impact of different prompting
strategies on the performance of the distilled student model in
L2M-KD.

Evaluation Dataset

Model

# Params KD Methods ‘ DE SI VE S-NI UnNI

P12 SKL 242 123 157 243 240
L2M-KD (M2L) | 248 123 160 248 252

(15B/0.1B)  L2MKD(L2M) | 250 123 165 272 274

OPT SKL 240 115 156 230 245
L2M-KD (M2L) | 246 115 159 233 251

(7B/0.1B)  L2MKD(L2M) | 247 120 163 234 251

Note: ‘M2L" and ‘L2M’ denote two variants of L2M-KD, where ‘L2M’
employs a least-to-most prompting strategy (progressing from KLD to SKL),
and ‘M2L’ uses a most-to-least prompting strategy (reversing from SKL
to KLD). ‘DE’, ‘ST’, “VE’, ‘S-NI’, and ‘UnNTI’ refer to the five evaluation
datasets: DollyEval, SelfInst, VicunaEval, S-NI, and UnNI, respectively.

Impact of Control Parameter . We analyze
the sensitivity to o, which governs the KLD-to-
SKL transition in the adaptive KD loss (Eq. 6).
Table 4 indicates that « = 0.15 yields optimal
performance for both GPT-2 and OPT, while higher
values (e.g., o = 0.90) degrade results due to over-
smoothing, underscoring the need for a balanced
« to maintain effective teacher guidance without
excessive blending of the student’s distribution.

Table 4: Results showing the impact of different control
parameter « on the performance of the distilled student model
in L2M-KD.

Model Evaluation Dataset

# Params « DE SI VE SN UnNI
0.15 | 25.0 12.3 16.5 27.2 27.4
030 | 25.1 12.1 15.7 27.7 26.9

GPT-2 045 | 24.7 120 163 23.4 25.1

(1.5B/0.1B)  0.60 | 24.5 124 147 21.6 27.7
0.75 24.1 11.0 14.5 23.6 27.6
090 | 239 12.1 16.2 19.9 24.2
0.15 24.7 12.0 16.3 234 25.1
030 | 24.8 11.0 15.3 22.7 21.7

OPT 045 | 232 112 149 20.1 19.9

(2.7B/0.1B)  0.60 | 23.2 9.3 14.7 18.9 21.2
0.75 23.0 11.7 15.9 19.6 19.0
090 | 21.8 11.0 15.6 21.1 19.8

Note: ‘DE’, ‘SI’, “VE’, ‘S-NI’, and ‘UnNT’ refer to the five evaluation
datasets: DollyEval, SelfInst, VicunaEval, S-NI, and UnNI, respectively.

5.2 Compare with other curriculum-based
KD methods

We compared L2M-KD with DistiLLM-2 (Ko et al.,
2025) (off-and on-policy) using GPT-2 and OPT

models across five datasets (See Table 5). L2M-
KD outperforms off-policy DistiLLM-2, while on-
policy DistiLLM-2 slightly leads, though L2M-KD
excels on DollyEval and S-NI.

Table 5: Results comparing our approach with other
curriculum-based methods.

Model KD Methods DE SI VE S-NI UnNI
GPT-2 L2M-KD 25.0 12.3 165 272 274
(1.5B/0.1B)  Distillm-2 (off) | 24.1 12.1 163 252 25.1
Distillm-2 (on) 249 12.5 169 276 27.7
OPT L2M-KD 24.7 12.0 163 234 25.1
(2.7B/0.1B)  Distillm-2 (off) | 24.1 11.5 156  23.1 24.7

Distillm-2 (on) 25.1 122 165 233 255

5.3 Effectiveness of L2M-KD on larger
models and other metrics

We extended our experiments to include OpenL-
LaMAZ2 (7B teacher, 2B student). We compared
L2M-KD against the same baselines (SFT, SeqKD,
KLD, SKL oft-policy, and SKL on-policy) across
the five instruction-following datasets, measuring
performance with both Rouge-L and winning rates
(WR) using pairwise comparison (Zheng et al.,
2023). The baseline is OpenLLaMA?2 (7B) fine-
tuned on databricks-dolly-15k, with DeepSeek-V3-
0324 (Liu et al., 2024) as the judge for WR. The
results (Table 6) show that L2ZM-KD slightly out-
performs baselines in both Rouge-L and WR, con-
sistent with our findings on smaller models. This
confirms L2M-KD’s effectiveness for larger-size
LLMs.

5.4 Discussion

The ablation studies collectively highlight the syn-
ergistic contributions of L2ZM-KD’s components.
The adaptive KD ratio (3; enhances performance
by balancing learning objectives, the least-to-most
prompting strategy ensures effective knowledge
transfer by aligning with the curriculum learn-
ing progression, and an optimal « value (0.15)
maximizes the benefits of the adaptive KD loss.
These findings reinforce the design choices in
L2M-KD (Section 3), demonstrating its robustness
and efficacy in improving student model perfor-
mance while maintaining computational efficiency
through the exclusive use of GTOs.

6 Related Work

White-box KD for LLMs leverages teacher model
internals, outperforming black-box KD (Yang et al.,
2024b). Methods focus on KD loss functions like
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Table 6: Effectiveness of L2M-KD on Larger Models and Diverse Metrics

Model Methods DollyEval SelfInst VicunaEval SNI UnNI
R-L  WR(%) R-L WR(%) RL WR(% RL WR(% RL WR(%)
SFT 25.1 48.60 16.2 46.44 16.3 48.60 29.3 48.53 29.1  48.38
SeqKD 24.7 47.24 15.8 45.70 17.1 49.70 29.1 49.15 28.6 48.14
OpenLLaMA2  KLD 21.0 44.15 16.1 46.84 154 47.09 279 4791 252 44.88
(7B/2B) SKL 27.9 51.37 19.4 51.05 17.3 51.00 33.9 52.46 32.8 51.57
SKL (on-policy) | 28.5 51.74 19.2 50.83 18.4 52.17 337 52.43 33.1 51.86
L2M-KD 28.7 52.29 19.2 51.14 18.2 51.92 342 53.02 335 52.45

KLD (Hinton et al., 2015), reverse KLLD (Gu et al.,
2023), JSD (Agarwal et al., 2024), and skew KLD
(Ko et al., 2024), alongside data strategies using
TGOs (Kim and Rush, 2016), SGOs (Agarwal et al.,
2024), or mixtures (Ko et al., 2024) to address
mode-averaging and training-inference mismatches
(Section 2.1). However, optimal combinations re-
main challenging. Curriculum learning (CL) in KD,
primarily in computer vision (Xiang et al., 2020;
Li et al., 2023), is underexplored for LLMs. Con-
fucius (Gao et al., 2024) applies CL to black-box
KD for tool learning, but general white-box KD
lacks such frameworks, which L2M-KD addresses
(Section 3.2).

7 Conclusion

In this work, we introduce L2M-KD, a novel white-
box KD method designed to address critical chal-
lenges in compressing LLMs for auto-regressive
tasks. By integrating a CL strategy with an adap-
tive KD loss function, L2ZM-KD optimizes knowl-
edge transfer from a high-capacity teacher to a
resource-efficient student model. The method com-
prises two core components: (1) a CL strategy that
ranks training samples by difficulty using Rouge-L
scores, enabling a staged training process from easy
to hard subsets inspired by least-to-most prompt-
ing, and (2) an adaptive KD loss that transitions
from KLD to SKL, dynamically adjusting teacher
guidance to mitigate mode-averaging and over-
smoothing. Extensive evaluations on instruction-
following tasks demonstrate that L2M-KD achieves
superior student model performance compared
to existing white-box KD methods, while exclu-
sively utilizing GTOs to minimize computational
costs. These results highlight the effectiveness of
difficulty-aware training and adaptive loss design
in enhancing KD efficiency and robustness. Our
work provides a scalable and practical approach
to LLM compression, paving the way for broader
deployment in resource-constrained environments.
Future research will explore the generalizability of
L2M-KD across diverse model architectures and

tasks, as well as its efficacy for larger student mod-
els.

8 Limitations

While L2M-KD demonstrates significant advance-
ments in white-box KD for LLMs, our study is
subject to certain limitations due to computational
constraints. First, our experiments were conducted
using two model families, GPT-2 and OPT, focus-
ing exclusively on instruction-following tasks. This
scope limits the assessment of L2M-KD’s general-
izability across other model architectures, such as
Qwen 2.5 (Yang et al., 2024a) or Llama 3.2 (Meta,
2024), and diverse natural language processing
tasks, including text generation (Li et al., 2024b)
and summarization (Zhang et al., 2019). Further
investigation is needed to validate the method’s ef-
fectiveness in these contexts. Second, the student
models evaluated in our experiments have relatively
small parameter sizes. Larger student models, with
greater inherent capacity, may exhibit reduced vari-
ability in perceived sample difficulty when ranked
using Rouge-L scores, potentially diminishing the
effectiveness of the CL strategy. This could im-
pact the staged training process central to L2M-
KD. Future work will address these limitations by
evaluating L2M-KD on a broader range of model
architectures, tasks, and larger student models to
ensure its robustness and scalability across diverse
settings.
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9 Technical Appendices

This appendix provides detailed specifications to
ensure reproducibility of our experiments. It covers
the base models (Section 9.1), training procedures
(Section 9.2), evaluation protocols (Section 9.3),
and baseline methods (Section 9.4).

9.1 Base Models

We utilize two prominent families of decoder-only
transformer-based large language models (LLMs):
GPT-2 (Radford et al., 2019) and OPT (Zhang
et al., 2022). These models are selected for their
open-source availability, widespread adoption in
research, and architectural representativeness of
modern LLMs, facilitating reproducibility and fair
comparison.

* GPT-2 (Radford et al., 2019): Developed by
OpenAl, GPT-2 is a decoder-only transformer
model optimized for autoregressive language
modeling. We use a 1.5B-parameter GPT-2
model as the teacher, which has 48 layers, 25
attention heads, and a hidden size of 1600.
The student models are smaller GPT-2 vari-
ants with 120M (12 layers, 12 heads, hidden
size 768), 340M (24 layers, 16 heads, hidden
size 1024), and 760M (36 layers, 20 heads,
hidden size 1280) parameters, enabling evalu-
ation across a range of model scales.

* OPT (Zhang et al., 2022): Developed by Meta
Al OPT is a family of open-source LLMs de-
signed for research, also following a decoder-
only transformer architecture. The teacher
model is OPT-2.7B, with 32 layers, 32 atten-
tion heads, and a hidden size of 2560. The
student models are OPT-125M (12 layers, 12
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heads, hidden size 768), OPT-350M (24 lay-
ers, 16 heads, hidden size 1024), and OPT-
1.3B (24 layers, 32 heads, hidden size 2048).
These configurations allow us to assess the
scalability of L2M-KD across different pa-
rameter sizes.

All models are sourced from the Hugging Face
Transformers library (Wolf et al., 2019), ensuring
standardized implementations. Pre-trained weights
are used as initialization for both teacher and stu-
dent models, with teacher models fine-tuned on the
training dataset prior to distillation.

9.2 Training Details

All experiments are conducted on a cluster
equipped with four NVIDIA A800 80GB GPUs
and an Intel(R) Xeon(R) Platinum 8350C CPU, us-
ing PyTorch 2.1.0 and CUDA 12.1 for implemen-
tation. We employ the databricks-dolly-15k
dataset (Conover et al., 2023), which contains
15,000 human-written instruction-response pairs
across diverse categories, including brainstorming,
classification, question answering, and summariza-
tion. After filtering samples exceeding the max-
imum context length of 1024 tokens (to ensure
compatibility with model constraints), the dataset
is split into 11,500 training, 1,000 validation, and
500 test samples using a fixed random seed of 42
for reproducibility.

For the L2M-KD method, training samples are
ranked by difficulty using Rouge-L scores (Lin,
2004) between student-generated outputs (SGOs)
from a pre-distilled student model and GTOs, sup-
plemented by cross-entropy loss with respect to the
ground truth. The 11,500 training samples are par-
titioned into n = 4 difficulty-based subsets, each
containing approximately 2,875 samples, with any
remainder distributed starting from the easiest sub-
set. Training proceeds in four stages, following the
Baby Step scheduler (Bengio et al., 2009): each
stage adds the next difficulty subset, using the previ-
ous stage’s checkpoint for initialization, and trains
until convergence or a fixed number of epochs (5
per stage). The adaptive KD ratio 3; (Eq. 7) de-
creases linearly from 81 = 0.7 to 5, = 1, while
the control parameter «; (Eq. 6) increases from 0
to 0.15.

Hyperparameters are tuned on the validation set
using Rouge-L scores, which correlate strongly
with human judgments (Agarwal et al., 2024). We
explore learning rates ({5e-4, le-4, 5e-5}) and

batch sizes ({8, 16}), selecting le-4 and 16, re-
spectively, for optimal performance. All models
(baselines and L2M-KD) are trained for an equiv-
alent total number of iterations: baselines train
for 20 epochs, while L2ZM-KD trains for 8 epochs
across its four stages (2 epochs per stage), ensuring
fairness. On-policy KD methods use a mixture of
50% SGOs and 50% GTOs, following Agarwal
et al. (2024), while off-policy methods, including
L2M-KD, use GTOs exclusively with adaptive bal-
ancing (a9 = 0.3, o, = 0. The AdamW optimizer
(Parikh et al., 2014) is used with a weight decay of
0.01 and a linear learning rate scheduler with 10%
warmup steps.

9.3 Evaluation Details

Evaluations are conducted on a single NVIDIA
A800 80GB GPU, following the protocol of Gu
et al. (2023). During inference, responses are gen-
erated with a temperature of 1.0, a maximum se-
quence length of 512 tokens, and top-k sampling
(k=50). To ensure robustness, we generate five re-
sponses per prompt using random seeds {10, 20,
30, 40, 50} and report the average Rouge-L score
across these generations. A standardized prompt
template (Fig. 4) is used for consistency across all
models and datasets.

Below is an instruction that describes a task.
Write a response that appropriately completes
the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:

Figure 4: Prompt template for instruction-following
experiments, adapted from Gu et al. (2023).

The evaluation datasets are as follows:

e databricks-dolly-15k (Conover et al.,
2023): 15,000 human-written instruction-
response pairs covering diverse tasks such
as brainstorming, classification, question an-
swering, and summarization. We use the 500-
sample test split for evaluation.

* self-instruct-eval (Wang et al., 2022a):
Contains 252 expert-written tasks and 50,000
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public examples for evaluation, designed to
test instruction-following and generalization.

* vicuna-eval (Chiang et al., 2023): Com-
prises 80 challenging questions to assess com-
plex reasoning and instruction-following ca-
pabilities.

* supernatural-instructions (Wang et al.,
2022b): Includes 9,000 test samples from
119 NLP tasks, spanning 76 task types, with
expert-written instructions.

e unnatural-instructions-core (Honovich
et al., 2022): A 66,000-sample subset of
machine-generated instructions, demonstrat-
ing the efficacy of synthetic data for training.

Performance is evaluated using Rouge-L scores
(Lin, 2004), a metric widely adopted for its correla-
tion with human judgment in instruction-following
tasks (Agarwal et al., 2024).

9.4 Baseline Methods

We detail the KD loss functions used in our base-
lines, as defined in the KD loss method (Eq. 2),
which measures the divergence between the teacher
distribution p and the student distribution gy using
a divergence function D(-||-). The formulations
are as follows:

¢« KLD (Hinton et al., 2015): The Kullback-
Leibler Divergence is a standard measure in
KD, defined as:

Dxip(pllge) = Ey~p [log

where y is sampled from the teacher distribu-
tion p. KLD encourages the student to match
the teacher’s output distribution, often leading
to mode-averaging (Gu et al., 2023).

* SKL (Ko et al., 2024): The Skew KLD in-
troduces a smoothing mechanism to mitigate
over-smoothing issues in KLD, defined as:

Dski(pllg9) = Dxio(pl|B-p+ (1= 5) - gp),

)
where 8 € [0, 1] controls the mixing ratio
between teacher and student distributions. In
our experiments, 5 = 0.5 for SKLL and SKL
(on-policy), balancing the influence of both
distributions.

For on-policy KD (e.g., SKL (on-policy)), we
use a mixture of 50% SGOs and 50% GTOs, as
recommended by Agarwal et al. (2024), to mitigate
training-inference mismatches. Off-policy meth-
ods (SFT, SeqKD, KLD, and SKL) rely solely on
ground-truth outputs or teacher-generated outputs.
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