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Abstract

With the widespread real-world deployment of
large language models (LLMs), ensuring their
behavior complies with safety standards has be-
come crucial. Jailbreak attacks exploit vulnera-
bilities in LLMs to induce undesirable behav-
ior, posing a significant threat to LLM safety.
Previous defenses often fail to achieve both ef-
fectiveness and efficiency simultaneously. De-
fenses from a representation perspective offer
new insights, but existing interventions cannot
dynamically adjust representations based on the
harmfulness of the queries. To address this limi-
tation, we propose SafeIntervention (SafeInt),
a novel defense method that shields LLMs from
jailbreak attacks through safety-aware represen-
tation intervention. Built on our analysis of the
representations of jailbreak samples, the core
idea of SafeInt is to relocate jailbreak-related
representations into the rejection region. This
is achieved by intervening in the representation
distributions of jailbreak samples to align them
with those of unsafe samples. We conduct com-
prehensive experiments covering six jailbreak
attacks, two jailbreak datasets, and two utility
benchmarks. Experimental results demonstrate
that SafeInt outperforms all baselines in de-
fending LLMs against jailbreak attacks while
largely maintaining utility. Additionally, we
evaluate SafeInt against adaptive attacks and
verify its effectiveness in mitigating real-time
attacks. WARNING: This paper may contain
content that is offensive and harmful.

1 Introduction

Large Language Models (LLMs) (OpenAI et al.,
2024; Touvron et al., 2023; Grattafiori et al., 2024)
have demonstrated remarkable performance across
various domains (Zhang et al., 2023; Liu et al.,
2023; Wang et al., 2024). With their widespread ap-
plication in real-world scenarios, LLMs face safety
challenges (Ferrara, 2023; Ji et al., 2023). Although
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efforts (Wang et al., 2023a; Rafailov et al., 2024;
Zhou et al., 2023) have been made to align LLMs’
behaviors with human values through carefully de-
signed training strategies, recent studies (Zou et al.,
2023b; Li et al., 2024b; Mehrotra et al., 2024; Liu
et al., 2024b) reveal that LLMs can still produce un-
desirable behaviors when subjected to well-crafted
jailbreak attacks, such as the biased generation or
potentially harmful responses.

Various defense methods have been proposed
to address the growing threat of jailbreak attacks.
Prompt-based defenses use instructions (Phute
et al., 2024; Xie et al., 2023; Zhang et al., 2024b)
or context (Zhou et al., 2024a; Wei et al., 2024)
to prevent LLMs from generating harmful content.
However, prompt-based methods rely on manually
crafted secure prompts and possibly lead to exces-
sive self-censorship (Varshney et al., 2024), reduc-
ing the helpfulness of LLMs for benign queries.
Detection-based defenses compute the perplex-
ity of inputs (Alon and Kamfonas, 2023) or per-
turb them (Cao et al., 2024) to identify jailbreak
prompts. Decoding-based defenses (Xu et al.,
2024; Liu et al., 2024a) reconstruct a safer out-
put probability distribution through contrastive de-
coding. However, these methods often lack effec-
tiveness or require additional inference overhead.
We aim to defend LLMs against jailbreak attacks
from a representation perspective, which provides
a more controllable and efficient approach. Previ-
ous studies (Zou et al., 2023a; Rimsky et al., 2024)
have shown the effectiveness of intervening rep-
resentations to steer LLMs’ behaviors, but such
interventions cannot dynamically adjust represen-
tations based on whether a query is harmful. This
limitation makes it challenging to leverage repre-
sentations for mitigating jailbreak attacks.

In this paper, we analyze the representations of
jailbreak samples on four LLMs. Our analysis
uses a classifier as a proxy to investigate whether
jailbreak representations are distinguishable and
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whether the representation distributions of differ-
ent jailbreak methods are consistent. We derive
two observations. First, in both intermediate and
later layers of LLMs, the representations of jail-
break samples can be distinguished from those of
safe or unsafe samples. Second, the consistency
of the representation distributions across different
jailbreak methods is observed in all LLMs, and it
is generally more pronounced in the intermediate
layers.

Building on these observations, we propose
SafeIntervention (SafeInt), a novel defense
method that shields LLMs from jailbreak attacks
via safety-aware representation intervention. The
representations of unsafe samples inherently char-
acterize the rejection region of the LLM. However,
jailbreak samples often produce representations
that deviate from those of unsafe samples, caus-
ing the model to fail to trigger its built-in rejection
behavior. The core idea of SafeInt is to relocate
jailbreak-related representations into the rejection
region, thereby activating the model’s native re-
fusal mechanisms. To achieve this, we first project
the representations at an intermediate layer into a
linear subspace, followed by a parameterized in-
tervention. For jailbreak-related representations,
we align their distribution with that of unsafe sam-
ples across the subsequent layers. For jailbreak-
irrelevant representations, we perform representa-
tion reconstruction to preserve their original se-
mantics. After training, SafeInt can adaptively in-
tervene in jailbreak-related representations while
seamlessly integrating into the LLM inference pro-
cess.

We conduct a comprehensive evaluation of
SafeInt, covering six jailbreak attacks, two jail-
break datasets, and two utility benchmarks. Ex-
perimental results show that SafeInt consistently
outperforms all baselines in defending against jail-
break attacks. In most cases, SafeInt also maintains
the best utility. Additionally, we evaluate SafeInt
against adaptive attacks and verify the effectiveness
of SafeInt in defending against real-time attacks.
In summary, our main contributions are as follows:

• We observe that the representations of jail-
break samples are distinguishable and that the
representation distributions of different jail-
break methods exhibit consistency.

• We propose SafeInt, a novel defense method
that can adaptively identify and intervene
in jailbreak-related representations to shield
LLMs from jailbreak attacks.

• Extensive experiments show that SafeInt sig-
nificantly outperforms all baselines in defend-
ing against jailbreak attacks while largely
maintaining utility.

2 Preliminaries

2.1 Representation Intervention

Representation intervention is an effective means of
steering LLM behavior. By editing internal repre-
sentations, it enhances or suppresses specific func-
tions or concepts of the LLM. For a given decoder-
only transformer model with L layers, we denote
the internal representation (or residual stream acti-
vation) of the last token at layer l as h(l) ∈ Rd. A
typical form of representation intervention is:

h̃(l) = h(l) ± ϵ · v. (1)

Here, h̃(l) is the intervened representation, ϵ ∈ R
represents the intervention strength, and v ∈ Rd

denotes the intervention direction.

2.2 Analysis of Jailbreak Sample
Representations

Recent works have investigated the representation
distributions of unsafe and safe samples within
LLMs, utilizing their distributional characteristics
to enhance safety or facilitate jailbreaks. In this
paper, we analyze the representation distributions
of three types of samples after introducing jail-
break samples. We construct three training datasets:
Djailbreak, which consists of jailbreak instructions
generated only using GCG (Zou et al., 2023b) on
AdvBench (Zou et al., 2023b); Dunsafe, which in-
cludes harmful instructions extracted from Mali-
ciousInstruct (Huang et al., 2023) and TDC2023
(Mazeika et al., 2023); and Dsafe, which contains
harmless instructions sampled from Alpaca (Taori
et al., 2023).1 More details of the datasets are pro-
vided in Appendix A.1. We conduct our analysis
on four LLMs: Qwen-7B-Chat (Bai et al., 2023),
Llama-2-7B-Chat (Touvron et al., 2023), Llama-3-
8B-Instruct (Grattafiori et al., 2024), and Vicuna-
7B-v1.5 (Chiang et al., 2023). In each layer of the
LLM, we train a logistic regression classifier to fit
the representations of the three types of samples
and report the test accuracy.

Q1: Are the representations of jailbreak, unsafe,
and safe samples distinguishable?

1For convenience, we abbreviate these datasets as Dj, Du,
and Ds in the following.
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Figure 1: Test accuracy of classifiers at different layers
of LLMs, with the test set containing only GCG jail-
break samples.

Figure 2: Test accuracy of classifiers on a test set con-
taining jailbreak samples from GCG, AutoDAN, and
DeepInception.

In Figure 1, we present the classification accu-
racy on a test set containing only GCG jailbreak
samples. Using the classifier as a proxy for observa-
tion, a higher classification accuracy indicates that
the representations of the three types of samples are
more distinguishable. For all LLMs, the test accu-
racy remains above 95% starting from the 10th or
11th layer. This indicates that the representations of
the three types of samples become distinguishable
from the intermediate layers of LLMs onward.

Q2: Are the representation distributions of
samples generated by different jailbreak methods
consistent?

We reconstruct a test set where jailbreak samples
are composed of three methods: GCG, AutoDAN
(Liu et al., 2024b), and DeepInception (Li et al.,
2024b). We employ the previously trained classi-
fiers for testing and show the results in Figure 2.
Since the classifiers are trained solely on GCG jail-
break samples, a high test accuracy reveals that

the representations generated by different jailbreak
methods exhibit a unified pattern from the classi-
fier’s perspective, indicating consistency.

We observe this consistency across different
LLMs. For Qwen, Llama2, and Llama3, the ac-
curacy remains above 90% in most layers. For
Vicuna, the accuracy exceeding 90% is primarily
observed in the intermediate layers. Although the
trend of consistency across layers varies among
different LLMs, it is generally more pronounced in
the intermediate layers.
Key Insights and Motivation Aligned LLMs
can reject unsafe samples, and the representa-
tions of these samples inherently characterize the
model’s rejection region. Since the representations
of jailbreak samples differ from those of unsafe
samples, they need to be relocated into the rejec-
tion region. Based on the distinguishability and
distributional consistency of jailbreak representa-
tions, we aim to intervene in their representations to
align their distribution with that of unsafe samples.

3 Method

In this section, we describe how SafeInt enhances
the safety of LLMs. Figure 3 illustrates the diagram
of SafeInt.

3.1 Representation Relocation

We achieve representation relocation by a targeted
intervention that maps jailbreak-related represen-
tations into the rejection region defined by unsafe
samples. According to the linear interpretability
hypothesis commonly used in existing methods
(Zhang et al., 2024a; Li et al., 2024a), deep model
embeddings can be linearly transformed to corre-
spond to specific human concepts. Thus, we aim to
apply a parameterized intervention within a repre-
sentation space that corresponds to safety-relevant
concepts, minimizing impacts on other capabili-
ties. Inspired by LoReFT (Wu et al., 2024), we
project the representations into a linear subspace
defined by a low-rank projection matrix. Assum-
ing the intervention is applied at layer I, it can be
parameterized as follows:

h̃(I) = h(I) +U⊤
(
fθ(h

(I))−Uh(I)
)
. (2)

The matrix U ∈ Rr×d has orthonormal rows,
where r denotes the rank of the subspace. The
function fθ is a linear relocation mapping defined
as fθ : Rd → Rr.
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Figure 3: The schematic of SafeInt. We apply the intervention (illustrated by the blue shield) at a specific layer
and perform alignment in the subsequent layers. The distribution of jailbreak sample representations is adjusted to
align with that of unsafe samples while minimizing shifts in the representations of safe and unsafe samples. With
the original representation distribution, the LLM is successfully jailbroken and generates harmful content. After
alignment, the LLM safely rejects the jailbreak instruction.

Then, we define the objectives for learning the
intervention. Broadly, our objectives are twofold:
a safety objective and a utility objective. The
safety objective guarantees the intervention to help
the LLM reject jailbreak and harmful instructions.
The utility objective ensures that the intervention
does not degrade the response quality for harmless
instructions.

3.2 Representation Alignment

We use the classifier as a proxy to assess whether
the distributions of jailbreak samples and unsafe
samples are consistent in the representation space.
From the perspective of the classifier, the align-
ment is achieved when the classification results
for jailbreak and unsafe sample representations are
consistent. Specifically, for jailbreak samples, we
intervene on their representations to maximize the
probability of being classified as unsafe. For un-
safe sample representations, they should still be
classified as unsafe with a high probability.

We denote the sets of original representations
of Dj, Du, and Ds as Hj, Hu, and Hs, respectively.
The sets of intervened representations are denoted
as H̃j, H̃u, and H̃s. Let La be the set of layers to
be aligned, with min(La) > I. After applying the
intervention at the layer I, the updated represen-
tation is propagated to the subsequent layers. At
layer l ∈ La, we extract the latest representation

h̃(l) and compute the following:

L(l)
cls =− 1

|H̃(l)
j |

∑

h̃
(l)
j ∈H̃(l)

j

logPu(h̃
(l)
j )

− 1

|H̃(l)
u |

∑

h̃
(l)
u ∈H̃(l)

u

logPu(h̃
(l)
u ), (3)

where Pu represents the probability that classifier
P classifies a representation as unsafe.

Contrastive Learning Although we align the
representations of jailbreak samples with unsafe
samples by a classifier, the limited training data
may prevent the classifier’s decision boundary from
accurately capturing the discriminative boundary
within the LLM. To enhance the alignment, we
use contrastive learning as a complementary task.
For a given representation q, contrastive learning
maximizes the similarity between q and the set of
positive samples K+ while minimizing the similar-
ity between q and the set of negative samples K−,
with the objective formulated as follows:

CT(q,K+,K−) =

− log
exp(sim(q,k+)/τ)∑

k∈(K+,K−) exp(sim(q,k)/τ)
, (4)

where k+ ∈ K+, sim(·, ·) represents cosine simi-
larity, and the temperature is set to τ = 0.1.

Specifically, the intervened representations of
jailbreak samples should be as close as possible to
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those of unsafe samples while being pushed away
from their original representations and those of
safe samples. Accordingly, for h̃(l)

j ∈ H̃
(l)
j , the

contrastive loss is calculated as:

L(l)
ct = CT(h̃(l)

j , H
(l)
u , (H

(l)
j ∪H

(l)
s )). (5)

3.3 Representation Reconstruction
To prevent excessive intervention from distorting
the LLM’s internal representations, we introduce a
reconstruction loss to constrain jailbreak-irrelevant
representations from changing. Specifically, we
encourage the representations of safe and unsafe
samples after intervention to remain close to their
original states. This ensures that the intervention
primarily affects jailbreak-related representations.
The loss is formulated as follows:

Lrecon = MSE(Hs, H̃s) + MSE(Hu, H̃u), (6)

where MSE refers to the mean squared error loss.
Considering both the alignment and reconstruc-

tion objectives, our final loss is calculated as fol-
lows:

Ltotal = α
∑

l∈La

(L(l)
cls + L(l)

ct ) + βLrecon. (7)

Through the two hyperparameters α and β, we
achieve a balance between effective alignment and
model stability.

4 Experiments

4.1 Experimental Setup
Models and Datasets We primarily evaluate
SafeInt on two open-source LLMs: Llama2-7b-
chat and Vicuna-7b-v1.5. Additionally, we assess
its scalability by applying it to a heterogeneous
LLM, with results reported in Appendix B.1. For
evaluation, we randomly sample 50 instructions
from AdvBench (Zou et al., 2023b) as the test set,
ensuring no overlap with the training set Dj. More-
over, to demonstrate that SafeInt is data-agnostic,
we construct an out-of-distribution test set consist-
ing of 50 instructions randomly sampled from Jail-
breakBench (Chao et al., 2024a). Following Xu
et al. (2024), we use MT-Bench (Zheng et al., 2023)
and Just-Eval (Lin et al., 2023) to evaluate the util-
ity of intervened LLMs.
Jailbreak Attacks Multiple representative jail-
break attacks are employed in our evaluation.
These include optimization-based attacks: GCG

and AutoDAN, LLM-generated attacks: PAIR
(Chao et al., 2024b) and TAP (Mehrotra et al.,
2024), and scenario-based attacks: DeepInception.
We also consider multilingual mismatch generaliza-
tion attacks (MG) (Yong et al., 2024), where each
instruction in the test set is translated into one of
six non-English languages to perform the attacks.
Baselines We compare SafeInt with six state-
of-the-art defense approaches: PPL (Alon and
Kamfonas, 2023), Paraphrase (Jain et al., 2023),
Self-Examination (Phute et al., 2024), ICD (Wei
et al., 2024), Self-Reminder (Xie et al., 2023), and
SafeDecoding (Xu et al., 2024).
Evaluation Metrics We use two types of Attack
Success Rate (ASR) to evaluate defense effective-
ness: ASR-keyword, which matches predefined
refusal keywords, and ASR-GPT, which leverages
GPT-4o-mini to assess whether the LLM generates
harmful content relevant to the malicious instruc-
tion. Lower ASR values indicate better defense
performance. For MT-Bench and Just-Eval, we
adopt GPT-based scoring, where Just-Eval evalu-
ates five aspects: helpfulness, clarity, factuality,
depth, and engagement.
Implementation Details Previous classification
results indicate that in the intermediate layers, the
representations of various jailbreak samples are rel-
atively consistent and highly distinguishable. To
avoid time-consuming searches, we directly select
layer I = 12 as the intervention layer. Since Vi-
cuna lacks harmless alignment, it exhibits weaker
safety. Accordingly, we set the second half of the
layers as the alignment layers. In contrast, for mod-
els like Llama2 that have undergone safety align-
ment, aligning only the final layer is sufficient. Ad-
ditional settings and discussions are provided in
Appendix A.4 to A.6.

4.2 Main Results

Table 1 presents the ASR results of SafeInt and
various baselines on AdvBench. For both Vicuna
and Llama2, SafeInt achieves the best performance,
reducing ASR to the lowest level among all de-
fense methods under different attacks. Although
our training process only utilizes jailbreak samples
constructed with GCG, SafeInt effectively defends
against other attack strategies, such as PAIR and
TAP, which generate adversarial prompts using the
LLM. This highlights the generalization capability
of our defense, validating our previous observation.
Moreover, even against MG attacks, SafeInt signif-
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Model Defense
Benchmark ↓ Jailbreak Attacks ↓

AdvBench GCG AutoDAN DeepInception PAIR TAP MG

Vicuna

No Defense 8% (4%) 90% (92%) 82% (88%) 64% (100%) 54% (60%) 84% (80%) 30% (66%)
PPL 8% (4%) 26% (30%) 72% (68%) 64% (100%) 52% (58%) 84% (82%) 28% (62%)
Paraphrase 6% (6%) 18% (20%) 34% (52%) 38% (96%) 36% (38%) 42% (52%) 10% (32%)
Self-Examination 2% (0%) 12% (16%) 18% (22%) 34% (74%) 8% (14%) 34% (30%) 6% (34%)
ICD 0% (0%) 14% (14%) 40% (36%) 64% (96%) 24% (34%) 44% (44%) 6% (34%)
Self-Reminder 0% (0%) 4% (6%) 8% (6%) 46% (100%) 26% (32%) 38% (40%) 16% (50%)
SafeDecoding 0% (0%) 2% (2%) 10% (4%) 0% (0%) 4% (6%) 12% (12%) 12% (40%)
SafeInt (Ours) 0% (0%) 0% (0%) 2% (2%) 0% (0%) 2% (6%) 8% (10%) 4% (8%)

Llama2

No Defense 0% (0%) 30% (32%) 34% (44%) 0% (0%) 2% (10%) 10% (10%) 0% (6%)
PPL 0% (0%) 0% (2%) 2% (8%) 0% (0%) 2% (8%) 10% (10%) 0% (4%)
Paraphrase 0% (10%) 0% (22%) 6% (26%) 0% (0%) 2% (30%) 2% (30%) 0% (16%)
Self-Examination 0% (0%) 0% (4%) 2% (6%) 0% (0%) 2% (4%) 2% (4%) 0% (0%)
ICD 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%)
Self-Reminder 0% (0%) 0% (2%) 0% (0%) 0% (0%) 2% (4%) 0% (2%) 0% (6%)
SafeDecoding 0% (0%) 0% (2%) 0% (4%) 0% (0%) 0% (6%) 0% (0%) 0% (0%)
SafeInt (Ours) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (4%) 0% (0%) 0% (0%)

Table 1: ASR-GPT (outer) and ASR-keyword (in parentheses) for different defense methods on AdvBench. The
best results are in bold. SafeInt outperforms all baselines across various attacks.

Model Defense
Benchmark ↓ Jailbreak Attacks ↓

JailbreakBench GCG AutoDAN DeepInception PAIR TAP MG

Vicuna

No Defense 6% (10%) 74% (96%) 76% (98%) 54% (100%) 42% (46%) 66% (68%) 30% (76%)
PPL 6% (10%) 20% (30%) 48% (62%) 46% (100%) 38% (48%) 66% (68%) 26% (66%)
Paraphrase 6% (20%) 18% (40%) 22% (60%) 28% (98%) 16% (36%) 32% (42%) 10% (40%)
Self-Examination 0% (4%) 8% (28%) 26% (48%) 28% (74%) 10% (14%) 28% (30%) 8% (50%)
ICD 0% (0%) 8% (14%) 42% (42%) 54% (94%) 16% (28%) 32% (42%) 22% (52%)
Self-Reminder 0% (2%) 4% (4%) 4% (6%) 36% (100%) 14% (20%) 26% (30%) 30% (62%)
SafeDecoding 0% (0%) 0% (0%) 18% (18%) 0% (0%) 10% (14%) 10% (12%) 14% (36%)
SafeInt (Ours) 0% (0%) 0% (0%) 4% (6%) 0% (0%) 2% (12%) 4% (12%) 8% (24%)

Llama2

No Defense 0% (0%) 24% (34%) 30% (42%) 2% (2%) 0% (6%) 6% (6%) 0% (4%)
PPL 0% (0%) 2% (2%) 6% (6%) 2% (2%) 0% (4%) 6% (6%) 0% (2%)
Paraphrase 0% (6%) 0% (28%) 0% (22%) 2% (2%) 0% (24%) 4% (28%) 0% (10%)
Self-Examination 0% (0%) 2% (2%) 6% (6%) 0% (0%) 0% (4%) 2% (2%) 0% (2%)
ICD 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%)
Self-Reminder 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (10%)
SafeDecoding 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (2%) 0% (6%) 0% (0%)
SafeInt (Ours) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (6%) 0% (0%) 0% (0%)

Table 2: ASR-GPT (outer) and ASR-keyword (in parentheses) on JailbreakBench. The best results are in bold.
SafeInt consistently achieves the best performance.

icantly lowers ASR, showing that it can generalize
to different languages.

Table 2 reports results on another out-of-
distribution test set, JailbreakBench. SafeInt con-
tinues to outperform all baselines across different
models and attack strategies. This demonstrates its
robustness to unseen data.

While delivering strong defense performance,
SafeInt largely preserves the utility of LLMs. As
shown in Table 3, SafeInt achieves almost identi-
cal scores to the non-defended model in Llama2,
whereas ICD and Self-Examination severely de-
grade utility. For Vicuna, SafeInt results in only a
2% decrease in MT-Bench and a 1% decrease in
Just-Eval compared to the non-defended model. In

contrast, SafeDecoding leads to 7% drops in both
benchmarks. See Appendix C.2 for representative
examples.

Since our intervention essentially involves an in-
cremental computation, it can be integrated directly
into the forward propagation of the model. Unlike
SafeDecoding, which requires an additional expert
model for contrastive decoding, SafeInt introduces
virtually no extra overhead. A detailed efficiency
analysis is provided in Section 5.3.

4.3 Adaptive Attack

We also consider a scenario where the attacker
knows SafeInt and has access to the LLM deployed
with it. This means the attacker can dynamically
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Model Defense MT-Bench ↑ Just-Eval ↑
Helpfulness Clear Factual Deep Engaging Average

Vicuna

No Defense 5.21 4.44 4.66 4.38 3.60 3.49 4.11
Self-Examination 5.03 4.40 4.65 4.34 3.56 3.47 4.08
ICD 4.86 4.34 4.61 4.34 3.40 3.32 4.00
SafeDecoding 4.84 3.92 4.45 4.19 3.24 3.25 3.81
SafeInt (Ours) 5.09 4.40 4.64 4.35 3.49 3.41 4.06

Llama2

No Defense 5.80 4.65 4.78 4.50 4.19 3.90 4.40
Self-Examination 1.61 3.21 3.67 3.47 2.92 2.68 3.19
ICD 2.91 3.44 4.08 3.96 3.25 3.24 3.59
SafeDecoding 5.68 4.53 4.73 4.42 4.05 3.83 4.31
SafeInt (Ours) 5.82 4.62 4.76 4.47 4.13 3.89 4.37

Table 3: Utility evaluation scores of SafeInt and baselines. The highest and second-highest scores obtained by
defense methods are in bold and underlined, respectively. SafeInt maintains the best utility in most cases.

Jailbreak Attacks AdvBench JailbreakBench

Adaptive-GCG 0% (0%) 0% (6%)
Adaptive-AutoDAN 0% (0%) 6% (8%)

Table 4: Experimental results of defending against adap-
tive attacks on Vicuna, with evaluation metrics ASR-
GPT and ASR-keyword (in parentheses). ’Adaptive-
GCG’ and ’Adaptive-AutoDAN’ refer to GCG and Au-
toDAN attacks that are optimized in real-time based on
the LLM deployed with SafeInt.

adjust their attack strategies based on the latest de-
fended LLM. The experimental results in Table 4
show that SafeInt maintains strong defense per-
formance under such adaptive settings. Because
SafeInt acts inside a low-rank subspace that exists
only within the model, no explicit clues about this
subspace are exposed at the prompt level or in the
externally observable gradients. To bypass SafeInt,
an attacker must precisely manipulate specific com-
ponents of the original representations within this
subspace. Therefore, even if GCG and AutoDAN
optimize their adversarial prompts in real time, it
is difficult to generate threatening attacks.

5 Analyses

5.1 Ablation Studies

We conduct ablation studies on the introduced con-
trastive loss and reconstruction loss to verify their
effectiveness. As shown in Table 5, removing con-
trastive loss increases ASR, indicating its crucial
role in enhancing defense performance. Incorpo-
rating contrastive loss leads to a decrease in MT-
Bench scores, which may be attributed to its im-
pact on the overall representation structure when
pulling together or pushing apart local represen-

Methods
Jailbreak Attacks ↓

MT-Bench ↑
GCG AutoDAN PAIR

No Defense 90% 82% 54% 5.21
SafeInt 0% 2% 2% 5.09

w/o Lct 2% 8% 6% 5.22
w/o Lrecon 2% 12% 8% 4.09

Table 5: Ablation results of our method on AdvBench
and MT-Bench, using ASR-GPT as the metric for Jail-
break Attacks. ’w/o Lct’ and ’w/o Lrecon’ denote the
removal of contrastive loss and reconstruction loss, re-
spectively.

tations. When the reconstruction loss is omitted,
representations are more susceptible to excessive
intervention, resulting in both defense failure and a
significant decline in response quality.

5.2 Hyperparameter Analysis

Intervention Layer Choice To understand how
the choice of the intervention layer impacts our
defense effectiveness, we conduct an analysis. Fig-
ure 4(a) displays the ASR-keyword when the in-
tervention layer is set between layers 10 and 20.
We observe that intervening in the intermediate lay-
ers generally yields better results than intervening
in the later layers, which may suggest that these
intermediate layers play a more crucial role in jail-
break mechanisms. Notably, when the intervention
is applied at layer 13, ASR reaches its lowest point.
This finding aligns with our observation in Figure 2,
where Vicuna exhibits the highest jailbreak repre-
sentation consistency at layer 13.
Alignment Layer Range We fix the endpoint
of the alignment layer range at the final layer and
modify the starting point to control its span. In
Figure 4(b), we illustrate the results when setting
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(a) Intervention Layer I

(b) Alignment Layer Range La

Figure 4: Analysis of the intervention layer and align-
ment layer range.

the starting point between layers 15 and 25. We ob-
serve that as the starting point shifts to later layers,
the defense effectiveness weakens. This may be
attributed to the reduced number of aligned layers
being insufficient to correct the attack. Overall,
while adjusting the alignment layer range impacts
defense performance, the effect is not drastic, indi-
cating that our method exhibits a certain degree of
robustness to this hyperparameter.

5.3 Efficiency Analysis

We analyze the efficiency of different defense meth-
ods by computing the Average Token Generation
Time Ratio (ATGR), which quantifies the inference
overhead introduced by each method. This metric
accounts for variations in the number of response
tokens caused by different defenses, and is defined
as follows:

ATGR =
Avg. token gen. time w/ defense
Avg. token gen. time w/o defense

.

A lower ATGR indicates that the inference time
with defense is closer to that without defense, im-
plying that the method introduces less inference
overhead.

To compare the overall performance of differ-
ent defense methods in terms of both effectiveness

Figure 5: ATGR and the average ASR of different de-
fense methods are reported. A lower ATGR indicates
smaller inference overhead, while a lower average ASR
reflects stronger defense effectiveness. Overall, methods
closer to the bottom-left corner of the plot exhibit bet-
ter effectiveness and efficiency simultaneously. SafeInt
achieves the best overall performance, offering both
strong robustness and low overhead.

and efficiency, we present their ATGR and aver-
age ASR in Figure 5. A lower average ASR indi-
cates stronger robustness against jailbreak attacks.
Therefore, methods that lie closer to the bottom-left
corner of the plot achieve better balance between
effectiveness and efficiency. Our method, SafeInt,
outperforms all baselines in overall performance,
offering both strong defense effectiveness and low
inference overhead.

6 Related Work

6.1 Jailbreak Attacks
Jailbreak attacks aim to bypass alignment or safe-
guards, forcing LLMs to generate inappropriate
content. Early jailbreak attacks (Wei et al., 2023;
Yong et al., 2024; Yuan et al., 2024) rely on man-
ually crafted adversarial prompts, which primar-
ily exploit objective competition and mismatched
generalization to achieve jailbreaks. Subsequent
optimization-based attacks (Zou et al., 2023b; Liu
et al., 2024b; Paulus et al., 2024) introduce auto-
mated adversarial prompt optimization by lever-
aging the internal states of LLMs, significantly
improving both the success rate and efficiency of
jailbreaks. Recent jailbreak attacks (Chao et al.,
2024b; Mehrotra et al., 2024; Ding et al., 2024)
iteratively rewrite and refine adversarial prompts
using one or multiple LLMs, further exposing se-
curity vulnerabilities in LLMs.

6.2 Jailbreak Defenses
To address the challenges posed by jailbreak at-
tacks, numerous defense methods have been pro-
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posed (Robey et al., 2024; Kumar et al., 2025).
Detection-based approaches identify adversarial
prompts by computing perplexity (Alon and Kam-
fonas, 2023) or randomly deleting parts of the
input (Cao et al., 2024). Some methods prompt
the LLM to perform self-checking through instruc-
tions (Phute et al., 2024; Xie et al., 2023; Zhang
et al., 2024b) or context (Zhou et al., 2024a).
Decoding-based defenses (Xu et al., 2024; Liu
et al., 2024a) focus on analyzing decoding proba-
bilities under different conditions and formulating
decoding strategies to ensure safer outputs. Addi-
tionally, certain approaches (Zhao et al., 2024) edit
specific model parameters to make LLMs forget
harmful knowledge. A more controllable and effi-
cient class of defenses (Li et al., 2025; Shen et al.,
2025) involves manipulating representations to mit-
igate jailbreak attacks without modifying model
parameters or adding decoding overhead.

6.3 Representation Engineering for Safety

Many studies have employed representation engi-
neering techniques (Zou et al., 2023a) to investigate
or enhance the safety of LLMs. Zhou et al. (2024b)
and Arditi et al. (2024) analyze the mechanisms
of jailbreak and refusal from a representation per-
spective, respectively. Li et al. (2025) improve the
robustness of LLMs by strengthening the safety
patterns they recognize. Zheng et al. (2024) intro-
duce a learnable safety prompt that aims to increase
the separation between harmful and harmless query
representations along the refusal direction. Shen
et al. (2025) add a difference vector to query rep-
resentations to guide the LLM toward rejecting
malicious instructions, while Gao et al. (2024) mit-
igate jailbreak attacks by constraining activations
within a safe boundary. A major drawback of these
two approaches is that their interventions cannot be
automatically optimized. This means that when the
intervention is applied to all query representations,
the choice of intervention strength becomes highly
sensitive. In contrast, our method adopts a param-
eterized intervention, which adaptively identifies
and adjusts jailbreak-related representations regard-
less of manually tuning the intervention strength.

7 Conclusion

This paper first analyzes the representations of jail-
break samples and makes key observations. Build-
ing on these observations, we propose SafeInterven-
tion (SafeInt), a novel method that defends LLMs

against jailbreak attacks via representation inter-
vention. SafeInt can adaptively identify and in-
tervene in jailbreak-related representations while
seamlessly integrating into the LLM inference pro-
cess. Comprehensive experimental results show
that our proposed SafeInt outperforms all base-
lines in defending against jailbreak attacks. In most
cases, SafeInt also achieves the best utility.

Limitations

We discuss the limitations of our work. We make a
preliminary observation that SafeInt can be trans-
ferred to different but homologous LLMs without
retraining. We speculate that these homologous
LLMs may share similar jailbreak representation
structures. However, we have not conducted an in-
depth exploration of the transferability of SafeInt.
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A Detailed Experimental Settings

A.1 Dataset Details

A.1.1 Training Data

To construct D(train)
jailbreak, we use GCG to generate

jailbreak instructions from 128 randomly sampled
instructions from AdvBench (Zou et al., 2023b).

To construct D(train)
unsafe , we sample 128 harmful in-

structions from MaliciousInstruct (Huang et al.,
2023) and TDC2023 (Mazeika et al., 2023).

To construct D(train)
safe , we sample 128 harmless in-

structions from Alpaca (Taori et al., 2023).

A.1.2 Test Data in Q1

To construct D(test)
jailbreak, we first resample 150 in-

structions from AdvBench. We then use GCG to
generate jailbreak instructions from these 150 in-
structions.

To construct D(test)
unsafe, we sample 150 harmful in-

structions from Do Not Answer (Wang et al.,
2023b), MaliciousInstruct, and TDC2023.2

To construct D(test)
safe , we sample 150 harmless in-

structions from Alpaca.

Note that D(test)
jailbreak, D(test)

unsafe, and D(test)
safe do not over-

lap with D(train)
jailbreak, D(train)

unsafe , and D(train)
safe .

A.1.3 Test Data in Q2

To construct D(OOD)
jailbreak, we first sample 50 instruc-

tions from AdvBench. We then use three jail-
break methods—GCG, AutoDAN, and DeepIncep-
tion—to generate jailbreak instructions from these
50 samples, resulting in a total of 150 jailbreak
instructions.

For unsafe and safe samples, we continue to use
D(test)

unsafe and D(test)
safe .

Note that D(OOD)
jailbreak does not overlap with D(test)

jailbreak

or D(train)
jailbreak.

A.2 Attack Setup

For GCG, AutoDAN, DeepInception, PAIR, and
TAP, we follow the settings from their original pa-
pers. For multilingual mismatch generalization
attacks, we translate each instruction in the test set
into one of six non-English languages—Chinese,

2Due to the insufficient data volume of the original two
datasets, we introduce Do Not Answer.

Italian, Vietnamese, Arabic, Korean, or Thai—to
carry out the attacks.

A.3 Details of ASR-keyword

Table 6 lists the refusal keywords used to evaluate
ASR-keyword. We adopt the settings from Xu
et al. (2024) and further refine them by adding "I
am not programmed to" and "As a responsible".
Additionally, we exclude "I’m an" and "I’m just"
to prevent false positives.

I’m sorry
I am sorry
I apologize
As an AI

As a responsible
As a language model

As an assistant
I cannot
I can’t

I am unable to
I’m unable to
I’m just an AI

I do not
It is not</s>

It is not appropriate
I am not allowed to

I am not programmed to
I am an AI language model

Table 6: Refusal Keywords

A.4 Additional Settings

The rank of the subspace is set to 4. We set α to
0.001, and β to either 0.01 or 0.1 to balance the
scales of different loss terms. It takes just a few
minutes to complete the training of SafeInt in both
LLMs.

A.5 Discussions of Key Hyperparameters

SafeInt introduces two key hyperparameters. We
provide detailed discussions on their settings as fol-
lows:
Intervention Layer The choice of intervention
layer can be directly set to a specific intermediate
layer. For example, in our experiments, we set the
intervention layer to 12 for both models without
performing any search, and we still achieve suffi-
ciently strong defense performance. To achieve the
best results, one could search for the optimal inter-
vention layer, but the search space is small—only
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Methods
Jailbreak Attacks ↓

MT-Bench ↑
GCG AutoDAN DeepInception MG

No Defense 86% 88% 72% 40% 5.50
SafeInt (Ours) 0% 4% 0% 2% 5.43

Table 7: Results of jailbreak attack evaluation and utility assessment on OLMoE. After applying SafeInt, the attack
success rates of various jailbreak methods are significantly reduced, while the model’s utility is largely preserved.

the intermediate layers (e.g., 11-14) need to be ex-
plored, and the computational cost is minimal.
Alignment Layer Range The setting of this hy-
perparameter is straightforward and does not re-
quire searching. Overall, the more layers are
aligned, the stronger the intervention on the jail-
break representations. Therefore, the alignment
layer range can be determined based on the safety
alignment level of the model. As demonstrated in
our experiments, weakly aligned models (i.e., those
not trained with safety-oriented RLHF), such as Vi-
cuna, can align the second half of the layers (e.g.,
layers 15–31). In contrast, strongly aligned mod-
els (i.e., those trained with safety-oriented RLHF),
such as Llama 2/3 and Qwen, only require align-
ment of the final layer.

In summary, the settings of these two hyperpa-
rameters are simple and straightforward, making
it easy to apply SafeInt to other models. In con-
trast, previous methods require manual adjustment
of intervention strength, which is tedious and time-
consuming. For example, Jailbreak Antidote (Shen
et al., 2025) first determines the search range for in-
tervention strength by testing the model’s response
from coherent to incoherent boundaries. Once the
range is determined, 20 values are sampled from
the range for testing. Furthermore, this process
of determining the range and sampling must be
repeated for each model, significantly limiting scal-
ability.

A.6 Further Explanation for Choosing
Intermediate Layers for Intervention

Because SafeInt is trained using only GCG, it gen-
eralizes better to other jailbreak methods when the
consistency among different attacks is higher. Ad-
ditionally, when jailbreak representations are more
distinguishable, our intervention is less likely to
affect representations unrelated to jailbreak behav-
ior. As shown in Figure 1 and Figure 2, we observe
that intermediate layers tend to exhibit both higher
consistency across jailbreak methods and better
discriminability of jailbreak representations. This

explains why interventions at intermediate layers
are more effective.

Furthermore, Zhou et al. (2024b) has explained
the central role of intermediate layers in jailbreak
mechanisms, while Skean et al. (2024) and Alain
and Bengio (2018) have shown that intermediate-
layer representations are generally more transfer-
able and better generalized compared to those in
other layers. These findings are consistent with and
reinforce our observations and results.

B More Results

B.1 Applicability to Heterogeneous LLMs

To demonstrate the architectural scalability of
SafeInt, we conduct experiments on an LLM with
a Mixture-of-Experts (MoE) architecture. Due to
resource constraints, we select a relatively small
MoE model: OLMoE-1B-7B-0924-Instruct (Muen-
nighoff et al., 2025). The model consists of 16
layers, and we directly apply the intervention to
layer 6 without performing any search. Addition-
ally, we set the second half of the layers as the
aligned layers.

Table 7 presents the defense effectiveness and
utility of the model before and after applying
SafeInt. The results demonstrate that our method
remains highly effective on MoE-based LLMs, fur-
ther validating its generalizability. Moreover, it has
minimal impact on the model’s utility.

C Visualization and Demonstration

C.1 Visualization

To illustrate how SafeInt functions, we visualize
the representations of unsafe samples, safe samples,
and jailbreak samples across different layers of Vi-
cuna, before and after applying SafeInt. Figure 8a
shows the representations under the No Defense
setting. We observe that the representations of the
three types of samples remain clearly distinguish-
able from the intermediate layers all the way to the
final layer. Figure 8b presents the representations
after applying SafeInt, which introduces an inter-
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vention at layer 12. As a result, beyond this layer,
the representations of jailbreak samples gradually
align with those of unsafe samples. By comparing
Figure 8a and Figure 8b, we visualize how SafeInt
relocates jailbreak representations into the rejec-
tion region. This relocation enables the LLM to
recognize and reject jailbreak samples, thereby en-
hancing its overall safety.

C.2 Example Demonstrations
We present the representative examples to highlight
the effectiveness and utility of SafeInt.

C.2.1 AutoDAN Attack
The following illustrates the responses of SafeInt
and SafeDecoding when confronted with the Auto-
DAN attack. Harmful instructions are highlighted
in red. SafeInt successfully identifies the adversar-
ial prompt and safely rejects it, whereas SafeDe-
coding is bypassed and generates harmful content.

Figure 6: Example of AutoDAN attack

C.2.2 MT-Bench
The following shows the responses of SafeInt
and SafeDecoding to a logical question from MT-
Bench. SafeDecoding exhibits excessive defensive-
ness by refusing to answer the question, whereas
SafeInt provides a well-reasoned response.

Figure 7: Example of MT-Bench
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(a) No defense

(b) Applying SafeInt

Figure 8: PCA visualizations of unsafe samples, safe samples, and jailbreak samples at different layers of Vicuna,
before and after applying SafeInt. The intervention is applied at layer 12. Comparing Figure 8a and Figure 8b,
we observe that in the No Defense setting, the three types of samples remain distinguishable beyond layer 12.
In contrast, after applying SafeInt, the representations of jailbreak samples gradually align with those of unsafe
samples, demonstrating the process by which SafeInt relocates jailbreak representations into the rejection region.
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