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Abstract

Building an NLP training set for understud-
ied languages, including Indigenous and endan-
gered languages, often faces challenges due to
varying degrees of resource limitations in the
speaker communities. What are some reason-
able approaches for training set construction
in these cases? We address this question with
POS tagging as the test case. Although many
might consider POS tagging “a solved prob-
lem”, it remains a crucial task for descriptive
linguistics and language documentation and re-
quires laborious manual annotation. Drawing
data from 12 language families, we compare
in-context learning, active learning (AL), and
random sampling. Our results suggest: (1) for
communities whose language data can be eth-
ically shared with an API, using only 1,000
randomly sampled tokens as prompt examples,
the proprietary GPT-4.1-mini can deliver de-
sirable performance (F1 > 0.83) on par with
that from a training set of thousands of tokens
in AL iterations; (2) in cases where communi-
ties prefer not to share data, 4,500-5,500 tokens
selected from AL can yield reasonable results
at a pace statistically faster than random sam-
pling, evidenced by growth curve modeling.

1 Introduction

When exploring a new language and domain for a
variety of computational linguistics and natural lan-
guage processing (NLP) tasks, we typically need
to create a new training set for the task of interest.
How should one create a new training set in order
to derive more generalizable model performance
on new unseen data in the wild? In particular, how
much training data is necessary (van der Goot et al.,
2024), and perhaps more importantly, what kind of
data should be included in the training set?

An important consideration when addressing
these questions is resource availability. The no-
tion of resource availability, from our perspective,
entails: (1) the amount of financial support for de-
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veloping computational techniques; (2) the number
of sources from which data can be collected; (3) the
number and scope of manual annotations that can
be acquired. As such, resource availability exists
on a continuum with the abundant resources of the
“big languages” that are the focus of most research
(Sggaard, 2022) at one end and the severe resource
limitation as in Indigenous and endangered lan-
guages at the other (Meek, 2012).
“High-resource” languages like English tend to
have extremely large speaker populations; there is
a commercial incentive to develop robust language
technology for these languages. Data for these
languages can come from a comparatively wide
range of sources: text data can be collected from
digitized books, online crowd-sourcing platforms,
and web-crawled data (Silveira et al., 2014); and
spoken data can be curated from read speech by
a large number of participants (Panayotov et al.,
2015) or existing media (Gauthier et al., 2016).
Lastly, given the number of L1 speakers of these
languages, it is straightforward to obtain manual
annotations for a large training set. When resources
are ample, less effort is required to determine how
much and what data to include in a training set.
Now consider the other end of the resource con-
tinuum represented by Indigenous and endangered
languages, for which the resources described above
for languages such as English are, in most cases,
unattainable. Because the focus on computational
research has thus far been on languages with large
speaker populations, there has consistently been
much less financial support for and attention to lan-
guage technology development for Indigenous and
endangered languages (Blasi et al., 2022). Given
their extremely small speaker populations, the num-
ber of sources for data collection for these lan-
guages is limited. Text data often comes from re-
stricted domains such as the Bible (Domingues
et al., 2024) or grammar books (Zhang et al., 2024),
the content of which can be biased towards stilted
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or formal versions of the language that are detached
from the reality of the language as it is spoken.
Speech data is often derived from linguistic field-
work (Shi et al., 2021a) carried out over decades us-
ing variable equipment and elicitation techniques.
The limited availability of L1 speakers presents
challenges for digitization from written texts and
manual transcription of audio data. It would be im-
possible for the training set for an Indigenous or en-
dangered language to ever equal that of a language
like English. In addition, the annotations of the
training data might vary depending on the linguis-
tic expertise of the L1 speakers. These limitations
complicate the question of training set creation,
where great care is needed to perform resource
allocation in a more thoughtful and efficient way.

Here we ask: what are some reasonable ap-
proaches to use when building a training set with
limited annotation sources? Our goal is to inform
new training set construction, particularly for under-
represented languages using existing datasets. This
means the task to select as the test case should: (1)
be valuable for language documentation; (2) have
data available in a wide range of languages with
different typological characteristics. With these
considerations, we focus on part-of-speech (POS)
tagging, taking advantage of the Universal Depen-
dencies (UD) project (de Marneffe et al., 2021). We
compare in-context learning with large language
model (LLM), uncertainty sampling (Lewis, 1995)
from the active learning framework (Settles, 2009),
and random sampling (Mirbostani et al., 2023).
For in-context learning, we leverage data from 60
languages (one treebank per language) across 12
language families from UD v2.14 (Zeman et al.,
2024).'; for active learning and random sampling,
we expand to 112 treebanks spanning 60 languages
of the same language families.

2  Why POS Tagging?

The goal of POS tagging is to automatically assign
each token in a given sentence a tag identifying its
part-of-speech category.

All Boys are not Blue
DET NOUN AUX PART ADJ

While the rapid progress in NLP more broadly
might have rendered POS tagging less popular, or
even “a solved problem”, we choose it here be-
cause POS tagging is still widely used in various

'We use UD data for research purposes abiding by their
guidelines licensed by CC-BY-SA-4.0 license.

aspects of linguistics research. For instance, the-
oretical linguists rely on the lexical categories of
different languages for characterizing their typo-
logical profile (Berg, 2014). Cognitive scientists
use POS tag distributions as interpretable features
to capture structural transfer in second language
learning (Liu et al., 2022a), characterize distribu-
tional patterns in code-switching (Chi and Bell,
2024), or they employ specific tags for identifica-
tion of syntactic constructions in child language
development (Sagae et al., 2005). Documentary
linguists and independent researchers from Indige-
nous communities rely on POS tags for descriptive
purposes and for creating pedagogical materials for
new language learners.

In addition, since we aim to explore our question
at a cross-linguistic scale, we employ datasets with
existing POS annotations that are also relatively
consistent across languages; this in turn motivates
more comparability in our analysis. The availabil-
ity of UD makes this possible. This also means
that our research questions should be of interest
for a variety of tasks and the methods described
should be applicable to other scenarios, should
cross-linguistic datasets be available.

3 Related Work

In-context learning There is a growing number of
studies, mostly using in-context learning, to probe
LLMs for their cross-linguistic capabilities in a va-
riety of tasks, including but not limited to native
language identification (Zhang and Salle, 2023),
machine translation (Robinson et al., 2023), and
word sense disambiguation (Cahyawijaya et al.,
2025). Among these studies, some attend to low-
resource or underrepresented languages specifically
(Cahyawijaya et al., 2024), with work ranging from
interlinear glossing (Ginn et al., 2024a,b; Shandilya
and Palmer, 2025) and grammar creation (Spencer
and Kongborrirak, 2025) for endangered languages,
to natural language inference for indigenous lan-
guages of the Americas (Ebrahimi et al., 2022).
Only a few experiments have looked at POS
tagging with in-context learning in particular.
Machado and Ruiz (2024) compared three LLMs
for POS tagging of Portuguese: GPT-3, LLaMA-7b,
and Maritaca (pretrained on Portuguese specif-
ically). Their prompt included 10 sentence ex-
amples and each LLM was asked to generate in-
ference for 1,000 sentences. The results showed
while GPT-3 achieved F1 scores above 0.8, the
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performance of LLaMA-7b (~0.56) and Maritaca
(~0.42) was much worse. Adelani et al. (2024)
used zero-shot prompting with GPT-4 for 12 low-
resource languages from Brazil and two from
Africa, and found that this approach outperformed
zero-shot cross-linguistic transfer learning with al-
ternative pretrained LMs (Conneau et al., 2020).

Our study goes beyond the scope of prior work
using LLLMs via experimenting with few-shot in-
context learning for 60 languages from 12 language
families (60 treebanks). One might be inclined to
believe that an LLM would undoubtedly perform
well for POS tagging given that the task is compar-
atively simple; on the other hand, it is not unrea-
sonable to suspect the opposite, given that LLM
performance for low-resource languages is quite
variable (e.g., Robinson et al. (2023); Ginn et al.
(2024b). These assumptions necessitate quantify-
ing the performance of LLMs for POS tagging to
empirically inform training set construction.
Active learning The active learning (AL) frame-
work has long been proposed as a method for in-
formative data selection when resources for ac-
quiring manual annotations are limited (Palmer,
2009; Hwa, 2004; Hwa et al., 2003; Osborne and
Baldridge, 2004; Baldridge and Osborne, 2004;
Steedman et al., 2003). The goal is to derive mod-
els that can reach a certain level of performance
from comparatively less training data.

The general process of AL is as follows. We
have a designated test set and a training data pool
to draw training samples. We first build an initial
training set of a certain size from the training data
pool, and train a model on this initial training set.
We then apply the trained model to the residual
data from the training data pool; the model gener-
ates a score (e.g., a confidence score) for each data
point in the residual data that reflects how confi-
dent the model is in its prediction for that particular
data point. Then a number of X data points for
which the model is the least certain about will be
added to the initial training set with its correct out-
put label. We build a model using this expanded
training set to start the next iteration of AL; this
process continues iteratively with the value of X
fixed in every cycle. In real-world scenarios, the
initial training set and the additional data selected
in each cycle of AL are mostly annotated by hu-
man annotators then passed on to the next iteration.
Here we perform computational simulation of this
process in controlled experimental settings, using
existing annotations provided by UD.

While AL is promising, current research on
this topic, including work focusing on POS tag-
ging, faces shortcomings. First, the majority of
AL-related studies still attend to individual lan-
guages, most of which are English. Large-scale
cross-linguistic investigations are still rare, with
a few exceptions that have focused on the task of
morphological inflection (Muradoglu et al., 2024;
Muradoglu and Hulden, 2022). While some stud-
ies have looked into AL for POS tagging, they
are again constrained by the language samples in
their individual experiments (e.g., only English in
Stratos and Collins (2015), eight Indo-European
languages in Duong et al. (2014), and six low-
resource languages in Chaudhary et al. (2021)).
Second, the analyses of results from AL in the liter-
ature tend to take an “eyeballing” approach. These
analyses rely on raw numbers and visualizations
of the learning curves to draw conclusions about
whether and to what extent AL is helpful.

Our work addresses these gaps. We investigate
AL for POS tagging across 60 languages; the differ-
ent treebanks for the same language are deliberately
studied individually to conserve potential impact
from different domains on the observations. In ad-
dition, unlike previous research that tends to lack
statistical validation, we show how results of differ-
ent sampling methods (AL vs. random sampling)
can be compared systematically using growth curve
modeling (Panik, 2014), originated from literature
on biological analysis (Richards, 1959).

4 Experiments

4.1 Training set construction

We take treebanks of contemporary languages from
UD v2.14, for which the training set has at least
3,000 tokens. This results in 112 treebanks across
60 languages spanning 12 language families (see
Appendix A; language family information is taken
from The World Atlas of Language Structures
(Dryer and Haspelmath, 2013)); all treebanks have
a pre-defined train/test split. For each treebank, we
treat the training set as the training data pool for
AL, and the full test set as the new unseen test data
to evaluate model performance from each iteration.

We set the initial training set size to be 1,000
tokens to reflect a typical goal for a session of
manual annotation.” This decision is informed by

In preliminary analysis, we also experiment with an initial
training set size of {50, 100, 500} tokens; the results are
qualitatively comparable.
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Garrette and Baldridge (2013), which showed that
for each of Kinyarwanda, Malagasy, and English,
non-native speakers were able to manually anno-
tate POS tags of full sentences totaling 1,500 (Kin-
yarwanda) to 2,600 (English) tokens in two hours.
Additionally, we set a maximum training set size
to be 100K tokens, since our primary concern is a
low-resource scenario; that is, the AL or the ran-
dom sampling process for this treebank will stop
when the training set reaches 100K tokens.

For AL, how an initial training set should be
constructed is not always clear. Previous work
has adopted two main approaches for construct-
ing an initial training set: cold-start AL with ran-
domly sampled initial sets (Yu et al., 2023; Jin et al.,
2022; Houlsby et al., 2014), and warm-start AL
with external already-annotated dataset or multilin-
gual pretrained language models (Varadarajan et al.,
2023; Zhu et al., 2019). To ensure comparability of
experimental settings across languages, we adopt
the cold-start approach; for each treebank, we ran-
domly sample an initial training set that is constant
for LLM prompting as well as kicking off the AL
and random sampling process, respectively.’

For data selection in each iteration of AL, while
there can be different metrics based on the model ar-
chitecture and output (Mirbostani et al., 2023), here
we rely on uncertainty sampling (Lewis, 1995), us-
ing the confidence score (cf. Yuan et al. (2020);
Dasgupta (2011)) from conditional random fields
(CRF) (Lafferty et al., 2001) (Section 4.3) which
is measured as the average marginal probabili-
ties across all tokens of a sentence; the lower the
marginal probability, the less certain the model is
about its prediction for a particular sentence. We
then select a number of sentences with the lowest
confidence scores totaling approximately 500 to-
kens, a value kept constant throughout AL for each
treebank. For random sampling, on the other hand,
in each iteration we randomly select sentences also
totaling around 500 tokens to add to the previous
training set; this process continues in an iterative
fashion as well, ensuring that the resulting training
set size from each random sampling iteration is
comparable to that from the AL iteration.

4.2 In-context learning

For speech communities that consider LL.Ms safe
or ethical to use for computational tasks for their

3In practice, we randomly sample 3 initial training sets to
control for potential variation; there is no observable differ-
ence in the results from the different samples.

own languages, LLMs might be a viable go-to
given recent advancements, with either in-context
learning or fine-tuning. This section describes our
experiments and results for POS tagging using in-
context learning.

While having thousands of sentence examples
for POS tagging in the prompt might lead to better
or higher performance, here for each treebank we
focus on including just the initial training set of
~1,000 tokens (see Section 4.1); this only refers
to the sentence examples of POS tagging (an av-
erage of 61 sentences across treebanks), thereby
excluding other instructions given to the LLM in
the prompt (Table 3 in Appendix B). With each
treebank, we use the same prompt format and only
switch out the language name and the sentence
examples. Our goal is to see how well an LLM
can perform POS tagging with just these 1,000 to-
kens, then use the results as comparisons to AL, in
order to assess their respective strengths and weak-
nesses. By doing this we hope to offer insights for
what data selection methods (and models) to use
for dataset creation.

In reality, any research that potentially involves
data from an Indigenous or endangered language
can only be conducted after researchers obtain con-
sent from the language community. Taking that into
account, we initially explore several LLM variants
from the L1ama family run locally through Ollama,
which is completely free, for a smaller number of
treebanks. Despite giving the UD tag set in the
prompt as well as clear instructions about the lan-
guage of interest and the desired output format,
these smaller LLLMs are not successful, somewhat
consistently generating tags not in the UD tag set
or outputting tag sequences where the number of
tags does not match the input sentence length.

We therefore turn to the state-of-the-art propri-
etary model GPT-4.1-mini via the Python API of
OpenAl. We select a subset of 60 treebanks (one
per language; Table 1), balancing language family
and speaker population, along with test set size and
the corresponding estimated cost. For evaluation,
we again adopt the original test set in full from
every treebank. Model performance is measured as
weighted F1 score. Specifically, we compute the F1
score of each POS tag, weight it by its frequency in
the test set, then take the average of the F1 scores
across all POS tags.

Results As shown in Table 1, with the exceptions of
the treebanks for two Uralic languages, Erzya and
North Sami, and simplified Mandarin Chinese, F1
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Treebank

Language family

GPT-4.1-mini F1 N of tokens from AL

UD_Arabic-PADT
UD_Hebrew-HTB
UD_Maghrebi_Arabic_French-Arabizi
UD_Maltese-MUDT
UD_Indonesian-GSD
UD_Tamil-TTB
UD_Telugu-MTG
UD_Naija-NSC
UD_Afrikaans-AfriBooms 1E
UD_Armenian-ArmTDP
UD_Belarusian-HSE
UD_Bulgarian-BTB
UD_Catalan-AnCora
UD_Croatian-SET
UD_Czech-CAC
UD_Danish-DDT
UD_Dutch-LassySmall
UD_English-ParTUT
UD_Faroese-FarPaHC
UD_French-ParTUT
UD_Galician-TreeGal
UD_German-GSD
UD_Greek-GUD
UD_Hindi-HDTB
UD_Icelandic-GC
UD_Irish-IDT
UD_Italian-ParTUT
UD_Lithuanian-HSE
UD_Latvian-LVTB
UD_Lowgaxon — LSDC
UD_Norwegian-Nynorsk
UD_Persian-Seraji
UD_Polish-LFG
UD_Portuguese-GSD
UD_Pomak-Philotis
UD_Romanian-RRT
UD_Russian-GSD
UD_Serbian-SET
UD_Slovenian-SST
UD_Spanish-GSD
UD_Scottish_Gaelic-ARCOSG
UD_Slovak-SNK
UD_Swedish-LinES
UD_Ukrainian-IU
UD_Urdu-UDTB
UD_Welsh-CCG
UD_Western_Armenian-ArmTDP

Dravidian

UD_Basque-BDT Isolate
UD_Japanese-GSD Japonic
UD_Korean-GSD Koreanic

UD_Wolof-WTB

UD_Chinese-GSDSimp Sino-Tibetan
UD_Vietnamese-VTB

UD_Turkish-Kenet Turkic
UD_Uyghur-UDT

UD_Erzya-JR Uralic

UD_Estonian-EWT
UD_Finnish-TDT
UD_Hungarian-Szeged
UD_North_Sami-Giella

Afro-Asiatic

Austronesian

English-based creole  0.94

Niger-Congo

0.89 6,706
0.94 48,905
0.83 12,724
0.93 max=0.92
0.92 11,185
0.84 4,084
0.93 max=0.92
5,535
0.95 12,407
0.92 max=0.91
0.94 18,693
0.97 27918
0.96 28,006
0.95 25,606
0.97 19,815
0.93 26,103
0.92 24,003
0.93 7,672
0.94 12,813
0.97 max=0.96
0.93 max=0.92
0.94 97,258
0.95 max=0.94
0.90 7,086
0.90 23,950
0.90 12,886
0.96 33,509
0.92 max=0.72
0.93 43,156
0.85 max=0.84
0.92 9,596
0.94 19,590
0.95 19,107
0.94 17,995
0.86 2,532
0.94 28,993
0.95 29,490
0.96 15,397
0.91 11,724
0.94 43,137
0.85 3,103
0.94 max=0.91
0.95 max=0.94
0.94 31,300
0.90 12,401
0.85 4,024
0.92 18,767
0.88 10,647
091 15,793
0.87 16,804
0.87 4,060
0.84 19,082
0.87 max=0.85
0.87 12,089
0.86 7,026
0.70 1,498
0.91 max=0.90
0.94 max=0.93
0.93 max=0.90
0.78 3,007

Table 1: Weighted F1 scores from GPT-4.1-mini across 60 treebanks; /N of tokens from AL refers to the number
of tokens in a training set in the AL process needed to reach comparable performance as that of GPT-4.1-mini;
e.g., max=0.92 means that the maximum F1 score from AL (regardless of training data size) is 0.92 and lower than

the result from GPT-4.1-mini.

scores from GPT-4.1-mini are consistently above
0.83 for all other treebanks, with the majority hav-
ing performance equal to or above 0.90. A model
with such strong performance can most likely suf-
fice in the wild to obtain first-pass automatic an-

notations of new unseen data before possibly go-
ing through manual correction. A sneak peak at
the results from AL reveals that to perform on par
with GPT-4.1-mini, a minimum of thousands of
tokens in the training set selected from the AL iter-
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ations is required, with some treebanks requiring
even more. For cases such as UD_Maltese-MUDT
and UD_Hungarian-Szeged, even the maximum
F1 score from AL is still lower than that from the
LLM. These observations might suggest that in
cases where language data can be processed via
the GPT-4.1-mini API, 1,000 randomly selected
tokens as prompt examples can deliver desirable
performance, at least for the languages evaluated.
At the same time, we acknowledge the possibility
that the UD treebanks might have been included in
the training data for GPT-4.1-mini; additionally,
none of the 60 languages here is truly low-resource
(Liu et al., 2022b). It is not unlikely that for In-
digenous and critically endangered languages, the
performance of LLMs is (much) worse, necessitat-
ing the approach of AL, as we will describe below.

4.3 AL and random sampling

While LLMs can be powerful, for many Indige-
nous speech communities, data is frequently not
shared with outsiders, making the use of models
such as GPT-4.1-mini unethical and incompati-
ble with the community’s values. Given the weak
POS tagging performance of LLMs that are small
enough to be run locally via Ollama, we turn to
(old-fashioned) AL.

Model We use CRF throughout experiments in this
section. Despite being a relatively simple statistical
model, prior research has shown the effectiveness
of CRF over several neural models in sequence
labeling tasks (e.g., morphological segmentation
(Liu and Dorr, 2024)) in scenarios with limited
data.* Given a sentence, CRF uses a curated feature
set of each individual token to predict its POS tag
(see implementation details in Appendix C). After
initial experimentation, for each token, the feature
set includes information such as the number of
characters, character-level n-grams (up to four) in
the word itself, as well as the same information
about the previous one and two words (if available).
Model performance for each treebank is measured
as weighted F1 score derived from the full test set.
Statistical analysis As mentioned previously (Sec-
tion 3), prior research on AL lacks statistical anal-
ysis to verify whether it is better than alternative
baselines. We address this gap here using growth

*In preliminary work, we compare CRF with a neural al-
ternative, the transformer architecture TRANSFORMER_TINY
from fairseq (Ott et al., 2019); the neural model, while being
computationally much more expensive, consistently underper-
forms compared to CRF.

curve models (Panik, 2014), the variants of which
have been applied in linguistics to computationally
assess the developmental trajectory of phenomena
such as infant development (Neale and McArdle,
2000) and cognitive control (Erb et al., 2023). With
growth curve modeling, we can identify a train-
ing configuration that results in more rapid perfor-
mance improvements and hence has the potential
to more efficiently allocate annotation efforts in
a non-simulated AL scenario when only limited
resources are available, which would particularly
benefit endangered languages.

To compare the performance of the two sampling
methods, we rely on nonlinear growth curve analy-
ses of F1 scores (Panik, 2014) as training sample
size increases. We use the four-parameter Weibull
model (Ratkowsky, 1983) shown in Eq. 1 below,
modeling F1 score as a function of training size
(t). F1 scores range between (0, 1) with model
performance possibly improving nonlinearly un-
til it reaches an upper limit at which performance
does not improve any further (see Figure 1 in Sec-
tion 4.3). Similarly, a four-parameter nonlinear
Weibull growth model assumes an upper asymptote
« as ceiling for the F1 scores, a lower asymptote
B where model performance starts, a growth or
improvement rate v which shows how quickly the
model improves, and finally a shape parameter ¢§
which determines the shape of the learning curve,
with lower ¢ indicating sharper approach to the
upper asymptote; e is Euler’s Number:

Fl=a—(a—B)e (1

We compare the average growth rate v between
uncertainty sampling from AL and random sam-
pling. An observed higher growth rate would sug-
gest that the performance of one method improves
more quickly than another, which as noted above
could contribute to decreasing the amount of hu-
man annotation effort needed to create robust mod-
els. To fit our nonlinear growth curves we used the
BRMS package in R (Biirkner, 2017). (For details
of parameterization and fitting of the growth curve
models, see Appendix F).

A walk-through with Irish We first present a walk-
through of the results for the UD_Irish-IDT tree-
bank of Irish, classified as endangered by Ethno-
logue (Eberhard et al., 2025). Based on the Ex-
panded Graded Intergenerational Disruption Scale
(EGIDS), a scale ranging from O (International) to
10 (Extinct) (Lewis and Simons, 2010, 2017), Irish
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Figure 1: Learning curves for UD_Irish-IDT from AL
and random sampling; x-axis represents the training set
sizes and y-axis corresponds to the weighted F1 scores.

is level 6b (Threatened).”

As illustrated in Figure 1, there is a clear pat-
tern of a logarithmic curve (with an upper bound)
from the AL process, which increases rapidly at
the beginning, then gradually slows before reach-
ing a plateau, remaining stable afterwards. In
this case, the F1 score starts at 0.71 with 1,000
tokens, reaches 0.85 with a training set of 4,500
tokens; around 12,000 tokens we arrive at an F1
score of above 0.90, which slowly increases to over
0.93 when training set exceeds 25,000 tokens, then
plateaus. The learning curve for AL is also visually
above that from random sampling until approach-
ing the tail of the curve.
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Figure 2: Upper asymptote and growth rate estimates
of the Bayesian growth curve fits to the weighted F1
scores of UD_Irish-IDT.

Figure 2 shows the Bayesian growth curve es-
timates for upper asymptotes and growth rates
of UD_Irish-IDT. The upper asymptote estimates
show the maximum F1 scores that the mod-
els would reach if the training continued indef-
initely and the growth rate shows how fast F-
1 scores approach this maximum score. For
the UD_Irish-IDT treebank, the upper asymp-
tote estimate is higher (o = 0.9527,95%C1 =
(0.951,0.954)) than that of the AL method (o =
0.9469,95%CIT = (0.946,0.947)). On the
other hand, the growth rate estimates suggest
that the AL method reaches higher F1-scores
much faster and with fewer training data sets

5https ://en.wikipedia.org/wiki/Expanded_
Graded_Intergenerational_Disruption_Scale

(v = 0.000243, 95%CT = (0.000235, 0.000251))
than the random sampling method (v =
0.000115,95%C1I = (0.000112,0.000118)).

To gain more insight into the learning curve pat-
terns, we analyze the POS tag distributions of train-
ing sets from AL iterations by measuring the dis-
tance between each training set and the test set. We
use Kullback—Leibler (KL) divergence (Csiszar,
1975) as an approximation of how divergent a train-
ing set (QQ) is from the test set (P), the latter of
which is the reference distribution (Eq 2). We an-
ticipate that the more different the training and the
test sets are, the lower the F1 score will be.

, P(i)
Dir(P || Q) = Z P(i)log ( Q(i)) @)

Results (Figure 5 in Appendix D) show that as
training size increases, the KL divergence value
mostly decreases, while showing more fluctua-
tions with much larger training sets. To assess
this relationship, we fit a linear regression predict-
ing KL divergence as a function of the training
size at every AL iteration. There appears to be a
weak yet significant negative effect for training size
(8 = —4.185e — 08,p < 0.001), meaning the dis-
tributions of the training and test sets become closer
with larger training sets. As a result, we also find a
pronounced negative relationship between KL di-
vergence and the F1 score (8 = —5.35,p < 0.001),
confirming that a training set distributionally more
similar to the test set yields better performance.

Results from Figure 1 are aggregated over
all POS tags from the designated test sets of
UD_Irish-IDT. Now we consider the learning
curves of individual tags. To address this matter,
we compute the F1 score for each of the 17 POS
tags from UD; the learning curves for most POS
tags (Figure 6 in Appendix E) from AL correspond
to that of a logarithmic curve similar to the obser-
vations averaged across all tags (Figure 1).

We offer three conjectures for the observed learn-
ing curve patterns of individual POS tags. The first
pertains to the probability of the tag in the training
set (Tag_prob), which we expect to have a positive
effect on the F1 scores of the tag across the AL
iterations. The second conjecture involves the dis-
tribution of words with a given tag (e.g., all words
tagged as NOUN). On one hand, we anticipate that
more variation in word distribution might help a
model be more robust to variation in the test set;
on the other hand, it could also introduce more
infrequent patterns that might not help the model
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learn more effectively. To evaluate this conjecture,
we measure the amount of variation in word distri-
bution for a certain tag (Tag_word_entropy) with
entropy (Shannon, 1948). For instance, we take all
words tagged as NOUN in a treebank, derive a proba-
bility distribution for these words (e.g., { ‘dog’: 0.4,
‘cat’: 0.3, ‘cheese’: 0.3}), then calculate entropy
with this probability distribution.

The third conjecture concerns the syntactic en-
vironment of a POS tag, i.e., what other tags a
given POS tag can co-occur with and how often
they co-occur. In this case, we consider the bigram
distributions of POS tags. Take NOUN as an exam-
ple. We first collect all tag bigrams where NOUN ap-
pears, turn them into a probability distribution (e.g.,
{‘'NOUN VERB’: 0.3, ‘VERB NOUN’: 0.4, ‘DET
NOUN’: 0.3}), then use entropy to measure the dis-
tribution of these bigrams (Tag_syntax_entropy).

For each treebank, we use mixed-effect linear
regression to probe the roles of the aforemen-
tioned three conjectures. We include Tag_prob,
Tag_word_entropy, and Tag_syntax_entropy
as fixed effects and the POS tag as the random
effect; the regression model predicts the F1 score
from each AL iteration. Our analysis shows a no-
table positive effect for Tag_word_entropy (8 =
0.036,95%CT = (0.031,0.041)), suggesting that
the more variable the word distributions of a given
POS tag are, the better the model performance will
be. On the other hand, Tag_syntax_entropy ex-
hibits the opposite effect (3 = —0.05,95%C1T =
(—0.07,—0.03)), indicating that F1 scores tend to
be higher when the syntactic environments of the
POS tag are less diverse. In contrast to these two
factors, there is no notable effect for Tag_prob
(8 =-0.17,95%CT = (—0.51,0.17)).

4.3.1 Overall results

We carry out the same analysis for other 60 lan-
guages and their associated UD treebanks as we did
for Irish. We first examine the learning trajectory
of model performance from AL. Across treebanks
mostly with large training data pool (see Fig. 3
for contrasts between selected treebanks from dif-
ferent language families), the learning curve for
F1 score increases comparatively rapidly until the
training set reaches approximately 4,500-5,500 to-
kens. Growth then begins to decelerate substan-
tially, with absolute F1 increases of less than 0.001
for every additional 500 to 1,000 tokens after the
training set reaches 20,000 tokens approximately.
We compare the growth rates estimated from

Bayesian growth curve modeling for AL vs. ran-
dom sampling in Figure 4. We observe that for all
the treebanks with reliable growth rate estimates,
the AL models reach the estimated upper asymp-
tote faster than the models that used the random
sampling method. For upper asymptote estimates,
however, the growth curve models do not show a
clear advantage for either method (Figure 7 in Ap-
pendix F). For most treebanks, the upper asymptote
estimates overlap, suggesting that both methods are
predicted to reach the same maximal F1 score with
continued training. Putting these results together,
while models from AL approach their maximum
F1 scores faster, the upper asymptotes of the F1
scores are not generally significantly higher than
those from random sampling.

Note that the seemingly differing observations
between growth rates and upper asymptotes are
not in contradiction to each other, as the two pa-
rameters are estimating different properties of the
learning curves. We consider the discrepancies to
actually have important implications for dataset de-
sign. If one cares more about deriving a model with
reasonable performance at a faster pace — for exam-
ple, to get a working model to perform automatic
annotation in the pipeline to speed up the process
of manually correcting machine output — AL would
be preferred. Alternatively, if achieving the high-
est score possible is the main concern, resources
permitting, random sampling would be optimal.

5 Discussion & Future Directions

With existing datasets for 60 languages from 12
language families, our study makes the follow-
ing recommendations for building POS tagging
training sets for new languages that possibly face
limitations in available annotation efforts. In sce-
narios where it is safe, ethical, and compatible
with speaker community values to expose lan-
guage data through an API, in-context learning
with GPT-4.1-mini using a small randomly sam-
pled training set of 1,000 tokens in the LLM prompt
can deliver desirable results that are mostly better
than those derived from AL and random sampling
(at least for the languages investigated). In our
experiments, API calls per treebank cost no more
than $4 US dollars; this amount, together with the
expense for obtaining manual annotations for 1,000
tokens, would be more economical than acquiring
manual annotations for thousands of tokens for AL.

There are, however, many Indigenous and en-

8446



Method AL

Random

UD_BasqueBDT || UD_Chinese-GSDSimp | [ UD_English-EwT UD_Estonian-EWT UD._Hebrew-HTB UD_Indonesian-GSD

o
-~

4

UD_Korean-Kaist UD_Naija-NSC UD_Telugu-MTG UD_Turkish-BOUN UD_Wolof-WTB

UD_Japanese-GSDLUW | |

,‘/:' f

0.00

Training set size

Figure 3: Snapshot of learner curves for selected treebanks from AL and random sampling; x-axis represents the
training set sizes and y-axis corresponds to the weighted F1 scores.

Growth Rate

0.00100 $ Method
+ A
0.00075 ¢ " t Random
% [} 4 ; ]
E . ' . .
3 0.00050 :
w ., ’ [] ] . N * ‘e .
L] L]
. " . . “ Tl (] Y ] Y [} ‘, ) ‘ ) i . ot LS ] 0o u'-
* ] L]
0.00025 soae ,|' ] (] TR YC I ANRA) . T ot .t. '-‘ { B .n IS "-
o St XX 2 ,:. v ':'..' o.. IAPLA ot Sestag 0t 0'.. e slatty :.:. e .
. .'o‘ . .
B e, B I
SEASS LR ELOL 858 FLESHSEELRE885 QEQBEEPOOESQLLLETOLORD FRAGSLOEFFASOQLEnObERLLQA LML 000 L2t FEE0M00 80
FOONOGA S Yy [ QFEI B N BOSE TR SIS NS 290 SERT S LFES IS LATTITo FEFRIGRT EX
R N L B S e I I S T s S S R
FrEYg e S RS P s ORI d STy e ¥ L LT ISPLLE 5T L% g SRS A FAS T P I L R X g ol Rp P LI g p ]
N Ay RIS RS Iy S S S S S A F SR N S I O R
TR TSSO S5 s e L CSNCFPTE I RIS RILOLOTY RN E L P R g R e )
RO L TR YRR R S O R L X LU O DN Sl
§EE U ¢ Feey T EERE § SSF8E TEgg S¢TF § SPTY LRSReSiestest T angtsy ATNNS T g
§ & é L R A A B A /L b A :
§F ¢ = § 0 F £ ¢ 568 s € @
&
Treebank

Figure 4: Growth rates with 95% credible intervals from Bayesian growth curve modeling for each treebank.

dangered speech communities for whom data
sovereignty is a sensitive issue (Kukutai and Taylor,
2016). For these cases, AL for POS tagging with
a statistical model that runs locally can be effec-
tive. In our AL experiments, the learning curves
largely grow rapidly until reaching a training size of
4,500-5,500 tokens, after which growth diminishes
and begins to approach an asymptote. Our statisti-
cal model further reveals that across the languages
tested, while AL and random sampling might reach
comparable maximum F1 scores eventually, mod-
els from AL iterations arrive at the upper asymptote
faster. This means that for resource-constrained
scenarios with limited bandwidth for manual an-
notations, AL is the better choice. We hope that
our research methodology can be adopted in future
work on AL and dataset design more broadly.

We see a number of fruitful directions in our fu-
ture work. First, we would like to explore diversity
sampling (Bodé et al., 2011), an alternative sam-

pling method that has been incorporated into AL in
previous literature (Shi et al., 2021b). Second, we
hope to learn more about the practical impact of our
findings. For instance, while our results might sug-
gest certain recommendations for building datasets,
we do not know the relationship between improve-
ments in POS tagging F1 for these languages and
downstream tasks that rely on POS tags. In addi-
tion, because our work only simulates the process
of AL, we do not yet fully understand the impact
of putting AL into action on the required effort
of real annotators (see also Baldridge and Palmer
(2009)). Finally, we would like to carry out similar
experiments with other NLP tasks, especially those
that are helpful in the contexts of documenting
endangered languages, such as automatic speech
recognition (Prud’hommeaux et al., 2021) and mor-
phological segmentation (Garrett, 2011).
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6 Limitations

While we believe our work to be thorough and our
choices well justified, we do acknowledge some po-
tential limitations. First, we only experiment with
a fixed size of 1,000 tokens as prompt examples
for in-context learning; it is possible that even a
smaller training sets might yield comparable perfor-
mance. Second, our prompt examples are randomly
sampled; future work can consider more informed
data selection strategies for in-context learning or
finetuning with LLM.

Finally, the UD project, while offering a wide
range of language selections, is (as of now) heavily
weighted toward IE languages, which are not nec-
essarily representative linguistically of the world’s
languages at large, or Indigenous and endangered
languages in particular. We choose UD for its rel-
atively consistent annotation standards across lan-
guages, as well as the fact that it is open-access.
Additionally, languages from UD with compara-
tively fewer resources can provide some idea of
how well the approach would fare with endangered
languages. Since an endangered language is often
tied closely to its respective community’s identity
and cultural heritage, work involving unpublished
data from an endangered language is best done in
close partnership with and for the direct benefit of
its community. Here, we focus on the methods that
would enable such work. As more datasets anno-
tated with (UD-style) POS tag information become
publicly available, we hope our methods would be
directly applicable to those cases.
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A Languages studied

We list the languages studied here and their lan-
guage families in Table 2; language family infor-
mation is taken from The World Atlas of Language
Structures (Dryer and Haspelmath, 2013).

—

L Family
Indo-European

Afrikaans, Armenian, Belarusian, Bulgarian, Catalan, Croatian, Czech,
Danish, Dutch, English, Faroese, French, Galician, German,

Greek, Hindi, Icelandic, Irish, Italian, Latvian, Lithuanian,

Low Saxon, Manx, Norwegian, Persian, Polish, Pomak, Portuguese,
Romanian, Russian, Scottish, Serbian, Slovak, Slovenian, Spanish,
Swedish, Ukrainian, Urdu, Vietnamese, Welsh, Western Armenian
Arabic, Hebrew, Maghrebi, Maltese

Afro-Asiatic

Isolate Basque

Uralic Erzya, Estonian, Finnish, Hungarian, North Sami
Niger-Congo Wolof

Turkic Turkish, Uyghur

English-based Naija

Koreanic Korean

Indonesian

Tamil, Telugu
Japanese
Mandarin Chinese

Austronesian
Dravidian
Japonic
Sino-Tibetan

Table 2: The 60 languages and 12 language families
studied in our experiments.

B LLM Prompt

Table 3 provides the prompt we used for
GPT-4.1-mini.

C CRF Implementation

CREF treats POS tagging as a sequence labeling task.
We build first-order CRF models (Lafferty et al.,
2001) throughout our experiments. All models are
implemented with the Python library crfsuite.
This decision was motivated by two factors. First,
prior work has demonstrated CRF to be superior to
neural sequence-to-sequence models for sequence
tagging task such as morphological segmentation in
low-resource settings for a variety of typologically
diverse languages (Liu and Dorr, 2024). Second,
CRF models, particularly those of lower orders
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You are a helpful assistant who is an expert part of speech tagger that works with the Universal Dependencies part-of-speech tagset.
The user will give you a sentence in Irish to be tagged, with one token per line, where each line contains the token’s index and the token.

You must provide the tagged sentence in the following format:
1 token_1 tag_1
2 token_2 tag_2

n token_n tag_n

You must use only the tags in the following tagset: PROPN NUM SYM ADJ NOUN PRON PUNCT DET INTJ ADV PART ADP X AUX SCONJ CCONJ VERB.

IMPORTANT: the sentence that the user provides has already been tokenized, and each sequence of characters separated by whitespace is a token. DO NOT further split the tokens,

and DO NOT join tokens. Also, DO NOT change anything in the sentence provided.

Please provide only the tagged sentence, and nothing else. No explanation, no alternatives, only the tagger output in the format specified above.

SENTENCE:
1 Bhi

2 an

3 geata

4 dinta

5.

TAGGED SENTENCE:
1 Bhi VERB

2 an DET

3 geata NOUN

4 dinta ADJ

5. PUNCT

Table 3: GPT-4.1-mini prompt for POS Tagging.

UD_lrish-IDT

0016

KL divergence

0.008

o000
Training set size

Figure 5: KL divergence between the test set and the
training set from each AL iteration for UD_Irish-IDT.

(first-/second-order), are less computationally ex-
pensive to implement; all models are trained with
a single CPU core and 8GB of RAM.®

D KL divergence between the training
and the test set for UD_Irish-IDT

Figure 5 presents results for the KL divergence
between the test set and the training set from each
AL iteration for UD_Irish-IDT.

E AL learning curves for individual tags
of UD_Irish-IDT

Figure 6 shows the learning curves of individual
tags from AL iterations for UD_Irish-IDT.

F Growth Curve Model Implementation
Results

Given that F1 scores are between 0 and 1, for all
growth curve models, we set uniform priors in the
same range for the parameters of the upper and
lower asymptotes. Since the values for growth
rates and delta are always positive, we also set

Code for our experiments is available at https://
github.com/ufcompling/unlabeled_pos.

uniform priors for these two parameters with the
lower bound of 0. In order to help with model
convergence we set 10 as a reasonably high growth
rate as the upper bound of the uniform priors for
these parameters. In practice the values for the
growth rate and delta were below 1, rendering an
upper bound of 10 to be suitably uninformative
that can be helpful for deriving more objective
estimates (Nicenboim et al., 2021). Each growth
curve model ran for 4000 iterations. Models
that did not converge were re-run for 8000 and
12000 iterations. We excluded the following three
treebanks from our statistical analyses since their
growth curve models did not converge with higher
iterations due to their respective small number
of analyzable data points: UD_Dutch-Alpino,
UD_Erzya-JR, and UD_Irish-TwittIrish,
UD_Galician-TreeGal, UD_German-GSD,
UD_Tamil-TTB, UD_Italian-ParlaMint,
UD_Turkish-FrameNet, UD_Uyghur-UDT,
UD_Pomak-Philotis, UD_Indonesian-CSUI.

Results for the upper asymptotes estimates with
95% credible intervals from growth curve analysis
are presented in Figure 7.
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Figure 6: AL learning curves for individual tags of UD_Irish-IDT; the x-axes range from 1,000 to 100K tokens.
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Figure 7: Upper asymptotes with 95% credible intervals from Bayesian growth curve modeling.
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