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Abstract

Machine Translation systems have always
struggled with challenges such as multiword
expressions (MWESs) and wordplays. These
phenomena are idiosyncratic, pervasive across
languages, and significantly affect performance
of MT systems (among others). In this context,
we explore the nature of puns created from mul-
tiword expressions (PMWESs), characterized by
the creation of a wordplay from a source MWE
to recontextualize it or to give it a humorous
touch. Little work has been done on PMWEs
in NLP. To address this challenge, we intro-
duce ASMR, an alignment-based PMWE iden-
tification and tagging algorithm. We offer an
in-depth analysis of three different approaches
to ASMR, each created to identify different
types of PMWEs. In the absence of PMWE-
related datasets and resources, we proceed to a
snowclone detection task in English. We also
perform a MWE identification task in 26 lan-
guages to evaluate ASMR performance across
different languages. We show that ASMR ex-
hibits state-of-the-art results for the snowclone
detection task and produces interesting results
with the MWE identification task. These re-
sults may indicate that ASMR is suitable for a
PMWE identification task.

1 Introduction

A lot of work has been done on multiword ex-
pressions (MWESs) in NLP since their introduc-
tion to the field by Sag et al. (2002); Choueka
(1988). They are generally described as combina-
tions of words with a certain degree of idiomatic-
ity at the lexical, syntactic, semantic, pragmatic
and/or statistical levels (Baldwin and Kim, 2010).
MWEs are usually non-compositional or semi-
compositional (Gross, 1982), idiosyncratic, perva-
sive across different languages, and subject to vary-
ing degrees of variation (Ramisch, 2023). Other
phenomena, such as ambiguity and discontiguity,
may also be an issue (Constant et al., 2017). Be-
cause of these features, they represent a particular

challenge in NLP, notably for Machine Translation
systems, which need to take them into account (Za-
ninello and Birch, 2020).

Like any sequence of words, MWESs can serve as
the basis for creating puns and other kinds of word-
plays. Puns in multiword expressions (hereafter
PMWEg5) are characterized by the creation of a pun
or a wordplay from a source multiword expression
in order to recontextualize it or give it a humorous
touch. By this process, MWEs such as (1) become
(2) in the context of strikes in France in 2023.

1. "lheure est grave"
(FR, it’s a serious time)

2. "Uheure est gréve"
(FR, it’s a strike time)

Like MWEs, PMWEs can be translated from one
language to another. For instance, (4) is a PMWE
created from (3) working in both Italian and En-
glish. However, studies show that the translation of
puns is not well handled by Machine Translation
systems (Yu et al., 2018; Jiang et al., 2021).

3. "alba dei morti viventi"
(IT, Dawn of the dead, 1978)

4. "’alba dei morti dementi"
(IT, Shaun of the dead, 2004)

To our knowledge, and unlike MWEs, PMWEs
have not been extensively studied in NLP, with
very few resources available and almost no dedi-
cated work on them. We find that PMWESs can be
interesting due to their dual nature as MWE and
wordplay. Machine Translation tasks as well as Au-
tomatic Humor Analysis could benefit from their
study. Moreover, PMWEs might be useful to study
the morphosyntactic and semantic evolutions of
MWESs, since they tend to accept new forms and/or
meaning over time (Fiala and Habert, 1989). In
some cases, they may even be completely replaced
by one of their own PMWE (Cusimano, 2015).
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In addition to sharing the same difficulties as
MWEs, PMWEs pose challenges of their own.
Their identification in text can be even harder than
that of MWESs, for several reasons: (i) they tend
to be less frequent in texts than MWEs, (ii) al-
though their source MWE generally remains recog-
nizable, several letters or words may be modified
when creating a PMWE and (iii) their meaning can
be altered, making the use of semantic-based ap-
proaches more challenging. Finally, differentiating
a PMWE from a MWE can be a complex task, even
for an individual with a certain expertise in these
entities, as shown in Bezancon et al. (2025b).

In this paper, we introduce ASMR (Align, Seg-
ment, Match, Rank), an alignment-based algorithm
whose goal is to identify and tag PMWE candi-
dates in texts. We first present the architecture of
ASMR. We then proceed to various experiments
in two different datasets in order to evaluate the
performances of this algorithm.

Task 1 : Snowclone detection We evaluate how
ASMR is able to detect snowclones (defined in
Section 2) in a given set of sentences. To do so, we
use the CATCHPHRASE dataset (Sweed and Shahaf,
2021).

Task 2 : MWE identification We aim to evalu-
ate ASMR’s ability to identify and tag MWEs in
different languages by using the PARSEME 1.3
corpus (Savary et al., 2023), which consists of 26
languages. The PARSEME corpus, while lacking
puns, is valuable as it includes MWE variants as
well as discontinuous and unseen MWEs. Those
subsets of MWESs share similarities with PMWEs
(lexical variation, word order change, ...). In the ab-
sence of a dedicated dataset, we use PARSEME to
evaluate ASMR’s tagging capabilities and analyze
case studies (Section 6).

With an older version of ASMR, we were able
to identify PMWEs created from 216 MWEs in
a corpus of French tweets (Bezangon and Leje-
une, 2023). We were also able to identify a set of
PMWE:s created from formulas in Middle Arabic
texts (Bezancon et al., 2025a). Both approaches
rely on qualitative evaluation carried out by experts
on a selection of N PMWE candidates. In the
absence of a PMWE annotated dataset, we have
not yet been able to evaluate the performances of
ASMR from a quantitative perspective. By com-
bining a snowclone detection task with a MWE
identification and tagging task, we hope to gain a

better insight into ASMR’s functionalities. ASMR
is available on GITHUB (AGPLv3 license), along
with the scripts used for our experiments'.

2 Related Work

MWE identification. The main focus of MWE
processing in NLP is the identification task, whose
goal is to tag MWEs from a lexicon or a list in a
text. Direct string matching and rule-based meth-
ods such as the ones proposed by Stankovic et al.
(2016); Ramisch (2015) were the first approaches
used to address this task and are still used to this
day. More recent approaches use Large Language
Models (LLMs) such as BERT (Devlin et al., 2019).
In fact, LLMs-based methodologies tend to outper-
form other approaches for the task of MWE iden-
tification (Ramisch et al., 2020; Bui and Savary,
2024). For instance, Tanner and Hoffman (2023)
use a rule-based pipeline along with a pretrained Bi-
encoders for Word Sense Disambiguation (Blevins
and Zettlemoyer, 2020). Taslimipoor et al. (2020)
use a pretrained BERT model as well as a tree CRF
architecture to tag verbal MWEs in the PARSEME
1.2 corpus. Swaminathan and Cook (2023) use
multilingual LLMs to try to learn non-language-
specific knowledge about MWEs and idiomaticity.
Nevertheless, while pretrained LLLMs seem to of-
fer better results than more traditional approaches,
they still have difficulties capturing their seman-
tic aspect (Tayyar Madabushi et al., 2021; Zeng
and Bhat, 2022). Wada et al. (2023) paraphrase
MWEs to address this problem, demonstrating that
taking into account relevant semantic information
can help to identify MWEs. Since there are very
few resources on PMWE:s, approaches using lan-
guage models seem all the more costly to imple-
ment. We therefore drew inspiration from rule-
based approaches to design ASMR, using known
properties of PMWEs to characterize and identify
them. We also plan to implement some semantic
information in our methodology.

Approximate String Matching. String match-
ing consists in finding a sequence s within a set 7.
Approximate string matching, by contrast, aims to
identify all sequences in 7' that are most similar
to s (Hall and Dowling, 1980). Several approxi-
mate string matching algorithms exist, including
the Boyer—Moore algorithm (Tarhio and Ukkonen,
1993), the Ukkonen algorithm (Ukkonen, 1993),

"https://github.com/JulienBez/ASMR
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and Hamming distance (Hamming, 1950). Most
of these algorithms rely on edit distance (Leven-
shtein, 1966), which measures the minimal number
of operations (insertions, deletions, substitutions
and permutations) required to transform one se-
quence into another. Given the nature of PMWEs,
approximate string matching algorithms may pro-
vide valuable insights for their identification.

Wordplays Processing. Linguistic creativity,
and therefore wordplays, are hard to deal with in
NLP. As explained by Netzer et al. (2009); Saus-
sure et al. (1949), humans tend to diversify their
sets of relations between words, using cultural and
emotional experiences for instance. As a result,
the combinatorial possibilities for creating word-
plays are almost infinite (Knospe et al., 2016). Few
works report on wordplays detection. However,
since 2022, the JOKER-CLEF participative task
challenge teams of scientists on several wordplay
detection tasks (Ermakova et al., 2022, 2023, 2024).
Wordplay generation tasks, such as Valitutti et al.
(2013), were also performed.

Snowclones Detection. A snowclone is generally
illustrated by a prototypical form of a MWE with
flexible positions ("X be the new Y", X and Y being
the flexible positions). It is derived from a reference
sentence ("pink is the new black", allegedly said
by Gloria Vanderbilt in India, 1960) and used to
create new forms ("orange is the new black", Net-
flix TV show, 2013). This notion was first coined
by Geoffrey K. Pullum in a blog post from 20032,
Since then, snowclones have known a large set
of definitions, often described as patterns that ac-
cept word substitutions (Liberman, 2006), taking
up known and institutionalized MWEs that remain
identifiable in all circumstances (Hill, 2018; Trau-
gott et al., 2016). Hartmann and Ungerer (2023)
propose a quantitative study of two snowclones,
"X be the new Y" and "the mother of all X", by
extracting new forms of these snowclones. While
snowclones tend to be PMWEs, there is no say-
ing that all PMWE:s are snowclones. Snowclones
correspond to patterns with predefined word substi-
tution positions, but we argue that PMWEs do not
necessarily comply with this rule (as for "may the
force bee with you").

2http: //itre.cis.upenn.edu/myl/languagelog/
archives/000061.html

3 Introduction to ASMR

ASMR’s main purpose is the identification and
tagging of PMWEs. It can be described as
an alignment-based, semi-supervised approach.
ASMR takes a list of seeds, for instance proto-
typical forms of MWEs, as described in Pasquer
(2019), and a list of sentences in which we want to
identify PMWEs created from the seeds. As an out-
put, ASMR creates a ranking of PMWE candidates
for each seed. It consists of a succession of 4 pro-
cesses, which we describe here. These processes
are illustrated Table 3.

3.1 Alignment

First, ASMR creates alignments between each
seed-sentence pairs. An alignment can be defined
as the superposition of the elements of two se-
quences in order to highlight their similarities and
differences. We give an example of alignment be-
tween two sequences in Table 1. We use the BIOPY-
THON package? to create these alignments (see Ap-
pendix A). This package allows us to fetch multiple
possible alignments for a given seed-sentence pair,
as shown in Table 2.

May the - beer be
May the | force - be

with  you
with  you

Table 1: Example of alignment at token level for the
seed "May the force be with you" and the PMWE "May
the beer be with you" (CATCHPHRASE dataset). In
this example, the substitution of "force" by "beer" is
highlighted by the misalignment between these tokens
(in blue).

there s no place like long island no place like home
there s - - - - - no place like home
there s no place like - - - - - home

Table 2: Two possible alignments between the seed
"there’s no place like home" and a sentence seen in the
CATCHPHRASE dataset.

3.2 Segmentation

Once the alignments are made, we use them to find
the longest common segment (LCS) between a seed
and a sentence. This LCS will be our PMWE can-
didate. To find the LCS, we perform the following
steps: (i) we retrieve each aligned token between
a seed and a sentence and (ii) for each misalign-
ment, we create a list containing all consecutive

Shttps://biopython.org/

8352


http://itre.cis.upenn.edu/myl/languagelog/archives/000061.html
http://itre.cis.upenn.edu/myl/languagelog/archives/000061.html
https://biopython.org/

Seed some men just want to watch the world burn
Sentence some people really do just want to watch the world freeze
Alignment some = men - - - just want to watch the world burn -
some - people really do just want to watch the world - freeze
Segmentation some [men] J:ust want to watch the world [burn]
some [people,really,do] just want to watch the world [freeze]
Matchezaet some just want to watch the world
Match fyz 2y some people really do just want to watch the world freeze
Matcheompined | some people just want to watch the world freeze
Cand.czqct some just want to watch the world 0.86
Cand. fy22y some people really do just want to watch the world freeze 0.70
Cand.combineda | some people just want to watch the world freeze 0.80

Table 3: Alignment, segmentation, matching and resulting candidate (Cand.) for each approach for the seed "some
men just want to watch the world burn" paired with the sentence "some people really just do want to watch the
world freeze", found in the CATCHPHRASE dataset. For each seed-candidate pair, a cosine similarity is computed to

rank candidates.

misaligned tokens, both for the seed and the sen-
tence. We use these misalignment lists in the next
step to match unseen tokens from the seed with
substitute tokens from the corresponding sentence.

3.3 Matching

The matching process’s goal is to isolate the LCS
between a seed and a sentence. We provided 3
approaches to match tokens from the seed with
tokens from the sentence, leading to the creation
of 3 different approaches to ASMR: ASMR¢,qct,
ASMRy,. ., and ASMR .ompined-

ASMRexact Only identical tokens between the
seed and the sentence are matched. In other word,
only the aligned tokens are matched, while the
misaligned ones are ignored.

ASMRy,,,, We match every single token be-
tween the first and the last common tokens between
the aligned seed and sentence. If the X first tokens
of the seed are unseen in the sentence, we match
the first X tokens before the first common token
in the sentence. We repeat this process with the Y
last tokens of the seed: if they are unseen in the
sentence, we match the Y first tokens after the last
common token in the sentence.

ASMR ombined In addition to matching the
aligned tokens between the seed and the sentence,
we use misalignment lists to find the closest match
for each unseen token from the seed. Let’s take the
following lists liStseeq and [istgeny from Table 3:

¢ [iStseeq = [men]
¢ listsent = [people,really,do]

For each token tokg..q from listg..q, we com-
pare its POS tag with the ones of each of the tokens

in listgens. The first token from listgep,; With the
same POS tag is matched with tokg.q. If no token
possesses the same POS tag as tokgeeq, W€ com-
pute a Levenshtein score between tokg..q and each
token in listgey,; in order to find the best match.
The only word from listse.q, "men", would there-
fore match with the first token of list sy, "people”,
since they share the same POS tag.

Each approach was designed to provide a solu-
tion to a specific problem. ASMR¢y;q: can help
us identify pun-free MWEs and provide a mini-
mal tagging of MWEs. In contrast, it should not
be able to find substitutes to unseen tokens in the
seed, and therefore is most likely not suitable for
PMWE:s identification. ASMRy,,..,, on the con-
trary, should be able to identify PMWEs, espe-
cially insertion and substitution based PMWE:s, but
will most probably produce a significant amount of
noise, as it does not take discontinuity into consid-
eration. Finally, ASMR .mpineq Will try to match
the exact number of words seen in the seed by
matching unseen tokens with substitutes. However,
it should not be able to identify insertions.

3.4 Ranking

Prior to this step, we aligned, segmented and
matched each seed with each sentence. As a result,
we obtain a certain number of PMWE candidates
for each seed. The final step of ASMR is to rank
these candidates in order to sort them according to
their probability of corresponding to a PMWE. We
choose to use a cosine similarity score to rank the
candidates for each seed. Other similarity measures
could have been employed; however, comparing
their performance lies beyond the scope of this pa-
per. For experiments on this topic, see (Buscaldi
et al., 2020; Koudoro-Parfait et al., 2021). We used
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Recall | Precision | F-score | Accuracy
ASMRezact 89+06 | 73t14 79+09 89+10
ASMR {42y 88403 81409 84105 93+03
ASMR compined 89402 80406 84103 9302
SVM (Sweed and Shahaf, 2021) 78£12 | 84+£13 81+NA 85108
ROBERTA (Sweed and Shahaf, 2021) | 74+18 70+£15 72ENA 81+94

Table 4: Results of ASMR for snowclone detection on the CATCHPHRASE test set. For the results of our approaches,
the standard deviation is computed on 20 runs. Additionally, we manually computed F-scores for SVM and
ROBERTA since (Sweed and Shahaf, 2021) did not report them.

the SCIKIT-LEARN implementation of the cosine
similarity (formula 1 below).

(D

We compute a cosine similarity matrix between
each seed u and all the PMWE candidates v ex-
tracted with this seed, as shown in 2.

Sc(Um, 1) Sc(tm, v2) Sc(Um, Un)

(@3]
The ranking step can be repeated for numerous
linguistic information layers. For instance, if our
seeds and sentences are POS tagged, we can com-
pute another similarity matrix between the POS
tags of the seeds and the ones of the candidates.
We argue that such process allows us to take into
account various information in order to adjust our
ranking of the candidates for each seed. In order
to take all the available linguistic information lay-
ers into account at the same time, we calculate the
mean similarity score of all layers for each can-
didate. Finally, we ponder our scores by taking
into account the difference of length /N between
the seed and the candidate: if the candidate has
X fewer tokens than the seed, we apply a rule of
proportionality to its score S, as in 3.

S-(N-X
Sponder = (]\7) (3)

By applying this rule, we aim to discriminate
candidates shorter than their seed, as a lot of them
tend to be false positive. Additionally, shorter can-
didates that partially match the words of a seed
tend to have better cosine similarity scores when
compared with a seed, as seen for Cand.ezqct in
Table 3.

4 Snowclone detection

We explained the features of ASMR. We now use
the CATCHPHRASE dataset (Sweed and Shahaf,
2021) to evaluate ASMR capacity to detect if a
sentence contains a snowclone.

Dataset. The CATCHPHRASE dataset consists of
3,855 snowclone-sentence pairs, of which 1,406
sentences allegedly contain the snowclone it was
paired with. It proposes a binary classification task:
for each snowclone-sentence pair, we must indi-
cate whether the sentence contains the snowclone
it was paired with. To achieve this classification
task, Sweed and Shahaf (2021) used a Feature-
based SVM model as well as a ROBERTA-based
model. We report the recall, precision and accuracy
they obtained with these models in Table 4. Sur-
prisingly, their SVM model performed better than
their ROBERTA model.

Parameters. As ASMR does not learn from in-
put data, we use the train and dev partitions of
CATCHPHRASE to determine the best parameters
to run our experiments. We run ASMR with 240
distinct sets of parameters on the train partition (see
Appendix B.2). These parameters include those of
the vectorizer (number of ngrams and analyzer)
and the threshold at which we consider a candidate
to be a snowclone (according to its score). We only
use token-level information during these runs. We
select the 10 best sets of parameters for the train
partition and the 10 best sets for the dev partition,
for a total of 20 sets. We plan to run ASMR on the
test partition with these 20 sets of parameters and
to report standard deviation. We repeat this process
for each approach, ASMR;4ct, ASMR ., and
ASMR .ompined for a total of 720 runs.

Results. We report the results we obtained with
ASMR with each approach in Table 4. ASMR¢y 4t
obtained the best recall and ASMR¢,,...,, offered
the best precision, as well as the best F-score and
accuracy. ASMR ,,pineq achieves the best recall,
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Figure 1: Impact of threshold on recall, precision, F-
score and accuracy for the best run on the test partition
of CATCHPHRASE with ASMR .ombined-

F-score and accuracy. These last two matching
algorithm might be slightly better than the first one
due to the nature of snowclones, which are mainly
created by substitution.

Overall, ASMR performs better than the mod-
els used by Sweed and Shahaf (2021) for the task
of snowclone detection, although we note that our
precision is slightly behind that obtained by their
SVM model. Figure 1 shows the impact of thresh-
old on the metrics we used for the best run (with
ASMR . mbined)- As expected for a ranking system,
the lower the threshold, the lower the precision and
the higher the recall.

5 MWE identification

We measured the performance of ASMR for the
task of snowclone detection in sentences with
CATCHPHRASE. We now want to evaluate its abil-
ity to identify tokens belonging to MWEs in a given
set of sentences.

Dataset. We use the version 1.3 of the
PARSEME corpus (Savary et al., 2023), com-
posed of 26 languages and mainly containing ver-
bal MWEs. This corpus proposes a MWESs tagging
task. So far, only 2 systems have been tested on
the PARSEME 1.3 corpus: SEEN2SEEN (Pasquer
et al., 2020) and MTLB-STRUCT (Taslimipoor
et al., 2020). Savary et al. (2023) report the results
for these 2 systems on PARSEME 1.3.

Parameters. The following steps are repeated for
each language: (i) We retrieve a list of every MWEs
seen in the train partition (lemmas and POS tags in-
cluded). Since we collected lemmas for each word,

we use them to align each MWE with each sen-
tence. (ii) We run ASMR with 256 sets of parame-
ters on the dev partition (see Appendix C.2). Those
parameters consist of cosine similarity thresholds
for the token layer, the morphosyntactic layer and
the lemma layer. The possible thresholds were
0.1, 0.3, 0.7 and 1. We also compute a semantic
score between each candidate and MWE using the
SENTENCE-TRANSFORMERS package.This addi-
tion will enable us to assess the impact of semantic
information on a MWE identification task using
ASMR. Additionally, we remove candidates with
discontinuities of more than 4 words. As shown
in Pasquer (2019), the vast majority of discontin-
uous MWEs tend to have shorter discontinuities.
(iii) We select the 10 best sets of parameters for the
dev partition to run them on the test partition. We
repeat this process for each approach with ASMR,
totaling 768 runs per language. In the end, we
performed 19,968 runs on PARSEME 1.3.

Results. Table 5 shows the global MWE-based
results we obtained on the test set of PARSEME
1.3 for each language. Overall, ASMR.y 4 Ob-
tained the best results among all the ASMR ap-
proaches, with a mean F-score of 52.6. Since
ASMR_ ;. only tag aligned words between a seed
and a sentence, this result does not come as a
surprise. ASMRy,,.., offers the best F-score for
Hindi (HI), while ASMR .ombineqd Obtained the best
F-scores with Persian (FA) and Chinese (ZH). We
report state-of-the-art results on the PARSEME
1.3 corpus with ASMR for Irish (GA), Croatian
(HR) and Hindi (HI).

In order to analyze the impact of each feature
used in ASMR, we generate boxplots for each fea-
ture and each threshold used with these features
in Figure 2. These boxplots consist of F-scores
obtained with every run made with ASMR¢;.: on
all languages on the dev partition. For instance, the
first boxplot represents all the F-scores obtained
with a threshold of 0.1 for the token feature. We
observe that (i) regardless of the feature, a thresh-
old of 1 seems to be too restrictive, as F-scores
tend to be much lower, (ii) for the token and seman-
tic features, we observe almost no variation with
different thresholds, which can indicate that those
features are not the most determinant for MWE
identification with ASMR and (iii) the lemma and
upos features show better F-scores with a threshold
of 0.7, meaning that those features are probably the
most helpful to identify MWEs with ASMR.
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ASMRemact ASMRfuzzy ASMRcombined s2s
R P F R P F R P F F
AR | 322402 54.04+01 40.3+01 | 254408 40.3£12 30.4409 | 34.0£06 40.6£11 35.3+03 || 50.9
BG | 72.1£01 55.3£00 62.5+00 | 61.9+£11 56.8£04 58.4+£04 | 63.3+10 57.4+03 59.5+03 || 65.7
CS | 594400 649400 62.0+00 | 46.4+£11 57.5£08 51.04+09 | 60.0£03 59.0£05 59.3£02 || 74.1
DE | 20.7£00 67.3£03 31.6+00 | 16.4+03 38.8£19 222406 | 18.6+01 43.3+15 25.5+03 || 714
EL | 579403 573401 57.5401 | 44.4+13 554405 48.4408 | 554+£07 59.5£02 56.94+03 || 66.3
EN | 444401 78.0+£00 56.5+00 | 32.4+08 66.7+15 42.64+08 | 42.8£03 72.1£08 53.6%+03 || 59.9
ES 53.8400 54.7400 54.2400 | 453408 49.9405 47.3+06 | 50.2+£05 51.5£04 50.64+03 || 55.6
EU | 72.7£01 76.44+03 74.4401 | 62.3£10 74.5£07 67.24+07 | 71.3£05 69.1£08 69.8£04 || 82.1
FA | 61.8£00 77.8£01 68.8+£00 | 64.0£03 78.0£05 70.1£01 | 66.44+04 76.5+02 71.0+02 || 71.9
FR | 66.2+04 73.6+01 69.6+02 | 50.2£13 57.5£13 53.5+13 | 65.9+£04 65.1£07 65.24+03 || 78.7
GA | 19.4£00 52.0£00 28.2+00 | 17.24+06 49.3£13 23.9+05 | 19.44+01 51.6£07 28.0+00 || 26.6
HE | 35.84£01 64.1+£01 459400 | 33.9+£02 53.6£10 41.3+04 | 36.3£01 57.4+£06 44.4+£02 || 46.9
HI 452400 80.6£01 57.9+00 | 51.24+08 75.4+12 59.64+02 | 46.4+01 70.7+£07 559402 || 58.7
HR | 64.1£01 919400 75.54+01 | 49.7£13 779£14 60.1+£13 | 61.9£03 79.8£09 69.5+04 || 75.3
HU | 18.5+£02 81.8+£21 294401 | 158+03 69.3£16 252403 | 18.44+02 76.0£18 28.9£01 32.0
IT 59.0+£01 64.0+£01 61.4+00 | 50.0£07 552409 52.2407 | 58.6£02 61.1£03 59.8401 || 65.0
LT 27.5£00 83.2+00 41.3+00 | 20.2£05 65.1£15 30.7£07 | 27.7+£02 78.1+05 40.9+02 || 48.9
MT | 142402 19.2401 16.34+01 | 16.0£04 16.4£03 15.7£02 | 104+£04 152+£04 12.1£04 || 16.5
PL | 62.4£05 90.1£01 73.6+£03 | 52.3+11 80.6£11 62.9+£11 | 60.1£06 77.8+10 67.44+05 || 82.5
PT | 51.44£07 70.0£07 58.54+04 | 34.6£05 47.3£07 39.3+03 | 53.4£10 59.0£07 54.8£05 || 74.0
RO | 88.4+£00 61.1£00 72.3+00 | 69.3+17 53.8407 60.0£10 | 83.84£07 54.7+£05 66.0+05 || 74.8
SL | 51.24£04 332401 40.24+01 | 33.7£16 29.2+£04 30.0£09 | 49.7£04 30.2+£03 37.4£02 || 41.8
SR | 37.8401 87.1+00 52.74+01 | 34.5£05 749+14 469406 | 38.8£02 79.0£10 51.6+01 || 62.0
SV | 29.24+01 80.8£03 42.8401 | 25.1£04 70.1£13 36.7£05 | 28.4+02 742403 41.0£02 || 82.2
TR | 71.84£03 58.4+02 64.4+01 | 67.8£06 57.8£04 62.2+03 | 65.8408 53.4+04 58.54+05 || 65.0
ZH | 22.0+£00 40.54£00 28.4400 | 20.0£01 42.0£01 27.14+00 | 23.5£01 39.2+01 29.24+01 || 35.0
M 47.7 66 52.6 40 57.4 44.8 46.6 59.7 49.7 60.1

Table 5: Global MWE-based results on the test set of PARSEME 1.3 for 26 languages using ASMR. We report
recall (R), precision (P), F-score (F) and mean (M) for all languages. Since we performed 10 runs for each language
for our approaches, we also report the standard deviation. For the sake of comparison, we add SEEN2SEEN (s2s)
system results. We highlight in bold the best F-score obtained with ASMR and underline state-of-the-art results.

0.8

0 o1
0.7 O o4
0.6 o o7

0.5
0.4
0.3
0.2
0.1

F-score

token lemma upos semantic

Figure 2: Boxplots of F-scores obtained on the dev partition of PARSEME 1.3 for each linguistic feature (token,
lemma, upos and semantic similarity) for different thresholds (1, 0.7, 0.4 and 0.1) and each language. We used the
F-scores obtained with ASMR_,4.: since it has the best mean F-score among the 3 approaches we used.
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6 Error analysis with PARSEME

Since PARSEME 1.3 offers several metrics on
different subsets of MWEs, such as discontinuous
and unseen ones, we can perform a more refined
analysis of ASMR capabilities. Table 6 shows the
mean F-scores across all languages on different
subsets of MWEs. We observe that for two sub-
sets (discontinuous and unseen-in-train) we achieve
lower F-scores. Additionally, since ASMR was de-
signed to identify PMWEs, we could argue that the
Variant-of-train score is lower than expected.

Exact | Fuzzy | Combined
Tok-based 55.0 48.1 52.6
Continuous 57.1 52.3 54.8
Discontinuous 41.9 14.8 38.4
Seen-in-train 68.0 61.0 66.9
Unseen-in-train 00.9 06.8 05.2
Variant-of-train 60.1 50.3 594
Identical-to-train 78.6 72.8 76.4

Table 6: mean F-scores across all languages obtained
with each approach on different subsets of MWEs. We
highlight the most interesting subsets (in bold).

Discontinuous. Discontinuous MWEs are a re-
curring challenge for MWE identification (Con-
stant et al.,, 2017). As ASMRyy.., and
ASMR (ompineq match misaligned words between
a MWE and a candidate, low F-scores are expected.
This is especially the case for ASMR ¢,,..,,, which
match every word between the first and the last
common words between a MWE and a candidate
(as seen in Table 3). We observe that ASMR,.qct,
by tagging only aligned tokens, manage to obtain
the highest mean F-score among the 3 approaches.

Unseen-in-train. One could argue that ASMR
should be able to see a minimal number of unseen-
in-train MWEs, especially with the ASMR ¢,
and ASMR .,,bineqd approaches. We argue that this
can be the case, notably with shorter, more generic
MWEs, such as "break up". Table 7 shows 10 can-
didates found with ASMR .,,pineqd for the MWE
"break up". We observe the presence of other seen-
in-train MWE:s as well as 2 unseen-in-train MWE:s.
We also report erroneous candidates, which does
not correspond to a MWE. While ASMR is capa-
ble of capturing both closely related MWEs and
unseen MWEs, it might be difficult for it to dis-
tinguish good candidates from bad ones. This is
highlighted by the ranking in Table 7, where seen,
unseen and erroneous MWE:s tend to blend together
in the ranking.

Candidate | Cat | Tok | Upo | Lem | Sem | M

broke up see | 0.10 | 1.00 | 1.00 | 0.84 | 0.73
speakup | uns | 0.55 | 1.00 | 048 | 045 | 0.62
fuck up uns | 0.20 | 1.00 | 0.21 | 0.44 | 0.46
look up see | 0.22 | 1.00 | 0.18 | 0.29 | 0.42
make up see | 0.12 | 1.00 | 0.11 | 0.41 | 0.41
ensureup | err | 0.07 | 1.00 | 0.07 | 0.49 | 0.41
end up see | 0.03 | 1.00 | 0.03 | 0.54 | 0.40
jangleup | err | 0.01 | 1.00 | 0.02 | 0.51 | 0.38
grow up see | 0.02 | 1.00 | 0.02 | 0.49 | 0.38
have up err | 0.02 | 1.00 | 0.03 | 0.46 | 0.38

Table 7: 10 ranked candidates for the MWE "break up".
For each candidate, we report its score for each feature
as well as its mean score (M, used for the ranking)
and its subset (Cat). Possible categories are seen (see),
unseen (uns) and erroneous (err).

Candidate EN Cat M

TIOJTy9aT HOMOII, get help var | 0.90
TIOJTYyIUXa TTOMOII] get help var | 0.84
TIOJIyIaBAT HOMOII] get help var | 0.73
Ka3a ITOMOII say help err | 0.65
Ka3a MOMOIIITA say help err | 0.63
oexa TTOMOTIT ask help err | 0.63
B3€ IIOMOII], take help var | 0.61
CTaHa, TTIOMOII] become help err | 0.61
TIOJTy 9! TOKPerta receive support | var | 0.54
TOJIyIn ImofKpemaTa | receive support | var | 0.54

Table 8: 10 ranked candidates for the MWE "nony4a
momortt” (BG, get help). For each candidate, we propose
a minimal translation in english (EN) as well as its mean
score (M) and its category (Cat). Possible categories are
identical (idt), variant (var) and erroneous (err).

Variant-of-train. Variants of MWEs can cor-
respond to several instances in the PARSEME
1.3 (see guidelines*). Among these instances, we
find (i) syntactic variants, such as conjugated verb,
change of tense or number and (ii)) MWEs with
some open slots (to take a decision). The former
should be handled by morphosyntactic and lemmas
analysis in most case, but the latter may have a di-
rect impact on MWE identification, especially with
ASMR. Table 8 shows 10 candidates found with
ASMRyy,. ., for the MWE "nmonyqa nomom” (BG,
get help). We observe possible variations for both
words of this MWE. "monyua" can be conjugated
and/or replaced by "B3e" and "mowmorr" can be re-
placed by "mogkpemnata'. Once again, the possible
variations of this MWE blend with erroneous can-
didates in the ranking, making it hard to distinguish
them. However, we observe that simple syntactic
variants appear in the top candidates and therefore
are easier to identify.

*https://parsemefr.lis-lab.fr/
parseme-st-guidelines/1.3/?page=010_Definitions_
and_scope/030_Syntactic_variants_of_VMWEs
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7 Discussion

In this work, we introduced ASMR, a Puns in
MWE (PMWE) identification and tagging algo-
rithm relying on sentence-level alignments and sim-
ilarity scores to rank PMWE candidates. While ear-
lier studies show that ASMR can be used to extract
good PMWE candidates in both French and Arabic,
no quantitative evaluation was yet performed, due
to a lack of a PMWE annotated dataset.

To get around this issue, we proceeded to 2 ex-
periments in order to evaluate ASMR function-
alities. We first used a snowclone detection task
on the CATCHPHRASE dataset in order to evalu-
ate ASMR’s capacity to assert the presence of a
PMWE candidate in a sentence. We then used the
PARSEME 1.3 corpus to evaluate ASMR identi-
fication and tagging performance on MWEs for 26
languages. We show that ASMR obtains state-of-
the-art results on the snowclone detection task and
for three languages with the MWE identification
task (Irish, Croatian and Hindji).

We performed an in-depth analysis of the limita-
tions we encountered with some subsets of MWEs
within PARSEME, which allowed us to get a better
understanding of ASMR performance. It showed
that, while true positive and false positive candi-
dates tend to blend together in the ranking, the top
N candidates seem to be pertinent in most cases.
This observation is highlighted by both the MWE
identification task and the snowclone detection task,
where higher thresholds lead to higher precision
and lower recall. We also note that, while we per-
formed multiple runs for each task, our standard
deviations are low, which can account for the ro-
bustness of ASMR (see Appendix B.4).

We plan to create a PMWE dataset through par-
ticipative sciences to further evaluate the perfor-
mance of ASMR. Such dataset would also be use-
ful to test the performance of other systems, either
created for MWE or PMWE identification. We also
plan to use ASMR to observe possible changes af-
fecting MWESs over time. For example, the French
expression "étre comme un poisson hors de ’eau”
("to be like a fish out of the water") led to the cre-
ation of the PMWE "étre comme un poisson dans
I’eau" ("to be like a fish in water") in the 19" cen-
tury (Fiala and Habert, 1989). Over time, such
PMWEs can become conventionalized (as defined
in Nunberg et al. (1994)) themselves, ultimately
supplanting the original MWE (Cusimano, 2015).

ASMR offers a valuable tool for studying these

diachronic processes. By tracking frequency pat-
terns of canonical and variant forms, we can ob-
serve the emergence, transformation, and possi-
ble lexicalization of new MWE:s in real time. In-
deed, we have already observed such dynamics in
the FRUIT corpus (Bezangon et al., 2025b): the
original expression "travailler plus pour gagner
plus" (Nicolas Sarkozy, 2007, "work more to earn
more") appears less frequently than the variant
"travailler plus pour gagner moins" ("work more
to earn less"), suggesting an ongoing shift in usage
and meaning.

Limitations

CATCHPHRASE experiment. We take into ac-
count several limitations, due to either the CATCH-
PHRASE dataset or the methodology we used: (i)
the dataset itself is imbalanced. As stated by its
authors, 64 % of the sentences do not contain the
snowclone they were paired with (Sweed and Sha-
haf, 2021). (i1) the task doesn’t evaluate the ca-
pacity of a system to tag tokens belonging to a
snowclone. (iii) since CATCHPHRASE does not
come with POS tag nor lemmas, we only tokenized
both the snowclones and the sentences. (iv) the
threshold itself can be seen as a limitation: the
ideal threshold found for the train and dev parti-
tions of the dataset might not always be the same
for the test partition. Nevertheless, we find that
for CATCHPHRASE, the ideal threshold seems to
be roughly the same for all partitions (between 0.1
and 0.3).

PARSEME 1.3 experiment. To avoid overload-
ing our calculation server, we had to limit the num-
ber of runs we made on the PARSEME 1.3 corpus.
To limit this number, we did not manipulate the
features of the vectorizer used to compute cosine
similarity scores, which remained the same among
all languages. We also limited to 4 the number
of thresholds we used for each feature (using only
thresholds of 0.1, 0.4, 0.7 and 1). Moreover, since
ASMR was not initially designed to strictly iden-
tify MWEs, we added a rule to limit the size of
possible discontinuities to 4. While this rule is also
found in other systems, such as the one of Pasquer
et al. (2020), we did not evaluate its impact on
the MWE identification task with ASMR. Finally,
ASMR does not account for phenomena such as
permutation yet, which might have an impact on
the results we obtained, since some MWEs allow
word permutations.
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Ethical considerations

We ran ASMR on an AMD EPYC MODEL 7543P
MILAN 32 CoRE CPU with 32GB of memory.
We ran it on every language in parallel threads,
for a cumulated time of 58 hours and a maximum
time of 13 hours. We use this information along
with the carbon intensity in France in 2024° to
estimate our carbon footprint, which amounts to
120.45g estimated CO2 emission (or 0.12 kg). This
estimation remains approximate, as we couldn’t
take every parameter into account. In comparison,
Large Language Models such as BERT usually
have a much higher carbon footprint (Wang et al.,
2023).
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A Alignments with BIOPYTHON

BIOPYTHON provides pairwise alignment meth-
ods to compare two sequences (originally DNA,
RNA, or proteins sequences). These methods
use dynamic programming algorithms such as
Needleman-Wunsch (Needleman and Wunsch,
1970) for global alignment (which we used here)
and Smith-Waterman (Smith and Waterman, 1981)
for local alignment. We navigate through the align-
ments using list comprehension in Python, as de-
scribed in Section 3.

B Snowclone detection task details

B.1 CATCHPHRASE metadata

Table 9 shows some statistics on the CATCH-
PHRASE dataset. Table 10 shows a sample of the
CATCHPHRASE dataset for two snowclones. For
each snowclone, we report an identical match, a
partial match and a mismatch.

#Token | #Sentence | #Snowclone
train | 50,292 2,974 1,235
dev 11,068 682 60
test 10,389 520 111
total | 58,785 3,855 1,406

Table 9: Number of tokens, sentences and sentences
containing a snowclone in CATCHPHRASE.
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Snowclone Sentence

Label

may the force be with you
may the force be with you
may the force be with you

thank you and may the force be with you
may the gods be with you
the ache in my chest from not being able to be with you

i love the smell of napalm in the morning
i love the smell of napalm in the morning
i love the smell of napalm in the morning

i love the smell of napalm in the morning
they love the smell of racism in the morning
i love the smell of christmas

O == = =

Table 10: Some entries of the CATCHPHRASE dataset. We highlight in bold the snowclones in each sentence. A
label of 1 indicates that the snowclone is seen in the sentence, while a label of O indicates that the snowclone is not

present in it.
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Figure 3: Impact of threshold on recall, precision, F-score and accuracy for the best run on the test partition of

CATCHPHRASE with each approach.

B.2 Run parameters

The tested parameters include those of the vector-
izer and the threshold at which we consider a can-
didate to correspond to a snowclone. The possible
parameters were as follows:

e ngram: 1,211,312,312,413,413,514,514,6;
e analyzer: word | char | char_wb;
e threshold: 1, 0.9, 0.8, ... 0.2, 0.1, 0.

The best runs on the test partition of the CATCH-
PHRASE dataset were the following:

* ASMRzqct: ngram = 3,4 | analyzer = char |
threshold = 0.3;

* ASMRy,;,: ngram = 2,4 | analyzer = word |
threshold = 0.3;

* ASMR ompineq: ngram = 1,2 | analyzer =
word | threshold = 0.2.

B.3 Resulting ranking

We report some ranked candidates for the snow-
clone "may the force be with you" in Table 11. For
each approach, we use the best parameters found
on the train and dev set for the vectorizer with this
approach, which is why some candidate’s scores
may vary. We also report the impact of threshold
on the best run with each approach in Figure 3.

B.4 Impact of parameters

To go further, we propose to study, for all partitions
and all approaches, the impact of the analyzer cho-
sen in Figure 4 as well as the impact of the n-gram
sizes chosen in Figure 5. Both appear to have a lim-
ited impact on the obtained F-scores, which may
explain the observed robustness of ASMR.

Candidate Score  Freq
ASMRexact

may the force be with you 1.00 51
may the force be with 0.81 3
the force be with you 0.74 6
the force be with 0.58 1
may the force be you 0.50 1
force be with you 0.44 3
ASMR 422y

may the force be with you 1.00 51
may the force be with your 0.69 1
let the force be with you 0.51 6
may the force be good to you 0.29 1
may some of the force be with you 0.22 1
may the gravity force be with you 0.20 3
ASMRcombined

may the force be with you 1.00 51
may the force be with your 0.81 1
may some force be with you 0.23 2
may the peace be with you 0.15 1
may the god be with you 0.14 3
may the boop be with you 0.14 1

Table 11: Some candidates obtained with each approach
of ASMR.
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Figure 5: Boxplots of F-scores obtained on all partitions of the CATCHPHRASE dataset with all approaches to

ASMR for each ngram sets used.

B.5 Cosine similarity vs Levensthein Distance

To determine that cosine similarity was better
suited for our use case than Levenshtein distance,
we considered several key factors. First, the
time complexity of Levenshtein distance is O™,
whereas cosine similarity operates at a much lower
complexity of O™. This makes cosine similarity
significantly faster in most scenarios, including
ours, where we compute a vector matrix using
tf-idf. Additionally, during testing, we observed
that Levenshtein distance tends to favor shorter se-
quences more heavily than cosine similarity, prob-
ably resulting in a higher rate of false positives
among the top N candidates. Table 12 shows the
results we obtained while perfoming the same ex-
periment that the one in Section 4 with Levensthein
distance instead of cosine simlarity. We used the
PYTHON-LEVENSHTEIN package, which offers a
fast C-based implementation of the Levenshtein
distance. We observe that the results are consis-
tently lower than those obtained using cosine sim-
ilarity. Upon reviewing the rankings for several

snowclones, we found further evidence support-
ing our initial assumption: Levenshtein distance
tends to favor shorter sequences. This suggests a
potential bias that can lead to false positives, which
can be described as sequences that share some to-
kens with the target snowclones but are missing
key elements. While this implementation of Lev-
enshtein distance can be used as an alternative to
cosine similarity, it introduces a bias toward shorter
candidates.

C MWE identification task details

C.1 PARSEME 1.3 metadata

Figure 6 show the number of sentences and MWE
for each language in the PARSEME 1.3 corpus.
Some languages are much more represented than
others. This is especially the case for Portuguese
(PT), Romanian (RO), Chinese (ZH) and Czech
(CS), which all contain more than 30,000 sentences.
Table 13 contains the number of sentences, MWEs
and tokens for each partition for each language.
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Recall | Precision | F-score | Accuracy
ASMR et 86+09 | 75+20 77+08 88106
ASMR 42y 81+02 | 79+13 79403 91+03
ASMR compined 77£05 7616 75406 89404
SVM (Sweed and Shahaf, 2021) 78+12 | 84+13 | 81+NA 85408
ROBERTA (Sweed and Shahaf, 2021) | 74418 70+£15 T2+NA 81194

Table 12: Results of ASMR for snowclone detection on the CATCHPHRASE test set with a Levensthein distance.
For the results of our approaches, the standard deviation is computed on 20 runs.

Figure 6: Number of sentences and MWEs for each language in the PARSEME 1.3 corpus.

C.2 Run parameters D Error analysis details

We show the the F-scores obtained for each subset
The tested parameters all correspond to a thresh-  of MWE for each language in the PARSEME 1.3

old for each linguistic information layer we used  corpus for each approach in Table 16, Table 17 and
during our experiments on the PARSEME 1.3 Tuple 18.
corpus (token level, morphosyntactic level, lem-

mas and a semantic similarity score). The possible

thresholds were 0.1, 0.4, 0.7 and 1. We limited

them in order to avoid overloading our calculation

server with longer runs. We report in Table 14

the best parameters for each language and for each

approach to ASMR. For the semantic scores, we

used the PARAPHRASE-XLM-R-MULTILINGUAL-

V1 model from the SENTENCE-TRANSFORMERS

python package. This model covers all of the 26

languages of ASMR.

C.3 Resulting ranking

For 21 language, we show the top 3 candidates of
our ranking system obtained with ASMR coimpined
for a random MWE in Table 15.
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# Sent. # MWE # Tokens
Train Dev Test Train Dev Test Train Dev Test
AR 6,091 342 1,050 | 3,841 228 680 | 252,515 14,751 44,551
BG | 15950 1,380 4,269 | 4,969 431 1,304 | 353,748 30,980 95,685
CS | 42,288 1,725 5,418 | 12,405 523 1,608 | 711,213 28,697 93,283
DE 6,475 628 1,893 | 2,912 281 848 | 125,081 12,046 36,434
EL | 21,983 1,077 3,115 | 7,128 348 1,032 | 587,001 28,833 82,590
EN 2,150 1,302 3,984 317 199 598 | 35,534 21,660 67,009
ES 3,424 521 1,570 1,732 256 751 | 112,906 17,333 52,125
EU 5,033 1,441 4,684 1,932 560 1,754 | 70,017 20,957 66,833
FA 2,364 321 932 | 2,249 303 901 40,110 5,430 16,028
FR | 14,540 1,580 4,841 3,921 437 1,297 | 364,414 40,107 121,321
GA 330 318 1,057 127 134 398 7,104 7,680 24,123
HE | 14,035 1,296 3,869 1,855 171 507 | 283,984 26,766 77,731
HI 399 322 963 242 200 592 8,641 6,786 20,003
HR 3,357 672 2,104 | 2,131 439 1,332 | 77,599 15,329 50,018
HU | 2,139 1,000 3,020 | 2,664 1,259 3,837 | 54,658 25205 76,473
IT 10,641 1,202 3,885 | 2,854 324 1,032 | 292,065 32,652 106,072
LT 2,281 2,181 6,642 163 161 488 | 42,782 41,421 124,309
MT | 6,460 975 3165 749 119 358 | 154,979 22,924 74,382
PL | 18,037 1421 4,089 | 5,595 430 1,288 | 303,628 23,865 68,647
PT | 24,594 1,867 5,601 4,926 375 1,125 | 557,486 42,855 127,728
RO | 26,889 7,668 22,107 | 4,562 1,257 3,689 | 479,681 139,314 395,913
SL | 15,220 3,054 9,551 1,834 376 1,153 | 321,377 64,429 200,381
SR 1,382 544 1,660 492 203 609 | 33,839 13,558 39,970
SV 2,795 765 2,466 1,467 421 1,269 | 44,917 12,335 39,607
TR | 16,730 1,396 4,180 | 5,824 466 1,439 | 248,697 20,679 62,793
ZH | 44,103 1,215 3,611 9,744 274 801 | 738,713 19,936 61,698

Table 13: Number of sentences, MWESs and tokens for each language and for each partition in the PARSEME 1.3
corpus.

8365



ASMR@xact ASMRfuzzy ASMRcombined
tok upos lem sem | tok wupos lem sem | tok upos lem sem
AR |01 04 07 01 01 04 07 0101 07 01 0.1
BG |04 04 07 0104 04 07 01 |04 04 07 0.1
csS (04 04 07 0404 04 07 04|04 04 07 0.1
DE |01 07 07 04 (01 04 07 04 )01 07 04 04
EL (01 07 07 01 01 07 04 01]01 07 07 0.1
EN |01 07 07 04|01 07 01 04 )01 07 07 04
ES (01 01 07 04)01 01 07 04 (01 01 07 04
EU |01 07 07 0401 07 04 04|01 07 04 04
FA |01 07 04 01 01 07 07 01|01 07 07 04
FR {01 07 07 01 01 07 04 01]01 07 04 0.1
GA |01 04 07 04)01 07 01 04|01 07 07 04
HE (04 01 07 04|04 01 07 04 |04 01 07 04
H |01 07 07 01)01 07 07 04 )01 07 01 0.1
HR |01 01 07 01(01 01 07 017]01 07 04 0.1
HU |01 01 04 0701 01 04 07|01 01 04 07
IT {01 07 07 04]01 04 07 07 (01 07 04 04
LT 01 07 07 04|01 07 04 04 )01 07 07 04
mMrjo1 07 07 0401 07 04 0401 07 07 04
pL jO1 01 07 04 01 01 07 04]01 01 07 0.1
pr |01 07 07 07]01 07 07 04 )01 07 07 0.7
RO |01 07 07 0401 07 04 0401 07 04 04
sL o1 07 07 01}01 07 04 01 01 07 04 0.1
SR |01 01 07 01}01 01 07 0101 01 07 0.1
Ssvi|01 04 07 0401 04 07 0401 07 04 04
TR |04 01 07 01 {04 01 07 0104 01 07 0.1
ZH |07 07 07 0707 07 01 01|07 04 07 0.7

Table 14: Best run parameters for each language for each approach for each linguistic information layer: token
(tok), morphosyntactic (upos), lemmas (lem) and for the semantic similarity (sem).

8366



Language | Candidate mean tok | upos | lem | sem
pelraBaHe Ha TpodJIeMn 0.99 | 0.99 1.0 1.0 | 0.96

BG pemaBaHe Ha TpoOIEMA 0.98 | 0.93 1.0 1.0 | 0.99
pelaBaHe Ha MPOOJIEMUTE 0.97 | 091 1.0 1.0 | 0.95

mit problém 1.0 1.0 1.0 1.0 1.0

CS mit problémi 0.97 | 091 1.0 1.0 | 0.98
ma problém 091 | 0.69 1.0 1.0 | 0.95

der entscheiden 1.0 1.0 1.0 1.0 1.0

DE Der entscheiden 0.97 1.0 1.0 1.0 | 0.87
den entscheiden 0.97 | 0.89 1.0 1.0 | 0.98

10 molpvel 092 | 0.83 1.0 1.0 | 0.85

EL To maipvet 09 | 0.83 1.0 1.0 | 0.76
O maipver 09 | 0.84 1.0 1.0 | 0.76

Look forward 1.0 1.0 1.0 1.0 | 0.99

EN look forward 1.0 1.0 1.0 1.0 1.0
looking forward 0.91 0.7 1.0 1.0 | 0.94

informar de 1.0 1.0 1.0 1.0 1.0

ES informa de 0.93 | 0.81 1.0 1.0 | 0.93
informaron de 0.92 | 0.81 1.0 1.0 | 0.88

aintzat hartu 1.0 1.0 1.0 1.0 1.0

EU aintzat har 0.99 | 0.98 1.0 1.0 | 0.97
aintzat hartuz 0.95 | 0.88 1.0 1.0 | 0.93

se rendre compte 1.0 1.0 1.0 1.0 1.0

FR s’ rendre compte 0.95 0.8 1.0 1.0 | 0.99
se rendant compte 0.88 | 0.55 1.0 1.0 | 0.96

baint le 1.0 1.0 1.0 1.0 1.0

GA baint leis 0.96 | 0.94 1.0 1.0 | 0.92
bhaint leo 0.87 | 0.67 1.0 1.0 | 0.79

nastaviti s 0.99 | 0.98 1.0 1.0 | 0.99

HR Nastaviti s 0.98 | 0.98 1.0 1.0 | 0.95
nastavi s 0.92 | 0.71 1.0 1.0 | 0.98

kotott szerz&dés 1.0 1.0 1.0 1.0 1.0

HU kotott szerzGdést 098 | 0.94 1.0 1.0 | 0.99
kotott szerzdésben 0.97 | 091 1.0 1.0 | 0.98

si prestare 1.0 1.0 1.0 1.0 1.0

IT Si prestare 0.98 1.0 1.0 1.0 0.9
Si prestata 0.92 | 0.74 1.0 1.0 | 0.92
sprendimas priimtas 0.92 | 0.81 1.0 1.0 | 0.89

LT Sprendimas priimtas 0.91 | 0.81 1.0 1.0 | 0.84
sprendima priimti 091 | 0.65 1.0 1.0 | 0.98

[I- industrija 1.0 1.0 1.0 1.0 | 0.98

MT 1- industrija 0.98 | 0.99 1.0 1.0 | 0.94
Iz- industrija 0.96 | 091 1.0 1.0 | 0.94
spodziewac si¢ 1.0 1.0 1.0 1.0 1.0

PL spodziewaja si¢ 0.89 | 0.69 1.0 1.0 | 0.88
spodziewat sig¢ 0.89 | 0.77 1.0 1.0 | 0.78

ter qualidade 1.0 1.0 1.0 1.0 1.0

PT tem qualidade 0.94 | 0.83 1.0 1.0 | 0.94
teve qualidade 091 | 0.75 1.0 1.0 0.9

beneficia de 1.0 1.0 1.0 1.0 1.0

RO beneficiat de 0.96 | 0.87 1.0 1.0 | 0.97
beneficiazd de 0.94 0.8 1.0 1.0 | 0.97

se privosciti 1.0 1.0 1.0 1.0 1.0

SL se privoscite 0.97 0.9 1.0 1.0 | 0.98
si privosciti 0.97 | 093 1.0 1.0 | 0.95

biti u problema 0.98 | 0.94 1.0 1.0 1.0

SR je u problem 0.93 | 0.79 1.0 1.0 | 0.93
sam od problem 0.77 0.5 1.0 | 0.73 | 0.83

ta reda pa 1.0 1.0 1.0 1.0 1.0

SV Ta reda pa 0.99 1.0 1.0 1.0 | 097
far reda pa 0.81 0.6 1.0 | 0.65 | 0.97

tesekkiir etti 0.98 | 0.97 1.0 1.0 | 0.97

TR tesekkiir ederim 0.97 | 0.89 1.0 1.0 1.0
tesekkiir eden 0.97 | 0.95 1.0 1.0 | 0.94

Table 15: top 3 results obtained for a random MWE for 21 languages in PARSEME 1.3 with ASMR ompined-
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Tok-based | Continuous | Discontinuous | Seen | Unseen | Variant | Identical
AR 43.6 48.6 26.5 | 55.8 00.7 46.7 69.6
BG 62.9 66.7 47.0 | 70.0 00.0 51.1 80.4
CS 67.6 73.6 49.7 | 69.1 01.7 61.1 86.6
DE 37.8 38.7 22.0 | 44.1 00.0 38.3 51.8
EL 59.8 63.6 50.5 | 72.1 00.0 62.2 85.6
EN 55.5 62.1 47.1 | 83.2 00.0 73.1 93.3
ES 56.1 59.6 38.2 | 68.8 00.0 57.8 84.8
EU 75.6 83.7 45.8 | 81.6 00.0 69.0 95.8
FA 71.3 75.5 394 | 84.5 00.8 75.8 93.2
FR 71.2 75.2 61.0 | 80.2 00.0 73.1 86.6
GA 30.7 40.4 16.3 | 62.7 00.0 53.9 92.9
HE 46.4 48.0 38.5 | 74.2 00.0 54.8 92.1
HI 59.8 62.1 239 | 873 00.0 77.4 96.3
HR 75.1 83.3 62.9 | 87.1 00.0 74.9 93.3
HU 43.0 26.1 62.8 | 33.1 00.0 48.5 28.9
IT 61.5 67.0 47.8 | 76.9 00.0 68.1 88.9
LT 38.7 41.1 414 | 76.8 00.0 72.6 98.3
MT 19.5 18.0 11.3 | 32.1 00.0 31.8 32.5
PL 73.5 80.6 544 | 85.5 00.0 79.5 92.3
PT 59.0 61.3 552 | 82.8 20.3 79.4 90.0
RO 73.8 76.4 639 | 74.9 00.0 46.7 87.9
SL 40.2 43.3 374 | 448 00.0 40.4 58.1
SR 534 56.4 44.6 | 80.5 00.0 75.0 94.1
SV 54.1 39.2 56.1 | 51.9 00.0 58.5 45.9
TR 64.7 69.5 13.5 | 71.1 00.7 64.5 84.3
ZH 35.5 27.4 32.8 | 37.6 00.0 31.8 38.7
Mean 55.0 57.1 41.9 | 68.0 00.8 60.1 78.6

Table 16: F-score obtained for each subset of MWE in each language with the PARSEME 1.3 corpus, using
ASMRea:act-

8368



Tok-based | Continuous | Discontinuous | Seen | Unseen | Variant | Identical
AR 34.6 38.5 11.0 | 453 05.8 33.9 60.6
BG 58.5 63.7 21.0 | 67.2 06.3 42.0 77.9
CS 56.0 66.4 20.5 | 60.6 05.5 46.6 84.7
DE 32.6 29.5 06.2 | 36.5 01.7 28.1 46.3
EL 51.9 60.5 224 | 61.5 08.7 50.2 75.0
EN 41.8 54.6 10.8 | 69.3 03.8 56.4 80.2
ES 49.8 53.5 17.0 | 65.2 02.6 51.7 81.5
EU 68.8 76.2 17.1 | 78.1 03.3 62.8 92.2
FA 72.3 77.1 13.1 | 84.6 25.8 754 92.6
FR 57.8 63.9 229 | 684 02.8 55.1 78.1
GA 26.8 36.7 04.8 | 57.5 06.3 48.1 80.8
HE 43.1 45.7 16.1 | 69.6 06.9 46.5 88.6
HI 61.1 62.6 05.3 | 90.8 14.0 84.8 95.8
HR 61.8 73.5 259 | 739 03.6 62.1 79.5
HU 39.5 25.5 17.9 | 284 05.0 39.5 25.6
IT 54.6 59.6 17.9 | 72.1 04.1 614 84.8
LT 29.5 39.3 11.7 | 61.0 02.4 54.3 91.8
MT 18.8 17.5 04.9 | 304 05.7 29.9 31.0
PL 63.1 72.5 258 | 76.5 04.1 66.2 86.8
PT 42.1 52.5 00.0 | 60.3 20.7 49.2 78.4
RO 64.1 66.9 26.3 | 68.2 01.9 43.2 77.7
SL 31.0 374 154 | 364 01.3 29.7 51.9
SR 48.1 54.5 223 | 73.0 06.9 65.7 89.7
SV 47.5 37.8 23.1 | 449 07.1 45.5 43.8
TR 62.2 65.0 05.6 | 71.6 09.0 66.0 81.8
ZH 353 29.9 03.0 | 34.2 10.5 13.3 36.7
Mean 48.1 52.3 14.8 | 61.0 06.8 50.3 72.8

Table 17: F-score obtained for each subset of MWE in each language with the PARSEME 1.3 corpus, using
ASMR ¢,y 2y
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Tok-based | Continuous | Discontinuous | Seen | Unseen | Variant | Identical
AR 40.2 44 4 21.0 | 54.1 06.2 46.2 66.1
BG 59.5 64.7 384 | 67.6 06.6 45.7 78.1
CS 64.8 70.8 473 | 68.3 04.9 60.0 86.8
DE 353 294 20.5 | 39.7 02.8 39.1 40.3
EL 59.1 64.8 48.5 | 70.0 10.0 62.2 80.7
EN 52.9 58.6 453 | 81.6 00.8 72.2 91.2
ES 524 56.0 355 | 67.6 01.3 56.8 82.6
EU 71.5 79.6 41.8 | 81.0 03.4 68.7 94.8
FA 73.2 78.1 394 | 84.8 23.0 76.4 92.9
FR 67.2 72.0 55.6 | 80.5 01.0 73.8 86.4
GA 31.7 40.2 16.2 | 69.0 02.3 61.1 91.2
HE 45.3 47.1 349 | 72.8 05.0 53.1 90.9
HI 58.5 61.7 19.0 | 86.9 04.1 77.1 95.8
HR 70.0 77.2 574 | 84.8 03.5 73.4 90.7
HU 42.6 25.8 58.5 | 32.6 03.6 48.1 28.4
IT 60.1 66.5 445 | 774 02.1 69.1 88.6
LT 38.5 40.3 41.6 | 75.6 03.0 71.6 96.2
MT 15.2 13.1 09.4 | 25.0 01.6 24.7 254
PL 67.8 75.0 475 | 83.3 04.2 76.8 90.8
PT 55.9 60.4 48.3 | 81.3 23.2 77.6 88.9
RO 67.6 71.1 56.4 | 73.6 02.6 47.5 85.2
SL 37.9 40.2 35.0| 443 01.7 40.2 56.8
SR 52.9 56.3 42.1 | 79.8 04.6 74.1 93.8
SV 52.3 37.8 52.6 | 50.6 02.7 56.9 45.0
TR 594 65.0 08.6 | 68.1 06.2 61.8 80.4
ZH 36.5 28.4 329 | 37.8 05.0 30.5 39.2
Mean 52.6 54.8 384 | 66.9 05.2 594 76.4

Table 18: F-score obtained for each subset of MWE in each language with the PARSEME 1.3 corpus, using
ASMRcoanMed~
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