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Abstract

Subject-driven text-to-image (T2I) generation
aims to produce images that align with a given
textual description, while preserving the vi-
sual identity from a referenced subject image.
Despite its broad downstream applicability—
ranging from enhanced personalization in im-
age generation to consistent character repre-
sentation in video rendering—progress in this
field is limited by the lack of reliable automatic
evaluation. Existing methods either assess
only one aspect of the task (i.e., textual align-
ment or subject preservation), misalign with
human judgments, or rely on costly API-based
evaluation. To address this gap, we introduce
REFVNLI, a cost-effective metric that evalu-
ates both textual alignment and subject preser-
vation in a single run. Trained on a large-scale
dataset derived from video-reasoning bench-
marks and image perturbations, REFVNLI out-
performs or statistically matches existing base-
lines across multiple benchmarks and subject
categories (e.g., Animal, Object), achieving up
to 6.4-point gains in textual alignment and 5.9-
point gains in subject preservation.!

1 Introduction

In a well-known scene from “The Little Prince”,
the narrator attempts to comfort a grieving prince
by saying “I’ll draw you a fence around your
flower”. While fairly simple, this offer raises a
deeper question: what makes such a drawing ade-
quate? Beyond accurately depicting a fence around
a flower, the use of ‘your’ implies that it must
portray a specific flower—the Prince’s own— one
with which he shares a history. Given the flower’s
uniqueness and distinct visual traits, the narrator’s
task proves far more complex than it first appears.

Subject-driven text-to-image (T2I) generation
(Chen et al., 2024; Li et al., 2024; Ruiz et al.,

* Work done during an internship at Google Research.
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Figure 1: Hllustration of REFVNLI: Given a reference
image of a subject, a prompt referring to the subject,
and a target image, REFVNLI assesses both subject
preservation and textual alignment. For subject preser-
vation, it distinguishes identity-preserving variations,
like dew on a flower (top image), from identity-altering
changes, such as color change (middle image). For tex-
tual alignment, it assesses whether the target image
reflects all details from the prompt, such as the fence’s
position relative to the flower (bottom image).
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2023) enables a variety of downstream applica-
tions, such as personalized image generation (Ruiz
et al., 2023), character consistency in video genera-
tion (Liu et al., 2024c), and enhancing vanilla T21
evaluation frameworks for less-known entities via
image retrieval (Tahmasebi et al., 2025). Unlike
standard T2I models that are only conditioned on
text inputs, this setup takes both a textual prompt
and a reference image, enabling more precise sub-
ject representation. For example, when creating an
image of a fenced-in flower for the Little Prince,
subject-driven models should use a reference image
of the Prince’s flower to ensure the output preserves
its unique features (see Fig. 1).
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Figure 2: Qualitative Comparison: We compare REFVNLI with DreamBench++ and CLIP, which score both
Subject Preservation (SP) and Textual Alignment (TA), using examples from the Animal, Object, and Human
categories. DreamBench++ scores (0-4) are scaled to 0-100 for better readability. REFVNLI exhibits better robust-
ness to identity-agnostic changes (SP), such as the zoomed-out parrot (top-middle) and the zoomed-out person with
different attire (bottom-middle). It is also more sensitive to identity-defining traits, penalizing changed facial fea-
tures (left-most person) and mismatched object patterns (left and middle balloons). Additionally, REFVNLI excels
at detecting text-image mismatches (TA), as seen in its penalization of the top-left image for lacking a waterfall.

Despite its wide applicability, research in this
area has been hindered by a lack of reliable and
scalable auto-raters. Existing metrics typically cor-
relate poorly with humans, and often focus only on
textual alignment between the input prompt and the
target image, as in CLIP-T (Radford et al., 2021)
and SigLIP (Zhai et al., 2023), or on subject preser-
vation between the input and target images, as in
CLIP-I (Radford et al., 2021) and DINO-I (Caron
et al., 2021), while both aspects are needed for suc-
cessful subject-driven generation. More correlative
metrics, like DreamBench++ (Peng et al., 2024)
and VIEScore (Ku et al., 2024a), depend on costly
API calls to models like GPT-4 (OpenAl, 2024),
making them less scalable and reproducible.

To bridge this gap, we present REFVNLI, a cost-
effective fine-tuned auto-rater for subject-driven
T2I generation. Given a triplet <image,.f, prompt,
image;q;>, REFVNLI predicts two scores—textual
alignment and subject preservation—in a single
run, as shown in Fig. 1. To train REFVNLI, we auto-
matically curate a large-scale dataset of <image,.s,
prompt, image;> triplets, labeled with <textual
alignment, subject preservation> € {0,1}2. For
subject preservation, we identify subjects across
video frames, creating positive examples using
pairs of frames depicting the same subject, and

negative ones by pairing frames of different sub-
jects (yet of the same entity). This approach en-
ables robustness to variations in subject appearance
(e.g., rotation, setting, clothing), as well as to the
presence of extraneous elements (e.g., dew on the
Little Prince’s flower in Fig. 1, top). At the same
time, REFVNLI must also be sensitive to identity-
defining traits, such as human facial features or
object shapes and colors (e.g., middle image in
Fig. 1). To this end, we modify images by mask-
ing and inpainting identity-critical regions, while
keeping everything else unchanged. The original
subject crops are then paired with the unaltered im-
ages as positive pairs and with the modified images
as negative pairs, thereby teaching the model to
focus on key identity attributes.

For textual alignment, we first create positive
image-prompt pairs. For that, we use an LLM to
caption each image in the aforementioned pairs,
ensuring focus on the subject by enclosing it within
a bounding box. Negative pairs are then formed
by replacing these captions with those of different
scenes. For extra sensitivity to minor mismatches,
like a fence drawn next to rather than around the
Prince’s flower (Fig. 1, bottom), we also create neg-
ative pairs by altering a single fact in each original
(positive) caption. Finally, to derive the <image.f,

8421



Scene

Negative
Pairs

Positive

Scene 2

Figure 3: Generating subject preservation classification training instances from video frames. Given two pairs
of frames, each extracted from distinct video scenes featuring the same entity (e.g., a dog), where both frames
within each pair depict the same subject (e.g., the same dog), we construct training {image,.s, imageq } pairs for
subject preservation classification. Positive pairs are formed by pairing a cropped subject from one frame (e.g.,
dog from left frame in Scene 1) with the full frame from the same scene (right frame in Scene 1). In contrast,
negative pairs are created by pairing the cropped subject with the other scene’s full frames (e.g., Scene 2). This
process is applied to all four frames, with each taking turns as the cropped reference image (image,.r), while the
corresponding full-frame counterparts serve as image,,, yielding a total of 4 positive and 8 negative training pairs.

prompt, image;> triplets from each pair of frames
and associated captions, we use the cropped subject
from one frame as image,.r and the entire second
frame, alongside its caption, as {prompt, image;q; },
resulting in a total of 1.2 million instances.

We evaluate REFVNLI on multiple human-
labeled test sets for subject-driven generation, in-
cluding DreamBench++ (Peng et al., 2024), Ima-
genHub (Ku et al., 2024b), and KITTEN (Huang
et al., 2024), across categories such as Humans,
Animals, Objects, Landmarks, and a multi-subject
setting. For textual alignment, REFVNLI consis-
tently matches or outperforms all baselines, with
up to 6.4-point gains in Landmarks and proficiency
at detecting subtle text-image misalignments (e.g.,
missing waterfall in Fig. 2, top-left). It also leads
in subject preservation, with gains of up to 6.3
points on Objects (Table 1) and 5.9 points in the
multi-subject setting, surpassing the larger GPT-4o-
based DreamBench++ baseline. As seen in Fig. 2,
it balances robustness to non-critical changes (e.g.,
zoomed-out toucan, top-middle) with sensitivity to
identity shifts (e.g., altered facial features, bottom-
left). Further, REFVNLI effectively handles rare
subjects (§5), outperforming all baselines and high-
lighting its value as a reliable alternative to standard
T2I metrics for uncommon entities.

2 REFVNLI: Automatic Metric for
Subject-driven T2I Generation

We introduce REFVNLLI, a cost-effective auto-rater
specifically tailored for subject-driven T2I gener-
ation. This section details the automated pipeline

used to construct its training dataset (§2.1) and the
subsequent training process of REFVNLI (§2.2).

2.1 Training Dataset Construction

To train REFVNLI, we collect a large scale dataset
of <image,.s, prompt, imageo,> triplets, each with
two binary labels: one for subject preservation of
image,.rin imageq, and one for textual alignment
between the prompt and image;s;. This involves
first creating subject-driven {image,.s, image;s}
pairs, followed by automatic generation of subject-
focused prompts for each image;g;.

Subject-driven image pairs. To ensure our
{image,.f, image;,;} dataset is robust to identity-
agnostic changes (e.g., pose, clothing, or lighting
changes), we use video-based datasets that inher-
ently capture these differences. Specifically, we use
Mementos (Wang et al., 2024), comprising scene-
specific video frames with human-written textual
descriptions, and TVQA+ (Lei et al., 2020), con-
taining human-annotated bounding boxes for char-
acters and objects in TV episodes. We first locate
subjects within frames: for Mementos, we extract
entities from the provided textual descriptions us-
ing Gemini (Team, 2024) and localize them in the
associated frames with an object detection model
(Minderer et al., 2022), while for TVQA+, we di-
rectly use the provided bounding boxes. Positive
pairs are formed from frames featuring the same
subject, usually within the same scene,” while neg-
ative pairs consist of frames with distinct subjects

“For TVQA+, we also include cross-scene positive pairs
for named entities, such as TV characters.
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Figure 4: Creating identity-sensitive {image,.s, image,,} pairs. Starting with an image and a mask of a subject
(e.g., a bag), we randomly keep 5 patches within the masked area ([1]) and use them to create 5 inpainted versions
([2]). The version with the highest MSE between the altered and original areas (e.g., bottom image, MSE = 3983)
is paired with the unmodified crop to form a negative pair, while the original image and the same crop create a
positive pair, with the crop acting as image, in both cases.

(of the same type of entity), often across scenes
(see Fig. 3). These frame-pairs are then converted
into {image,.f, image;y }-pairs by cropping the sub-
ject from one frame as image,r (e.g., left frame in
Fig. 3, Scene 1) and using the full second frame
as image;q; (each of the other frames in Fig. 3).
This is then repeated with reversed roles for an ex-
tra {image,.f, images; } pair. In total, we collected
338,551 image pairs (228,661 from Mementos and
109,890 from TVQA+) from 44,418 unique frames.

To further enhance sensitivity to identity-specific
attributes, such as facial features in humans or
shapes and patterns in objects, we leverage the
Open Images dataset (Kuznetsova et al., 2020) to
create additional training instances, as shown in
Fig. 4. Using its gold segmentation masks, we se-
lectively mask and inpaint identity-critical regions
while preserving other details. Specifically, we ran-
domly sample 5 sub-masks covering 30%-50% of
the subject mask ([1] in Fig. 4), which we use to
create 5 inpainted variants ([2]). The version with
the highest Mean Squared Error (MSE) between
the modified and original regions (e.g., Fig. 4, bot-
tom image, MSE=3983) is then paired with the un-
modified cropped subject to form a negative pair
of {image,.s, image;, }, while the original image
and the same crop form a positive pair, with the
crop serving as image,.r in both cases. This process
yields extra 16,572 pairs, helping the model focus
on fine-grained identity details. To further improve

data quality, we also apply multiple filtering steps,
including removing blurry images and those with
unclear subjects (see Appendix C.2 for details).

Image-prompt  pairs. For each {image,;,
image } pair, we generate positive and negative
prompts for image;y; (Fig. 5). Positive prompts
(Fig. 5, top) are created by instructing Gemini
(Team, 2024) to describe image;s;, ensuring the
subject is explicitly mentioned by enclosing it in
a bounding box and guiding the model to focus
on it, as well as filtering out prompts lacking it.
For negative prompts (Fig. 5, middle), we swap
prompts between frames containing the same entity
type (e.g., a dog). To further enhance sensitivity to
subtle mismatches, we also create hard-negative
prompts (Fig. 5, bottom) by using Gemini to
modify a single non-subject detail in the positive
prompts, following Gordon et al. (2024). In total,
this and the image-pairing steps yield 1.2 million
<image,., prompt, image,,> triplets labeled for
textual alignment and subject preservation.

2.2 REFVNLI Training

We fine-tune PaliGemma (Beyer et al., 2024), a 3B
Vision-Language Model (VLM) known for effec-
tive transfer learning, focusing on a variant adapted
for multi-image inputs.> The model takes as input
two images (image,.r and image;s;), and a prompt

3https://huggingface.co/google/
paligemma-3b-ft-nlvr2-448
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Figure 5: Example of prompt-image,,; pairs. Given an
image with some subject (e.g., a dog), we create a pos-
itive prompt by adding a bounding box around the sub-
ject and directing Gemini to describe it (top prompts).
Negative prompts are created by swapping prompts be-
tween images of the same entity (middle prompts). For
additional hard negatives, we guide Gemini to modify
a single non-subject detail in the positive prompt while
keeping the rest unchanged (bottom prompts).

that includes <u> and <\u> markups around the
referenced subject. During training, the model
performs two sequential binary classifications—
first assessing textual alignment, then subject
preservation—outputting ‘7’ (positive) or ‘0’ (neg-
ative) for each task. At inference, we compute the
probabilities of predicting ‘/’ and ‘0’ for the first
and second generated tokens, and use their ratio to
calculate the textual alignment and subject preser-
vation scores, respectively. *

3 Experimental Settings

This section outlines our meta-evaluation protocol
and benchmarks (§3.1), followed by an overview
of the baseline models used for comparison (§3.2).

3.1 Meta-evaluation and Benchmarks

We include 3 subject-driven generation benchmarks
with human annotations for textual alignment and
subject preservation across categories such as Hu-
man, Animal, Object, and Landmark. To enable a
unified evaluation framework, given differing scor-
ing methods (5-scale and binary), we convert all
annotations into binary labels: one for whether
image,, fully captures the prompt (textual align-
ment) and another for whether it correctly depicts
the referenced subject (subject preservation).

For meta-evaluation, we report ROC AUC for
each criterion, following standard practice (Hon-

4See Appendices A and D for more details and ablations.

ovich et al., 2022; Yarom et al., 2023; Zha et al.,
2023), and also compute a unified score as the
harmonic mean of the two scores. Following Hon-
ovich et al. (2022), significance testing is assessed
via bootstrap resampling (Efron, 1987), comparing
each baseline to REFVNLI. We report mean scores
and highlight models with statistically significant
under- or outperformance relative to REFVNLI.
We next present the 3 analyzed benchmarks.

Dreambench++ (Peng et al., 2024) is a subject-
driven generation benchmark with human annota-
tions for 8,190 images generated by 7 models. An-
notators rated textual alignment and subject preser-
vation on a 0-4 scale, with each image evaluated by
2 raters. To convert these ratings into binary labels,
we classify a criterion as positive if both scores are
at least 3, and at least one is a 4. We report perfor-
mance separately for the benchmark’s three subject
categories: Human, Animal, and Object.’

ImagenHub (Ku et al.,, 2024b) is a human-
annotated benchmark for conditional image genera-
tion, covering a subject-driven task (150 instances)
and a multi-concept task (102 instances), which in-
volves 2 referenced subjects per instance. Each im-
age was rated by 3 annotators. Instead of separate
ratings for textual alignment and subject preserva-
tion, annotators provided a single adherence score
(0, 0.5, or 1) per image. To align with our binary
labeling framework, images rated 1 by all 3 annota-
tors were assigned positive labels for both criteria,
while the rest were re-annotated by this paper’s
authors. In the Multi-subject setting, a positive sub-
ject preservation label was assigned only when both
subjects were accurately depicted. For evaluation,
we report separate scores for Animals and Objects
in the single-subject task, while Multi-subject in-
stances are split into two single-subject evaluations,
with the final score being the lower rating (per cri-
terion), to ensure a stricter assessment.

KITTEN (Huang et al., 2024) evaluates subject-
driven T2I models on generating diverse real-world
entities (e.g., plants, vehicles, landmarks), using 5
reference images and a prompt. Annotators rated
entity depiction on a 1-5 scale and provided binary
textual alignment scores, with each image assessed
by 5 annotators. Unlike our focus on specific sub-
jects, KITTEN evaluates general entity alignment
(e.g., a generic rose rather than a specific one).

5 A fourth style’ category is excluded as it is beyond our
work’s scope.
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Textual Alignment

Subject Preservation

Unified Evaluation

Animal Human Object Animal Human Object Animal Human Object
CLIP 728+ 774F 746t 724+ 817 76.4+ 7268 822 75.5+
DINO - - - 78.0t  77.3+ - - -
Crop-IR - - - 769+ 85.6 83.4 - - -
ArcFace - - - 61.0+ - - - -
CLIPScore 7154 761 72.9¢ - - - - -
BLIPScore 754+ 7950 789+ - - - - -
SigLIP 7258 802 77.1+ - - - - -
TIFA 70.6F 757 69.5¢ - - - - -
VQAScore 79.4 78.0 826 - - - - - -
VIEScore 77.9 752 7334 63.4Y 811 76.44 69.84 777 74.8+
DreamBench++ 79.5 82.7 82.5 745 84.1 79.4+ 769 834 80.9¢
PaliGemmaexyrer ~ 77.9% 792V 812 70.1% 7128 77.6b 73.8Y 7498 79.4)
REFVNLI 80.2 82.5 82.0 86.0 85.7 79.8 84.2 83.8

Table 1: ROC AUC scores on DreamBench++ for textual alignment, subject preservation, and their harmonic
mean (as a unified evaluation) across Animal, Human, and Object categories. The last two rows feature models
finetuned on our dataset, with PaliGemmayeyyer cOmprising two separate models (PaliGemmayey; and PaliGemma,.f)
trained exclusively for each criterion. Bold indicates the highest score per column. + and T indicate statistically
significant underperformance and outperformance relative to REFVNLI, respectively.

Hence, we only use the 256 Landmark images, as
landmarks are unique entities where entity adher-
ence coincides with subject adherence. To convert
ratings into binary labels, we apply majority voting
for textual alignment and consider subject preser-
vation positive only if most annotators rated it at
least 4 and the average score is 4 or higher.

3.2 Baselines

We evaluate REFVNLI against both standard and
state-of-the-art methods for measuring textual
alignment, subject preservation, or both.

Baselines for textual alignment. We compare
REFVNLI with two groups of automatic metrics
for textual alignment. The first group leverages
large vision-language models (VLMs), computing
cosine similarity between text and image encod-
ings. This includes BLIPScore (Li et al., 2022),
CLIPScore (Hessel et al., 2021), and SigLIP (Zhai
et al., 2023). The second group, which includes
TIFA (Hu et al., 2023) and VQAScore (Lin et al.,
2024), evaluates textual alignment via visual ques-
tion answering (VQA). We also include a baseline
where PaliGemma is finetuned on our dataset exclu-
sively for textual alignment, given only the prompt
and target image, referred to as PaliGemmayey;.

Baselines for subject preservation. For subject
preservation, we compare REFVNLI to baselines
that use large VLMs by computing cosine similar-
ity between reference and target image embeddings.
These include DINO (Caron et al., 2021), Crop-IR

(Winter et al., 2024),6 and for the Human category,
also ArcFace (Deng et al., 2019), a face-recognition
model. We also assess a PaliGemma model fine-
tuned on our dataset solely for subject preservation,
using only reference and target images (formatted
as in §2.2), denoted as PaliGemma,c.

Baselines for both criteria. We also include 3
metrics that assess both criteria. CLIP (Radford
et al., 2021) computes scores separately for each
criterion by calculating cosine similarity between
the encodings of image,,; and those of prompt and
image,.r. VIEScore (Ku et al., 2024a) uses an elab-
orate GPT-40 (OpenAl, 2024) few-shot strategy,
simultaneously generating two 0—10 ratings, one
for each criterion. Lastly, DreamBench++ (Peng
et al., 2024) evaluates each criterion separately us-
ing distinct GPT-40 prompts with hand-crafted in-
structions and examples. This method follows a
two-step prompting process, where GPT-40 first
summarizes the evaluation task to increase task
comprehension before assigning a 0—4 score.

4 Results

Our main results are summarized in Tables 1, 2,
and 3, with qualitative examples in Fig. 2.

On DreamBench++ (Table 1), REFVNLI outper-
forms or statistically matches all baselines across
both criteria, with a notable 6.3-point lead over the
GPT-40-based DreamBench++ metric in subject
preservation for Objects. This is especially no-
table given the benchmark’s diverse visual styles,

See Appendix E for more details.
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Textual Alignment

Subject Preservation

Unified Evaluation

Animal Object Multi-subj. Animal Object Multi-subj. Animal Object Multi-subj.

CLIP 81.8 74.7+ 81.1¢ 63.8+ 7334 52.6% 71.6+  74.0% 63.8%
DINO - - - 81.7 77.3+ 50.0% - - -
Crop-IR - - - 77.6 84.1 56.8 - - -
CLIPScore 81.5 75.0% 79.1+ - - - - - -
BLIPScore 82.9 79.7+ 84.2¢ - - - - - -
SigLIP 80.7 80.6 82.3¢ - - - - - -
TIFA 79.9 76.1+ 79.2+ - - - - - -
VQAScore 773¢  83.8¢ 87.8 - - - - - -
VIEScore 62.14  54.1¢ 71.6% 56.4+  49.4¢ 50.2¢ 59.00 515 58.9¢
DreamBench++ 86.4 85.5¢ 88.2 7114 84.0 5434 78.0 8438 67.2¢
PaliGemmagygrer ~ 81.1 88.1 85.3 82.0 742+ 62.1 81.5 80.5¢ 71.8
REFVNLI 84.6 89.4 86.2 80.2 83.8 62.7 82.3 86.5 72.6

Table 2: ROC AUC scores on ImagenHub for textual alignment, subject preservation, and their harmonic mean
(as a unified evaluation) across Animal and Object categories, as well as for the Multi-subject setting.

Textual Subject Unified
Alignment Preservation Evaluation

CLIP 83.2¢ 80.1 81.5+
DINO - 85.4 -
Crop-IR - 90.2" -
CLIPScore 83.3 - -
BLIPScore 82.6% - -
SigLIP 75.3% - -
TIFA 90.6% - -
VQAScore 89.0% - -
VIEScore 82.5+ 87.5 84.9
DreamBench++ 87.0% 89.97 88.4
PaliGemmaiexy/ref 94.5 87.5 90.8
REFVNLI 97.0 82.2 88.9

Table 3: ROC AUC scores on KITTEN (landmarks)
for textual alignment, subject preservation, and their
harmonic mean (as a unified evaluation).

including cartoonish and pixelated images, which
are outside REFVNLI’s training distribution of real-
world video frames. Similarly, on ImagenHub (Ta-
ble 2), REFVNLI matches or exceeds all baselines
in both single- and multi-subject settings, with
5.9-point gains over the strongest non-finetuned
model on subject preservation of the multi-subject
setting (Crop-IR). Lastly, on KITTEN (Table 3),
REFVNLI leads in textual alignment but underper-
forms in subject preservation, though it remains sta-
tistically comparable to most baselines. This may
result from REFVNLI’s identity-sensitive training,
which penalizes minor deviations—especially chal-
lenging for landmarks with intricate visual details
(Fig. 12)—and from a domain shift, as landmarks
were absent from REFVNLI’s training data (OOD).

Notably, across all benchmarks, fine-tuning only
for textual alignment (PaliGemmayy) slightly re-
duces performance, especially for Animals and Hu-
mans, while training solely for subject preservation
(PaliGemmay,.f) yields even larger declines—up to
a 14.8 points for Humans (Table 1). This suggests

that joint training provides complementary benefits,
with subject preservation gaining the most.

Fig. 2 further showcases REFVNLI’s strengths,
like its sensitivity to subtle fextual alignment er-
rors, such as a missing waterfall (top-left). For
subject preservation, it remains robust to identity-
agnostic changes, like a zoomed-out parrot or per-
son (top-center and bottom-center) or different
clothes (bottom-center), while staying sensitive
to key identity traits, e.g., changed facial features
(bottom-left) and colors (left and middle balloons).

Overall, REFVNLI consistently outperforms or
statistically matches all baselines on both criteria,
with the only exception of subject preservation in
the OOD landmarks category, where it still per-
forms competitively. Importantly, it offers the best
trade-off between textual alignment and subject
preservation, surpassing all non-finetuned metrics
in Unified Evaluation across all benchmarks.

5 Applicability to Rare Entities

To test REFVNLI on unfamiliar subjects, we use
the ImageRAG benchmark (Shalev-Arkushin et al.,
2025), which evaluates generated images based on
prompts and reference images of uncommon sub-
jects (e.g., scientific animal names, lesser-known
dishes). Human annotators compared image pairs,
selecting the better one based on Textual Alignment,
Visual Quality (evaluating general depiction of the
entity rather than exact reference-adherence), and
Overall Preference. We report per-axis accuracy,
defined as the frequency with which a metric ranks
the human-preferred image higher, with approxi-
mate ties handled by rounding. Overall Preference
is computed as the harmonic mean of textual and
visual scores, and significance testing is assessed
via bootstrap resampling, akin to §3.1.
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Textual Visual Overall
Alignment Quality Preference

CLIP 51.8¢ 91.3 69.2+
DINO - 91.4 -
Crop-IR - 86.4% -
CLIPScore 47 4+ - -
BLIPScore 39.6¢ - -
SigLIP 74.84 - -
VQAScore 52.34 - -
VIEScore 60.8+ 65.4+ 69.6%
DreamBench++ 56.64 83.1+ 78.9%
PaliGemmaexyref 61.6 83.0% 83.0%
REFVNLI 87.2 95.5 914

Table 4: Results on ImageRAG rare concepts, where
users select the better image in each pair based on tex-
tual alignment, visual quality (general entity depiction
rather than specific subject adherence), and overall pref-
erence. We report accuracy: how often models ranked
the human-preferred image higher. Overall preference
is the harmonic mean of textual and visual scores.

As shown in Table 4, REFVNLI consistently out-
performs all baselines in aligning with human pref-
erences across these criteria, showcasing strong
robustness to rare subjects.” This is further sup-
ported by Fig. 6, where only REFVNLI repeatedly
matches human selections.

6 Related Work

Evaluation of Visual Language Models (VLMs)
spans various settings, including visual reasoning
(Bitton-Guetta et al., 2024; Kahou et al., 2017)
and visual question-answering (Antol et al., 2015;
Marino et al., 2019; Mensink et al., 2023). For
text-to-image (T2I) models, assessments normally
focus on image quality (Heusel et al., 2017; Sali-
mans et al., 2016), diversity (Rassin et al., 2024),
and alignment with the text (Hessel et al., 2021;
Radford et al., 2021; Hu et al., 2023; Yarom et al.,
2023; Zhai et al., 2023; Lin et al., 2024). As-
sessing subject preservation, which is crucial for
subject-driven generation, is typically done using
embedding-based metrics like CLIP (Radford et al.,
2021) and DINO (Caron et al., 2021). Other met-
rics, like VIEScore (Ku et al., 2024a) and Dream-
Bench++ (Peng et al., 2024), use GPT-40 (OpenAl,
2024) to measure both criteria.

Subject-driven T2I models have been gaining
much traction, with some methods fine-tuning gen-
eral models into specialist versions that capture spe-
cific subjects and styles (Gal et al., 2022; Kumari

"TIFA was excluded due to assigning identical scores to
61% of pairs, making accuracy calculations unreliable.

et al., 2023; Ruiz et al., 2023; Sohn et al., 2023;
Park et al., 2024). Others focus on broader appli-
cability using one-shot examples, either through
adapter-based methods that integrate encoded refer-
ence images into diffusion models (Gal et al., 2023;
Jia et al., 2023; Wei et al., 2023; Ye et al., 2023)
or via adapter-free techniques that directly use ex-
tracted features such as attention maps (Liu et al.,
2023; Hertz et al., 2024; Lv et al., 2024).

Closely related, image editing complements
subject-driven T2l generation in that the generated
image’s appearance is primarily governed by the
input image, with the text only impacting specific
aspects, whereas in out setting it is the other way
around. The task has evolved from pixel-to-pixel
translation for predefined transformations (Isola
et al., 2017; Zhu et al., 2017; Wang et al., 2018)
to more flexible, text-guided edits (Brooks et al.,
2023; Tumanyan et al., 2023; Parmar et al., 2023),
with recent diffusion-based methods improving pre-
cision via cross-attention manipulation (Hertz et al.,
2022; Yang et al., 2023). Beyond images, person-
alized generation extends to other modalities, in-
cluding videos and texts. Video generation can be
conditioned on text (Li et al., 2018; Hong et al.,
2022; Singer et al., 2022), reference images (Wei
et al., 2024; Zhou et al., 2024), or other videos (Ku
et al., 2024c¢). In text generation, efforts focus on
style transfer (Reif et al., 2022; Zhang et al., 2024),
debiasing (Zhao et al., 2018; Ravfogel et al., 2020),
and broader semantic control (Shapira et al., 2022;
Slobodkin et al., 2023; Xie et al., 2023).

Finally, several studies leveraged intra-frame re-
lationships in videos to learn more human-aligned
visual representations. These works aim to improve
robustness to identity-agnostic variations (e.g., ro-
tation, lighting), by analyzing consecutive frames
sourced from public video datasets (Jin et al., 2018;
Parthasarathy et al., 2023; Wang and Gupta, 2015;
Wang et al., 2017; Wu and Wang, 2021) or cap-
tured by cameras on moving agents (Agrawal et al.,
2015; Jayaraman and Grauman, 2015).

7 Conclusion

We present REFVNLLI, a cost-effective and reliable
metric for subject-driven T2I evaluation that jointly
assesses textual alignment and subject preservation.
Trained on a large-scale, auto-generated dataset,
REFVNLI is designed to be robust to identity-
agnostic visual variations (e.g., pose, lighting,
background) while remaining sensitive to identity-
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Cyanocitta cristata on a tree with red fruit on it.

] Humans

J RefVNLI (ours)

DreamBench++

Humans

RefVNLI (ours)

Figure 6: ImageRAG Rare Entities Examples: We compare REFVNLI with CLIP and DreamBench++ in aligning
with human preferences (top rows of each example) across Textual Alignment (TA), Image Quality (IQ), and
Overall Preference (OP). DreamBench++ scores (0—4) are rescaled to 0—100 for readability. The higher of the
two criterion-wise scores is emphasized unless both are equal.

specific features (e.g., facial features, object shape,
and unique details) when evaluating subject preser-
vation. For textual alignment, it leverages subject-
specific prompts with perturbed hard negatives
to detect and penalize fine-grained mismatches.
Across benchmarks, REFVNLI outperforms or ri-
vals all baselines, including larger GPT-40-based
metrics, particularly on less-common subjects.

Future work should focus on improving perfor-
mance across artistic styles as well as identity-
altering edits, and supporting multiple reference im-
ages. More broadly, REFVNLI facilitates progress
in personalized T2I generation by enabling better
checkpoint selection, reinforcement learning, and
iterative model refinement.

8 Limitations

REFVNLI was trained on data sourced from real-
life video frames and images. While it performs
well on stylistically consistent inputs, including
cartoonish or pixelated images, it struggles with
cross-style scenarios where image,.r and image;q;
differ in style, as well as when the subject under-
goes explicit modifications (e.g., changes in color
or shape). Additionally, the current framework is
limited to single-reference cases and should be ex-
tended to support multiple references, both for the
same subject and for distinct ones.

Moreover, research on subject-driven generation
could benefit from a unified score capturing overall
performance, rather than the two separate scores
currently provided by REFVNLI. Although the har-
monic mean of the two offers a reasonable proxy,
future iterations should aim to output a single, inte-
grated metric, alongside the individual, more gran-
ular scores.
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A Reproducibility and Model Selection

We fine-tuned PaliGemma (Beyer et al., 2024) on
a balanced subset of our dataset, created by under-
sampling the more frequent labels. Training was
conducted over 24 hours using two NVIDIA A100
GPUs (80 GiB each) with a batch size of 4. Dur-
ing training, we enclosed the referenced subject in
the prompt with <u> and <\u> markups, and pro-
vided it alongside the separately passed image,.r
and image;y;. The model was trained to generate
one of four strings—‘00’, ‘01°, ‘10°, ‘11°’—where
the first and second digits represent textual align-
ment and subject preservation, respectively. See
Fig. 7 for an input-output example.

At inference, we used the same input structure,
including the insertion of markups around the sub-
ject in the prompt and separate image inputs. The
textual alignment and subject preservation scores
were then computed from the probabilities of the
first and second generated tokens, respectively,
with each score defined as the probability of token
‘I’ divided by the sum of probabilities for tokens
‘0’ and ‘1I".

Additionally, we explored fine-tuning LLaVA-
1.5 (Liu et al., 2024a)? as an alternative backbone
model, and determined that PaliGemma achieved a
strongest performance on our development set.

B Additional Details on the
Meta-evaluation

For meta-evaluation, we perform bootstrapping
(Efron, 1987) (1,000 samples per benchmark, with
repetitions). For the ImageRAG rare entities bench-
mark, consisting of only 26 instances, we sample
each time a sample 4 times this size, to ensure there
are at least 100 instances. For the other bench-
marks, which are significantly larger, the size of
each sample is identical to the original size of the
corresponding benchmark. For the calculations
of confidence intervals (Cls), we use significance
level p = 0.05.

C Further Information on the Data
Construction Pipeline

C.1 Collection of Subject-driven Image Pairs

To reduce noise when collecting subject-driven im-
age pairs, we applied several filtering steps, in-
cluding the removal of blurred images and those

8https://huggingface.co/llava—hf/llava—1.
5-7b-hf

not depicting the intended subject. Subject pres-
ence was verified using Gemini (Team, 2024) (ver-
sion gemini-2.0-flash). For the subset sourced from
TVQA+, we additionally filtered out frames con-
taining subtitles or credits, also using Gemini.

For identity-sensitive image pairs, we used Sta-
ble Diffusion (Rombach et al., 2022) for inpaint-
ing,” with » = 1.0 and a guidance scale of 3.0. We
retained only images with a full mask size of at
least 60,000 pixels (20,000 for humans, focusing
on facial regions). Five patches of 250-300 pixels
were randomly sampled and inpainted. To increase
the likelihood of meaningful subject changes, we
further filtered out inpainted images where all
patchwise MSE values fell below 6,500 for objects,
5,400 for animals, and 20,000 for humans.

C.2  Collection of Image-prompt Pairs

For the image-captioning of the image;,; with the
inserted bounding boxes, we employed Gemini
(Team, 2024) (version gemini-2.0-flash).

C.3 Generation of prompt-image,g
Hard-negatives

Fig. 8 showcases the prompt used to generated the
prompt-image;s; hard negatives.

D Ablations

To assess the impact of various design decisions
in REFVNLI, we run an ablation study examining
alternative input and output configurations. On the
output side, we test: reversing the classification or-
der (subject preservation before textual alignment);
a 4-label multiclass framework for joint text-image
alignment classification; and a model that prefixes
a designated token (‘TEXT’ or ‘IMAGE’) to the
prompt to enable separate classification of each as-
pect within a unified model. For inputs, we explore
the effect of removing subject markup from the
prompt and of concatenating image,.r and image;q;
instead of passing them separately. Finally, we also
explore the impact of omitting the identity-sensitive
training examples (see §2.1), by only using the
video-based instances during training.

Results (Table 5) show that reversing the classi-
fication order degrades performance, particularly
in subject preservation, as does evaluating each
aspect separately. This suggests that first evaluat-
ing textual alignment helps in subject preservation

9https://huggingface.co/stabilityai/
stable-diffusion-2-inpainting
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Input Output

Reference Image Prompt | Target Image
. )
<u>dog</u>
looking ( 3{
from the
Textual Subject
b ottom O'F Alignment Preservation
a staircase. tlate s Tabes

Figure 7: Example of the input and output of REFVNLI. The input consists of image,.r and image,s, as well as
from the prompt with <u> and <\u> markups around the referenced subject (e.g., dog), while the output consists
of two digits of ‘0’ or ‘I’, with the first digit representing the first and second digits being the textual alignment
and subject preservation labels, respectively.

Textual Alignment Subject Preservation Unified Evaluation
ImagenHub ImagenHub ImagenHub
DreamBenchs+  CH890 1L KITTEN  DreamBencha+ (8O0 0 KITTEN  DreamBenche+ (0 0 KITTEN
REFVNLI (ours) 815 87.7/863 970 827 83.0/62.8 823 82.1 853/727  89.0
reverse classification order 80.0 852/855 953 80.9 84.3/687  87.0 80.4 84.7/762 910
multiclass 79.5 83.7/847 947 79.6 760/61.1 863 79.5 797/71.0 903
separate classification 79.7 85.2/875 958 783 7711567 892 79.0 80.9/688 924
no markup 78.4 87.0/843 923 65.5 75.9/60.8  88.7 714 81.1/70.6 905
concatenated images 79.6 86.2/862 936 74.2 81.1/812 899 76.8 83.6/836 917

only video-based training 80.4 85.2/83.8 96.3 71.6 77.5/66.4 89.7 79.0 81.2/74.1 92.9

Table 5: Ablation Study: ROC AUC scores for various ablated versions of REFVNLI across benchmarks (over all
subjects). The ablations evaluate alternative output formulations, such as reversed classification order, a four-label
multiclass framework, and separate aspect classification via a special token. Additional variants exclude subject
markup from input prompt, merge reference and target images, or remove identity-sensitive training examples by
using only video-based instances.

assessment. The multiclass approach also underper- E  Crop-IR Object Detection Model
forms compared to our dual binary classification Ablation

setup, highlighting the benefits of treating each
criterion independently. Further, removing sub-
ject markup weakens subject preservation, under-
scoring its role in linking the reference image to
the prompt. Additionally, concatenating images
instead of processing them separately harms per-
formance, emphasizing the advantage of distinct
image inputs. Finally, excluding identity-sensitive
training instances leads to notable drops in subject
preservation, underscoring their importance.

Deploying the Crop-IR metric (Winter et al., 2024)
requires an object detection model to locate and
crop the referenced subjects. To this end, we com-
pare two prominent object detection models: OWL-
ViT (Minderer et al., 2022)!° and GroundingDino
(Liu et al., 2024b).'! As shown in Table 6, Ground-
ingDino leads to better evaluation of subject preser-
vation, and is therefore adopted to ensure a fairer
evaluation.

F Computational Cost

DreamBench++ ImagenHub KITTEN
Animal Human Object Animal Object Multi-subj. Landmarks
OWL-ViT 77.4 87.1 81.8 74.8 83.1 52.0 85.6 1 _
ARSI S S T s Table 7 presents the computational costs of all base

line models and REFVNLI, in terms of inference
Table 6: ROC AUC scores of Crop-IR for sub-  time, GPU memory usage and GPT-40 API costs.
ject preservation when employed with two differ-
ent object-detection models: OWL-ViT and Ground-

ingDino. Bold indicates the highest score per column. Ohttps://huggingface.co/google/

owlv2-base-patch16
llhttps://huggingface.co/IDEA—Research/
grounding-dino-base

8434


https://huggingface.co/google/owlv2-base-patch16
https://huggingface.co/google/owlv2-base-patch16
https://huggingface.co/IDEA-Research/grounding-dino-base
https://huggingface.co/IDEA-Research/grounding-dino-base

Context

Misalignment Injection Instructions (Short Captions)

1. Understand the Caption: Carefully read the short caption to fully grasp the scene it describes.

2. Identify and Swap: Select a single visual detail within the caption to modify. Replace this detail with a different, incorrect, but still plausible visual detail. For example, you might

change a color, an object, or a location. Do not modify the underlined entity (if any).

3. Apply the Tags: Enclose the original visual detail within <swap> tags. Immediately after the closing </swap> tag, write the new, incorrect visual detail. There should be no space

between the closing </swap> and the new word.

Example: If the original sentence is "The cat sat on the red mat," and you want to change "red" to "blue," the result should be: "The cat sat on the <swap>red</swap><blue> mat."

4. Final Check: Ensure the modified caption is grammatically correct and reads naturally, even though it now contains a factual error. The sentence should be internally logical,
despite contradicting the actual visual content. Again, ensure the underlined entity (if any) remains completely unchanged.

Few-Shot

Here are some examples:

INPUT: A woman is sitting in a living room, and <u>she</u> is looking at something with a concerned expression
OUTPUT: A woman is sitting in a </swap>living room</swap><kitchen>, and <u>she</u> is looking at something with a concerned expression.

INPUT: Two men are sitting on a leather couch in a living room. One <u>man</u> is sitting on the left side of the couch, looking at a laptop. The other man is sitting on the right side of the
couch, talking on a phone. The room is decorated with various items, including a large model of a spaceship.

OUTPUT: Two men are sitting on a leather couch in a living room. One <u>man</u> is sitting on the left side of the couch, looking at a laptop. The other man is sitting on the right side of
the couch, talking on a phone. The room is decorated with various items, including a large model of a <swap>spaceship</swap><sailboat>.

Now it’s your turn! Follow the instructions. Answer only with the corrupted sentence, Don’t forget to add the tags.

INPUT: A lizard is perched on a rock, surrounded by other rocks and foliage. The <u>lizard</u> is facing the camera, with its head raised and its tail curled behind it.

OUTPUT:

Generated

OUTPUT: A lizard is perched on a <swap>rock</swap><branch>, surrounded by other rocks and foliage. The <u>lizard</u> is facing the camera, with its head raised and its tail curled

behind it.

Figure 8: Hard Negative Caption Generation. This figure illustrates the prompting strategy used to generate hard
negative captions, containing a single, plausible but factually incorrect visual detail, for enhanced misalignment

detection.
Inference Time GPU Memory Usage API Calls Cost

(seconds) (GiB) ()
CLIP 0.1 1.2 -
DINO 0.06 0.7 -
Crop-IR 0.6 5.8 -
ArcFace 12 - -
CLIPScore 0.07 0.6 -
BLIPScore 0.7 4.5 -
SigLIP 0.03 1.4 -
TIFA 225 26.4
VQAScore 0.2 23.1 -
VIEScore 6.9 - 0.04
DreamBench++ (text) 32 - 0.02
DreamBench++ (ref) 1.0 - 0.03
PaliGemmayey, 0.4 12.5 -
PaliGemmayef 0.4 12.5 -
REFVNLI 0.5 12,5 -

Table 7: Computational costs for all baseline models
and REFVNLI, including per-instance inference time
(in seconds), GPU memory usage (in GiB), and GPT-
40 API costs (in $, only when applicable), averaged
across benchmarks. For DreamBench++, we report
separate values for each evaluation criterion, as each
requires a distinct API call under its framework. The fi-
nal three rows present models fine-tuned on our dataset,
with PaliGemmay; and PaliGemma,. being the vari-
ants tuned exclusively for evaluating textual alignment
and subject preservation, respectively.

G Additional Qualitative Examples for
Subject Preservation Evaluation

In Figures 9, 10, 11, and 12 we present additional
qualitative examples of subject preservation evalua-
tion for the Animal, Human, Object, and Landmark

categories, respectively.

H List of Data and Software Licenses
Employed in this Paper

Our framework dependencies are:

1. Mementos dataset: https://github.com/
si@wang/Mementos, Misc.

2. TVQA+ dataset: https://github.com/
jayleicn/TVQAplus/blob/master/
LICENSE, under the MIT License.

3. Open Images dataset: https://github.
com/openimages/dataset/blob/main/
LICENSE, under an Apache License 2.0.

4. PaliGemma model: https://ai.google.
dev/gemma/terms, under Gemma Terms of
Use License.

5. Gemini model: https://ai.google.
dev/gemini-api/docs/models, under an
Apache License 2.0.

6. GPT-40 model: https://github.com/
openai/openai-openapi/blob/master/
LICENSE, under the MIT License.
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Figure 9: Qualitative Examples of Subject Preservation Evaluation for the Animal Category. DreamBench++
scores (0-4) are scaled to 0-100 for better readability.

7. OWL-VIiT model: https://huggingface.
co/google/owlv2-base-patch16, under an
Apache License 2.0.

8. GroundingDino model: https:
//huggingface.co/IDEA-Research/
grounding-dino-base, under an Apache
License 2.0.

9. Stable  Diffusion  inpainting  model:
https://huggingface.co/stabilityai/
stable-diffusion-xl-base-1.0/blob/
main/LICENSE.md, under Stability Al
CreativeML Open RAIL++-M License.

10. LLaVA-1.5 model: https://github.com/
haotian-liu/LLaVA/blob/main/LICENSE,
under an Apache License 2.0.
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Figure 10: Qualitative Examples of Subject Preservation Evaluation for the Human Category. Dream-
Bench++ scores (0-4) are scaled to 0-100 for better readability.

RefVNLI (ours) 4
DreamBench++ 100
CLIP -
DINO 3
RefVNLI (ours) 89
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DINO 92
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DreamBench++ L
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=y [ﬂf @ | preamBench++ 7
¥ CLIP %0
DINO 8

Figure 11: Qualitative Examples of Subject Preservation Evaluation for the Object Category. DreamBench++
scores (0-4) are scaled to 0-100 for better readability.
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Figure 12: Qualitative Examples of Subject Preservation Evaluation for the Landmark Category. Dream-
Bench++ scores (0-4) are scaled to 0-100 for better readability.
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