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Abstract

Large Language Models (LLMs) have achieved
remarkable success across diverse tasks, largely
driven by well-designed prompts. However,
crafting and selecting such prompts often re-
quires considerable human effort, significantly
limiting its scalability. To mitigate this, recent
studies have explored automated prompt op-
timization as a promising solution. Despite
these efforts, existing methods still face critical
challenges in robustness, efficiency, and gener-
alization. To systematically address these chal-
lenges, we first conduct an empirical analysis
to identify the limitations of current reflection-
based prompt optimization paradigm. Build-
ing on these insights, we propose 7 innova-
tive approaches inspired by traditional deep
learning paradigms for prompt optimization
(DLPO), seamlessly integrating these concepts
into text-based gradient optimization. Through
these advancements, we progressively tackle
the aforementioned challenges and validate
our methods through extensive experimenta-
tion. We hope our study not only provides
valuable guidance for future research but also
offers a comprehensive understanding of the
challenges and potential solutions in prompt
optimization. Our code is available at https:
//github.com/sfasfaffa/DLPO.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable achievements across diverse
applications (Brown et al., 2020; Ouyang et al.,
2022; Zhao et al., 2023; Qin et al., 2024a; Zhuang
et al., 2023). Notably, the performance of LLMs
highly relies on well-crafted prompts (Zhu et al.,
2023; Li et al., 2024). Given their sensitivity to
prompts, selecting optimal prompts is crucial for
maximizing their performance in downstream tasks,
a process known as Prompt Engineering (Reynolds
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Figure 1: Comparison between traditional reflection-
based prompt optimization methods and DLPO, which
incorporates 7 innovative approaches to progressively
enhance the robustness, efficiency, and generalizability
of prompt optimization.

and McDonell, 2021; Sahoo et al., 2024), which re-
quires substantial human effort (Zamfirescu-Pereira
et al., 2023). To address this, researchers have
developed automated prompt optimization (PO)
techniques, such as reinforcement learning-based
methods (Deng et al., 2022; Zhang et al., 2022;
Diao et al., 2022), search-based methods (Prasad
et al., 2022; Pryzant et al., 2023; Zhou et al.,
2022), all aiming to improve efficiency and stabil-
ity. Among these methods, a dominant paradigm
leverages LLMs’ reflection capabilities, optimizing
prompts based on feedback from external environ-
ments (Wang et al., 2023; Tang et al., 2024). Fol-
lowing Pryzant et al. (2023) and Yuksekgonul et al.
(2024), this paradigm draws inspiration from neu-
ral network training, reinterpreting key concepts:
treating prompts as model parameters, output met-
rics as loss, and LLM reflection as gradients within
textual expression. Such paradigms has proven to
be a powerful and widely adopted tool for various
downstream tasks (Zhou et al., 2024; Mañas et al.,
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2024; Du et al., 2024).
Despite significant advancements in automated

PO, our preliminary exploration reveals that ex-
isting methods encounter practical limitations that
hinder their widespread adoption. These challenges
can be categorized into three key issues, as illus-
trated in Fig.1: (1) Lack of Robustness. Current
update methods often exhibit substantial oscilla-
tions and instability during the update process. (2)
Low Efficiency. Existing PO strategies require mas-
sive iterations to achieve ideal prompts. (3) Limited
Generalizability. While existing methods perform
well on in-domain tasks present in training data,
they struggle with distributionally out-of-domain
tasks, which extremely restricts their applicability
in real-world scenarios.

To address this, we first perform a system-
atic review of the prevailing reflection-based PO
paradigm to identify its limitations. Inspired by
traditional deep learning approaches, we propose
novel techniques for DLPO to enhance its PO
capabilities. Traditional machine learning (ML)
paradigm considers prompts as a single module,
and relies on monotonic and uncontrollable gradi-
ent optimization process. In contrast, we view the
semantic dependencies within complex prompts
as a neural network, enabling the application of
advanced deep learning methods. (1) Unlike tradi-
tional ML approaches, our method employs Textual
Dropout, which randomly discards certain prompt
sentences to improve robustness. Additionally, we
use Textual Learning Rate and Textual Simulated
Annealing to better control the optimization direc-
tion, enhancing robustness over monotonic gradi-
ent optimization. (2) In deep learning, optimization
speed often depends on the gradient optimization
difficulty. To accelerate convergence, we apply
Textual Learning Rate Decay, Textual Momentum,
and Textual Contrastive Learning for more efficient
gradient optimization. (3) Unlike the single prompt
modularization in the ML paradigm, our method
integrates Textual Regularization to prevent over-
complication of prompt sentences, ensuring that
the model remains concise. The correspondence
between all seven methods we propose and classi-
cal deep learning methods is shown in Table 1.

To evaluate the effectiveness of our proposed
approach, we conduct extensive experiments on
five datasets covering multiple tasks. The results
indicate that our method significantly enhances the
stability, efficiency, and generalizability of prompt
optimization. Notably, it outperforms the previous
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Figure 2: Current reflection-based paradigm for prompt
optimization.

state-of-the-art method by 8.1% and even surpasses
manually designed prompts, demonstrating its su-
periority in automated prompt optimization.

The contributions of this work are summarized
as follows:

• We first identify key challenges in robustness,
efficiency, and generalization in LLM-based
prompt optimization, revealing the limitations
of existing methods through both theoretical and
empirical analysis.

• Drawing inspiration from traditional deep learn-
ing techniques, we propose DLPO to enhance
robustness, efficiency, and generalization by in-
corporating 7 novel text-based gradient optimiza-
tion strategies.

• We conduct extensive experiments across diverse
datasets to validate our approach, providing a
comprehensive understanding of prompt opti-
mization challenges and best practices.

2 Problem Formalization

2.1 Prompt Optimization

As shown in Figure 2, the paradigm of prompt opti-
mization leverages LLMs as optimizers by refining
and enhancing prompts based on feedback from
external environments. Formally, we consider a
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Traditional Methods DLPO Methods Description

Learning Rate Textual Learning Rate (TLR) TLR controls the number of sentence modifications per step to stabilize updates.

Dropout Textual Dropout (TDO) TDO randomly skips sentence updates to reduce overfitting and preserve beneficial
modifications.

Simulated Annealing Textual Simulated Annealing (TSA) TSA uses training accuracy as energy, accepting suboptimal solutions probabilisti-
cally.

Learning Rate Decay Textual Learning Rate Decay (TLRD) TLRD enables early-stage exploration followed by gradual refinement of prompts.
Momentum Textual Momentum (TMnt) TMnt utilizes past gradients to smooth updates and enhance efficiency.
Contrastive Learning Textual Contrastive Learning (TCL) TCL differentiates high- and low-quality prompts to encourage effective patterns.

L1/L2 Regularization Textual Regularization (TRegu) TRegu removes redundant phrases and simplifies sentence structures for better
generalization.

Table 1: A brief comparison of traditional deep learning methods and their textual counterparts in DLPO. Some
methods adapt numerical optimization concepts to the text space through sentence-level operationalization.

training datasetD = (xi, yi)
n
i=1 drawn from a joint

distribution D(X,Y ).

Textual Forward Given an input-output pair
(xi, yi) and current prompt Pt, the LLMMF , acts
as forward engine, generating a predicted output:

ŷti =MF (yi|xi,Pt). (1)

Textual Backward To quantify the discrepancy
between the predicted output ŷti and the ground
truth yi, we define the textual loss function as:

Ltext = Floss({ŷt1, y1}, . . . , {ŷti , yi}, . . . ), (2)

where Floss(·) denotes the human-defined loss
function, such as rule-calculated accuracy or model-
generated score.

To guide the improvement of the prompt Pt, tex-
tual gradient is defined to determine the direction
of optimization. Here, the LLM acts as an implicit
gradient estimator, computing the gradient through
model reflection:

Gtext =
∂Ltext
∂Pt

=MB(G|xi, yi,Pt,Ltext), (3)

where MB denotes the LLM that functions as a
backward engine. It is always considered more
powerful compared to the forward engine.

After textual gradient computation, the prompt
Pt is iteratively updated using the textual gradi-
ent to minimize the loss. At this stage, the LLM
functions as the optimizer, generating an improved
prompt P̂t+1 as:

P̂t+1 =MB(Pt+1|xi, yi,Pt,Gtext). (4)

2.2 Prompt Application
Once optimized, the prompt is applied to previously
unseen test data x′ to generate the predicted output:

ŷ′ =M(y′|x′,P∗). (5)

where P∗ refers to the optimized prompt. Our
primary framework for implementing prompt op-
timization is TextGrad (Yuksekgonul et al., 2024),
a widely recognized prompt optimization frame-
work. It modularly implements the entire pipeline
outlined in this section, making it particularly well-
suited for our analysis.

3 Experiment Setups

We utilize several benchmarks to evaluate the ef-
fectiveness of our proposed methods, including
GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), BigGSM (BGSM) (Chen et al., 2024),
BigBenchHard Object Counting (BBH) (Suzgun
et al., 2022), and MGSM (Shi et al., 2022). The de-
tailed descriptions can be found in Appendix C.1.

4 Preliminary Analysis

In this section, we explore the following three key
drawbacks for current reflection based prompt opti-
mization paradigm.

4.1 Lack of Robustness

The robustness of an optimization process is a criti-
cal prerequisite for both convergence and general-
ization. In this context, we define robustness as the
stability of the optimization process. As illustrated
in Fig. 3 (a,b), the results reveal significant insta-
bility. Specifically, variations in random seeds lead
to substantial discrepancies in convergence, with
the variance at the final step reaching 20.8% for the
GSM8K environment. Moreover, in the BBH, the
current paradigm fails to achieve convergence even
by the end of the training process.

4.2 Low Efficiency

Efficiency is defined here as the convergence speed
during prompt optimization. As illustrated in Fig. 3
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Figure 3: a, b, c respectively show the validation-set accuracy of 3 different seeds and their mean values and
standard deviations on BBH, GSM8K, and BigGSM environments. The mean values are represented by black solid
lines, and the standard deviations are indicated by red shaded areas. d shows the Training-set and Validation-set
mean accuracy results of 3 different seeds on GSM8K, along with their standard deviations. To make the image
clearer, we use 1

2 standard deviation as the shaded area.

(c), we aim for the prompt optimizer to achieve
rapid convergence to a stable value. In contrast, the
current approach necessitates over 20 iterations to
attain its peak performance and reach stabilization.
This stark difference underscores the significant
inefficiency of the existing method in comparison.

4.3 Limited Generalizability
We define generalizability as the degree to which
LLMs can generalize to test sets or diverse data dis-
tributions within the same task domain. As shown
in Fig. 3 (d), the grey shadow reveals a large dis-
crepancy between the validation and training set
scores (approximately 10% accuracy at the optimal
point), suggesting that the current update method
lacks sufficient generalization capability.

5 Exploration

In this section, we solve the above three problems
using methods inspired by traditional Deep Learn-
ing step by step. The detailed implementation of
our methods can be found in appendix B.

5.1 Exploration for Robustness
The robustness of optimization is one of the most
critical issues in subsequent work. Only by ensur-
ing the robustness of optimization can other prob-
lems and methods be deemed worthy of considera-
tion and meaningful.

We meticulously analyze the optimized sequence
of prompts and observe that the variations between
updates are highly significant. After just a sin-
gle update, the prompts appear entirely different
compared to their previous state. To address this
issue, we propose three effective methods: Textual
Learning Rate (TLR) , Textual Dropout (TDO) and
Textual Simulated Annealing (TSA).
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Figure 4: a, mean results of 3 different seeds for
TLR+TDO and Naive on GSM8K. We use 1

2 of the
standard deviation as the shaded area. b, mean results
of 3 different seeds for TSA+TLR+TDO, TLR+TDO and
Naive on BBH. To make the image clearer, we use 1

4 of
the standard deviation as the shaded area.

5.1.1 Textual Learning Rate & Dropout
Textual Learning Rate (TLR) Traditional ML-
based PO often disregards the gradient’s magnitude,
impeding convergence to the optimal solution. To
address this, drawing inspiration from DL, we pro-
pose a Textual Learning Rate to regulate the extent
of gradient updates. Specifically, each modifica-
tion, deletion, or addition of a sentence in a prompt
constitutes an update unit. The TLR value, denoted
asR, sets an upper limit on the number of update
units per step. If an LLM attempts to exceed R,
we prompt LLMs to prioritize impactful changes
while discarding non-essential ones.

Textual Dropout (TDO) Traditional ML-based
PO treats the prompt as an indivisible whole, mak-
ing local optimization challenging and leading to
large updates that compromise robustness. To ad-
dress this, we adopt a DL perspective, viewing the
prompt as a structured semantic network. Specifi-
cally, we introduce Textual Dropout (TDO), which
selectively drops or skips sentence updates to pre-
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Figure 5: Comprehensive evaluation of TLR, TDO,
and TSA methods on GSM8K and BBH object count-
ing benchmarks with different optimizers (GPT-4o and
DeepSeek-R1).

vent full parameter optimization.
Formally, given a prompt Pt with S sentences

and a dropout rate p , the number of preserved
sentences K is:

K = ⌈p · S⌉. (6)

The updated prompt P̂t+1 is:

P̂t+1 = Ppreserved ⊕ Pupdated,

where ⊕ denotes merge operation. Here, Ppreserved
consists of the K preserved sentences, while
Pupdated includes the modified sentences based on
the textual gradient Gtext.

Since both TLR and TDO regulate gradient up-
dates at the sentence level and encourage a certain
degree of restriction on the magnitude of single-
step updates, we apply them jointly to evaluate
their effectiveness. As shown in Fig. 4 (a,b), ex-
periments on GSM8K and BBH demonstrate that
TLR+TDO outperforms the naive approach and sig-
nificantly enhances optimization robustness. Fig. 5
further validate the independent effectiveness of
each method across different optimizer models
(DeepSeek-R1 and GPT-4o). More details are pre-
sented in the App. A.

5.1.2 Textual Simulated Annealing TSA

To further enhance the gradient optimization in DL
views, we propose Textual Simulated Annealing
scheme to guarantee stable update during training
by dynamically adjusting prompts based on their
accuracy to effectively control the optimization di-
rection. Simultaneously, to prevent the model from
getting stuck in local optima, TSA encourages the
model to accept suboptimal solutions with a cer-
tain probability. Specifically, we define training
set accuracy as the “Energy” function (E(·)), and
compare the accuracy before and after each update.
If accuracy decreases, the suboptimal solution is
accepted with a probability determined by:
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Figure 6: a, b, mean results of 3 different seeds for
TSA+TLRD and TSA+TLR on validation set of BigGSM
and MGSM environment. We use 1

2 of the standard
deviation as the shaded area.

P (∆E , T ) = exp

(
∆E
T

)
(7)

where∆E = E(x′)− E(x) is the accuracy change
between the new solution x′, derived from opti-
mized prompt P̂t+1, and the current solution x,
generated with original prompt Pt. Here, the tem-
perature T will gradually decrease with each up-
date. As T reduces, the probability of accepting
suboptimal solutions decreases, enabling the model
to escape local optima in the early stages and con-
verge to better solutions later. Building on this, TSA

ensures stable and robust accuracy convergence.
In Fig. 4 (b), it is shown that while TLR methods

outperform the Naive approach in BBH, they still
exhibit substantial variability. To address this is-
sue, we integrate TSA into the TLR approach. The
results indicate that the incorporation of TSA into
TLR significantly improves both performances and
robustness, surpassing the two original baselines.

Takeaway: Limiting the magnitude, updated
parameter size, and direction of each update
step to some extent can enhance the robust-
ness and stability of the PO.

5.2 Exploration for Efficiency

Through our definitions of TLR, TDO, and TSA,
we have largely mitigated the issue of update sta-
bility. Next, we shift our focus to convergence
speed. To enhance convergence efficiency, we pro-
pose three methods: Textual Learning Rate Decay
(TLRD), Textual Momentum (TMnt) and Textual
Contrastive Learning (TCL)

5.2.1 Textual Learning Rate Decay (TLRD)
Inspired by the role of learning rate decay in deep
learning, where larger updates facilitate exploration
in early stages and smaller updates ensure fine-
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tuning later, we define TLRD to enhance conver-
gence speed and stability in prompt optimization.
At the beginning of the update process, a higher
learning rate encourages substantial modifications
to the initial prompt, enabling diverse exploration
of potential solutions. As the optimization pro-
gresses and the prompt approaches a satisfactory
level, the learning rate decreases dynamically to
focus on fine-grained refinements.

As shown in Fig. 6 (a,b), we compare the fixed
TLR (R = 1) with the learning rate decay strat-
egy both on the BigGSM and MGSM. The results
demonstrate that the learning rate decay method
achieves much faster convergence compared to the
fixed learning rate approach.

5.2.2 Textual Momentum (TMnt)

During each update, the model samples batches
independently, without incorporating information
from previous ones. This can cause notable bias in
gradient optimization, particularly when the batch
size is small, as batch-to-batch variations can sig-
nificantly impact the convergence trajectory.

To mitigate this issue, we draw inspiration from
classical machine learning techniques and intro-
duce Textual Momentum (TMnt). By incorporating
feedback from past updates, our approach allows
the optimizer to recognize previous gradient direc-
tions and integrate them into the current update,
ultimately refining the final gradient direction for
more stable optimization. The final ideal gradient
direction Gfinal is computed as:

Gfinal = Gcurrent +
3∑

i=1

γi · Gpasti (8)

where Gcurrent is the current batch gradient, Gpasti
represents the i-th previous gradient, and γ is a de-
cay factor (e.g., γ = 0.9) reducing older gradients’
influence. In practice, we do not explicitly define
certain details, such as the decay coefficient γ. In-
stead, we only present the last three feedbacks and
encourage the optimizer to focus more on updates
closer to the current step to balance recent trends
without over-relying on outdated information.

As shown in Fig. 7 (a,b), based on our previously
proposed TLR method, we compare the pure TLR

with TLR+TMnt on the validation sets of BigGSM
and MGSM. It is evident that after adding the TMnt
method, the convergence speed has improved.
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Figure 7: We tested the TMnt and TCL methods on
the validation set of BigGSM and MGSM environment.
The convergence steps and their standard deviations are
displayed in the bar chart.

5.2.3 Textual Contrastive Learning (TCL)
Building on the success of contrastive learning in
improving model efficiency in DL view (Radford
et al., 2021; Qin et al., 2022), we propose Tex-
tual Contrastive Learning (TCL), which encourages
the model to differentiate high-quality (positive)
prompts from suboptimal (negative) ones, thus en-
hancing the optimization process.

Specifically, we first evaluate each updated
prompt on the training set to obtain its accuracy as a
performance metric. Let A(x) denote the accuracy
of prompt x on the training set. Next, we categorize
historical prompts into positive (higher accuracy)
and negative (lower accuracy) groups. We then
sample one prompt from each group based on an
accuracy-weighted probability distribution. If the
accuracy difference between the positive and nega-
tive prompts falls below a predefined margin, we
only encourage the LLM to learn from the positive
prompt. Otherwise, we guide the optimizer to: (1)
Imitate distinguishing features of positive prompts,
represented by the set F+. (2) Retain shared fea-
tures between positive and negative prompts, repre-
sented by F∩. (3) Eliminate undesirable features
unique to negative prompts, represented by F−.

The final gradient update Gfinal is computed as:

Gfinal = Gcurrent + F+ −F− (9)

By refining the gradient in this manner, the opti-
mizer learns to reinforce beneficial prompt features
while suppressing undesirable ones, ultimately im-
proving the quality of future updates. We provide
visualization of the TCL methods in Fig. 8.

To test the effectiveness of TCL, we compare the
convergence step of Naive and TCL methods on the
validation sets of BigGSM and MGSM. As shown
in Figure 7 (a,b), it is evident that after adding the
TCL method to naive, the convergence speed have
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consistently improved. Unfortunately, we also ob-
serve that although TMnt appears to outperform the
TCL method in the figure, with a faster convergence
speed, its final convergence effect is inferior to that
of the TCL method and exhibits higher instability.

Takeaway: Incorporating dynamic, histori-
cal, and contrasting directions of gradient op-
timization from previous update steps can sig-
nificantly accelerate the convergence speed.

5.3 Exploration for Generalizablity

Before addressing generalizability, we first propose
several methods to enhance model update stability
and accelerate convergence. However, our ulti-
mate goal is to improve the model’s overall perfor-
mance, particularly its ability to generalize beyond
the training set. Specifically, we aim to extend the
learned results to: (1) The validation and test sets
of the same dataset. (2) Datasets with similar con-
tent but varying levels of difficulty. (3) Datasets
involving similar tasks.

Therefore, we train on a subset of the GSM8K
training set to derive the final prompt and evalu-
ate its performance on the test sets of GSM8K,
BigGSM, BBH, and MATH. Building on the pre-
viously proposed effective methods, we adjust the
training set size and batch size to examine their
impact on the generalizability of our approach. Ad-
ditionally, we integrate prior techniques and intro-
duce Textual regularization to further explore its
role in enhancing generalizability. More experi-
ments on generalization to different LLM models
(Gemini (Team et al., 2023), DeepSeek-R1 (Guo
et al., 2025)) are presented in the appendix A.4.2.

expname hyper GSM8K BGSM BBH MATH

batch size bs = 3 93.3 57.3 79.7 73.9
bs = 6 93.2 52.7 85.0 65.6
bs = 9 93.3 57.2 77.0 70.2
bs = 12 93.7 54.8 79.7 69.6
bs = 15 89.7 48.4 80.0 70.8

training set ts = 50 93.2 52.7 85.0 65.6
size ts = 100 94.3 57.0 90.3 69.7

Table 2: Accuracy comparison across different batch
sizes and training set sizes. All results are the average
of three different seeds. The bold is the best while the
red is the worst. More details are shown in the Table 9.

5.3.1 Exploration for Training Set Size
Inspired by the training scaling experience in
DL (Kaplan et al., 2020), we manage to scale up
the training set size to improve the generalization.
As shown in Table 2, we create two training subsets
by sampling 50 and 100 instances from GSM8K.
The model trained on 100 instances consistently
outperforms the one trained on 50 across all test
sets. This aligns with intuition, as a larger train-
ing set offers broader sample coverage, reducing
distribution shift and improving generalizability.

5.3.2 Exploration for Batch Size
To explore the impact of different batch sizes on
generalizability, we evaluate five batch sizes in
terms of final test accuracy, as shown in Table 2.
The results indicate that: (1) Within a certain range,
a smaller batch size can achieve better performance,
but increasing the batch size has a negligible effect
on performance. (2) However, if the batch size is
excessively large, resulting in too few update steps,
the optimization process may fail to converge to
the optimal solution.

It is worth noting that the total number of loss
calculations remains constant across different batch
sizes, while the number of backward passes and
updates varies. Therefore, when the requirements
for final performance are not overly stringent, it is
advisable to appropriately increase the batch size.
This reduces the frequency of backward passes and
updates, thereby saving computational resources,
such as token usage, without significantly compro-
mising model performance.

5.3.3 Textual Regularization (TRegu)
Ockham’s razor in DL suggests that simpler mod-
els with fewer parameters often generalize bet-
ter. Building on this principle, we investigate Tex-
tual Regularization (TRegu) techniques to reduce
prompt complexity and enhance generalization.
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expname GSM8K BGSM BBH MATH

w/o TRegu 93.3 55.0 81.0 67.9
w/ TRegu 94.0 55.9 87.2 70.5

Table 3: We compare the performance with and without
the addition of TRegu on the baseline methods of TSA,
TLRD, and TCL. The final results are obtained by aver-
aging the outcomes across the six seeds. The Bold data
indicates the highest value in each column.

Specifically, textual L2 regularization is applied to
reduce prompt complexity, while L1 regularization
is used to promote sparsity by eliminating irrele-
vant features. Practically, textual L2 regulariza-
tion encourages simplifying individual sentences,
whereas L1 regularization helps remove irrelevant
ones. As shown in Table 3, TRegu methods demon-
strate significant improvements in generalization
on various tasks.

Takeaway: A larger training dataset and a
more precise and streamlined language struc-
ture contribute to enhancing the generalizabil-
ity of the resulting prompt.

6 Best Practices

By systematically integrating various optimization
methods, we progressively improve update robust-
ness, generalization, and efficiency. However, iden-
tifying the optimal combination of these techniques
remains an open challenge. To address this, we con-
duct extensive experiments on BigGSM, MGSM,
and BBH, evaluating different method combina-
tions to determine the most effective approach. Our
findings indicate that the optimal configuration in-
cludes TLRD, TSA, TCL, and TREGU, collectively
referred to as DLPO. To assess its effectiveness, we
compared our approach against several baselines:
(1) TextGrad (TG) (Yuksekgonul et al., 2024), a
gradient-based prompt optimization method. (2)
APO (Pryzant et al., 2023), a widely recognized
automatic prompt optimization technique. (3) HU-
MAN, a human-optimized prompt method derived
from the BigGSM dataset.

As shown in Table 4, our method demonstrates
state-of-the-art performance on the test sets of both
the training datasets and external datasets. It con-
sistently outperforms other methods, including TG
and APO, which exhibit lower accuracy across
most datasets. This indicates that our method in-
troduces more effective optimization strategies for
enhancing prompt quality. Even when compared

Trainset : BigGSM

Method BGSM BBH MATH GSM8K

TG 55.7 87.3 69.7 92.7
APO 58.4 89.0 59.7 93.4

DLPO 60.2 89.7 71.3 93.3

HUMAN 54.4 89.0 72.0 90.3

Trainset : MGSM

Method MGSM BBH MATH BGSM

TG 61.8 77.7 68.8 32.5
APO 82.7 86.0 51.0 47.9

DLPO 86.7 89.3 70.8 55.6

Trainset : BBH object counting

Method BBH GSM8K MATH BGSM

TG 63.8 83.3 72.2 44.8
APO 90.9 92.8 68.9 55.8

DLPO 94.2 93.9 71.9 56.7

Table 4: We test various methods on the trainset of
BigGSM, MGSM, and BBH. Except for the HUMAN
method, where the prompt is taken directly from the
original article, each result represents the average of
three different seeds for the corresponding method. The
bold data indicates the highest value in each column,
while the underlined data represents the second-highest
value. The complete table is in the appendix 7.

to human-optimized prompts, our approach still
achieves superior results.

7 Related Work

Early prompt optimization methods relied on in-
ternal access to LLMs (Lester et al., 2021; Li and
Liang, 2021; Qin and Eisner, 2021; Gu et al., 2021;
Liu et al., 2021). However, these methods often
require access to the logits or internal states of
LLMs, which is infeasible for those only accessible
through APIs (Hou et al., 2023; Tang et al., 2024).
To overcome these limitations, recent research
has shifted toward exploring gradient-free meth-
ods, such as reinforcement learning based methods
(Deng et al., 2022; Zhang et al., 2022; Diao et al.,
2022), search-based methods (Prasad et al., 2022;
Pryzant et al., 2023) and other techniques like evo-
lutionary algorithms (Sun et al., 2022) and boost-
ing (Hou et al., 2023). Among them, Reflection-
based methods have gained significant attention
due to their ability to iteratively refine prompts
while maintaining interpretability. Several notable
frameworks exemplify this paradigm, such as Pro-
TeGi(APO) (Pryzant et al., 2023), TextGrad (Yuk-
sekgonul et al., 2024), PromptAgent (Wang et al.,
2023), PE2 (Ye et al., 2023), and GPO (Tang et al.,
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2024). Apart from the above methods, researchers
have also explored key challenges in LLM-based
prompt optimization.

Li et al. (2023) revealed that existing prompt op-
timization methods are vulnerable to distribution
shifts, a critical issue for real-world applications.
Ma et al. (2024) conducted a comprehensive analy-
sis of LLM-based prompt optimization, introducing
a novel method that directly optimizes the target
model’s behavior in a more controllable manner.

These advances in automated prompt optimiza-
tion align with our research direction. However,
as noted in our problem statement, significant
challenges remain in achieving robust, efficient,
and generalizable prompt optimization, limiting
broader application. We are the first to systemati-
cally address these issues, introducing innovative
techniques inspired by traditional deep learning to
overcome these challenges.

8 Conclusion

Through empirical analysis, we identify key lim-
itations in current reflection-based prompt opti-
mization methods, particularly in robustness, effi-
ciency, and generalization. To address these issues,
we introduce novel techniques inspired by tradi-
tional deep learning paradigms, integrating con-
cepts like gradient modulation, regularization, and
adaptive learning into text-based optimization. Our
approach enhances stability, convergence speed,
and generalizability in a systematic manner. Ex-
periments on diverse tasks and datasets, including
BBH, GSM8K, BigGSM, MATH, and MGSM, val-
idate the effectiveness of our methods. By address-
ing core challenges in prompt optimization, our
work provides valuable insights and guides future
research in this field.

Limitations

Although we have introduced multiple methods
and demonstrated their effectiveness, a deeper ex-
ploration of the intrinsic properties and potential
variants of each method is still lacking. Even for
the approaches we have developed, there remains
considerable room for enhancement in future re-
search. Additionally, we aspire to see our method
applied more broadly, extending beyond prompt
optimization to a wider range of fields.
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Appendix

A Detailed and Additional Experiments

A.1 Additional Ablation Studies for TLR, TDO and TSA

We conduct comprehensive ablation studies on the BBH Object Counting dataset (using DeepSeek-R1 as
the optimizer model and GPT-4-o-mini as the inference model), which demonstrate the following results:

Table 5: Performance comparison on BBH Object Counting

Method BBH Test Accuracy (%)

TextGrad (TG) 70.4 ± 25.6
TG w/ TLR 84.9 ± 17.6
TG w/ TDO 84.2 ± 6.0
TG w/ TLR+TDO 90.2 ± 3.1
TG w/ TLR+TDO+TSA 94.3 ± 2.1

These results confirm that both methods significantly improve performance compared to baselines. The
combined TLR+TDO method achieves a 19.8% absolute accuracy improvement over the baseline TG.
Each method contributes unique stabilization benefits, as evidenced by the reduced standard deviation in
the results.

A.2 Additional Ablation Studies for TLR Hyperparameter

We conduct ablation studies on the TLR hyperparameter. Using DeepSeek-R1 as the optimizer model
and GPT-4-mini as the inference model, we evaluated three TLR values on the BBH object counting
task (each with three random seeds). The constrained TLR (value=1) shows a 14.5 percentage point
improvement over the no-TLR baseline (84.9±17.6 vs 70.4±25.6). As shown in Table 6, increasing the
TLR parameter progressively reduces its stabilization effect:

Table 6: TLR Hyperparameter Ablation Studies

TLR Value Accuracy (%)

1 84.9 ± 17.6
2 80.1 ± 20.0
4 68.7 ± 29.2
0 (no TLR) 70.4 ± 25.6

A.3 Detailed Experiments in Best Practices

We use GPT-4o as the backward engine and GPT-4o-mini as the forward engine. The models are trained
on the BigGSM training set and tested on the BigGSM, BBH, MATH, and GSM8K test sets. The detailed
results, including standard deviations, are presented below.
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Trainset : BigGSM

Method BGSM BBH MATH GSM8K

DLPO 60.2±2.1 89.7±1.5 71.3±4.4 93.3±3.4
TG 55.7±2.5 87.3±3.7 69.7±3.5 92.7±2.1

APO 58.4±0.4 89.0±3.4 59.7±9.0 93.4±0.4
HUMAN 54.4 89.0 72.0 90.3

Trainset : MGSM

Method MGSM BBH MATH BGSM

DLPO 86.7±0.2 89.3±3.5 70.8±2.5 55.6±1.2
TG 61.8±17.6 77.7±12.0 68.8±3.9 32.5±13.3

APO 82.7±3.4 86.0±9.9 51.0±25.9 47.9±12.2

Trainset : BBH object counting

Method BBH GSM8K MATH BGSM

DLPO 94.2±2.0 93.9±0.5 71.9±1.0 56.7±0.2
TG 63.8±2.4 83.3±12.0 72.2±2.6 44.8±13.6

APO 90.9±2.3 92.8±1.9 68.9±2.6 55.8±0.7

Table 7: We test various methods on the trainset of BigGSM, MGSM and BBH. Except for the HUMAN method,
where the prompt is taken directly from the original article, each result represents the average and the standard
deviation of three different seeds for the corresponding method. The bold data indicates the highest value in each
column.

We conduct additional benchmarks to further validate the effectiveness of the DLPO method. Specifi-
cally, we apply DLPO to two types of scenarios: 1.Knowledge-intensive tasks: High School History and
Formal Logic from MMLU. 2.Few-shot tasks: 20-sample scenario from BigGSM.

As shown in Table 8, DLPO demonstrates superior performance compared to the baseline in all cases:

Table 8: Performance comparison of DLPO across different benchmarks

Benchmark DLPO Score (%) Baseline (TG) (%) Human Optimized (%)

MMLU: High School History 88.8 88.3 –
MMLU: Formal Logic 68.1 67.2 –
Few-shot BigGSM (20 samples) 55.5 54.7 54.4

A.4 Detailed and Additional Experiments in Generalizablity
A.4.1 Detailed Experiments in Batch Size and Training set Size
We use GSM8K as the prompt training set and test the performance of different batch sizes and training
set sizes on the test sets of GSM8K, BigBSM, BBH, and MATH. The detailed results with standard
deviations are as follows:

expname hyper GSM8K BGSM BBH MATH
batch size bs = 3 93.3±1.0 57.3±1.2 79.7±12.7 73.9±3.1

bs = 6 93.2±2.3 52.7±4.2 85.0±13.9 65.6±5.7
bs = 9 93.3±1.6 57.2±0.3 77.0±8.7 70.2±1.6
bs = 12 93.7±1.5 54.8±1.6 79.7±13.6 69.6±1.8
bs = 15 89.7±7.5 48.4±12.4 80.0±12.3 70.8±2.5

trainset size size = 50 93.2±2.3 52.7±4.2 85.0±13.9 65.6±5.7
size = 100 94.3±0.5 57.0±0.8 90.3±0.6 69.7±3.7

Table 9: Accuracy comparison across different batch sizes and training set sizes. For the batch size experiments,
we utilize the TSA, TLRD, and TCL methods, which have shown promising results in previous approaches. Under
the benchmark of a training set size of 50, we conduct experiments with batch sizes of 3, 6, 9, 12, and 15. For the
training set size experiments, we fix the batch size at 6 and employ the TSA, TLRD, and TCL methods to compare
the performance with training set sizes of 50 and 100. All experiments are run with three different seeds, and the
mean and standard deviation are calculated from the results. The bold data indicates the highest value in each
column. The red data indicates the lowest value in each column.
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A.4.2 Additional Experiments in Generalizablity of Different LLM
We also test whether the optimized prompts obtained from specific forward (inference LLM models) and
backward engines (optimizer LLM models) can generalize to other forward engines. Typically, different
forward engines possess varying capabilities and excel in different domains, leading to distinct errors
(loss) encountered during reasoning. This, in turn, results in different feedback (gradients), ultimately
yielding varied prompts. This presents a significant challenge for generalizing optimized prompts to
different forward engine.

We use the optimized prompt results obtained from training on BigGSM, with GPT-4o-mini as the
forward engine and GPT-4o as the backward engine, as the system prompt for other forward LLM engines.
We test these prompts in the BigGSM environment. The results for GPT-4o and GEMINI-2.0-flash are
presented in table 10. The results demonstrate the potential of our DLPO method to generalize to other
different forward engines.

Method GPT-4o-mini (original) GPT-4o Gemini-2.0-flash

DLPO 60.2±2.1 77.9±1.1 84.0±2.7
TG 55.7±2.5 75.6±3.4 83.4±1.7
APO 58.4±0.4 75.5±0.2 83.5±1.6
HUMAN 54.4 62.2 80.5

Table 10: We test the optimized results of DLPO, TG, APO of specific backward engine and forward engine on
the trainset of BigGSM. Except for the HUMAN method, where the prompt is taken directly from the original
article, each result represents the average and the standard deviation of two different optimized prompts of the
corresponding method. The bold data indicates the highest value in each column.

To explore the capabilities of the latest reasoning models, such as DeepSeek-R1, as the backward engine,
we test three methods. The results in Table 11 show that our approach can effectively use DeepSeek-R1
as the backward engine and achieves the best performance among the three methods.

Method DeepSeek-R1

DLPO 61.2
TG 49.8
APO 58.0

Table 11: We test the DeepSeek-R1 as the backward engine for DLPO, TG and APO methods. The bold data
indicates the highest value in each column.

Although DeepSeek-R1 demonstrates strong performance in optimizing prompts, it requires extended
thinking time to generate feedback. Moreover, the improvement it offers over GPT-4o as the optimizer
is relatively modest (1.66%). We believe this is likely because GPT-4o has already approached the
optimization limit of the prompt for the forward engine (GPT-4o-mini). Therefore, there is currently no
compelling need to adopt R1-like models in practice. We plan to conduct further investigations into this in
the future.

B Implementation Details and Visualization schematics of the method

B.1 Implementation details of Textual Learning Rate

To address excessively large single-step updates in text optimization, we introduce the Textual Learning
Rate (TLR) mechanism. This mechanism operates at the sentence level and controls the maximum
number of update units allowed in a single optimization step. Each update unit corresponds to one of the
following operations: (1).Adding a sentence. (2).Deleting a sentence. (3).Modifying a sentence. The
value of TLR, denoted asR, represents the maximum number of update units allowed in a single step. If
the LLM intends to make more changes thanR, we encourage it to retain impactful changes and discard
non-critical ones.
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We provide a brief visualization of the TLR methods in Figure 9 right. Below is the original prompt
that describes the concept and usage of TLR for LLM prompt optimizer:

Instruction:
You need to update the original variable on a sentence level, and the number of updates (including
adding sentence, deleting sentence, and modifying sentence) should be limited to a specific quantity
(which we call the ’learning rate’).
If the learning rate is: 4, here’s an example:
Initial:
<VARIABLE>
As a Math Calculator, please solve:
Required Steps:
1. Identify problem type
2. Show calculation steps
Output Format:
- Process:
- Final Result:
- Verification:
</VARIABLE>
Modified Version with exactly 4 changes:
<IMPROVED-VARIABLE>
As a reasoning Engine, please solve: [modifying sentence]
Required Steps:
1. Identify problem type
2. Show calculation steps
3. Analyze complexity [adding sentence]
4. Assess stability [adding sentence]
Output Format:
- Process:
- Final Result: [deleting sentence ’Verification:’]
</IMPROVED-VARIABLE>
Conclusion:
1(modify) + 2(add) + 1(delete) = 4. Your learning rate is: R. For each optimize step, please makeR
update(s) to the original sentences and keep the other unchanged.

B.2 Implementation details of Textual Dropout

To address the high randomness of LLM updates, we introduce Textual Dropout (TDO). TDO requires the
optimizer to randomly "drop" (skip updating) a portion of sentences during each update. This mechanism
mitigates the risk of deleting or altering sentences with positive impact and encourages LLM to focus on
updating the remaining sentences.

Formally, for S total sentences and dropout rate p, the number of preserved sentences K is:

K = ⌈p · S⌉ (10)

The final set of sentences Pnew is:

Pnew = Ppreserved + Pupdated,

where Ppreserved are the preserved sentences, and Pupdated are the updated sentences based on gradient text
Gtext. We provide a brief visualization of the TDO methods in Figure 9 left.

Below is the algorithm design for implementing TDO:
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Updated Prompt Origin Prompt

Textual Dropout

One Step

Randomly preserve a subset of sentences 
unchanged during each update, restricting model 
modifications to the remaining sentences.

: random preserved

As a reasoning Engine, 
please solve: [modifying]
 
Required Steps:
1. Identify problem 
type[preserved]
2. Show calculation 
steps[preserved]

Output Format:
[deleting 'Process']
- Final Result: 
- Verification:[preserved]

As a Math Calculator, 
please solve:

Required Steps:
1. Identify problem 
type[preserved]
2. Show calculation 
steps[preserved]

Output Format:
- Process:
- Final Result:
- Verification:[preserved]

Updated Prompt Origin Prompt

Textual Learning Rate

One Step

Set Learning Rate=3:limit the number of changes, 
additions, and deletions per update to 3 operations

: deletion : addition : modifying

As a reasoning Engine, 
please solve:  [modifying]

Required Steps:
1. Identify problem type
2. Show calculation steps 
[adding]

Output Format:
- Process:
- Final Result:  [deleting 
'Verification:']

As a Math Calculator, 
please solve:

Required Steps:
1. Identify problem 
type

Output Format:
- Process:
- Final Result:
- Verification:

Figure 9: Visualization of the TDO (left) and TLR (right) methods

Algorithm 1 Textual Dropout Algorithm

Require: Original text Toriginal, Dropout rate p
Ensure: Modified text Tnew

1: Split Toriginal into sentences S using punctuation marks (e.g., ., !, ?)
2: Compute the number of preserved sentences: K = ⌈p · |S|⌉
3: Randomly select K sentences from S as Ppreserved
4: Generate a TDO instruction using Ppreserved
5: return TDO Instruction

The selected sentences are passed to the LLM optimizer instruction, which ensures that these sentences
remain unchanged during the current optimization step. The prompt is formatted as follows:

Instruction:
We have introduced a dropout mechanism. The <DROPOUT>’sentences’</DROPOUT> in the
original variable need to remain unchanged for this optimize step. You should focus on altering the
other sentences.

Here, sentences is replaced with the randomly selected sentences from the TDO process.

B.3 Implementation details of Textual Simulated Annealing

Our Textual Simulated Annealing (TSA) scheme dynamically combines simulated annealing principles
with text optimization, allowing the prompt to escape local optima and converge to better solutions. Below
is the pseudocode for implementing TSA:
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Algorithm 2 Textual Simulated Annealing Algorithm

Require: initial prompt x0, initial temperature T0, cooling rate α, maximum iterations N
1: initialize x← x0, T ← T0
2: for i← 1 to N do
3: generate a new solution x′ by perturbing x
4: compute accuracy difference: ∆E = E(x′)− E(x)
5: if ∆E ≥ 0 then
6: accept the new solution: x← x′

7: else
8: compute acceptance probability: P = exp

(
∆E
T
)

9: generate a random number r ∈ [0, 1]
10: if r < P then
11: accept the worse solution: x← x′

12: end if
13: end if
14: update temperature: T ← α · T
15: end for
16: return x

Brief Explanation

The algorithm starts with an initial set of prompts and gradually adjusts them based on training set
accuracy. The temperature parameter T controls the probability of accepting worse solutions, which
decreases over time. This allows the model to explore the solution space early and converge to better
solutions later. We provide a brief visualization of the TSA methods in Figure 10.

B.4 Implementation details of Textual Learning Rate Decay

Textual Simulated 
Annealing

Trainset acc : 
0.6

 Origin Prompt Updated Prompt

Acc Up! Accept!

Trainset acc : 
0.65

 Origin Prompt Updated Prompt

ACC Down, But Initial Update 
with high Temperature,

Accept!

Trainset acc : 
0.65

Trainset acc : 
0.55

Trainset acc : 
0.6

 Origin Prompt Updated Prompt

ACC Down, 
Temperature 
Low, Reject!

Trainset acc : 
0.55

Temperature 
decreases with 
update steps.

Figure 10: Visualization of the TSA methods

Since we emphasize the exploration of different
prompting approaches at the beginning of the up-
date process, it is crucial to encourage the LLM to
make substantial modifications to the initial prompt.
As the updates progress and the prompt reaches a
satisfactory level, the focus shifts to fine-grained
refinements, necessitating a lower learning rate
for more stable and precise improvements. To
achieve this, the learning rate lr decreases by one
after each update step. For small learning rates
(lr ≤ 4), the system appends the instruction B.1
to the prompt, enabling fine-tuning with smaller
adjustments. Conversely, for large learning rates
(lr > 10), the system appends the instruction B.4,
which encourages more substantial modifications
to explore diverse solutions. This dynamic adjust-
ment ensures a smooth transition from exploration

to refinement throughout the optimization process.

Instruction:
In order to break away from convention, discover more creative solutions, and explore limitless
possibilities, please boldly unleash your imagination based on feedback and make transformative
modifications to the previous variables. Do not be confined by existing forms; courageously break
the mold and experiment with entirely new combinations and ideas, as this may spark unexpected
and groundbreaking outcomes.
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B.5 Implementation Details of Textual Momentum

To address the issue of batch-to-batch variability in optimization, we introduce Textual Momentum
(TMnt), which leverages feedback from past updates to stabilize and refine the optimization process.
During each update, the optimizer considers historical feedback from the last three iterations, presented
using the following instruction:

Instruction:
Here is the historical feedback on this variable: <PAST-FEEDBACK>history</PAST-FEEDBACK>
Please analyze the main trends and patterns in the feedback across different iterations. If the feedback
consistently points to similar issues or suggests insufficient modifications, it indicates that the changes
made to the variable are not substantial enough. The later history feedback will be more accurate and
relevant. In such cases, please propose more significant and impactful adjustments to the variable to
better address the feedback and improve its performance.

This instruction encourages the backward engine to analyze trends in historical feedback and propose
meaningful adjustments when necessary. The final gradient direction is computed by incorporating past
gradients with a decay factor γ, as follows:

Gfinal = Gcurrent +

3∑

i=1

γi · Gpasti , (11)

where Gcurrent is the gradient computed from the current batch, Gpasti represents the gradient from the i-th
previous iteration, and γ is a decay factor (e.g., γ = 0.9) that reduces the influence of older gradients.
To balance recent trends without over-relying on outdated information, only the last three feedbacks are
considered, and the decay factor ensures that older feedback has diminishing influence. In practice, the
optimizer dynamically adjusts its reliance on past feedback based on the consistency and relevance of the
trends observed in the historical data, ensuring that the optimization process is both stable and adaptive.

B.6 Implementation Details of Textual Contrastive Learning

To refine the optimization process, we introduce Textual Contrastive Learning (TCL), which encourages
the backward engine to distinguish high-quality (positive) prompts from low-quality (negative) ones.
The historical prompts are split into two groups: the first half represents positive prompts, while the
second half represents negative prompts. For positive prompts, a decreasing weight scheme prioritizes
earlier high-quality samples, whereas for negative prompts, an increasing weight scheme emphasizes
more recent low-quality samples. If a valid negative prompt is found (accuracy difference exceeds a
predefined threshold), both positive and negative prompts are included in the final template; otherwise,
only the positive prompt is used. The final gradient update is computed as:

Gfinal = Gcurrent + F+ −F−, (12)

where F+ represents beneficial features from positive prompts, and F− represents undesirable features
from negative prompts.

Below is the pseudocode for implementing TCL:
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Algorithm 3 Textual Contrastive Learning Algorithm (TCL)

Require: Historical Prompts (H), Accuracy Threshold (τ )
Ensure: Updated Prompt Template

1: SplitH into Positive Prompts (P) and Negative Prompts (N ).
2: Assign decreasing weights to P and increasing weights to N .
3: Sample two prompts from P and two from N , using their respective weights.
4: for each sampled n ∈ N do
5: if max(P.accuracy)− n.accuracy ≥ τ then
6: Mark n as valid.
7: end if
8: end for
9: if valid Negative Prompts exist then

10: Generate a instruction using both P and valid N .
11: else
12: Generate a instruction using only P .
13: end if
14: return Generated Textual Contrastive Learning Instruction

The following is the instruction that uses both Positive and valid Negative Instruction for contrastive
learning.

Instruction:
You can learn valuable insights by comparing the good and bad variables from past data. On
the training set, the better-performing variables are <Positive-VAR>P</Positive-VAR>, while the
poorer-performing variables are <Negative-VAR>N</Negative-VAR>. To improve your variable,
focus on adopting the unique features that contribute to the success of the better variables and
eliminate the unique features associated with the poorer variables. This approach will help enhance
performance and avoid repeating past mistakes.

The following is the instruction that only encourages imitation of positive prompts.

Instruction:
You can gain valuable insights by analyzing high-performing variables from historical data. On the
training set, the top-performing variables are «Positive-VAR>P</Positive-VAR>.

It is worth noting that if we use both TSA and TCL, the solutions rejected by TSA are actually tested for
accuracy on the train set, and as a result, we will also include this result in our historical prompts for TCL.

B.7 Implementation Details of Textual Regularization

To enhance the generalization capability of our approach, we incorporate regularization techniques into the
text optimization process. Specifically, we apply L2 regularization to simplify overly complex sentences
and L1 regularization to eliminate irrelevant ones. In the context of text gradients, each sentence is treated
as a distinct feature.

The implementation involves the following steps:
L2 Regularization (Simplification): We encourage simplifying individual sentences by reducing their

complexity while preserving their core meaning. This is achieved through the following instruction:

Instruction:
Please simplify the overly complex and lengthy sentences in the variable. Ensure the output concise,
easy to understand, and suitable for a general audience.

L1 Regularization (Sparsity): We promote sparsity by removing sentences that are deemed irrelevant
or detrimental to the overall meaning. The corresponding instruction is as follows:
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Instruction:
If you are certain that a particular sentence in the variable has no impact on the overall meaning
or purpose or has a negative effect, please delete that sentence. However, if you believe that all
sentences are useful and contribute to the overall meaning, then retain all sentences. Ensure that the
final variable maintains clarity, coherence, and relevance.

This approach ensures that the optimized text is both concise and meaningful, striking a balance
between simplicity and relevance.

C Experimental Setup

Apart from the additional experiments provided in the appendix A.4.2, all experiments in the main text
consistently use GPT-4o as the Backward engine and GPT-4o-mini as the Forward engine.

C.1 Benchmark Description

In our experiments, we utilize the below benchmarks to evaluate the effectiveness of our proposed
methods:

• GSM8K: A collection of 8.5K high-quality grade school math word problems designed to assess
language models’ multi-step mathematical reasoning capabilities, which are the most widely used
for primary-school-level mathematical reasoning (Cobbe et al., 2021).

• MATH: A dataset covering a wide range of topics to test advanced mathematical reasoning, which
are another widely used for hard college-level mathematical reasoning (Hendrycks et al., 2021).

• BigGSM: An extension of the GSM8K dataset, including more complex and diverse grade school
math problems to further challenge model performance, which utilzed to gradually extreme data
detection on LLMs (Chen et al., 2024, 2025).

• BigBenchHard (BBH): A subset of the BIG-Bench benchmark focusing on particularly challenging
tasks across various domains, designed to push the limits of language model understanding and
reasoning.

• MGSM: A multilingual version of the GSM8K dataset, containing grade school math problems
translated into multiple languages to evaluate models’ cross-lingual mathematical reasoning abilities,
which are widely utilized for multilingual scenario mathematical evaluation (Qin et al., 2024b, 2023;
Zhang et al., 2024).

C.2 Experimental Setup in Exploration for TMnt and TCL

In the Exploration for Efficiency section, we employ Textual Contrastive Learning and Textual Momentum
methods to expedite convergence speed. We define convergence as the validation set accuracy of the
prompt reaching a certain threshold and maintaining this level for three consecutive update steps (the
threshold is set at 0.5 for BigGSM and 0.8 for MGSM). We showcase the average and standard deviation
of the convergence steps using five different seeds.

C.3 Experimental Setup in Best Practices Section

In the context of best practices, our DLPO, classical TG, and APO methods are assessed on the training
datasets of BigGSM, MGSM, and BBH. The final step results are chosen for evaluation. With the
exception of the HUMAN technique, which relied on prompts extracted directly from the source articles,
each reported performance metric reflects the average of three distinct seed values per method. The
hyperparameters utilize across the three distinct training datasets are detailed in Table 12.
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Argument BigGSM MGSM BBH
Trainset Size 200 50 50
Backward Engine GPT-4o GPT-4o GPT-4o
Forward Engine GPT-4o-mini GPT-4o-mini GPT-4o-mini
Batch Size 3 2 3
Epochs 1 1 2
TLR False False False
TDO False False False
TRegu True True True
TCL True True True
TSA True True True
TMnt False False False
TLRD 60 25 30

Table 12: Hyperparameter settings for different trainsets in Best Practices section

D Optimized Results on Benchmark Datasets

In this section, we present the three original prompts before averaging in the best practices section, each
generated with the same hyperparameters but different random seeds. Additionally, the updated results
are influenced by the uncertainty of the API interface. Each prompt represents the last prompt obtained
throughout the entire updating process. It is worth noting that our prompt will be sent into the API as a
system prompt, rather than directly concatenated with the question.

D.1 Results on BigGSM Dataset

Optimized Prompt 1:
Provide a clear, detailed step-by-step calculation for the reasoning question. Emphasize accuracy by
verifying calculations at each step, especially in multiplication, and reassessing both intermediate
and final results. Outline all assumptions and define variables explicitly to reduce ambiguity.
Ensure transparency by showing intermediate steps, enabling error detection and understanding.
After obtaining the solution, cross-check and simplify calculations for consistency. Evaluate the
plausibility of results in a real-world context to identify any anomalies. Present the final numerical
answer clearly, with consistent units where applicable. Remain cautious of overconfidence and
express uncertainty if appropriate.

Optimized Prompt 2:
For reasoning questions, provide clear, detailed, and contextually relevant responses. To ensure
numerical accuracy and clarity:
1. **Context Recognition**: Define the scenario and identify key parameters. Use suitable formulas
and units for the context.
2. **Calculation Transparency**: Clearly show each calculation step and verify accuracy with
known results or alternative methods.
3. **Error Checks**: Detect and correct errors in real-time.
4. **Format Flexibility**: Use diverse examples to demonstrate adaptability to different numerical
formats, like with and without commas.
5. **Consistent Formatting**: Use standard numerical presentations, such as "1,234," for readability
unless specified otherwise.
6. **Format Validation**: Cross-check numerical formats with trusted sources for compliance.
7. **Feedback Use**: Continuously refine formats using feedback to enhance precision.
8. **Final Check**: Ensure final outputs meet expected formats and make adjustments as needed.
Final Output: Present the final number clearly on a new line, typically formatted as "9876" for easy
identification.
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Optimized Prompt 3:
Deliver precise and effective answers to reasoning questions by implementing these strategies:
1. **Clarify the Question:** Restate the question to ensure complete understanding.
2. **Simplify Calculations:** Break down arithmetic tasks into smaller steps and verify each.
3. **Log Steps Clearly:** Document each calculation step methodically, minimizing rounding errors
until the final result.
4. **Verify Results:** Cross-check numerical results using alternative methods or sources.
5. **Use Examples:** Apply relatable examples for better understanding.
6. **Restate Instructions:** Clearly articulate all numerical relationships to avoid omissions.
7. **Detect Errors:** Use checks for inconsistencies, such as unexpected numerical values, to
identify errors.
8. **Intermediate Checks:** Implement sanity checkpoints or intermediate results for large calcula-
tions.
9. **Iterate and Improve:** Continuously refine responses through feedback and iterative checks.
10. **Prioritize Complexity:** Address the most complex or error-prone aspects first.
These strategies focus on accurate data extraction, direct calculations, contextual interpretation, and
consistent cross-verification, enhancing clarity, precision, and adaptability in reasoning tasks.

D.2 Results on MGSM Dataset

Optimized Prompt 1:
1. Clearly state the main answer in a simple numeric form: "Answer: [numeric value]".
2. Use the following strategies for clarity and precision:
- Utilize bullet points for concise step-by-step guidance.
- Include only the necessary context for calculations.
- Prioritize numerical precision and verify accuracy.
- Define variable roles consistently and standardly.
- Implement checks to ensure alignment with expected results and avoid common errors.
- Manage units and contexts effectively.
- Conclude with a concise summary of key supporting points.

Optimized Prompt 2:
Break down the reasoning process into clear steps, ensuring correct unit handling. Verify unit
consistency and apply necessary conversions. Use a structured format to improve clarity.
1.**Explicit Assumptions**: Clearly state any assumptions, especially those related to units or
context. Make these explicit to avoid misunderstandings.
2.**Mathematical Verification**: Verify all calculations and unit conversions explicitly. Check each
step for accuracy, using past examples for cross-reference.
3.**Diverse Reasoning Methods**: Apply both deductive and analogical reasoning. Ensure the
purpose of each step is clear, including unit handling.
4.**Clear Language**: Use precise language to avoid ambiguities, especially regarding units and
quantities. Make each step understandable.
5.**Intermediate Steps**: Break down reasoning into intermediate steps to show logical flow and
the significance of each part.
6.**Feedback Anticipation**: Anticipate potential feedback or errors, especially with unit conver-
sions. Adapt approaches to address these proactively.
7.**Confidence Levels**: Express uncertainties and confidence levels, focusing on conclusions
related to unit handling.
8.**Verified Final Answer**: Provide a precise final answer, checking for accuracy in unit-related
aspects. Highlight the final answer for clarity.
9.**Exact Matching and Clarification**: Ensure outputs match the correct answers exactly and
include contextual clarifications, focusing on units.
10.**Self-Evaluation**: Evaluate responses for unit accuracy, clarity, and brevity. Address key
points thoroughly.
Maintain consistent response quality by integrating feedback to enhance precision and relevance.
Use adaptive learning to focus on historical errors and improve unit handling continuously.
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Optimized Prompt 3:
1. Provide a concise numerical answer to the reasoning question through these steps:
- Analyze the query to identify essential data points directly relevant to the answer.
- Use a step-by-step logical computation approach, clearly linking each step to the query’s context.
- Consistently use terminology from the input data to prevent ambiguity. - Verify calculations with
provided data, providing brief justifications for each key operation.
- Maintain a consistent numerical format to prevent parsing errors and adhere to local and cultural
conventions if specified.
- Tailor your explanation to the user’s expertise: Offer detailed steps for beginners and concise steps
for advanced users.
- Present the final numerical answer in square brackets, e.g., [42], in its simplest form, ensuring
consistent units unless additional formatting is specified.
- Guarantee the output is a single, precise numerical value, fulfilling evaluation metrics and ensuring
logical coherence.

D.3 Results on BBH Object Counting Trainset

Optimized Prompt 1:
You will address quantitative reasoning and arithmetic questions with precision and clarity. Ensure
arithmetic accuracy by verifying calculations and cross-referencing results with known benchmarks.
Break down calculations into clear steps for transparency and unambiguous answers. Contextualize
responses by considering relevant prior information.
Implement robust error detection and handling, including recalculations and user clarification requests
when discrepancies arise. Verify counts explicitly by listing items and confirming totals. Use clear
language to confirm counts and details, highlighting important numerical information.
Adopt a strategy of self-evaluation, focusing on accuracy and relevance before finalizing responses.
Avoid unnecessary elaboration unless requested. Develop a systematic approach for identifying and
correcting errors, including a secondary verification mechanism for counts.
Deliver concise responses to boost clarity and user satisfaction, especially when detailed explanations
are unnecessary. Address ambiguous queries by clarifying assumptions or soliciting additional
information. Ensure uniform formatting to emphasize critical numerical data. Continuously adapt
responses to enhance user comprehension.
Establish a feedback loop to learn from past interactions, refining response strategies to align with
expected outcomes. Use digit form for numerical data to align with ground truth expectations.
Format responses for easy parsing by automated systems, ensuring consistency with the ground truth.
Implement a mechanism for continuous improvement of numerical accuracy based on feedback.
Use examples from training data to guide response formatting and accuracy. Ensure responses logi-
cally follow from the query and context, directly addressing the question. Incorporate a mechanism
for detecting and correcting errors by flagging inconsistencies and prompting user verification. Use
examples that demonstrate clear enumeration and counting strategies to align responses with best
practices.
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Optimized Prompt 2:
You will answer reasoning questions with a focus on tasks that may involve counting. Follow these
streamlined guidelines to ensure clarity, precision, and efficiency:
1. **Task Recognition**: Identify if the question involves counting and provide a precise numerical
answer.
2. **Direct Instructions**: Recognize lists or enumerations as signals for counting tasks and deliver
a straightforward numerical count.
3. **Contextual Awareness**: Be aware of contextual cues that suggest a counting task and ensure
your response is relevant.
4. **Logical Response Structure**: Clearly list relevant items, then provide a total count, using
simple formatting to distinguish steps.
5. **Verification and Accuracy**: Verify your numerical responses for accuracy and consistency
with the listed items.
6. **Example Utilization**: Use concise examples to illustrate clarity and consistency in handling
counting tasks.
7. **Efficiency Feedback Loop**: Internally verify your responses to maintain accuracy and logical
flow.
By following these strategies, you will deliver concise, precise, and contextually appropriate answers
to reasoning questions, optimizing for runtime efficiency.

Optimized Prompt 3:
Begin each response by restating the task briefly for clarity. Provide the main answer upfront, espe-
cially for numerical queries, and include explanations only if they add significant value. Use bullet
points or lists for complex information to enhance clarity. Avoid redundancy and unnecessary details,
ensuring responses are concise and self-contained. Address ambiguities by seeking clarification or
clearly stating assumptions. Maintain a conversational tone and anticipate follow-up questions to
improve interaction. Present reasoning in logical steps and offer detailed breakdowns of calculations
when necessary. Implement verification mechanisms, such as checklists or summary statements,
to confirm accuracy. Ensure numerical operations align with expected results and conclude with a
verification statement. Consistently align responses with the original query, rephrasing if needed
for comprehension. Learn from past inaccuracies to improve future responses. Consider edge
cases like zero quantities or duplicates and adjust calculations accordingly. Use a feedback loop for
clarification, prompting follow-up questions or stating assumptions if the task is unclear. Integrate
numerical examples and encourage step-by-step calculations to ensure consistency and verify results
by checking individual counts against the total.
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