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Abstract

Few-shot relation classification aims to recog-
nize the relation between two mentioned enti-
ties, with the help of only a few support sam-
ples. However, a few samples tend to be lim-
ited for tackling unlimited queries. If a query
cannot find references from the support sam-
ples, it is defined as none-of-the-above (NOTA).
Previous works mainly focus on how to distin-
guish N + 1 categories, including N known
relations and one NOTA class, to accurately
recognize relations. However, the robustness
towards various NOTA rates, i.e. the proportion
of NOTA among queries, is under investigation.
In this paper, we target the robustness and pro-
pose a simple but effective framework. Specifi-
cally, we introduce relation descriptions as ex-
ternal knowledge to enhance the model’s com-
prehension of the relation semantics. Moreover,
we further promote robustness by proposing a
novel agreement loss. It is designed for seeking
decision consistency between the instance-level
decision, i.e. support samples, and relation-
level decision, i.e. relation descriptions. Ex-
tensive experimental results demonstrate that
the proposed framework outperforms strong
baselines while being robust against various
NOTA rates. The code is released on GitHub
at https://github.com/Pisces-29/RoFRC.

1 Introduction

Few-shot relation classification (FSRC) is a popular
task in the information extraction field. It aims
to predict the relation between two entities in a
sentence, by only referencing a few known samples.
Previous FSRC models are usually trained on a
collection of meta-tasks sampled from the training
corpus (Liu et al., 2022c). A meta-task can also
be called an "episode", which contains a support
set and a query set. The support set comprises
N non-overlapping categories, and each category
consists of K instances. Each query is classified
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(1) Country

(2) Participant

Belgium’s highest point is  
the Signal de Botrange.

Argentina won the 2022 
World Cup.

Support Set
Prediction: (1)

Prediction: NOTA

Los Angeles is a city in the 
United States.

Steve Jobs was born in 
1955.

Query Set

Figure 1: An example for a 2-way 1-shot episode with
50% NOTA rate. The support set involves 2 classes,
each containing only 1 instance. The head entity and
tail entity are marked in red and blue, respectively. The
query set contains two instances that need to be pre-
dicted.

with the help of the support samples. By learning
meta-knowledge from these episodic training tasks,
the model can quickly adapt to classifying new
relations with only a few examples.

As an example shown in Figure 1, the support set
provides two known relations, i.e. "country" and
"participant". The first query instance, which ex-
presses a "country" relation, can be easily classified
by referring to the support set. But this is an ideal
situation. However, in real-world applications, the
FSRC model often encounters query instances with
relations that are not present in the support set. For
the second query, its relation between "Steve Jobs"
and "1955" is "born in". It is unable to find a refer-
ence from the support set. Gao et al. (2019) define
such relation as none-of-the-above (NOTA) and
first propose that the FSRC model should involve
N + 1 categories, including N known relations
and an additional NOTA category. By introducing
the NOTA relation, the model can more robustly
handle the open-ended nature of real-world relation
extraction tasks, where novel relations are likely to
be encountered.

To address this problem, previous works mainly
aim to distinguish N + 1 classes by introducing
learnable vectors (Sabo et al., 2021), formulating a
multiple-choice problem (Liu et al., 2022a), or gen-
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erating NOTA representations (Liu et al., 2022b).
While these approaches have shown promising re-
sults, their robustness towards different NOTA rates
remains an open question. Most existing works
evaluate their models using fixed NOTA rates, such
as 30% or 50% (Liu et al., 2022a). This means that
the proportion of query instances with the NOTA
relation is kept constant during training and test-
ing. However, this assumption may not hold in
practical applications, where the NOTA rate can
vary significantly across different groups of queries.
The sensitivity of FSRC models to NOTA rates has
important implications for their real-world applica-
bility.

To deal with this issue, we propose a simple
but effective architecture, named Robust Few-shot
Relation Classification (RoFRC), which improves
not only the model’s robustness in varying NOTA
rate scenarios but also its overall performance. Ini-
tially, except for the instance-level decision (a.k.a.
using support samples), we introduce relation de-
scriptions as external knowledge for the relation-
level decision to assist the model in accurately
understanding the semantics of relations. For ex-
ample, the description of the "country" relation is
"sovereign state of this item". Assuming we train
a model with the 50% NOTA rate scenario in Fig-
ure 1, it faces an unseen relation "province". By
leveraging the description "a territory governed as
a unit of a country or empire", our method gains an
in-depth comprehension of semantics and reduces
the negative effects of the increase or decrease of
the NOTA proportion in the query set.

Additionally, differing from previous work that
incorporates relation description for encoding rep-
resentations (Liu et al., 2022b), we leverage it into
the decision stage. To further promote robustness,
we propose a novel agreement loss to seek deci-
sion consistency between the instance-level and
relation-level decisions. Such consistency forces
the proposed RoFRC to comprehend relation se-
mantics better. Our method is evaluated on the
popular FewRel (Han et al., 2018) and NYT-25
dataset, and extensive experiments show its effec-
tiveness and robustness in handling varying NOTA
rate scenarios, outperforming state-of-the-art few-
shot relation classification approaches.

In summary, the main contributions of our work
are as follows:

• Our proposed RoFRC architecture introduces
a relation-level decision to facilitate the

model’s robustness towards various NOTA
rates.

• Additionally, a novel agreement loss function
is introduced during training to ensure the con-
sistency of instance-level and relation-level
decisions.

• Furthermore, the proposed method is evalu-
ated via vastly compared with strong baseline
models, along with the popular large language
models. Extensive experimental results show
its superiority and robustness.

2 Related Work

Previous research (Kumar, 2017; Zhang et al.,
2018) in relation classification typically train mod-
els on labeled datasets with a predetermined num-
ber of classes, limiting their capability to handle
unseen relations. To address this issue, Han et al.
(2018) propose the use of few-shot relation clas-
sification tasks and introduce a comprehensive su-
pervised dataset called FewRel. Liu et al. (2022c)
propose a simple and efficient framework that incor-
porates relation description information, proving
to be a significant improvement over HCRP (Han
et al., 2021). Borchert et al. (2024) present a novel
method that jointly leverages contrastive learn-
ing and diverse sentence representations. Dong
et al. (2024) propose a method that incorporates
relation-aware prompt templates and multi-level
contrastive learning to improve prototype represen-
tations and mitigate relation confusion. Sun and
Chen (2025) propose a Local-to-Global Optimiza-
tion framework that enhances prototype learning
through entity-relation alignment, local contrastive
learning, and a local adaptive focal loss. In terms
of incorporating external information, Wang et al.
(2020) propose the incorporation of additional rel-
ative position and syntactic relation information.
Yang et al. (2020) utilize a collaborative attention
mechanism to integrate text descriptions of rela-
tions and entities. Furthermore, Yang et al. (2021)
introduce the utilization of inherent entity concepts
to provide clues for relation classification.

Gao et al. (2019) identify the NOTA challenge
in the few-shot relation classification task, which
simulates real-world conditions. They propose a so-
lution to the NOTA problem by utilizing a sentence-
pair model. Sabo et al. (2021) represent the pro-
totype of the NOTA relation in a prototypical net-
work by using multiple trainable vectors. Liu et al.
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Figure 2: The overview of the RoFRC framework.
⊕

refers to the addition of the two similarities in a corresponding
relation. In this example, the support set is 2-way. Both relation descriptions and instances are encoded using the
same encoder. In addition, there is a special NOTA relation description in the relation set.

(2022a) propose a multiple-choice network with
the pretraining fine-tuning paradigm for the few-
shot relation classification task, in which an N + 1
option for handling NOTA challenge. Wu et al.
(2023) design a NOTA detection model based on
instance density for classifying NOTA instances
after the prototypical network. Additionally, Liu
et al. (2022b) are the first to introduce relation de-
scriptions to address the NOTA challenge. Their
novel rectification module fuses relation descrip-
tions with prototypes to generate rectified proto-
types and a pseudo-NOTA prototype for (N + 1)-
way classification. Compared to PRM, our pro-
posed method aims to enable the model to learn
how to refer to support instances and fully com-
prehend the actual meaning of relations. There-
fore, RoFRC exhibits robustness in addressing the
NOTA challenge.

3 Methodology

3.1 Task Definition

The training set Dtrain is a collection of samples
for training, denoted as (x, eh, et, r), where x rep-
resents a natural language sentence, eh and et rep-
resent the head and tail entity of the sentence re-
spectively, and r denotes the relation between the
pair of entities. To accomplish few-shot relation
classification, we utilize the N -way K-shot setting
to construct multiple episodes from the training
set Dtrain. This approach is commonly referred to
as the meta-learning paradigm (Vilalta and Drissi,
2002; Vanschoren, 2018). Each episode contains
the following components: {S,Q,R}. The rela-
tion set R = {r1, r2, ..., rN} is a collection of
N non-overlapping relations, which are randomly

sampled from Dtrain. For each relation ri, the sup-
port set S contains K instances of that relation
category, randomly sampled from the training set
Dtrain.

S = {(sij , rij)} i ∈ [1, N ], j ∈ [1,K] (1)

where sij denotes the j-th instance belonging to the
relation ri.

The query set Q consists of M query instances.
Every query instance belongs to either one of the
N known categories or NOTA.

Q = {(qj , rj)} j ∈ [1,M ] (2)

where qj is the j-th query instance. If the relation
of qj is not included in set R, it will be classified as
the NOTA category rna. The model is optimized
by sampling episodes from the Dtrain, allowing
it can quickly adapt to new tasks arising from the
unseen relations of the testing set Dtest.

The overall architecture of RoFRC is shown
in Figure 2. Firstly, the sentence encoder aims
to transform relations and instances into vectors.
Then the encoded representations are fed into the
decision blender to aggregate relation-level and
instance-level decisions. Lastly, the training objec-
tive optimizes model parameters and ensures con-
sistency between relation-level and instance-level
decisions.

3.2 Sentence Encoder

We use BERT (Devlin et al., 2019) as the encoder to
obtain embeddings, which is shared by three inputs,
including relation descriptions, support instances
to obtain prototypes, and query instances.
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Relation Descriptions: For each relation, we con-
struct a context sequence by concatenating its name
and description as [[CLS], relation name, [SEP], re-
lation description]. For example, [[CLS], country,
[SEP], sovereign state of this item]. We introduce
the "none-of-the-above" relation name for NOTA.
Additionally, its relation description is defined as
"the relation of the query is not mentioned in the
relation set". This context sequence is then fed
into the BERT encoder. We follow the approach
proposed by Liu et al. (2022c) to obtain the repre-
sentation of each relation ri. Specifically,

ri = E(ri) = [riview1; r
i
view2] (3)

where riview1 ∈ Rd is the embedding of the [CLS]
token, riview2 ∈ Rd is the average embedding of
all tokens, [· ; ·] represents the concatenation oper-
ation and E(·) indicates the BERT encoder.

Prototypes: Each support instance is tokenized
as a context token sequence sij = [x0, x1, ...xn],
where x0 = [CLS] is a special token that represents
the beginning of the sequence. The head entity eh
in the sequence is surrounded by two special tokens,
[unused0] and [unused2], while the tail entity et
is enclosed by [unused1] and [unused3]. Follow-
ing Baldini Soares et al. (2019), the representation
of a support instance is obtained by concatenat-
ing the hidden states corresponding to start tokens
[unused0] and [unused1] of two entities.

sij = E(sij) (4)

where sij ∈ R2d. We then obtain the prototype ci

of each relation ri by averaging the embeddings of
K instances in the support set. Specifically,

ci =
1

K

K∑

j=1

sij i ∈ [1, N ] (5)

where ci ∈ R2d. The prototype ci can be regarded
as a semantic summary of K instances from the
relation ri.

Query Instances: A query instance qj is also
encoded as qj = E(qj) using Eq. (4). We em-
ploy the identical BERT encoder to encode both
instances and relations, facilitating their embedding
in a shared semantic space.

3.3 Decision Blender
Our approach introduces relation-level decision
and blends it with the instance-level decision,

which enables the model to efficiently handle the
few-shot relation classification task and detect
NOTA accurately.

Instance-Level Decision: We first compute the
similarity αi

j between the query instance qj and
each relation prototype ci.

αi
j = qj ⊙ ci (6)

where ⊙ represents the vector dot operation. Usu-
ally, a larger similarity score indicates more pos-
sibility that a query sample mentions that relation.
This way can be regarded as the instance-level deci-
sion since the semantics of each relation are repre-
sented with support instances. However, there is no
support instance corresponding to the NOTA cate-
gory. In order to tackle this problem, we introduce
the relation-level decision as an auxiliary.

Relation-Level Decision: To make the relation-
level decision, we measure the similarity βi

j be-
tween the query instance qj and each relation de-
scription vector ri.

βi
j = qj ⊙ ri (7)

Comprehending the relation semantics con-
tributes to better distinguishing them. Except for
the description representations of known relations
ri, i ∈ [1, N ], the description vector for the NOTA
category is denoted as rna. Therefore, the similar-
ity βna

j between a query instance and the NOTA
relation can be defined as follows:

βna
j = qj ⊙ rna (8)

Blending Decisions: Intuitively, two levels of
decisions are both important to provide relation se-
mantics. We mix them up by simply calculating the
average of their similarities with both the prototype
and relation description.

γij =
αi
j + βi

j

2
(9)

Deriving the final decision still meets an issue
since there is no corresponding prototype for the
NOTA relation. The similarity between a query
instance and the NOTA relation only depends on
the relation-level decision. Thus, we design the
final predicted probability by blending decisions as
follows. Assuming that the similarities used for pre-
diction concatenated as δj = {γ1j , ..., γNj , βna

j }.

P(rj |qj) = softmax(δj) (10)
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Overall, RoFRC conducts a (N + 1)-category
prediction by selecting the most similar relation. N
known relations and NOTA are treated separately.
Concretely, the known N relations are constrained
by the two levels of similarity. If a query instance
still shows higher similarity to NOTA than the N
known relations, it is obviously appropriate to pre-
dict the query instance as not mentioned above.

3.4 Training Objectives

Cross-Entropy Loss: Our method applies the
cross-entropy loss function to lessen the negative
log probability of the query instance and its corre-
sponding ground-truth category. The cross-entropy
loss Lc is as follows:

Lc = −
M∑

j=1

logP(rj |qj) (11)

where M is the batch size, and P(rj |qj) is the
probability that the model predicts that the query in-
stance qj belongs to the true category rj , as shown
in equation (10).

Agreement Loss: Although equal importance
is assigned to the prototype similarity αi

j and re-
lation description similarity βi

j when computing
predicted probabilities for the known N classes,
there is no constraint between them. This might
result in one decision dominating the other during
practice. To address this problem, we propose a
novel agreement loss Lagree, which is inspired by
Pagliardini et al. (2022). This loss aims to ensure
the consistency between two decisions.

According to Vazhentsev et al. (2022), train-
ing neural networks with softmax layer and cross-
entropy loss would make the output distribution
overconfident and peaked. Therefore, in the agree-
ment loss Lagree, we pay special attention to the
largest similarity. Concretely, assume a query in-
stance qj with N prototype similarities represented
as are αj = {α1

j , α
2
j , ..., α

N
j }. Its maximum prob-

ability is defined as p(1)j .

p
(1)
j = max(softmax(αj)) (12)

m = argmax(softmax(αj)) (13)

where m indicates the relation with the maximum
probability, denoted as rm.

Then, m is exploited to choose the correspond-
ing probability from the description similarities

βj = {β1
j , β

2
j , ..., β

N
j }.

p
(2)
j = softmax(βj)[m] (14)

With the selected probabilities from two levels
of decisions, the proposed agreement loss Lagree

is formulated as:

Lagree = −
M∑

j=1

log(p
(1)
j · p(2)j + p

(1)
j · p(2)j ) (15)

where p
(1)
j = 1− p

(1)
j and p

(2)
j = 1− p

(2)
j . While

attempting to maximize Lagree, the prototype and
relation similarity of non-NOTA categories grad-
ually become closer in order to ensure decision
consistency. Here, the probability p(1) (or p(1)) and
p(2) (or p(2)) pull each other and finally reach a
trade-off balance. Thus, this loss follows an adver-
sarial manner.

Joint Training Objective: Ultimately, our model
is optimized by jointly combining two training ob-
jectives, which minimizes the cross-entropy loss
and maximizes the agreement loss.

L = Lc − λLagree (16)

where λ is a hyper-parameter to balance the contri-
bution of Lagree.

4 Experiments

4.1 Baseline Methods
The following baseline methods are chosen for
comparison. O-Proto (Tan et al., 2019) is based
on prototypical networks (Snell et al., 2017) and
uses cosine similarity to solve the few-shot out-
of-domain detection challenge. BERT-Pair (Gao
et al., 2019) uses a sentence pairing model to con-
catenate a query instance and support instances to
generate a similarity score to indicate whether they
share the same relation. MNAV (Sabo et al., 2021)
also employs the prototypical network, where the
learnable vectors represent the NOTA class, and a
query instance is classified based on its similarity
with the NOTA vectors in the embedding space.
MCMN (Liu et al., 2022a) converts all candidate
relation names into multiple-choice prompts and
it adds an extra option for detecting NOTA. PRM
(Liu et al., 2022b) designs a rectification module
and uses relation description to generate a rectified
NOTA prototype for N + 1 classification. DProto
(Wu et al., 2023) analyzes the density difference

8339



5-way 1-shot

Methods 15%NOTA 30%NOTA 50%NOTA Average
Acc F1 Acc F1 Acc F1 Acc F1

O-Proto 71.91±1.98 70.62±2.02 72.48±1.21 71.30±1.70 73.69±0.72 69.87±0.85 72.69 70.60
BERT-Pair 75.81±1.30 74.70±1.33 76.87±1.05 75.81±1.25 78.94±0.81 75.12±1.01 77.21 75.21
MNAV 77.03±1.91 75.92±1.96 76.86±1.34 76.33±1.58 76.55±2.00 74.21±1.55 76.81 75.49
MCMN 83.75±2.01 79.61±2.51 83.27±1.53 80.33±2.16 82.36±2.24 79.06±1.82 83.13 79.67
PRM 80.38±1.61 79.54±1.67 82.10±1.24 81.15±1.61 84.99±0.41 81.30±1.00 82.49 80.80

RoFRC 84.64±1.69 83.92±1.31 85.59±0.91 85.05±1.07 87.07±0.65 84.69±0.65 85.77 84.55
5-way 5-shot

Methods 15%NOTA 30%NOTA 50%NOTA Average
Acc F1 Acc F1 Acc F1 Acc F1

O-Proto 81.38±1.26 80.45±1.29 81.42±1.11 81.04±1.19 81.38±0.96 79.39±1.06 81.38 80.29
BERT-Pair 82.83±0.62 81.98±0.62 83.76±0.46 83.00±0.54 85.49±0.29 82.62±0.45 84.02 82.53
MNAV 85.05±0.97 84.22±1.03 84.36±1.34 84.45±1.15 82.91±2.61 82.15±1.85 84.10 83.60
MCMN 87.56±1.93 84.04±2.52 83.16±3.37 83.40±3.08 75.07±5.79 79.14±3.93 81.93 82.19
PRM 84.86±1.98 84.17±2.01 86.01±1.50 85.40±1.80 88.00±0.55 85.46±1.16 86.29 85.01
DProto 85.37±0.61 84.67±0.61 84.87±0.71 84.90±0.66 83.05±1.03 82.66±1.10 84.43 84.08

RoFRC 87.38±0.47 86.75±0.47 87.76±0.35 87.44±0.38 88.78±0.44 87.06±0.32 87.97 87.08

Table 1: Evaluation results of baseline methods and the proposed RoFRC, in terms of accuracy (%) and F1 (%), on
the FewRel dataset. The reported results are the average and standard deviation of five runs.

5-way 1-shot

Methods 15%NOTA 30%NOTA 50%NOTA Average
Acc F1 Acc F1 Acc F1 Acc F1

O-Proto 39.71±2.83 36.64±2.94 40.58±2.32 37.14±2.66 42.11±1.75 35.39±2.23 40.80 36.39
BERT-Pair 47.35±2.00 44.53±2.07 48.30±1.33 44.85±1.73 50.08±1.90 43.07±1.35 48.58 44.15
MNAV 40.46±3.47 37.48±3.45 40.68±3.47 37.56±3.45 41.03±4.62 35.39±3.35 40.72 36.81
MCMN 66.17±3.01 59.05±3.39 65.28±1.87 59.41±3.09 63.54±2.03 57.35±2.37 65.00 58.59
PRM 61.60±3.87 59.51±3.92 61.26±3.00 59.46±3.56 60.88±2.83 56.81±3.01 61.25 58.60

RoFRC 65.55±1.83 63.66±1.93 65.31±1.64 63.99±1.78 65.11±1.55 61.31±1.71 65.32 62.99
5-way 5-shot

Methods 15%NOTA 30%NOTA 50%NOTA Average
Acc F1 Acc F1 Acc F1 Acc F1

O-Proto 52.55±1.54 49.74±1.55 50.49±1.50 48.94±1.45 46.74±2.00 44.98±1.60 49.93 47.89
BERT-Pair 58.76±3.06 56.45±3.26 59.32±2.83 56.88±3.23 60.28±3.30 54.78±3.11 59.45 56.03
MNAV 54.85±2.37 51.67±2.44 51.08±2.34 50.10±2.45 44.27±2.34 44.96±2.37 50.07 48.91
MCMN 71.96±0.39 65.34±0.46 68.26±0.44 64.71±0.23 61.64±2.06 60.94±0.49 67.29 63.66
PRM 65.00±4.88 63.28±5.05 65.26±4.05 63.60±4.80 65.85±4.61 61.59±4.30 65.37 62.82
DProto 57.36±2.60 54.70±2.72 53.93±2.47 53.22±2.59 45.68±2.19 47.04±2.26 52.32 51.65

RoFRC 70.04±1.55 68.45±1.51 69.35±1.07 68.55±1.27 67.93±2.42 65.76±1.53 69.10 67.59

Table 2: Evaluation results of baseline methods and the proposed RoFRC, in terms of accuracy (%) and F1 (%), on
the NYT-25 dataset. The reported results are the average and standard deviation of five runs.

between non-NOTA instances and NOTA instances,
and adds a density detection module after the pro-
totypical network to classify NOTA instances.

4.2 Overall Results

The experimental results are shown in Table 1 and
Table 2. Under identical experimental settings, our
proposed method outperforms other strong base-
lines significantly. We first focus on the experi-
mental results of the FewRel dataset in Table 1. In

the 5-way 1-shot setting, the average accuracy of
RoFRC improves by 2.64% compared to MCMN.
Furthermore, it achieves an improvement of 4.88%
and 3.75% on average F1 compared to MCMN and
PRM, respectively. In the 5-way 5-shot setting,
RoFRC achieves an improvement of 1.68% and
2.07% on average accuracy and F1 respectively,
compared to PRM. The results indicate the effec-
tiveness of RoFRC.

Table 1 can also prove that RoFRC has strong ro-
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bustness. In the 5-way 1-shot scenario, the PRM ac-
curacy and F1 decrease by 4.61% and 1.76% from
50% to 15% NOTA rate, whereas our approach
reduces only by 2.43% and 0.77%, respectively.
In the 5-way 5-shot scenario, MCMN’s accuracy
and F1 decrease by 12.49% and 4.9%, respectively,
from 15% to 50% NOTA rate. In contrast, PRM’s
accuracy and F1 reduce by 3.14% and 1.29%, re-
spectively, from 50% to 15% NOTA rate. The
RoFRC only exhibits a slight decrease of 1.4% and
0.31%, respectively. It is worth noting that follow-
ing the original experimental settings (Gao et al.,
2019), all models are trained at a 50% NOTA rate
and evaluated at various rates (see §A.2). There-
fore, it can be concluded that RoFRC exhibits more
robust performances than baseline methods.

The results in Table 2 also demonstrate the su-
periority of the RoFRC model. Whether in the
1-shot or 5-shot scenario, the average performance
of RoFRC surpasses the baseline. Particularly in
terms of F1 score, RoFRC significantly outper-
forms the strong baseline. Moreover, the results of
O-Proto and DProto in Table 2 also demonstrate
that using a binary classification method to detect
NOTA instances after the classification of the pro-
totypical network is not suitable for a small-scale
dataset. This vector distribution-based NOTA de-
tection method cannot effectively learn the features
of NOTA instances.

4.3 Online Evaluation

CodaLab (Pavao et al., 2022) is an open-source
platform that enables researchers, developers, and
data scientists to collaborate. In order to ensure
fairness and reproducibility of research work, Gao
et al. (2019) upload the FewRel 2.0 test set on the
CodaLab. As there are no limitations on the ex-
perimental conditions (e.g. hyperparameters), all
submissions in CodaLab chase the optimal perfor-
mance on the NOTA challenge. We submit the test
results of FewRel 2.0 to the CodaLab platform us-
ing our best model. By using the same evaluation
criteria and submitting predictions for the same
dataset, we can directly compare our results with
those of other submissions. The results presented
in Table 3 demonstrate that RoFRC performs op-
timally in the NOTA challenge, with an average
accuracy that exceeds MCMN by 2.33 percentage
points. These findings offer strong evidence of
RoFRC’s effectiveness and robustness.

Methods 5-way 1-shot 5-way 5-shot
15% 50% 15% 50%

Proto(CNN) 60.59 40.00 77.79 61.66
Proto(BERT) 70.02 45.94 83.79 75.21
BERT-Pair 77.67 80.31 84.19 86.06
MNAV 79.06 81.69 85.52 87.74
anonymous1 67.97 74.85 81.94 78.12
anonymous2 79.53 79.99 86.31 81.92
MCMN 88.40 84.56 89.91 85.32
PRM 83.01 83.32 89.30 85.94

RoFRC (Ours) 89.67 87.40 91.30 89.16

Table 3: Online evaluation results on the FewRel 2.0
test set, in terms of accuracy (%). All the results are
obtained from CodaLab, where the NOTA rates are
specified as 0.15 and 0.5.

Methods 5-way 1-shot 5-way 5-shot
15% 50% 15% 50%

Grok-2 80.99 80.95 85.28 79.20
Gemini 2.0 Flash 88.37 79.50 89.12 75.05
GPT-4o 80.75 80.86 83.93 76.54
DeepSeek V3 85.28 82.95 88.92 81.95
Claude 3.5 Sonnet 88.92 82.61 91.82 82.30

RoFRC (Ours) 84.64 87.07 87.38 88.78

Table 4: Comparison of accuracy (%) on the FewRel
dataset with popular large language models, evaluated
at NOTA rates of 0.15 and 0.5.

4.4 Compare with Large Language Models
Furthermore, we assess the performance of the pop-
ular large language models (LLMs) in the NOTA
challenge. Recent works (Agrawal et al., 2022; Je-
blick et al., 2022; Zhang et al., 2023) have shown
that large-scale pre-trained language models, in-
cluding GPT-3 (Brown et al., 2020) and Instruct-
GPT (Ouyang et al., 2022) are capable of perform-
ing well in numerous downstream tasks without pa-
rameter tuning. Building on these findings, we con-
ducted experiments on the FewRel dataset to assess
the capabilities of several popular LLMs, including
Grok-2, Gemini 2.0 Flash, GPT-4o (Achiam et al.,
2023), DeepSeek V3, and Claude 3.5 Sonnet.

As shown in Table 4, RoFRC outperforms all
evaluated LLMs when the NOTA rate is set to 0.5.
However, at a lower NOTA rate of 0.15, it performs
less competitively, trailing behind models such as
Claude 3.5 Sonnet and Gemini 2.0 Flash. The
following analysis explores the underlying reasons
for these observations.

At a NOTA rate of 0.15, the primary challenge
lies in distinguishing between known classes. Un-
der these conditions, LLMs demonstrate superior
performance, likely due to their extensive pretrain-
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5-way 1-shot 5-way 5-shot

Methods 15% 30% 50% 15% 30% 50%
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

RoFRC ([CLS]) 75.46 74.35 77.51 75.82 81.30 76.15 80.34 79.39 81.71 80.69 84.12 80.56
Relation-level decision 67.03 65.43 71.23 67.76 78.87 69.70 65.82 64.20 70.19 66.52 78.16 68.62
RoFRC without Lagree 81.25 80.44 83.00 81.99 86.00 82.42 86.73 86.08 87.51 87.05 88.99 86.91
RoFRC (Lagree only non-NOTA) 83.45 82.69 84.78 84.06 86.89 84.06 86.81 86.18 87.58 87.13 89.00 86.97

RoFRC(Ours) 84.64 83.92 85.59 85.05 87.07 84.69 87.38 86.75 87.76 87.44 88.78 87.06

Table 5: Ablation study results of RoFRC, in terms of accuracy (%) and F1 (%), on the FewRel dataset. The reported
results are the average and standard deviation of five runs.

ing on large-scale corpora, which enhances their
ability to generalize across diverse relation types.
Furthermore, in low-NOTA scenarios, classifica-
tion accuracy is largely dependent on fine-grained
feature discrimination. LLMs may be particularly
effective in capturing subtle semantic distinctions
between relation types, leading to higher accuracy.

In contrast, when the NOTA rate increases to
0.5, the classification task becomes significantly
more challenging, as a substantial proportion of
test samples do not belong to any predefined cate-
gory. In this setting, RoFRC outperforms all LLMs,
highlighting its stronger capability in rejecting out-
of-distribution samples. This advantage can be
attributed to several factors. First, RoFRC employs
specialized loss functions that enhance its robust-
ness against unknown samples. Second, LLMs
often exhibit overconfidence in classification tasks,
which increases the likelihood of misclassifying
NOTA samples into known categories.

In summary, the experimental results suggest
that while LLMs excel in scenarios requiring fine-
grained classification with a low NOTA rate, they
exhibit limitations in high-NOTA settings. RoFRC,
on the other hand, demonstrates robustness in han-
dling NOTA samples.

4.5 Ablation Study

To explore the impact of individual modules, we
perform an ablation study. The results are reported
in Table 5. Firstly, compared with ROFRC ([CLS]),
it is clearly evident that the [CLS] token embed-
ding as the token’s vector representation of the
relation description and instance results in a sig-
nificant decrease in performance. This establishes
the effectiveness of the embedding technique we
used and provides the best performance for down-
stream relation classification. Secondly, it is ob-
served that only using the relation-level decision
causes significant performance drops. This sug-

5% 10% 15% 30% 50% 55% 60% 65% 70% 75% 80% 85% 90%
NOTA Rate

75

80

85

F1
 (%

)

5-way 1-shot
RoFRC
PRM
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NOTA Rate
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)

5-way 5-shot
RoFRC
PRM

Figure 3: NOTA rates analysis. The robustness of our
method at various NOTA rates is demonstrated by com-
paring it with the SOTA PRM. The abscissa represents
different NOTA rates.

gests that blending two decisions is effective in
the proposed method, thereby ignoring the role of
support instances is inappropriate. Thirdly, after
removing Lagree, the model’s performance consis-
tently degrades compared to RoFRC. Especially, in
the 5-way 1-shot setting, both the average accuracy
and F1 decrease significantly by 2.35% and 2.93%,
respectively. This validates the positive impact of
Lagree in helping the model boost performance and
ensuring the consistency of two decisions.

An important question arises when considering
Lagree: should we include all query instances (non-
NOTA and NOTA) when computing Lagree? In or-
der to explore this question, we compare the results
to RoFRC using Lagree with only non-NOTA in-
stances. The experimental results demonstrate that
exclusively using non-NOTA instances for Lagree

loss results in a decline in model performance, par-
ticularly at the 15% NOTA rate. One possible rea-
son is that for NOTA instances, increasing Lagree

may result in an elevated predicted probability of a
specific non-NOTA category that may not belong to
its correct class. Balancing the consistency of the
two decisions by utilizing NOTA instances is an ef-
fective strategy to enhance the prediction accuracy
of non-NOTA instances.
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4.6 NOTA Rate Analysis
To demonstrate the robustness of our approach, we
evaluate the F1 performance of our model at vari-
ous NOTA rates. Specifically, we add extra eight
NOTA rates larger than 50% and extra two NOTA
rates smaller than 15% when sampling episodes, as
illustrated in Figure 3. We adopt the episode sam-
pling approach of Gao et al. (2019), with the differ-
ence being that we sample a greater or smaller num-
ber of NOTA query instances within each episode.
As an illustration, suppose we sample 5 non-NOTA
instances and 7 NOTA instances. The resulting
NOTA rate would be calculated as 7 divided by
the sum of the number of non-NOTA instances and
NOTA instances. (7/(5 + 7)) ∗ 100% ≈ 60%.

Our comparative analysis between RoFRC and
PRM reveals that RoFRC outperforms PRM with
higher F1 in all NOTA rates, as indicated in Figure.
3 . Therefore, we can conclude that RoFRC is more
robust and adaptable to different NOTA rates.

5 Conclusion

This paper introduces the RoFRC architecture, a
novel approach specifically designed to address
the challenge of NOTA in the few-shot relation
classification task. The primary objective is to
enhance the model’s performance and robustness
across varying rates of NOTA. The proposed archi-
tecture includes a decision blender that efficiently
performs few-shot relation classification and adapts
to the NOTA scenario by merging instance-level
and relation-level decisions. To ensure consistency,
an agreement loss function is introduced to weigh
the agreement between instance-level and relation-
level decisions. Experimental results on a popular
dataset FewRel confirm the superior performance
of our RoFRC architecture.

Limitations

This study addresses the few-shot relation classifi-
cation task, which includes NOTA instances, and
evaluates the performance of the proposed RoFRC
architecture. Our results indicate that the RoFRC
architecture is efficient and robust, but a limitation
of RoFRC is its dependency on relation descrip-
tions for every relation in the support set, without
which the model’s functionality is compromised.
However, data lacking relation descriptions can be
addressed by utilizing a more expansive language
model to automatically generate the necessary rela-
tion descriptions, and we have a test in Appendix

B.4. In the future, our research will focus on inte-
grating a relation description generation module to
adapt to a wide range of real-world data.
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A Reproducibility

A.1 Dataset
FewRel. We choose a widely used public dataset,
i.e. FewRel 2.0 (Gao et al., 2019) to evaluate the
proposed approach. Its first version is the FewRel
dataset (Han et al., 2018). Later, Gao et al. (2019)
update it to FewRel 2.0, which is constructed from
Wikipedia and consists of 100 relations, each with
700 labeled instances. We conduct our experi-
ments using the same data splits as the official
FewRel benchmark. Specifically, the dataset is
partitioned into 64 classes for training, 16 for val-
idation, and 20 for testing. To ensure the fairness
and reproducibility of experiments, we utilize iden-
tical episode sampling and evaluate our models on
the standard test set.
NYT-25. The NYT-25 dataset is derived from the
New York Times corpus, and the original data can
be found on the FewRel website. The NYT-25
dataset provides 25 relations, each containing 100
instances. However, the dataset has not been split

into training, validation, and test sets. Referring
to the dataset division method of Qu et al. (2020),
and in order to meet the experimental setting of
the NOTA challenge, we randomly sample 10 rela-
tions for training, 6 relations for validation, and 9
relations for testing.

A.2 Implementation Details
We utilize the same set of hyper-parameters as Gao
et al. (2019) for a fair and equal comparison. Our
work and all baselines employ the identical en-
coder, BERT-base-uncased (Devlin et al., 2019).
We set the batch size to 2 for training, implying that
two episodes are fed concurrently into the model
per batch. The model’s training comprises 30,000
batches, where each epoch contains 1,000 batches.
After each epoch, we evaluate 1,000 batches of
the validation set to search for the best model. In
addition, we implement the early stopping strat-
egy, which halts the training process if the model’s
performance fails to improve after 6 consecutive
epochs on the validation set. For testing, we test
a total of 10,000 batches on the test set. Follow-
ing Gao et al. (2019), we conduct testing at NOTA
rates of 15%, 30%, and 50%, after training with a
50% NOTA rate. All the results reported using the
FewRel dataset are the average of five fixed seed
runs. In Eq (16), we set the hyper-parameters λ to
1e-5. Following Gao et al. (2019), the remaining
hyperparameters are detailed as follows:

• Learning rate: 2e-5.

• Weight decay: 1e-5.

• Warmup steps: 300.

• Gradient accumulation: 1.

• Instance max length: 128.

• Relation description max length: 128.

• Hidden size: 768.

• Seeds: [5, 10, 15, 20, 25].

.

A.3 Evaluation Metrics
Two key evaluation metrics are employed in our
work: accuracy and macro F1. The basic imple-
mentation of accuracy is based on the following
formula:

Accuracy =
TP + TN

TP + FP + TN + FN
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Methods Number of parameters

O-Proto 109482240
MNAV 109497600

BERT-Pair 109483778
MCMN 109482240

PRM 109494532
RoFRC(Ours) 109482240

Table 6: The number of parameters for each model.

where TP are true positives, FP are false positives,
TN are true negatives, and FN are false negatives.
The F1 is defined as follows:

P =
TP

TP + FP

R =
TP

TP + FN

F1 =
2× P ×R

P +R

Macro F1 calculates the unweighted mean of F1
scores for each class.

A.4 Number of Parameters per Method
Table 6 shows the number of parameters for each
model.

A.5 Time Requirement

Methods Training Testing
15% 30% 50%

O-Proto 17678 2840 2832 3187
Bert-Pair 21211 3389 3738 5244
MNAV 6709 1562 1422 1346
MCMN 3966 9108 9211 9123
PRM 25522 2956 2840 2932
RoFRC 28823 3367 3032 3592

Table 7: The training and testing times (in seconds) for
each model in a 5-way 1-shot scenario.

Table 7 records the training and testing time re-
quirements for all models in the 5-way 1-shot sce-
nario.

A.6 Prompt for Large Language Models
Table 12 presents four examples of the LLMs ac-
complishing a 5-way 1-shot relation classification
task. We devise a prompt for LLMs to comprehend
the FSRC task and to emphasize the NOTA defini-
tion. To assist LLMs in classifying instances in the
query set, the prompt includes the relation name
and description for each category when inputting
the support set.
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Figure 4: Agreement loss visualization. As Lagree in-
creases, the instance-level decision probability p

(1)
1 and

the relation-level decision probability p
(2)
1 tend to be the

same.

B Overall Results

B.1 Visualization

In order to further demonstrate the effectiveness of
the agreement loss in Eq. (15), we visualize the
function graph of Lagree in Figure 4. The figure
illustrates that as we increase Lagree, the instance-
level decision probability p

(1)
1 and the relation-level

probability p
(2)
1 progressively approach each other.

Additionally, influenced by the cross-entropy loss
Lc represented in Eq. (11), the blending decision
probability of a specific non-NOTA class gradu-
ally increases. As a result, the probabilities of p(1)1

and p
(2)
1 ultimately reach a convergence point of

1. This process ensures consistency between the
instance-level decision and the relation-level deci-
sion, consequently enhancing the performance of
the model.

B.2 Hyperparameter Analysis

The results obtained for different values of the hy-
perparameter λ in Eq. (16) are illustrated in Table
8. The experimental results indicate that by setting
the λ to 1e-5, the optimal performance is achieved
under the 5-way 1-shot and 5-way 5-shot settings.
Furthermore, the experimental results demonstrate
that the overall performance of the model remains
relatively stable even when modifying the hyper-
parameter. Particularly, under the 5-way 5-shot
setting, the accuracy and F1 score demonstrate a
significant numerical proximity. For comparison,
the results of PRM are also presented in Table 8. It
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5-way 1-shot 5-way 5-shot

Methods 15% 30% 50% 15% 30% 50%
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

PRM 80.38 79.54 82.10 81.15 84.99 81.30 84.86 84.17 86.01 85.40 88.00 85.46

RoFRC(λ=1e-3) 84.28 83.54 85.28 84.71 86.84 84.40 85.66 84.99 86.67 86.08 88.58 86.15
RoFRC(λ=1e-4) 81.43 80.62 83.16 82.16 86.00 82.48 86.85 86.21 87.56 87.11 88.94 86.91
RoFRC(Ours, λ=1e-5) 84.64 83.92 85.59 85.05 87.07 84.69 87.38 86.75 87.76 87.44 88.78 87.06
RoFRC(λ=1e-6) 81.94 81.16 83.65 82.70 86.59 83.19 86.86 86.21 87.44 87.04 88.75 86.79

Table 8: Hyperparameter analysis results of RoFRC, in terms of accuracy (%) and F1 (%), on the FewRel dataset.
The hyperparameter robustness of RoFRC is demonstrated by comparing the experimental results of PRM.

is apparent that RoFRC consistently outperforms
PRM in terms of accuracy and F1 score, irrespec-
tive of the value assigned to the hyperparameter λ.
In summary, RoFRC exhibits robustness towards
hyperparameter fluctuations and shows minimal
impact on its performance.

B.3 Performance Gap Analysis

MNAV 15% 30% 50% Average

1-shot (Non-NOTA) 83.95 84.05 83.96 83.99
1-shot (NOTA) 75.95 75.78 75.91 75.88
5-shot (Non-NOTA) 90.21 90.28 90.22 90.24
5-shot (NOTA) 79.99 79.78 79.79 79.86

PRM 15% 30% 50% Average

1-shot (Non-NOTA) 80.52 80.66 80.66 80.61
1-shot (NOTA) 91.88 91.72 91.82 91.81
5-shot (Non-NOTA) 85.13 85.14 85.21 85.16
5-shot (NOTA) 92.60 92.64 92.60 92.61

RoFRC(Ours) 15% 30% 50% Average

1-shot (Non-NOTA) 85.85 86.08 86.04 85.99
1-shot (NOTA) 90.59 90.56 90.61 90.59
5-shot (Non-NOTA) 88.68 88.47 88.60 88.58
5-shot (NOTA) 90.92 90.92 90.93 90.92

Table 9: The accuracy(%) of the model in classifying
non-NOTA instances and NOTA instances under differ-
ent NOTA rates.

In order to analyze the performance gap of the
model in recognizing non-NOTA instances and
NOTA instances, we test the accuracy of the model
based on prototypical network in classifying non-
NOTA instances and NOTA instances under the ex-
perimental settings described in Section A.2. The
results of the test set are shown in Table 9. Firstly,
RoFRC demonstrates excellent performance in
classifying NOTA instances in both 1-shot and 5-
shot scenarios. Secondly, compared with PRM
and MNAV, the performance gap in classifying
RoFRC between non-NOTA instances and NOTA
instances is relatively small in both the 1-shot and
5-shot scenarios. Especially in the 5-shot scenario,

RoFRC exhibits similar accuracy in classifying
both types of instances. We use simple calcula-
tions to prove this conclusion. In the 15% NOTA
rate scenario, the average performance of PRM
is (85.15%× 5 + 92.61%× 1)/6 ≈ 86.40%,
while the average performance of RoFRC is
(88.58%× 5 + 90.92%× 1)/6 ≈ 88.97%. In the
50% NOTA rate scenario, the average performance
of PRM is (85.15%× 5 + 92.61%× 5)/10 ≈
88.89% , and the average performance of RoFRC is
(88.58%× 5 + 90.92%× 5)/10 ≈ 89.75%. Ob-
viously, the changes in RoFRC are smaller. There-
fore, the performance gap between the model in
classifying non-NOTA instances and identifying
NOTA instances determines its robustness. Thirdly,
in the 1-shot scenario, due to only having one sup-
port instance for each category, the classification
ability of each model for non-NOTA instances
decreases, and there is a certain gap compared
with the classification ability of NOTA instances.
In summary, RoFRC demonstrates stronger ro-
bustness in classifying non-NOTA and NOTA in-
stances.

B.4 Relation Descriptions’ Quality Analysis

5-way 1-shot

Methods 15% 30% 50%
Acc F1 Acc F1 Acc F1

RoFRC 84.64 83.92 85.59 85.05 87.07 84.69
RoFRC(change) 84.19 83.49 85.34 84.71 87.29 84.66

Table 10: Study on relation descriptions’ quality.

We regenerated the relation descriptions in the
FewRel dataset using ChatGPT and conducted new
experiments under the 5-way 1-shot scenario. The
experimental results are presented in the Table 10.
As shown, our model still maintains strong perfor-
mance, demonstrating its robustness to variations
in the quality of relation descriptions.
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B.5 Traditional FSRC Performance Analysis

Methods 5-way 1-shot 5-way 5-shot
Acc F1 Acc F1

BERT-Pair 88.68 87.93 94.43 94.04
MNAV 83.98 82.83 93.81 93.43
PRM 93.92 93.57 95.66 95.39
MultiRep 94.18 - 96.29 -
RelPromptCL 94.71 - 97.38 -
LoToG 95.28 - 96.71 -

RoFRC (Ours) 94.44 94.05 96.46 96.23

Table 11: Traditional few-shot relation classification
results on the FewRel test set.

Some existing works only design models for tra-
ditional few-shot relation classification tasks (i.e.,
the query set does not include NOTA instances),
and they do not provide a solution for the NOTA
challenge. We have also tested our method on tra-
ditional few-shot relation classification tasks on
FewRel dataset. We compare our model with the
FSRC models, including MultiRep (Borchert et al.,
2024), RelPromptCL (Dong et al., 2024), LoToG
(Sun and Chen, 2025). The experimental results
in Table 11 show that our proposed RoFRC is also
competitive.
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Question: The purpose of the relation classification task is to identify the relation between two
entities (one is the head entity and the other is the tail entity) in a given sentence. For example,
the following sentence "California is a state in the United States". Through the derivation of the
whole sentence, the relation between the head entity "California" and the tail entity the "United
States" is "contains". While the few-shot relation classification task consists of a support set and a
query set. The support set generally contains N relations, and each relation contains K instances.
This setup is called N -way K-shot. We need to predict the relation between two entities in each
sentence given in the query set based on the support set. Now I need you to complete a few-shot
relation classification task, which is set to 5-way 1-shot. The five categories in the support set are
numbered from 0 to 4, respectively. Five sentences are given after each category. The head entity
of each sentence is surrounded by two special characters [head] and [/head], and the tail entity is
surrounded by two special characters [tail] and [/tail]. You need to predict the relationship between
two entities for each sentence in the query set from the support set. That is, if the relation of a query
instance is similar to that of all instances of category 0 in the support set, then the category predicted
by the query instance is category 0. Notice! If the relation between the two entities of a sentence
in the query set cannot be referenced in the support set, the relation between the two entities of
the sentence is called NOTA (None-of-the-above). When the NOTA relation is encountered, the
category number of the predicted result is 5. Warning! You just need to return the class number for
each instance predicted in the query set. For example, the relation of the first instance in the query
set is relation 0, and the second instance is relation 5 (NOTA). Then your reply is: [0, 5]. If you get
it, then I’ll give you support sets and query sets next.

LLMs: Yes, I understand the task. Please provide me with the support set and query set.

Question: The following is the support set (5-way 1-shot. Instances in each category are
separated by a special character [sep].): Name of category 0: chairperson. Description of
category 0: presiding member of an organization, group or body. Instances in category 0: Rowley
was elected leader of the [head] Communist Party of Canada [/head] in January 2016 by the Party’s
Central Committee, following the retirement of [tail] Miguel Figueroa [/tail]. [sep] Name of
category 1: parent organization. Description of category 1: parent organization of an organization,
opposite of subsidiaries (P355). Instances in category 1: In 1932 South Georgia State College
emerged as one of the original 26 institutions of the [tail] University System of Georgia [/tail] which
traces its origins to the chartering of the [head] University of Georgia [/head] in 1785. [sep] Name
of category 2: family. Description of category 2: family, including dynasty and nobility houses.
Not family name (use P734 for family name). Instances in category 2: Matthias and Frederick
III / V had been rivals stretching back to Matthias’ succession as King of Hungary in 1458 after
the early death of Frederick’s [tail] Habsburg [/tail] cousin King [head] Ladislaus the Posthumous
[/head]. [sep] Name of category 3: connecting line. Description of category 3: railway or public
transport line(s) subject is directly connected to; use as a qualifier to P197. Instances in category
3: Seibuen Station is the terminus of the [tail] Seibuen Line [/tail], a 2.4 kilometer spur line from
[head] Higashi - Murayama Station [/head]. [sep] Name of category 4: parent taxon. Description
of category 4: closest parent taxon of the taxon in question. Instances in category 4: The orders
Raphidioptera and [head] Neuroptera [/head] are grouped together as [tail] Neuropterida [/tail].
[sep] Please give me the predicted class number for each instance in the query set. For example, if
the query set contains two instances, and you make a prediction based on the support set, the first
instance has category number 0, and the second instance has category number 5 (NOTA), then you
reply to me [0, 5]. The following is the query set (The query set contains one instance.): It is
part of the [tail] Epsom and St Helier University Hospitals NHS Trust [/tail] along with the nearby
[head] St Helier Hospital [/head] and Sutton Hospital.

LLMs: The predicted class number for the given instance in the query set is 1.

Table 12: An example of using LLMs to complete the FSRC task in the experiment.
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