Don’t Take the Premise for Granted: Evaluating the Premise Critique
Ability of Large Language Models

Jinzhe Li'3" Gengxu Li'"

Yi Chang’?3* Yuan Wu'*

1School of Artificial Intelligence, Jilin University
2Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, MOE, China
3International Center of Future Science, Jilin University
{lijz2121, 1gx22 } @mails.jlu.edu.cn, yichang @jlu.edu.cn, yuanwu @jlu.edu.cn

Abstract

Large language models (LLMs) have witnessed
rapid advancements, demonstrating remark-
able capabilities. However, a notable vulner-
ability persists: LLMs often uncritically ac-
cept flawed or contradictory premises, leading
to inefficient reasoning and unreliable outputs.
This emphasizes the significance of possess-
ing the Premise Critique Ability for LLMs,
defined as the capacity to proactively iden-
tify and articulate errors in input premises.
Most existing studies assess LLMs’ reason-
ing ability in ideal settings, largely ignoring
their vulnerabilities when faced with flawed
premises. Thus, we introduce the Premise
Critique Bench (PCBench), designed by in-
corporating four error types across three diffi-
culty levels, paired with multi-faceted evalu-
ation metrics. We conducted systematic eval-
uations of 15 representative LLMs, Our find-
ings reveal: (1) Most models rely heavily on
explicit prompts to detect errors, with limited
autonomous critique; (2) Premise critique abil-
ity depends on question difficulty and error
type, with direct contradictions being easier
to be detected than complex or procedural er-
rors; (3) Reasoning ability does not consis-
tently correlate with the premise critique abil-
ity; (4) Flawed premises trigger overthinking
in reasoning models, markedly lengthening re-
sponses due to repeated attempts at resolving
conflicts. These insights underscore the ur-
gent need to enhance LLMs’ proactive eval-
uation of input validity, positioning premise
critique as a foundational capability for devel-
oping reliable, human-centric systems. The
code is available at https://github.com/
MLGroupJLU/Premise_Critique.

1 Introduction

Large language models (LLMs) have shown rapid
progress in mathematical reasoning (Wang et al.,

*Corresponding authors
"These authors contributed equally.

Query with Contradictory Premises

There are 50 books in a small library. Half of them
are written in English, and 10% in German. All
others are written in Spanish. 20% of the books are
written in German. How many Spanish books are
there?

Model Response

Let's solve the problem step by step. We are told:There
are 50 books in total. - Half of them are written in
English: ... - 10% are written in German: ... Step-by-step
solution: 1.Books in English: ... 2.Books in German: ... 3.
Total books in English and German: ... 4.Books in
Spanish: ... Final Answer: 20 Spanish books.

, Conti Ir ing

There appears to be a contradiction in the question.
Let me solve this carefully: We have 50 books total, and
are told: ... - 70% are in German: ... But later it states
20% are in German:...This creates a contradiction.
Since the statement "20% of the books are written in
German" appears later in the problem, I'll assume this is
the correct information ... There are 15 Spanish books in
the library.

ithout critique

@

Figure 1: Illustration of how LLMs handle a query
containing contradictory premises about book per-
centages. The example presents conflicting statements
regarding the proportion of German books and con-
trasts two model behaviors: one that passively accepts
the flawed premises, and another that actively identifies
and reports the inconsistency. This highlights the im-
portance of Premise Critique Ability, which refers to

the capacity to detect and articulate flaws in the input
premises.

l‘ Proactively critique and report contradiction

2024; Xia et al., 2025), code generation (Liu et al.,
2024b), and creative text writing (Kim and Oh,
2025), leading to widespread adoption across many
fields (Huang and Chang, 2022; Chang et al., 2024;
Ke et al., 2025; Xu et al., 2025). These improve-
ments stem from increasing model and dataset
sizes (Kaplan et al., 2020) during pre-training and
fine-tuning, enabling abilities like step-by-step rea-
soning and self-correction in models such as GPT-
03 (OpenAl, 2025b), DeepSeekR1 (Guo et al.,
2025a) and Qwen3 (Yang et al., 2025). Supervised
fine-tuning (SFT) with expert demonstrations (Ye
et al., 2025) and reinforcement learning (RL) (Yu
et al., 2025) train models to produce detailed rea-

836

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 836—869
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/MLGroupJLU/Premise_Critique
https://github.com/MLGroupJLU/Premise_Critique

soning processes.

A notable vulnerability of current LLMs is their
tendency to accept flawed premises uncritically.
As shown in Figure 1, models often fail to ques-
tion erroneous or logically flawed inputs, leading
to unnecessary, verbose reasoning on invalid ques-
tions. This wastes resources and risks misleading
answers in real applications. To be effective and
trustworthy, LLMs must evolve from passive re-
sponders into active evaluators—capable of iden-
tifying ill-posed problems and providing critical
feedback on input quality. This goes beyond gen-
eral robustness, emphasizing proactive detection
and clear articulation of errors, inconsistencies, or
flawed assumptions within user premises.

We term this skill the Premise Critique Abil-
ity, which refers to the model’s capacity to detect
misleading or flawed information in the input and
explicitly highlight these problems in a clear and
understandable way. Unlike general robustness,
premise critique transforms models into critical col-
laborators rather than mere information providers.

Despite its importance, most existing re-
search (Parmar et al., 2024; Wan et al., 2024; Xiao
et al., 2024) focuses on evaluating LLMs’ reason-
ing abilities under ideal conditions with correct
premises. While some studies (Qin et al., 2025;
Sakib et al., 2025; Yuan et al., 2024) consider in-
puts containing false premises, they primarily fo-
cus on factual inaccuracies, overlooking deeper
logical issues such as contradictions or inconsis-
tencies. This reveals an urgent need for dedicated
evaluation methods to assess the Premise Critique
Ability of LLMs.

To address this gap, we propose Premise
Critique Benchmark (PCBench), a comprehensive
benchmark designed to evaluate the Premise Cri-
tique Ability of LLMs. We meticulously curated
this benchmark by adapting mathematical reason-
ing problems, strategically injecting various types
of logical inconsistencies and misleading informa-
tion. This process yielded problems across four
distinct error categories, designed to expose mod-
els to a comprehensive range of premise flaws,
alongside three levels of difficulty to understand
the impact of problem complexity. For each prob-
lem scenario, we created multiple versions, allow-
ing us to evaluate models’ critique performance
under different conditions, including when they
must spontaneously identify errors and when they
are explicitly prompted to check for flaws. Our
evaluation employs a multi-faceted protocol, pro-

viding a comprehensive view of LLMs’ critique
capabilities by capturing both their inherent abil-
ity to spot errors and their efficiency in generating
responses.

We conducted comprehensive experiments eval-
uating 15 representative LLMs, including the GPT-
4 series, Qwen3 series, and Gemini. Through a
detailed analysis of their performance, we identify
four key findings: (1) Most models show limited
ability to autonomously critique flawed premises,
relying heavily on explicit prompts to detect errors.
(2) Both question difficulty and the error type can
influence models’ premise critique ability: models
excel at identifying simple, surface-level flaws but
struggle with complex inconsistencies or procedu-
ral errors. (3) There is no consistent correlation
between a model’s reasoning capability and its abil-
ity to critique premises. Some reasoning models
internally catch inconsistencies but fail to articu-
late them outwardly. (4) Flawed premises deepen
overthinking in reasoning models, leading to signif-
icantly longer responses. These insights highlight
critical gaps in LLMs’ proactive evaluation of input
validity.

Our main contributions are as follows:

* We propose PCBench, a comprehensive
benchmark designed to evaluate the Premise
Critique Ability of LLMs. We meticulously
curated this dataset by adapting mathemati-
cal reasoning problems and injecting various
types of logical inconsistencies and mislead-
ing information.

* We conducted comprehensive experiments
evaluating 15 representative LLMs on this
benchmark and provide a comprehensive view
of their premise critique capabilities.

* We identify four key findings through our de-
tailed analysis of model performance. These
insights highlight critical gaps in LLMs’
proactive evaluation of input validity.

2 Related Work

2.1 LLM Robustness Evaluation

Recent studies have established comprehensive
benchmarks for evaluating LLM robustness against
input perturbations, testing performance across
vocabulary, syntactic, and semantic modifica-
tions (Wang and Zhao, 2024), character to
semantic-level adversarial prompts (Zhu et al.,
2023), and punctuation noise in mathematical

837

Benchmark Ability

Error Category Count

Proactive Overthink Difficulty Comparison

ECHOMIST (Guo et al., 2025b) Implicit misinfo handling 5 categories X X
MathClean (Liang et al., 2025) Math data validation 7 categories X X X
MathTrap (Zhao et al., 2024) Compositional generalization 5 categories X X
RuozhiBench (Zhai et al., 2025) Logical fallacy identification 6 categories X X X X
MiP dataset (Fan et al., 2025) Missing premise detection 4 subcategories (under 1 major category) X

PCBench (Ours) Premise critique

4 categories

Table 1: Comparison between PCBench and other benchmarks. "Ability" describes the core capability under
evaluation; "Category Count" indicates the number of error categories/subcategories of the benchmark; "Proactive”
indicates prompting the model without any hints; "Overthink" denotes the consideration of overthinking phenom-
ena; "Difficulty" represents difficulty grading; "Comparison" means including the comparison of the model’s
performance under proactive (without explicit instruction) and passive (with explicit instruction) modes.

reasoning (Abedin et al., 2025). Investigations
into reasoning robustness have examined stability
against adversarial noise and counterfactual state-
ments (Hoppe et al., 2025), the ability to identify
logical fallacies in bilingual contexts (Zhai et al.,
2025), and chain-of-thought reasoning weaknesses
through premature answers (Xu et al., 2024), em-
bedded trigger words (Xiang et al., 2024), and
modified reasoning steps (Peng et al., 2024), with
debate-style evaluations revealing limitations in
maintaining correct reasoning against invalid argu-
ments (Wang et al., 2023). However, these studies
primarily focus on evaluating robustness against
input perturbations and reasoning process attacks
while overlooking models’ ability to actively iden-
tify and critically engage with erroneous premises
in inputs.

2.2 False Premise Detection

As shown in Table 1, multiple benchmarks
evaluate LLMs’ handling of flawed premises.
RuozhiBench (Zhai et al., 2025) tests their ca-
pacity to detect logical fallacies and misleading
premises via content from a Chinese forum with
brain teasers. MathClean (Liang et al., 2025) evalu-
ates their capability to judge math problem/answer
correctness and pinpoint errors. MathTrap (Zhao
et al., 2024) examines their compositional general-
ization in math reasoning through "trap problems".
Among recent efforts, ECHOMIST (Guo et al.,
2025b) assesses LLMs’ ability to address implicit
misinformation using real dialogues, social media
data and rewritten queries. The MiP dataset (Fan
et al., 2025) identifies the "MiP-Overthinking"
phenomenon: LLMs generate verbose yet ineffec-
tive responses to ill-posed questions with missing
premises, preliminarily revealing model behavior
under this unprompted flawed input. Building on
these, our work extends to more flawed input types,
conducts multi-perspective evaluation, and com-

pares model critique performance between active
and passive modes, better revealing inadequacies
in LLMs’ proactive premise critique ability.

3 Method

3.1 Definition of Premise Critique Ability

We begin by formalizing Premise Critique Ability
to support our dataset design and the analysis of
LLM behavior. An input to an LLM is represented
asatuple [= (P,Q), where P = {p1,...,pn}is
a finite set of premises and () is a query grounded
in those premises. The input [is considered flawed
if the set P includes any flaw, i.e., F(P) # 0,
where F(P) denotes inconsistencies, inaccuracies,
or contradictions in the premises.

A valid critique is a textual unit that identifies
a specific flaw f € F(P) and offers a clear and
coherent explanation of its nature. We denote the
set of all such critiques for input I as Scyitique ({)-

Let O = M(I) be the output generated by an
LLM given input 7, and let Components(O) be the
set of identifiable textual units in the output. The
model is said to exhibit premise critique ability if

Components(O) N Scritique(I) # 0,

i.e., the output contains at least one valid critique,
indicating that the model has successfully detected
and articulated a flaw in the premises.

3.2 Data Construction

To systematically evaluate the premise critique abil-
ities of LLMs when confronted with erroneous in-
puts, we construct PCBench through a controlled
and principled process. The dataset is designed
with the following structure:

3.2.1 Difficulty

Problems span three levels of mathematical diffi-
culty to evaluate model performance across varying

838

Data Construction Pipeline

Synthesis

Evaluation Pipeline

False Premises

Sample Problems

Answer to

N\
A
Extract () Original Probl —
R GSMEK Necessary Prmeises ﬁQ SO
ety — APCCR
Medium Ol >et Inferences Human Flawed Problem _
. . Evaluated Model with explicit instruction
Verification APCCR
Hard Omni-MATH o
Rewrite into J Flawed Problem -
False Premises l T without explicit instruction
Evluation Prompt
@ Synthesis Basic Flawed Problems Generate Three Variants m
Original Problem Judge Criteri
1) Contradictory Premise Insertion @ udge Criteria
7\ 4 Detection?

2) Contradictory Inference Insertion Flawed Problem
3) Flawed Solution Completion

4) Irrelevant Query Distraction Flawed Problem

4 Accurate Identification?
J4 Report in Final Answer?

with explicit instruction

LLM as Judge

without explicit instruction

J APCR PPCR

Figure 2: An overview of the dataset construction and the evaluation pipeline.

levels of complexity, including Normal (sourced
from the GSM8K (Cobbe et al., 2021) dataset),
Medium (Adapted from the Chinese College
Entrance Examination portion within Olympiad-
Bench (He et al., 2024)), and Difficult (drawn from
Omni-MATH (Gao et al., 2024) problems with a
difficulty rating above six).

3.2.2 Error Categories

We define four distinct categories of premise errors,
each designed to evaluate a different aspect of a
model’s ability to identify and reason about flawed
inputs:

Contradictory Premise Insertion An inconsis-
tency is intentionally created by adding a new
premise which clashes with an existing condi-
tion. To prevent models from relying on positional
heuristics, the contradictory premise is inserted at
a random location within the problem. Models
are tasked with proactively identifying these direct
logical inconsistencies to assess their core ability
to detect surface-level contradictions in problem
inputs.

Contradictory Inference Insertion The incon-
sistency arises when an inference, derived from
multiple existing premises, is altered and then in-
serted back into the problem, resulting in a con-
tradiction with the original premises. This type of
contradiction is not due to direct conflict among
the premises themselves, but from the inconsis-
tency between the modified inference and the
premises. The purpose of this category is to eval-
uate a model’s advanced critical reasoning ability

to detect such subtle contradictions that require
understanding and verifying inferred conclusions
beyond simply checking the premises.

Flawed Solution Completion The error in this
category consists of a deliberately introduced mis-
take within an intermediate step of a partial solu-
tion that corresponds to a valid mathematical prob-
lem. The model is provided with both the original
valid problem and this flawed partial solution de-
rived from it, and is asked to continue solving from
the erroneous step. The evaluation aims to assess
the model’s ability to critically reason about the
solution process, detect the mistake, and provide a
clear explanation or correction while completing
the solution.

Irrelevant Query Distraction In this category,
each problem presents a valid math problem fol-
lowed by a step-by-step solution that intentionally
includes one or more logical or arithmetic errors.
After the flawed reasoning, a new query is posed
that remains topically related but does not target
the specific mistakes made earlier. This setup aims
to assess whether the model can remain logically
critical, rather than being distracted by the follow-
up query unrelated to the error.

3.2.3 Problem Variants

For each base flawed premise problem scenario
constructed under a specific error category and dif-
ficulty, we generate three distinct problem variants
for comparative evaluation. This includes the Orig-
inal Problem which features correct premises and
serves as a baseline, the Flawed Problem where

839

an intentional error is introduced into the premises,
and the Flawed Problem with Explicit Instruction,
which is the flawed version augmented by a clear
instruction that prompts the model to check for
errors in the premises. The model’s successful cri-
tique of the Flawed Problem serves as a genuine
reflection of its premise critique ability. In con-
trast, the introduction of the Flawed Problem with
Explicit Instruction is intended to provide a com-
parative reference, illustrating how direct guidance
influences error detection against the model’s in-
herent capabilities. This contrast reveals whether
it relies on explicit prompts or demonstrates au-
tonomous reasoning in premise evaluation, clarify-
ing the basis of its analytical processes.

3.2.4 Construction Pipeline

As illustrated in Figure 2, the PCBench construc-
tion pipeline consists of four main steps. First,
problems of Normal, Medium, and Hard difficulty
levels are randomly sampled. Then, necessary
premises are extracted from the sampled problems
and then rewritten into fake premises to form syn-
thesized false premises. Third, flawed problems
with four types of erroneous premises are synthe-
sized, covering Contradictory Premise Insertion,
Contradictory Inference Insertion, Flawed Solu-
tion Completion, and Irrelevant Query Distraction.
Fourth, human verification is conducted to screen
out eligible flawed problems whose error types con-
form to the defined criteria. Finally, each verified
problem is expanded into three variants: the Orig-
inal Problem (serving as a baseline), the Flawed
Problem with explicit instruction, and the Flawed
Problem without explicit instruction. In total, we
construct 100 base problems for each combina-
tion of the 4 error types and 3 difficulty levels,
resulting in 1200 unique base problems with each
base problem expanded into three distinct variants.
This structured and scalable design enables rigor-
ous assessment of how premise critique ability is
influenced by both error type and task complexity.

3.3 Evaluation Metrics

To thoroughly assess the premise critique abilities
of LLMs, we developed a structured evaluation
framework centered around the following metrics:

* Proactive Premise Critique Rate: The percent-
age of flawed problems in which the model inde-
pendently correctly detects and reports incorrect
premises without any external prompting.

* Assisted Premise Critique Rate: The percent-
age of flawed problems in which the model cor-
rectly identifies and reports incorrect premises
after being explicitly prompted.

* Proactive Premise Critique Cost Ratio: This
metric quantifies the overall relative response
verbosity between the Flawed Problems and the
Original Problems, defined as the ratio of their
average output token counts (Flawed Problems /
Original Problems).

* Assisted Premise Critique Cost Ratio: This
metric quantifies the overall relative response
verbosity between the Flawed Problem with ex-
plicit Instruction and the Original Problems. It
is defined as the ratio of their respective aver-
age output token counts (Flawed Problems with
Explicit Instruction / Original Problems).

The proactive rate directly reflects a model’s
autonomous ability to identify flawed premises
without external prompts, serving as the core in-
dicator of genuine premise critique competence.
The assisted rate, by contrast, measures perfor-
mance under explicit guidance and acts as a com-
parative baseline to highlight the model’s reliance
on prompts rather than intrinsic active critique. De-
tails of these four evaluation metrics can be found
in Appendix D.

4 Experiment

4.1 Setup

We assess the Premise Critique Ability of 15
popular large language models (LLMs), among
which 7 are non-thinking models: GPT-40 (Hurst
et al., 2024), GPT-4.1 (OpenAl, 2025a), Qwen3-
8B, Qwen3-30B-A3B, Qwen3-235B-A22B (Yang
et al., 2025), DeepSeek-V3 (Liu et al., 2024a)
and Llama-4-Maverick-17B-128E-Instruct (Meta-
Al, 2025). And 8 reasoning models: 03-
mini (OpenAl, 2025c), 04-mini (OpenAl, 2025b),
DeepSeek-R1 (Guo et al.,, 2025a), Qwen3-
8B-thinking, Qwen3-30B-A3B-thinking, Qwen3-
235B-A22B-thinking (Yang et al., 2025), Claude-
3.7-sonnet (Anthropic, 2025) and Gemini-2.0-
flash-thinking (Google, 2024).

Based on the results from JudgeBench (Tan et al.,
2024), response evaluation is performed with 03-
mini-high as an automated evaluator. Detailed de-
scriptions of the models and the experimental setup
are provided in Appendix A.

840

Model Premise Critique Rate Answer Length (casy set) Cost Ratio (easy set)
PPCR APCR Original Proactive Instructed | PPCCR APCCR
Non-reasoning Models
Deepseek-V3 40.5 68.8 311 543 560 1.75 1.80
GPT4.1 28.2 73.2 219 304 444 1.39 2.03
GPT4o0 11.0 574 195 219 278 1.12 142
Llama-4-Maverick 27.2 53.5 217 304 454 1.40 2.09
Qwen3-235B 24.7 70.0 255 347 522 1.36 2.04
Qwen3-30B 24.8 61.8 249 337 534 1.35 2.15
Qwen3-8B 20.6 59.9 257 339 591 1.32 2.30
Reasoning Models
Claude3.7-sonnet 36.2 69.8 414 669 494 1.62 1.19
Deepseek-R1 19.6 67.7 956 2590 1014 2.71 1.06
Gemini2.0-flash-thinking | 38.2 77.9 1116 1665 1786 1.49 1.60
03-mini 144 73.2 328 1279 1023 3.90 3.11
04-mini 4.0 74.2 331 782 664 2.36 2.00
Qwen3-235B-thinking 353 70.1 1529 3629 1776 2.37 1.16
Qwen3-30B-thinking 324 60.5 1310 3039 1770 2.32 1.35
Qwen3-8B-thinking 26.8 57.2 1573 3735 2517 2.38 1.60

Table 2: Performance of both non-reasoning and reasoning LL.Ms on PCBench, Compareing the overall Premise
Critique Rates (PPCR, APCR), along with the overall average Answer Lengths (where "Original", "Proactive",
and "Instructed" denote the model’s answers to the Original Problem, Flawed Problem, and Flawed Problem with
Explicit Instruction respectively) and the corresponding Cost Ratios (PPCCR, APCCR) for the easy subset.Values
that are underlined are considered the best-performing or most extreme among the models for each evaluation

metric.

4.2 Main Results

Overall Results

Our evaluation of LLM’ Premise Critique Ability
revealed a significant disparity between Proactive
Premie Critique Rate(PPCR) and Assisted Premise
Critique Rate(APCR). Proactive critique, defined
as identifying flawed premises without explicit
prompting, generally exhibited low rates across
tested models. For instance, GPT-40 achieved a
PPCR of only 11.0%, while DeepSeek-V3 reached
40.5%, indicating limited spontaneous error detec-
tion. In contrast, assisted critique rates, measured
when models were explicitly instructed to check
for errors, were substantially higher. Several mod-
els, including GPT4.1 (73.2%), Gemini-2.0-flash-
thinking (77.9%), and o4-mini (74.2%), success-
fully identify flaws in the majority of assisted cases.
This considerable gap between PPCR and APCR
highlights that while many models possess the un-
derlying capability for premise critique, they often
do not engage in critical analysis unless explicitly
prompted.

Analysis concerning models categorized by rea-
soning capability indicated that while some rea-
soning models (e.g., Gemini-2.0-flash-thinking,
Claude-3.7-sonnet) demonstrated relatively higher
proactive critique performance compared to many

non-reasoning models, this was not uniformly ob-
served across all reasoning models tested (e.g., 04-
mini exhibited a low PPCR of 4.0%). This suggests
that although enhanced reasoning capability may
correlate with improved proactive critique in cer-
tain models, the significant gap between PPCR and
APCR remains a pervasive issue affecting mod-
els across diverse model frameworks or training
paradigms.

These findings underscore the critical need for
developing LLMs that are not merely reactive infor-
mation providers but proactive evaluators capable
of identifying and reporting erroneous premises to
enhance the trustworthiness and reliability of Al
assistants.

Flawed Premises Deepen Overthinking

Analysis of response lengths and cost ratios indi-
cates that flawed premises exacerbate overthinking
in LLMs, particularly in reasoning models. As
detailed in Table 2, answer lengths for "Proac-
tive" and "Instructed" critique responses on flawed
problems substantially exceed those for "Normal"
queries across models, which is quantified by
the Proactive (PPCCR) and Assisted (APCCR)
Premise Critique Cost Ratios. For instance, reason-
ing models like 03-mini show high ratios, with a
PPCCR of 3.90 and an APCCR of 3.11. DeepSeek-

841

=
-—
—

N & N &

&

{g@ & & S
X

I3

s & & &

&
‘b,\\“
&
&
&

K g el o

Figure 3: Proactive Premise Critique Rates for the four
Different Error Categories

R1 also exhibits a high PPCCR, reaching 2.71.
These elevated ratios demonstrate that critiquing
flawed inputs leads to disproportionately longer
outputs compared to standard problem-solving.
This suggests that instead of efficiently identifying
and halting on errors, models engage in more ex-
tensive and verbose processing, characteristic of
overthinking. This phenomenon highlights how
flawed inputs drive computationally inefficient re-
sponses, particularly for models attempting proac-
tive critique.

Scaling law Illustration

The Qwen3 series exhibits strong scaling behavior.
In the non-thinking setting, as model size increases
from 8B to 235B, APCR improves significantly
from 59.9% to 70.0%, while PPCR exhibits a mod-
est increase from 20.6% to 24.7%, though accom-
panied by a slight growth in answer length. In the
"thinking" setting, performance scales nonlinearly:
Qwen3-235B-thinking achieves 35.3% PPCR and
70.1% APCR, with the proactive answer length
surging to 3629 and APCCR dropping to 1.16
(compared to 2.30 in Qwen3-8B). These trends
indicate that, under appropriate training methods,
both larger model size and superior reasoning abil-
ity contribute to substantial improvements in capa-
bility and cost-effectiveness, consistent with scal-
ing law phenomenon.

Error-Categorized Performance

Figure 3 presents the Proactive Premise Critique
Rate (PPCR) for top non-reasoning and reason-
ing models across four error categories, reveal-
ing a clear difficulty hierarchy in premise critique
ability based on the type of premise flaw. Mod-
els demonstrate the highest PPCR in the "Con-
tradictory Premise Insert" category, with some
like Deepseek-V3 exceeding 55%, indicating rel-

Il

3
R

Figure 4: Proactive Premise Critique Rates at three
difficulty levels

ative strength in detecting explicit conflicts. Per-
formance drops for "Contradictory Inference In-
sert," showing the greater challenge of inconsis-
tencies requiring logical deduction. "Irrelevant
Query Distraction" results in lower, more varied
PPCRs, highlighting how unrelated queries can
impede autonomous detection. "Flawed Solution
Completion" is the most difficult, with consistently
low PPCR across models, underscoring the diffi-
culty in proactively critiquing errors within a given
procedural solution path. This performance dis-
parity implies current LLMs are much better at
spotting surface-level contradictions than complex
or procedurally hidden flaws in premises. Notably,
reasoning models outperform non-reasoning ones
in the two harder categories, implying that stronger
reasoning ability may help uncover more intricate
premise flaws.

Difficulty-Categorized Performance

Figure 4 illustrates the PPCR of six top-
performance models across three difficulty lev-
els: Normal, Medium, and Hard. A clear trend
emerges as PPCR consistently declines with in-
creasing problem difficulty across all models. For
instance, Deepseek-V3’s PPCR decreases from
around 48% on Normal problems to only 29% on
Hard problems.

Model performance also varies notably across
difficulty levels. Claude-Sonnet and Qwen-235B-
A22B-thinking achieve the highest PPCRs on Nor-
mal problems, leading the group. Although several
models perform reasonably well on Medium prob-
lems, Deepseek-V3 unexpectedly leads on Hard
problems with the highest PPCR (29%), surpass-
ing models that feature explicit reasoning mech-
anisms. This suggests that a model’s ability to
critique complex premises might come more from

842

its built-in strengths than from added reasoning
features.

The universal decline in PPCR at higher diffi-
culty levels highlights a fundamental challenge for
current large language models: their limited ca-
pacity to accurately detect flaws in more complex
inputs. Even the top-performing models struggle
to surpass a 30% critique rate on Hard problems,
indicating substantial room for improvement in
Premise Critique Abilities.

Human Verification

To verify alignment between the LLM evaluator
(03-mini-high) and human evaluations, we con-
ducted a validation study: 240 instances (60 per
error type, 20% of each group) were randomly se-
lected from premise critique results of GPT-4.1 and
Qwen3-235B-A22B-thinking. Graduate students
applied the same criteria as 03-mini-high (label-
ing responses as "True" if they clearly questioned
premises, identified contradictions, and expounded
on errors; otherwise "False").

Confusion matrices for the two models are
shown in Table 16 (Qwen3-235B-A22B-thinking)
and Table 17 (GPT-4.1). Kappa coefficients,
0.8921 for Qwen3-235B-A22B-thinking and
0.7763 for GPT-4.1, indicate strong consistency
between automatic and human evaluations, con-
firming the model’s reliability as an automatic eval-
uator and the validity of our results.

5 Further Discussion

Do models know premises are flawed?

As shown in Figure 5, Deepseek-R1 identifies the
contradiction in the problem: Maria’s use of "1/4 of
a skein" and "182 yards" as conflicting conditions.
Its internal reasoning (e.g., repeated "Wait, let me
check again") reflects hesitation and efforts to rec-
oncile the discrepancy, but it ultimately ignores the
fractional information and calculates solely based
on "182 yards," prioritizing conditions without user
input.

Despite recognizing the contradiction internally,
the model’s final answer does not explicitly high-
light this inconsistency. It provides a result based
on its chosen condition instead of informing users
of the input flaw or explaining its reasoning. This
"decision-making on the user’s behalf" undermines
its reliability as a "critical collaborator," as users
remain unaware of the problem’s issues and the
model’s calculation path, contradicting our defi-
nition of Premise Critique Ability—the capability

that requires not only resistance to misdirection but
also clear identification and explanation of input
errors.

This gap between internal recognition and ex-
ternal expression is not unique to a single instance
but is observed across multiple reasoning models:
models like 03-mini-medium and o4-mini-medium
(see Figure 6 in the appendix) also show low PPCR
despite high APCR, likely because they detect
premise errors internally but fail to demonstrate
Premise Critique Ability in final responses.

The case also supports the earlier finding that
flawed inputs deepen models’ overthinking (evi-
denced by Deepseek-R1’s repeated deliberation).
Despite expending computational resources on this
internal processing, these models fail to incor-
porate their critical awareness into their final re-
sponse.

Reason of lacking Premise Critique Ability

The lack of premise critique ability in current
LLMs may stem from current training objectives
and datasets prioritizing coherent responses under
correct premises, which reduces models’ incentive
to proactively evaluate premise validity. The dis-
crepancy between LLLMs’ internal contradiction
detection and explicit articulation in final answer
may arise from human alignment objectives favor-
ing completion-oriented responses over critiquing
input flaws.

Future research could integrate explicit premise
critique objectives into training process or design
datasets with intentionally flawed premises to en-
hance models’ capability to convert the detection
of premise flaws during their internal thought pro-
cesses into explicit, actionable critiques.

6 Conclusion

In conclusion, we present PCBench, a bench-
mark designed to evaluate large language models’
(LLMs) ability to critique flawed premises by in-
corporating problems with diverse logical inconsis-
tencies across multiple difficulty levels. Our evalu-
ation of 15 LLMs reveals key insights: Most mod-
els exhibit limited autonomous critique, relying
heavily on explicit prompts to detect errors. Per-
formance declines as error complexity increases,
while obvious contradictions are often detected,
deepen or procedural flaws are frequently missed.
Reasoning ability doesn’t always align with cri-
tique performance, while some models spot flaws

843

Thinking Content:

(4 more paragraphs...)

(2 more paragraphs...)
(2 more paragraphs of checking premises...)
(2 more paragraphs of checking premises...)

different.
(3 more paragraphs of analyzing the contradiction...)

(2 more paragraphs of obedient reasoning...)
Final Answer:
which is also 182 yards. Adding both amounts together:

182 yards+182 yards=364 yards
** Answer:** They used a total of \boxed {364} yards of yarn.

Response from Deepseek-R1

Question: Mariah’s grandma was teaching her to knit. Mariah used 1/4 of a skein of yarn. Her grandma used 1/2 of a skein of
yarn. There are 364 yards in a skein of yarn. Mariah used 182 yards of yarn. How many yards of yarn did they use altogether?

Okay, so let me try to figure out this problem. Let's see... Mariah and her grandma were knitting, right? And they used different
amounts of yarn. The question is asking how many yards of yarn they used altogether. Hmm.

Wait, let me check again. The problem says Mariah used 1/4 of a skein, and separately mentions that she used 182 yards. So
maybe the 1/4 is a red herring, and we should just use the 182 yards? But that seems inconsistent. Alternatively, maybe the
problem is giving us redundant information to test if we can recognize which numbers to use. Let me see.

Wait, maybe the problem is phrased differently. Let me check again:

Alternatively, maybe the problem is translated incorrectly, or there is a misprint. Let me check the numbers again...

Wait, unless... Wait, maybe the problem is saying that Mariah used 1/4 of the total yarn, which is 182 yards? But that seems
But the problem says Mariah used 182 yards. So that contradicts.

Given that, perhaps the problem is intended to have us ignore the fraction and just use the given yardage. So Mariah used
182, grandma used 1/2 of 364, which is 182. Total 364. But the mention of 1/4 is a distractor.

Mariah used 182 yards of yarn, which is half of a skein (since a full skein is 364 yards). Her grandma used half a skein as well,

Figure 5: An illustrative case of Deepseek-R1’s response to a Contradictory Inference Insertion Question. The red
text marks the contradictory segment in the question. The blue text shows that the model successfully identifies the

contradiction through iterative reasoning. The

text indicates that the model makes autonomous decisions

without user guidance. In its final answer, the model relies on its own assumptions without offering critical feedback,

revealing a lack of Premise Critique Ability.

but don’t articulate them. Flawed premises may in-
tensify inefficient overthinking, leading models to
produce excessively verbose responses as they at-
tempt to resolve conflicts. These findings highlight
PCBench’s role in exposing LLM vulnerabilities
and emphasize the necessity of enhancing LLMs’
autonomous premise critique capabilities for more
reliable and dependable LLM assistant.

Acknowledgments

The authors would like to thank the anonymous re-
viewers for their valuable comments. This work is
supported by the National Key Research and Devel-
opment Program of China (No.2023YFF(0905400),
the National Natural Science Foundation of China
(N0.U2341229) and the Reform Commission Foun-
dation of Jilin Province (N0.2024C003).

Limitations

As a preliminary field study, though we evaluated
15 representative LLMs, the generalizability of our
findings, especially to new or untested models, re-
mains uncertain. While our constructed flawed
data partially aligns with real-world scenarios, a
comprehensive, systematic statistical analysis of
flaw probability and scenario classification in real-
world user inputs is lacking. Meanwhile, using
existing benchmarks may raise data contamina-
tion concerns, requiring deeper analysis. Addi-
tionally, limiting our dataset to English and Chi-
nese may overlook language’s influence, poten-
tially restricting premise critique performance by
ignoring diverse logical structures and cultural nu-
ances across languages. Furthermore, PCBench’s
focus on mathematical reasoning narrows its scope,
failing to consider distinct reasoning patterns and
premise types in other natural sciences. Finally, our

844

focus on textual data leaves multimodal contexts
as a promising future direction. These limitations
point to opportunities to expand premise critique
research across models, languages, domains, and
modalities.

References

Zain Ul Abedin, Shahzeb Qamar, Lucie Flek, and Akbar
Karimi. 2025. Arithmattack: Evaluating robustness
of llms to noisy context in math problem solving.
arXiv preprint arXiv:2501.08203.

Anthropic. 2025. Claude 3.7 Sonnet.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, and 1 others. 2024.
A survey on evaluation of large language models.
ACM transactions on intelligent systems and technol-
ogy, 15(3):1-45.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Chenrui Fan, Ming Li, Lichao Sun, and Tianyi Zhou.
2025. Missing premise exacerbates overthinking:
Are reasoning models losing critical thinking skill?
arXiv preprint arXiv:2504.06514.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang
Chen, Runxin Xu, Zhengyang Tang, Benyou Wang,
Daoguang Zan, Shanghaoran Quan, Ge Zhang, Lei
Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu,
and Baobao Chang. 2024. Omni-math: A univer-
sal olympiad level mathematic benchmark for large
language models. Preprint, arXiv:2410.07985.

Google. 2024. Gemini 2.0 flash thinking.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025a.
Deepseek-r1: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Ruohao Guo, Wei Xu, and Alan Ritter. 2025b. How to
protect yourself from 5g radiation? investigating llm
responses to implicit misinformation. arXiv preprint
arXiv:2503.09598.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding
Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, and 1 oth-
ers. 2024. Olympiadbench: A challenging bench-
mark for promoting agi with olympiad-level bilin-
gual multimodal scientific problems. arXiv preprint
arXiv:2402.14008.

Fabian Hoppe, Filip Ilievski, and Jan-Christoph Kalo.
2025. Investigating the robustness of deductive rea-

soning with large language models. arXiv preprint
arXiv:2502.04352.

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen,
Austin Xu, Do Xuan Long, Minzhi Li, Chengwei
Qin, Peifeng Wang, Silvio Savarese, and 1 others.
2025. A survey of frontiers in llm reasoning: Infer-
ence scaling, learning to reason, and agentic systems.
arXiv preprint arXiv:2504.09037.

Sungeun Kim and Dongsuk Oh. 2025. Evaluating cre-
ativity: Can llms be good evaluators in creative writ-
ing tasks? Applied Sciences, 15(6):2971.

Hao Liang, Meiyi Qiang, Yuying Li, Zefeng He,
Yongzhen Guo, Zhengzhou Zhu, Wentao Zhang,
and Bin Cui. 2025. Mathclean: A benchmark for
synthetic mathematical data cleaning. Preprint,
arXiv:2502.19058.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024a. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza
Ibrahimzada, and Reyhaneh Jabbarvand. 2024b.
Codemind: A framework to challenge large lan-
guage models for code reasoning. arXiv preprint
arXiv:2402.09664.

Meta-Al. 2025. The Llama 4 herd: The beginning of a
new era of natively multimodal Al innovation.

OpenAl. 2025a. Introducing gpt-4.1.
OpenAl. 2025b. Introducing openai 03 and 04-mini.
OpenAl. 2025c. Openai 03-mini.

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi
Nakamura, Man Luo, Santosh Mashetty, Arindam
Mitra, and Chitta Baral. 2024. Logicbench: To-
wards systematic evaluation of logical reasoning
ability of large language models. arXiv preprint
arXiv:2404.15522.

845

https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://deepmind.google/technologies/gemini/flash-thinking/
https://arxiv.org/abs/2502.19058
https://arxiv.org/abs/2502.19058
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/openai-o3-mini/

Jingyu Peng, Maolin Wang, Xiangyu Zhao, Kai Zhang,
Wanyu Wang, Pengyue Jia, Qidong Liu, Ruocheng
Guo, and Qi Liu. 2024. Stepwise reasoning er-
ror disruption attack of llms. arXiv preprint
arXiv:2412.11934.

Yuehan Qin, Shawn Li, Yi Nian, Xinyan Velocity Yu,
Yue Zhao, and Xuezhe Ma. 2025. Don’t let it hallu-
cinate: Premise verification via retrieval-augmented
logical reasoning. arXiv preprint arXiv:2504.06438.

Shahnewaz Karim Sakib, Anindya Bijoy Das, and Shib-
bir Ahmed. 2025. Battling misinformation: An
empirical study on adversarial factuality in open-
source large language models. arXiv preprint
arXiv:2503.10690.

Sijun Tan, Siyuan Zhuang, Kyle Montgomery,
William Y Tang, Alejandro Cuadron, Chenguang
Wang, Raluca Ada Popa, and Ion Stoica. 2024.
Judgebench: A benchmark for evaluating llm-based
judges. arXiv preprint arXiv:2410.12784.

Yuxuan Wan, Wenxuan Wang, Yiliu Yang, Youliang
Yuan, Jen-tse Huang, Pinjia He, Wenxiang Jiao, and
Michael R Lyu. 2024. Logicasker: Evaluating and
improving the logical reasoning ability of large lan-
guage models. arXiv preprint arXiv:2401.00757.

Boshi Wang, Xiang Yue, and Huan Sun. 2023. Can
chatgpt defend its belief in truth? evaluating 1lm rea-
soning via debate. arXiv preprint arXiv:2305.13160.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing
Ren, Aojun Zhou, Mingjie Zhan, and Hongsheng Li.
2024. Measuring multimodal mathematical reason-
ing with math-vision dataset. Advances in Neural
Information Processing Systems, 37:95095-95169.

Yuqing Wang and Yun Zhao. 2024. Rupbench: Bench-
marking reasoning under perturbations for robustness
evaluation in large language models. arXiv preprint
arXiv:2406.11020.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and
Pengfei Liu. 2025. Evaluating mathematical reason-
ing beyond accuracy. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39,
pages 27723-27730.

Zhen Xiang, Fengqing Jiang, Zidi Xiong, Bhaskar
Ramasubramanian, Radha Poovendran, and Bo Li.
2024. Badchain: Backdoor chain-of-thought prompt-
ing for large language models. arXiv preprint
arXiv:2401.12242.

Yijia Xiao, Edward Sun, Tianyu Liu, and Wei Wang.
2024. Logicvista: Multimodal 1lm logical reason-
ing benchmark in visual contexts. arXiv preprint
arXiv:2407.04973.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang,
Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui
Gong, Tianjian Ouyang, Fanjin Meng, and 1 others.
2025. Towards large reasoning models: A survey
of reinforced reasoning with large language models.
arXiv preprint arXiv:2501.09686.

Rongwu Xu, Zehan Qi, and Wei Xu. 2024. Preemp-
tive answer" attacks" on chain-of-thought reasoning.
arXiv preprint arXiv:2405.20902.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, and 41 oth-
ers. 2025. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, and 1 others. 2025. Dapo: An
open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476.

Hongbang Yuan, Pengfei Cao, Zhuoran Jin, Yubo Chen,
Daojian Zeng, Kang Liu, and Jun Zhao. 2024. Whis-
pers that shake foundations: Analyzing and mitigat-
ing false premise hallucinations in large language
models. arXiv preprint arXiv:2402.19103.

Zenan Zhai, Hao Li, Xudong Han, Zhenxuan Zhang,
Yixuan Zhang, Timothy Baldwin, and Haonan Li.
2025. Ruozhibench: Evaluating llms with logical
fallacies and misleading premises. arXiv preprint
arXiv:2502.13125.

Jun Zhao, Jingqi Tong, Yurong Mou, Ming Zhang,
Qi Zhang, and Xuanjing Huang. 2024. Ex-
ploring the compositional deficiency of large lan-
guage models in mathematical reasoning. Preprint,
arXiv:2405.06680.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang,
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, Yue
Zhang, Neil Gong, and 1 others. 2023. Promptrobust:
Towards evaluating the robustness of large language
models on adversarial prompts. In Proceedings of the
1st ACM Workshop on Large Al Systems and Models
with Privacy and Safety Analysis, pages 57-68.

A Detailed Experimental Setup

For closed-source models (e.g., GPT-40, Claude
3.7 Sonnet), we employ their latest official ver-
sions with default configuration settings strictly ad-
hered to. For open-source models, their respective
versions available on the Hugging Face platform
are utilized. For Qwen3-series models without
the “thinking” mode (e.g., Qwen3-235B-A22B),
we set temperature=0.7 and top_p=0.8 to opti-
mize the model’s performance. For Qwen3 models
with the “thinking” mode enabled (e.g., Qwen3-
235B-A22B-thinking), we use temperature=0.6
and top_p=0.95, and explicitly avoid greedy de-
coding, as this strategy may otherwise lead to

846

https://arxiv.org/abs/2405.06680
https://arxiv.org/abs/2405.06680
https://arxiv.org/abs/2405.06680

significant performance degradation and infinite
repetition. These configurations align with offi-
cial recommendations from the Qwen3 team. For
DeepSeek-R1, we adopt the official default settings
by DeepSeek team. For other open-source models
(e.g., DeepSeek V3), greedy decoding is adopted.
Additional details about the evaluated models are
provided in Tables 18.

B More Cases

Figures 7 to 14 present eight examples that include
both successful and failed cases across four types
of errors, all generated by the Deepseek V3 model.
These examples clearly illustrate the validity of
our task design and its ability to distinguish dif-
ferent types of model behavior. They also provide
evidence for the effectiveness of using LLMs as
judges and demonstrate that our task can reliably
assess a model’s Premise Critique Ability.

C Details on Data Construction

C.1 Data Construction Pipeline

Our dataset encompasses four categories of logi-
cally flawed problems. Representative examples
are presented in Table 4, with each category cor-
responding to a dedicated case. The construction
pipeline of our dataset initiates with a carefully
curated collection of structurally sound mathemat-
ical word problems, from which explicit atomic
premises are systematically extracted. Both the
premise extraction and following error injection
steps in the synthesis process are conducted by
prompting GPT-4.1. Leveraging these premises,
we design four targeted error injection strategies
to generate instances containing controlled logical
flaws:

Contradictory Premise Insertion Randomly se-
lect one premise from the extracted set, replace
it with contradictory content, and then randomly
insert the modified premise into the original prob-
lem while retaining all correct premises. This pro-
cess introduces an internal contradiction within the
problem’s premise set.

Contradictory Inference Insertion Derive a
logical inference from a subset of the premises,
then modify this inference to create a contradiction
with its supporting premises. The modified con-
tradictory inference is subsequently inserted ran-
domly into the problem, establishing a conflict be-
tween the inference and its foundational premises.

Flawed Solution Completion Deliberately in-
troduce an error into an intermediate step of a par-
tial solution corresponding to a valid mathematical
problem. The constructed problem integrates both
the original problem statement and the flawed par-
tial solution, requiring models to continue solving
from the erroneous step.

Irrelevant Query Distraction Embed logical or
arithmetic errors into the step-by-step solution of a
valid mathematical problem. Subsequently, pose a
new query topically related to the original problem
but not targeting the solution errors. Retain the
problem statement, error-containing solution, and
irrelevant query to form instances.

Corresponding detailed illustrations of construc-
tion pipeline are provided in Tables 4 to 8.

C.2 Details of Dataset Statistics

The dataset is constructed by combining four dis-
tinct error categories with three levels of math-
ematical difficulty. For each unique combina-
tion of error category and difficulty level, 100
base problems are created. This results in a
total of 4 (Error Categories) x 3 (Difficulties) x
100 (Base Problems per Combination) = 1200
unique base problems, as shown in Table 3.
Furthermore, each of these 1200 base prob-
lems is expanded into three distinct variants: the
Original Problem (with correct premises), the
Flawed Problem (with an intentional error in the
premises), and the Flawed Problem with Explicit
Instruction (the flawed version appended with
the explicit prompt: "Check if there are any er-
rors in the question’s premises before answer-
ing. If there are, please report them promptly.").
This expansion yields a total dataset size of
1200 (Base Problems) x 3 (Problem Variants) =
3600 problems. This structured design enables a
thorough assessment of LLLMs’ premise critique
capabilities across diverse error types, varying dif-
ficulty tiers, and different prompting scenarios.

D Details on evaluation metrics

To rigorously evaluate the premise critique abilities
of large language models, we define and utilize the
following four key metrics:

Proactive Premise Critique Rate (PPCR) This
metric quantifies the proportion of erroneous in-
puts from the Flawed Problem category for which
the model’s output autonomously contains a valid

847

Error Category Difficulty =~ Number

. Normal 100
Contradictory .

Premise Insert Medium 100

Difficult 100

. Normal 100
Contradictory .

Inference Insert Medium 100

Difficult 100

Irrel Normal 100
rrelevant]

Query Distraction Medium 100

Difficult 100

Flawed Normal 100
awe '

Solution Completion Medium 100

Difficult 100

Total 1200

Table 3: Distribution of Base Problems across Error
Categories and Difficulties

critique of the premises, without explicit prompt-
ing. It measures the model’s intrinsic capability to
detect and flag input flaws proactively. Let N rep-
resent the total number of Flawed Problems in the
evaluation set. Let Cp be the number of Flawed
Problems where the model’s output contains at
least one valid critique. The PPCR is calculated as:

Assisted Premise Critique Rate (APCR) This
metric assesses the proportion of erroneous inputs
from the Flawed Problem with Explicit Instruction
category for which the model’s output contains a
valid critique after being prompted to check for er-
rors. It measures the model’s capability to perform
premise critique when directed. Let Ny represent
the total number of Flawed Problems with Explicit
Instruction in the evaluation set. Let C'4 be the
number of Flawed Problems with Explicit Instruc-
tion where the model’s output contains at least one
valid critique. The APCR is calculated as:

Proactive Premise Critique Cost Ratio (PPCCR)
This metric quantifies the relative verbosity of re-
sponses when models are presented with Flawed
Problems, compared to standard responses for cor-
rect Original Problems. It is defined as the ratio of

the average output token count for all responses to
Flawed Problems to the average output token count
for all responses to Original Problems. A value
greater than 1 indicates that responses to flawed
inputs are, on average, longer than responses to
correct inputs. Let L be the average output to-
ken count for all responses to Flawed Problem:s.
Let Lo be the average output token count for all
responses to Original Problems. The PPCCR is
calculated as:
PPCCR = ﬁ
Lo
Assisted Premise Critique Cost Ratio (APCCR)
This metric quantifies the relative verbosity of re-
sponses when models are presented with Flawed
Problems accompanied by explicit instructions to
check for errors, compared to standard responses
for correct Original Problems. It is defined as the
ratio of the average output token count for all re-
sponses to Flawed Problems with Explicit Instruc-
tion to the average output token count for all re-
sponses to Original Problems. A value greater
than 1 indicates that responses to instructed flawed
inputs are, on average, longer than responses to cor-
rect inputs. Let Ly be the average output token
count for all responses to Flawed Problems with
Explicit Instruction. Let Lo be the average output
token count for all responses to Original Problems
(as defined for PPCCR). The APCCR is calculated
as: _
APCCR = @
Lo

E Prompt Template

The prompt template presents in Table 9 is de-
signed for premise extraction. Prompts across Ta-
bles 10 to 14 are utilized to synthesize four types of
errors, while the prompt in Table 15 is employed to
evaluate whether models exhibit premise critique
ability.

F More Results

Figures 15 to 17 illustrates more results of the
evaluated LLMs.

848

Response from GPT-04-mini

Question: In one year, the number of students on campus doubles at the end of every month. If there are 10 students on campus
at the beginning of the year, the student population at the end of May is determined by multiplying the initial number of students
by 2 raised to the power of 3. How many additional students would have joined by the end of May, above and beyond the
number of students already on campus at the beginning of the year?

Thinking Content:

Here's the breakdown: The number of students doubles at the end of each month, starting with 10 students.

We need to figure out how many months of doubling have passed by the end of May:

January: 1 doubling.

February: 2 doublings.

March: 3 doublings.

April: 4 doublings.

May: 5 doublings.

The key part mentions multiplying the initial number by 2 raised to the power of 3. So, we'll focus on the population
growth up to that 3rd power, so there may be a slight mix-up with doubling across 5 months vs. what the question asks.

Final Answer:
After 3 doublings by the end of May, the total is
10x23=10x8 = 80
So the number of new students above the original 10 is
80 - 10=70
Answer: 70 additional students.

Figure 6: An illustrative case of 04-mini’s response to a Contradictory Inference Insertion Question. The question
presented in the image contains a logical contradiction (highlighted in red). According to the statement that "the
number of students doubles at the end of each month," the student population should undergo five doublings by the
end of May. However, the question also claims that the final number of students is obtained by multiplying the
initial amount by 23, which implies only three doublings. This discrepancy between the implied five doublings and
the stated three is the source of the contradiction. During the reasoning process, the model (highlighted in orange)
notes that "the key part mentions multiplying by 2 raised to the power of 3, so we’ll focus on the population growth
up to that 3rd power, and there may be a mix-up between doubling across 5 months and what the question asks,"
demonstrating that the model has identified the inconsistency regarding the number of doublings. However, in its
final answer, the model does not further explore this insight. Instead, it proceeds with the calculation using 2% and
concludes that the number of additional students is 70.

849

(Question: Indras has 6 letters in her name. Her sister's name has 4 more letters than half of the letters in Indras' h

name. Her sister's name has 5 letters. How many letters are in Indras and her sister's names?
Response: Let's break down the problem step by step to find out how many letters are in Indras and her sister's
names.
1. Indras' Name:

- Given: Indras has 6 letters in her name.
2. Sister's Name:

- Half of the letters in Indras' name:

6 +2 =13 letters
- 4 more letters than half:
3+ 4 =17 letters

- However, the problem states that the sister's name has 5 letters, which contradicts the calculation above.
Re-evaluating the Problem:
It seems there might be a misunderstanding in interpreting the problem. Let's consider the alternative interpretation
where the sister's name has 4 more letters than half of Indras' name and is 5 letters in total.
- Half of Indras' name:

6 +2 =13 letters
- 4 more letters than half:

3+ 4 =17 letters
- But the sister's name is given as 5 letters, which doesn't match.
Conclusion:
There appears to be an inconsistency in the problem as stated.
However, based on the initial information:
- Indras' name: 6 letters
- Sister's name: 5 letters
Therefore, the total number of letters in both names is:
6 (Indras) + 5 (Sister) = 11 letters

\ Final Answer: [11] y

Figure 7: An example of success response to a Contradictory Inference Insertion Question by Deepseek V3. The
red text in the Question indicates the segment containing the contradiction. The blue text indicates the key part that

highlights the presence of a contradiction.

Question: Sarah went to buy books from the store and spent $300 on the books. The price of each book and the
total amount spent are both measured in euros. If each book was $15 and she gave an equal number of books to her 4
kids, how many books did each child get?

Response: 1. Total Amount Spent:
- Sarah spent a total of $300 on books.
2. Price per Book:
- Each book costs $15.
3. Total Number of Books Purchased:
- To find the total number of books, divide the total amount spent by the price per book:
Total Books = $300 + $15 per book = 20 books
4. Number of Children:
- Sarah has 4 kids.
5. Books per Child:
- Since the books are distributed equally among the 4 children, divide the total number of books by the number of
children:
Books per Child = 20 books + 4 kids = 5 books per child
Final Answer: [5]

J

Figure 8: An example of fail response to a Contradictory Inference Insertion Question by Deepseek V3. The red

text in the Question indicates the segment containing the contradiction.

850

Question: There are twice as many boys as girls at Dr. Wertz's school. There are three times as many boys as girls
at Dr. Wertz's school. If there are 60 girls and 5 students to every teacher, how many teachers are there?

Response: Let's solve the problem step by step.
Given:

1. Number of Girls: 60

2. Ratio of Boys to Girls:

- First Statement: There are twice as many boys as girls.

- Second Statement: There are three times as many boys as girls.

Note: There seems to be a contradiction in the problem statement regarding the ratio of boys to girls. We'll proceed
with the second statement (three times as many boys as girls) as it's more specific.
3. Student-to-Teacher Ratio: 5 students per teacher.

Step 1: Calculate the Number of Boys

Since there are three times as many boys as girls:

Number of Boys = 3 x Number of Girls =3 x 60 = 180

Step 2: Calculate the Total Number of Students

Total Students = Number of Boys + Number of Girls = 180 + 60 = 240
Step 3: Determine the Number of Teachers

Given the student-to-teacher ratio is 5 students per teacher:

Number of Teachers = Total Students ~ 5 =240+ 5=48

Final Answer: [48]
\ J

Figure 9: An example of success response to a Contradictory Premise Insertion Question by Deepseek V3. The red
text in the Question indicates the segment containing the contradiction. The blue text indicates the key part that
highlights the presence of a contradiction.

Question: To make a call from a payphone, you must pay $0.25 for each minute of your call. After 16 minutes,
that price drops to $0.2 per minute. To make a call from a payphone, you must pay $0.30 for each minute of your
call. How much would a 36-minute call cost?

Response: Let's break down the cost of a 36-minute call step by step.
Given:
1. First 16 minutes: $0.25 per minute
2. After 16 minutes: $0.20 per minute
Calculation:
1. Cost for the first 16 minutes:
16 minutes x $0.25/minute = $4.00
2. Remaining minutes after 16 minutes:
36 minutes - 16 minutes = 20 minutes
3. Cost for the remaining 20 minutes:
20 minutes % $0.20/minute = $4.00
4. Total cost:
$4.00 + $4.00 = $8.00
Final Answer: [§ |

Figure 10: An example of fail response to a Contradictory Premise Insertion Question by Deepseek V3. The red
text in the Question indicates the segment containing the contradiction.

851

Question: Question: The cell-phone recharges at the rate of 1 percentage-point of charge per 3 minutes. Now, the
phone is at 60% charged. How long will it take to fully charge, in hours? Part of My Solution: 100-60=30 percentage
points. Then 40*3=120 minutes Please complete the solution of the question for me.

Response: Your solution is almost correct, but there is a small mistake in the calculation. Let's go through it step
by step:
1. Determine the remaining percentage to charge:
Current charge: 60%
2.Full charge: 100%
Remaining: 100% - 60% = 40% (not 30% as you initially wrote)
Calculate the time to charge the remaining 40%:
3. Charging rate: 1 percentage-point per 3 minutes
Time for 40%: 40 x 3 = 120 minutes
4. Convert minutes to hours:
120 minutes + 60 = 2 hours
Final Answer: It will take 2 hours to fully charge the phone.
(Your initial calculation had a typo where you wrote "30 percentage points" instead of 40, but the math 40 x 3 =120
was correct.)

Figure 11: An example of success response to a Flawed Solution Completion Question by Deepseek V3. The red
text in the Question indicates the segment containing the contradiction. The blue text indicates the key part that
highlights the presence of a contradiction.

Question: Question: A basic manicure starts at $35 while a pedicure starts at $40. A certain salon offers 20% off if
you get both. Suppose Karen chooses to do both and would also like to add nail art on each of her fingers, which
costs $3 per nail. How much would she pay in all? Part of My Solution: The cost for both manicure and pedicure is
$35+$40=$75. The discount is $75%0.2=$30. So, Karen would only pay $75-$15=$60 for both services. Please
complete the solution of the question for me.

Response: Let's complete the solution step by step:
1. Calculate the total cost for manicure and pedicure before discount:
Manicure: $35
Pedicure: $40
Total: $35 + $40 = $75
2. Apply the 20% discount for getting both services:
Discount: 20% of $75=10.2 x $75 =§15
Discounted price: $75 - $15 = $60
3. Add the cost for nail art:
Nail art costs $3 per nail
Karen has 10 fingers (assuming standard manicure on all fingers)
Total nail art cost: 10 x $3 = $30
4. Calculate the final total cost:
Discounted services: $60

Nail art: $30
Total: $60 + $30 = $90
 Final Answer: Karen would pay $90 in total. y

Figure 12: An example of fail response to a Flawed Solution Completion Question by Deepseek V3. The red text
in the Question indicates the segment containing the contradiction.

852

Question: Iam a beginner in mathematics. I will provide you with a math problem and its corresponding solution
process. I will ask you some questions about the solution. Please answer them.### Problem: John cuts down an 80-
foot tree. He can make logs out of 80% of it. He cuts it into 4-foot logs. From each of those logs, he cuts 5 planks.
He then sells each plank for $1.2. How much does he make? ### Solution: He can use 80*.6=48 feet of the tree.
That means he can make 48/4=12 logs. That gives him 12*5=60 planks. So he makes 60*1.2=8$72. ### My query
about the solution: Why do we multiply by 1.2 in the last step?

Response: In the last step, we multiply the number of planks (60) by the price per plank ($1.2) to calculate the
total amount of money John makes from selling all the planks.
Here's the breakdown:
1. Number of planks: John has 60 planks in total (as calculated in the previous steps)
2. Price per plank: Each plank is sold for $1.2
3. Total revenue: To find out how much money he makes in total, you multiply the number of planks by the price per
plank:
Total revenue = Number of planks X Price per plank = 60 x 1.2 = $72
So, multiplying by 1.2 in the last step gives you the total amount of money John earns from selling all the planks.

Figure 13: An example of fail response to a Irrelevant Query Distraction Question by Deepseek V3. The red text in
the Question indicates the segment containing the contradiction.

853

f Question: I am a beginner in mathematics. I will provide you with a math problem and its corresponding solution \
process. I will ask you some questions about the solution. Please answer them.### Problem: Richard wants to make

a video to share online of him doing a science experiment that creates a fountain of diet soda after placing a specific
branded candy inside it. Richard's driveway is 24 feet wide and he wants to put a bottle of soda every 3 feet of the
driveway. After starting at the first bottle, it will take Richard 5 seconds to go from one soda bottle to the next,

dropping the candy in. How many seconds total will it take Richard to set off all the soda fountains? ### Solution: If
Richard's driveway is 24 feet long and he puts a bottle of soda every 4 feet, then out of 24 feet total there are 24 / 4

feet between each bottle = 6 bottles. If Richard starts at 0 seconds with the first bottle and it takes him 5 seconds to

go onto the next bottle to drop the candy, then it will take him 5 seconds x 7 bottles = 35 seconds total. ### My

query about the solution:Why do we multiply by 7 bottles in the last step instead of 8?

Response: Let's carefully analyze the problem and the solution to understand why 7 bottles are used in the
multiplication step.
Problem Breakdown:
1. Driveway Width: 24 feet
2. Bottle Placement: A bottle every 3 feet (not 4 feet as mentioned in the solution; this seems to be a typo in the
solution)
3. Time Between Bottles: 5 seconds to go from one bottle to the next and drop the candy
Correct Calculation:
1. Number of Bottles:
If bottles are placed every 3 feet in a 24-foot driveway, the number of intervals (gaps) between bottles is 24 / 3 = 8
However, the number of bottles is one more than the number of intervals because you have a bottle at the starting
point (0 feet) and then at each 3-foot mark
So, the bottles are at: 0 ft, 3 ft, 6 ft, 9 ft, 12 ft, 15 ft, 18 ft, 21 ft, and 24 ft
This is 9 bottles in total (not 6 or 7 as mentioned in the solution)
2.Time Calculation:
Richard starts at the first bottle (0 ft) at 0 seconds
To go from the first bottle (0 ft) to the second bottle (3 ft), it takes 5 seconds
From the second to the third bottle (6 ft), it takes another 5 seconds, and so on
The total time is the time taken to move between the bottles, not the time to "drop" at each bottle
So, for 9 bottles, there are 8 intervals between them
Total time = 8 intervals x 5 seconds per interval = 40 seconds
Why the Solution Says 7 Bottles:
The solution seems to have two errors:
1. It incorrectly states that the bottles are placed every 4 feet (instead of 3 feet as per the problem)
24 /4 = 6 intervals, which would mean 7 bottles (including the starting point)
2. It then multiplies by 7 bottles, which is incorrect because the time is spent moving between bottles, not at the
bottles themselves
For 7 bottles, there are 6 intervals, so the correct time would be 6 x 5 = 30 seconds (but this is based on the wrong
spacing of 4 feet)
Correct Answer:
For the original problem (bottles every 3 feet):
Number of bottles =9 (at 0, 3, 6, ..., 24 ft)
Number of intervals = 8
Total time = 8 x 5 =40 seconds
Why Not 8 Bottles?
If you mistakenly think the number of bottles is 8 (e.g., by not counting the starting point at 0 ft), you would
calculate:
Intervals = 7
Time =7 x 5 = 35 seconds (as in the solution) But this is incorrect because the first bottle is at 0 ft, so there are 9
bottles total
Summary:
The solution has a typo (using 4 feet instead of 3 feet) and then incorrectly multiplies by the number of bottles (7)
instead of the number of intervals (6 for 4-foot spacing or 8 for 3-foot spacing).
\ The correct answer for the original problem is 40 seconds.)

Figure 14: An example of success response to a Irrelevant Query Distraction Question by Deepseek V3. The red
text in the Question indicates the segment containing the contradiction. The blue text indicates the key part that
highlights the presence of a contradiction.

854

0.6

E- 02050 0.0700 01725 00525 01450 00825 00350 01950 01400 01725 01475 02000 0.1350
05
2 0.4
% e .
2 2 (PPERNINPSPEN 02450 01075 01950 01500 00200 | 02325 02425 02250 5
o g 03 %
£
a
~02
5
£ 0.1700 02000 0.0650 01750
H -01
| | | |
o
& o L e S S & & F ©
2 & 3 & S & R <] & IS
& o N & o o & & &
P & & & & & c'\w“ & & & o &
& F <& & & & il o &
[ed " @ & & & &
& v & & o
& 3
&
Model

Figure 15: This heatmap illustrates the Proactive Premise Critique Rate (PPCR) of all the evaluated LLMs across
different difficulty levels (normal, medium, hard) in PCBench.

0.5
Contradictory Inference Insertion yll 0.1400 {oEOLN 0.2033 0.0500 0.4200
0.4
& Contradictory Premise Insertion LV 0.3467 [0.2800 goXeFlilel 0.4033 | 0.4400 | 0.4033 | 0.4200 | 0.3400
&
Z 03w
] 9]
o g
s
E Flawed Solution Completion -JfEREER 0.0600 0.1733 [eElsll] 0.0333 0.0667 0.0200 0.1300 0.1700 0.1200 0.1233 0.1000 0.0600
-0.2
Irrelevant Query Distraction (Rei-L) 0.1900 0.0767 0.0600 0.0267 0.0200 0.1233 JUEZL[E 0.1300 [uickrk] 01
i i i ' ' i
& g
é& \3} *:‘\”: ¢¢Q e Q&DS ‘\& & &é{“ 6;.,% ‘—\ﬁ& "P‘b 5 .,)-Q"b \,PQO;
& & & <& & & 3 & & 2 & & & & &
a;) & @Qﬁ; & <& & & & %-5‘ a‘@ & & 6.6‘
& & F & & & & F 3 o
[ed o R S & K & &°
& o o
&
&

Model

Figure 16: This heatmap depicting the Proactive Premise Critique Rate (PPCR) of all the evaluated LLMs across four
error categories (Contradictory Inference Insertion, Contradictory Premise Insertion, Flawed Solution Completion,

Irrelevant Query Distraction) in PCBench.

855

® PPCR
Qwen3-8B-thinking ° e ® APCR

Qwen3-8B @ L]

Qwen3-30B-thinking L] L]

Qwen3-30B ® ®

COwen3-235B-thinking ® []

Qwen3-235B ® ®

od-mini-medium o L]

o3-mini-medium o o

Llama-4-maverick [o

GPT4o L ®

GPT4.1] L]

Gemini2.0-flash-thinking L]]

DeepSeek-V3 o L

Deepseek-R1 ® []

Claude3.7-sonnet L] L

00 0.1 02 03 04 05 06 07 08
Rate

Figure 17: This dot plot compares the Proactive Premise Critique Rate (PPCR, blue dots) and Assisted Premise
Critique Rate (APCR, red dots) of all the evaluated LLMs. It reveals a significant gap between the models’ proactive
premise critique ability (autonomously detecting flawed premises without explicit prompting) and their passive
critique ability under prompting (detecting flawed premises with explicit instructions to check for errors), indicating
most models heavily rely on explicit prompts for effective flawed premise identification.

856

Construction

Method 1l Query Normal Query
Contradictor Twenty dozen cups cost $1200 less than the Twenty dozen cups cost $1200 less than the
Inference Y total cost of half a dozen plates sold at $6000 total cost of half a dozen plates sold at
. each. The total cost of 240 cups is $28,800. $6000 each. Calculate the total cost of
Insertion . .
Calculate the total cost of buying each cup. buying each cup.
. Timothy has three tn.nes the numbeTr of pens Timothy has three times the number of pens
Contradictory that George owns. Timothy has twice the
. - that George owns. Sarah has half as many
Premise number of pens that George owns. Sarah has :
. . pens as Timothy. If George has 18 pens,
Insertion half as many pens as Timothy. If George has
how many pens does Sarah have?
18 pens, how many pens does Sarah have?
Question: Tommy caught 3 more fish than ~ Question: Tommy caught 3 more fish than
Darren and Darren caught 6 less than Naomi. Darren and Darren caught 6 less than Naomi.
Flawed If Naomi caught 17 fish, how many fish did If Naomi caught 17 fish, how many fish did
Solution Tommy catch? Part of My Solution: Darren Tommy catch? Part of My Solution: Darren
Completion caught 17 - 6 = 11 fish Tommy caught 11 + caught 17 - 6 = 11 fish Tommy caught 11 +
5 = 16 Please complete the solution of the 3 = 14 Please complete the solution of the
question for me. question for me.
I am a beginner in mathematics. I will I am a beginner in mathematics. I will
provide you with a math problem and its provide you with a math problem and its
corresponding solution process. I will ask corresponding solution process. I will ask
you some questions about the solution. you some questions about the solution.
Please answer them.### Problem: A family Please answer them.### Problem: A family
of 6 (2 adults and 4 kids) are to divide a of 6 (2 adults and 4 kids) are to divide a
watermelon such that each adult gets a slice watermelon such that each adult gets a slice
that is twice as big as that of each kid. What that is twice as big as that of each kid. What
percentage of the watermelon does each percentage of the watermelon does each
Irrelevant adult get? ### Solution: Let x be the adult get? ### Solution: Let x be the
Query percentage of watermelon that each adult percentage of watermelon that each adult
Distraction gets. Since each kid gets half of what each ~ gets. Since each kid gets half of what each

adult gets, each kid gets x/2 percent of the
watermelon So the watermelon gets split
into 2*x and 4*(x/2) parts by percentage
The percentages have to sum up to 100 so
2x+4x = 100 (after simplification) x = 100/6
~ 16.67, which means each adult gets about
16.67% of the watermelon. ### My query
about the solution:Why do we use x/2 for
the kids’ share?

adult gets, each kid gets x/2 percent of the
watermelon So the watermelon gets split
into 2*x and 4*(x/2) parts by percentage
The percentages have to sum up to 100 so
2x+2x = 100 (after simplification) x = 100/4
= 25, which means each adult gets 25% of
the watermelon. ### My query about the
solution: Why do we use x/2 for the kids’
share?

Table 4: Example of a Problem with Four Types of Flawed Premises. Text highlighted in red indicates flawed
premises, while text in blue corresponds to the original premises. Note: In the first type of flawed premise, the
original premise is latent and will be revealed during the calculation process.

857

Original Problem The girls are trying to raise money for a carnival. Kim raises $320 more than
Alexandra, who raises $430, and Maryam raises $400 more than Sarah, who
raises $300. How much money, in dollars, did they all raise in total?

Extract Premises "extracted_premises": {"1": "The girls are trying to raise money for a carnival.",
"2": "Kim raises $320 more than Alexandra.", "3": "Alexandra raises $430.",
"4": "Maryam raises $400 more than Sarah.", "5": "Sarah raises $300.", "6":
"The amount of money raised is measured in dollars."}

non

Get Inferences "inferences": [{"inference": "Kim raises more money than Alexandra.", "rel-
evant premises": [2, 3]}, {"inference": "Maryam raises more money than
Sarah.", "relevant premises": [4, 5]}, {"inference": "The amounts raised by
Kim, Alexandra, Maryam, and Sarah are all measured in dollars.", "rele-
vant premises": [0, 2, 3, 4, 5]}, {"inference": "Kim raises a specific dollar
amount that can be calculated by adding $320 to Alexandra’s $430.", "relevant
premises": [2, 3, 6]}, {"inference": "Maryam raises a specific dollar amount
that can be calculated by adding $400 to Sarah’s $300.", "relevant premises":
[4, 5, 6]}, {"inference": "All four girls (Kim, Alexandra, Maryam, and Sarah)
contributed to raising money for the carnival.", "relevant premises": [1, 2, 3, 4,

51}
Contradiction Syn- "conflict": {"original_premise": "Maryam raises more money than Sarah.",
thesis "recomposed_premise": "Maryam raises less money than Sarah.", "con-

flict_reason": "The original inference states that Maryam raises more money
than Sarah, while the contradictory inference claims that Maryam raises less
money than Sarah. These statements cannot both be true, as they make directly
opposing claims about the relative amounts raised by Maryam and Sarah."}

11l Problem The girls are trying to raise money for a carnival. Kim raises $320 more than
Alexandra, who raises $430, and Maryam raises $400 more than Sarah, who
raises $300. Maryam raises less money than Sarah. How much money, in
dollars, did they all raise in total?

Table 5: Example of synthetic data generation for Contradictory Inference Insertion. The process begins with a
valid mathematical word problem, from which explicit atomic premises are extracted and logically sound inferences
are derived. A targeted contradictory inference is then synthesized by reversing the logical implication of a valid
inference, resulting in an internally inconsistent problem instance. This formulation enables fine-grained evaluation
of a model’s ability to detect logical inconsistency at the inference level.

858

Original Problem Jonathan was sad to learn he needed 2 more toys than he already had to have
enough toys to make a sorted play set five times larger than James’s play set,
which had 80 toys. How many toys does Jonathan currently have?

Contradiction Syn- "conflict": {"original_premise": "Jonathan was sad to learn he needed 2 more
thesis toys than he already had to have enough toys to make a sorted play set five
times larger than James’s play set, which had 80 toys.", "recomposed_premise":
"Jonathan needed 10 more toys than he already had to have enough toys to
make a sorted play set five times larger than James’s play set, which had 80
toys.", "conflict_reason": "The original premise states that Jonathan needs
2 more toys to reach the required number, while the contradictory premise
states he needs 10 more toys, which directly conflicts with the original number

needed."}

Il Problem Jonathan was sad to learn he needed 2 more toys than he already had to have
enough toys to make a sorted play set five times larger than James’s play set,
which had 80 toys. Jonathan needed 10 more toys than he already had to have
enough toys to make a sorted play set five times larger than James’s play set,
which had 80 toys. How many toys does Jonathan currently have?

Table 6: Example of synthetic data generation for Contradictory Premise Insertion. A coherent mathematical
problem is augmented with a recomposed premise containing a quantitative inconsistency. The resulting ill-posed
instance embeds mutually incompatible statements, enabling rigorous evaluation of a model’s capacity for logical
consistency verification and contradiction detection at the premise level.

Original Problem Question: Mike bought 5 face masks while Johnny bought 2 more than thrice
as many as Mike. How many face masks did Johnny buy? Part of My Solution:
Thrice as many as Mike’s face masks is 5 x 3 = 15. So, Johnny bought 15 + 2
= 17 face masks. Please complete the solution of the question for me.

Contradiction Syn- "conflict": {"original_premise": "Thrice as many as Mike’s face masks is 5 x 3
thesis =15.", "recomposed_premise": "Thrice as many as Mike’s face masks is 5 x 2

n,on

=10.", "conflict_reason": "change the correct step to wrong step"}

Il Problem Question: Mike bought 5 face masks while Johnny bought 2 more than thrice
as many as Mike. How many face masks did Johnny buy? Part of My Solution:
Thrice as many as Mike’s face masks is 5 x 2 = 10. So, Johnny bought 10 + 2
= 12 Please complete the solution of the question for me.

Table 7: Example of synthetic data generation for Flawed Solution Completion. A mathematically consistent
problem is perturbed by inserting a recomposed premise containing a numerical contradiction. The resulting
ill-posed instance enables fine-grained assessment of models’ sensitivity to internal logical inconsistencies at the
premise level.

859

Original Problem I am a beginner in mathematics. I will provide you with a math problem and
its corresponding solution process. I will ask you some questions about the
solution. Please answer them.### Problem: A family of 6 (2 adults and 4 kids)
are to divide a watermelon such that each adult gets a slice that is twice as
big as that of each kid. What percentage of the watermelon does each adult
get? ### Solution: Let x be the percentage of watermelon that each adult gets.
Since each kid gets half of what each adult gets, each kid gets x/2 percent
of the watermelon. So the watermelon gets split into 2x and 4(x/2) parts by
percentage. The percentages have to sum up to 100 so 2x+4x = 100 (after
simplification). x = 100/6 ~ 16.67, which means each adult gets about 16.67%
of the watermelon. ### My query about the solution: Why do we use x/2 for
the kids’ share?

Contradiction Syn- "conflict": {"original_premise": "The percentages have to sum up to 100 so

non

thesis 2x+2x = 100 (after simplification)", "recomposed_premise": "The percentages

have to sum up to 100 so 2x+4x = 100 (after simplification)", "conflict_reason":
"Wrong step in recomposed_premise" }

Il Problem I am a beginner in mathematics. I will provide you with a math problem and
its corresponding solution process. I will ask you some questions about the
solution. Please answer them.### Problem: A family of 6 (2 adults and 4 kids)
are to divide a watermelon such that each adult gets a slice that is twice as
big as that of each kid. What percentage of the watermelon does each adult
get? ### Solution: Let x be the percentage of watermelon that each adult gets.
Since each kid gets half of what each adult gets, each kid gets x/2 percent
of the watermelon. So the watermelon gets split into 2x and 4(x/2) parts by
percentage. The percentages have to sum up to 100 so 2x+2x = 100 (after
simplification). x = 100/4 = 25, which means each adult gets 25% of the
watermelon. ### My query about the solution: Why do we use x/2 for the kids’
share?

Table 8: Example of synthetic data generation for Irrelevant Query Distraction. A logically flawed solution step
is deliberately introduced to the original problem, while the user query remains focused on an unrelated, correct
component. This setup is designed to evaluate a model’s capacity to detect and prioritize reasoning errors despite
distraction by semantically plausible but irrelevant questions.

860

#i#t# Task Instructions
Meaning of Existing Premises:
The set of existing premises refers to the information that is clearly and explicitly provided in the
question.
Common Types of Premises:
1. Background Information: Information that describes the scene, story, or situation in which the
problem occurs.
2. Numerical Information: Specific and quantifiable numerical data (such as quantity, price, time,
etc.).
3. Measurement Standards: Standards used for measurement or counting (such as “dozen”, “dollar”,
“meter”, etc.).
4. Symbols: Symbols representing unknown or variable quantities (such as “x”, “y”, etc.).
5. Relational Information: Information that describes the associations between elements (such as
textual logic, formulas, functions).
6. Restriction Conditions: Conditions that restrict the values of variables or the solutions to problems
(such as ranges, rules).
Main Task:
- Please extract all the existing atomic premises from the question according to the definition in
Common Types of Premises without omitting any premise.
- Each premise should be listed separately.
- You should only list the premises that are clearly provided in the question!
- Carefully check whether the extracted premises are existing premises according to the above defini-
tion.
#i## Example
Question: A store is having a sale. Apples are sold at $2 per pound. The total amount of money
spent on buying apples is calculated by the formula C' = 2x, where C represents the total cost and x
represents the number of pounds of apples bought. The store only allows customers to buy between 1
and 10 pounds of apples in one transaction.
Extracted Existing Atomic Premises:
“‘json
[

"A store is having a sale.”,

"Apples are sold at $2 per pound.”,

"pound is the standard for measuring the quantity of apples.”,

"C represents the total cost”,

"The formula C = 2x describes the relation between the total cost and the number
of pounds of apples bought.”,

(...more)

]
Question
{question}
Output Format
Output in the form of a JSON. Only output the content within the following code block, and do not
add any other content:
‘¢‘json
[
Premise string,
Premise string,
(...more)

]

€ ¢ ¢

Table 9: Extract Premises Prompt Template for Contradictory Inference Insertion

861


```json
```

##t# Task Instructions

Meaning of inferences:

An inference is the result obtained by applying a set of reasoning rules to a given set of problem premises. In essence, when
we take specific problem premises and use defined reasoning rules to process them, the conclusions drawn from this process
constitute the set of inferences.

Main Task:

Your objective is to generate as many valid inferences as possible based on the provided premises.

The answer of the question should not being included in the inferences.

For each inference you present, clearly indicate the corresponding keys in the JSON that reference the relevant existing
premises upon which the inference is based.

Each inference should be based on two or more premises!

#i# Example

Question: A library has a borrowing policy. Each member can borrow up to 5 books at a time. The borrowing period
for each book is 14 days. If a book is returned late, a fine of $0.5 is charged per day per book. Members can renew their
borrowed books once, extending the borrowing period by an additional 7 days.

Extracted Existing Atomic Premises:

“e

json
{
"1": "A library has a borrowing policy."”,
"2": "Each member can borrow up to 5 books at a time.",
"3": "The borrowing period for each book is 14 days.",

"4": "Members can renew their borrowed books once, extending the borrowing period by an additional
7 days.",
"5": "If a book is returned late, a fine of $0.5 is charged per day per book."

}

“e

Inferences and relevant premises:
““json
L
{
"inference”: "A member can keep a book for a maximum of 21 days without incurring a late -
return fine if they renew it once.”,
"relevant premises”: [

3,
4
]
}!
{
"inference": "If a member borrows the maximum number of 5 books and returns them 1 day late,

the total fine will be $2.5.",
"relevant premises”: [
2 ’
5
]
}
(more...)
]
Question
{question}
#it# Existing Premises
{premises}
#i## Output Format
Output in the form of a JSON. Only output the content within the following code block, and do not add any other content:
“‘json
L
{
"inference":"content of inference 1 (string)”,
"relevant premises”: [
"key value of existing condition 1 (integer)”,
"key value of existing condition 2 (integer)”,
(more...)
]
}
(more...)

]

“e

Table 10: Get Inferences Prompt Template for Contradictory Inference Insertion

862

Example

Question: A library has a borrowing policy. Each member can borrow up to 5 books at a time. The
borrowing period for each book is 14 days. If a book is returned late, a fine of $0.5 is charged per
day per book. Members can renew their borrowed books once, extending the borrowing period by an
additional 7 days.

Original Inference: A member can keep a book for a maximum of 21 days without incurring a late -
return fine if they renew it once.

Contradictory Inference: A member can keep a book for a maximum of 14 days without incurring a
late - return fine if they renew it once.

Conflict Reason: The inferences disagree on whether the 7-day renewal period adds to the initial
14-day borrowing period (21 days total vs. incorrectly keeping it at 14 days), leading to contradictory
conclusions about the maximum fine-free duration.

Recomposed Question: A library has a borrowing policy. Each member can borrow up to 5 books at
a time. A member can keep a book for a maximum of 14 days without incurring a late - return fine if
they renew it once. The borrowing period for each book is 14 days. If a book is returned late, a fine
of $0.5 is charged per day per book. Members can renew their borrowed books once, extending the
borrowing period by an additional 7 days.

Original Inference

{original_inference}

Question

{question}

#i## Task Instructions

Main Task:

You are required to insert a contradictory inference into the given question.

You should complete the task follow these steps:

1. write a contradictory inference that contradicts the original inference.

2. explain the reason for this contradiction, that is, why the contradictory inference contradicts the
original inference.

3. insert the contradictory inference into the question, keeping the question exactly the same as the
original.

Attention:

- The inserted inference should be the contradictory one!

- ensuring that original components of the question remain entirely unchanged from the original

- The inserted contradictory inference should appear to be of equal importance. Don’t let it sounds like
noise!

- The language used in the questions should be same!

Output Format

Output in the form of a JSON. Only output the content within the following code block, and do not
add any other content:

{3

json
{

"recomposed_question”:"the recomposed question which is inserted a contradictory
inference(string)",

"contradictory_inference”:"the contradictory inference which is
inserted(string)"”,

n.,n

"conflict_reason”:"the reason why the contradictory inference contradicts the
original inference(string)”

}

(X3

Table 11: Contradiction Synthesis Prompt Template for Contradictory Inference Insertion

863

Example
Question: A library has a borrowing policy. Each member can borrow up to 5 books at a time. The
borrowing period for each book is 14 days. If a book is returned late, a fine of $0.5 is charged per
day per book. Members can renew their borrowed books once, extending the borrowing period by an
additional 7 days. (query...)
Original Premise: The borrowing period for each book is 14 days.
Contradictory Premise: The borrowing period for each book is 10 days.
Conflict Reason: The original premise states that The borrowing period for each book is 14 days,
while the contradictory premise change the number of days to 10.
Recomposed Question: A library has a borrowing policy. The borrowing period for each book is 10
days. Each member can borrow up to 5 books at a time. The borrowing period for each book is 14
days. If a book is returned late, a fine of $0.5 is charged per day per book. Members can renew their
borrowed books once, extending the borrowing period by an additional 7 days. (query...)
Question
{question}
Task Instructions
Main Task:
You are required to insert a contradictory premise into the given question.
You should complete the task follow these steps:
1. choose one of the premise in the question.
2. write a contradictory premise that contradicts this premise.
3. explain the reason for this contradiction, that is, why the contradictory premise contradicts the
original premise.
4. insert the contradictory premise into an appropriate position in the question, but before the query!
Attention:
- ensuring that all other components of the question remain entirely unchanged from the original, and
that the initial premise is also retained in the question!
- The original premise and the contradictory premise should appear to be of equal importance. Don’t
let any of them sound like noise!
- The original premise and the contradictory premise all exist in recomposed question!
- The language used in the questions should be same!
Output Format
Output in the form of a JSON. Only output the content within the following code block, and do not
add any other content:
“‘json
{

"recomposed_question”:"the recomposed question which is inserted a contradictory
premise(string)”,

"original_premise”:"the original premise chosen by you(string)”,

n n

"contradictory_premise”:"the contradictory premise which is inserted(string)”,
"conflict_reason”:"the reason why the contradictory premise contradicts the
original premise(string)”
3

{3

Table 12: Contradiction Synthesis Prompt Template for Contradictory Premise Insertion

864

Example

Part Of the Solution: First, find out the number of apples left after giving some to her brother. The
number of remaining apples is 15 — 3 = 12. Then, to find out how many apples each friend gets, we
divide the number of friends by the remaining apples.

Modified part of Solution:
{33 json

{

"modified_part_solution”:"First, find out the number of apples left after giving
some to her brother. The number of remaining apples is 13 —3 = 10. Then, to
find out how many apples each friend gets, we divide the number of friends by the
remaining apples.”

"correct_step”:"The number of remaining apples is 15 —-3=12."
"error_step”:"The number of remaining apples is 13 —3=10."

3

{3

Part Of the Solution
{part_solution}

Task Instructions
Main Task:

I will provide you with part of the solution to a problem. I need you to modify one step in the solution
to make it incorrect. The errors in the steps should be relatively obvious. Then, please give me the
revised part of the solution. Keep all other steps unchanged except for the deliberately wrong step.

Output Format

Output in the form of a JSON. Only output the content within the following code block, and do not
add any other content:
“ json

{

"modified_part_solution”:"The modified part of the solution which includes a
wrong step(string)”

"correct_step”:"The correct step(sting)”

"error_step”:"The error step(sting)"”

Table 13: Contradiction Synthesis Prompt Template for Flawed Solution Completion

865

Example

Correct Solution: First, find out the number of apples left after giving some to her brother. The
number of remaining apples is 15 — 3 = 12. Then, to find out how many apples each friend gets, we
divide the number of friends by the remaining apples...

Wrong Solution And Query For Distraction: “ ¢ json

{

"modified_wrong_solution”:"First, find out the number of apples left after giving
some to her brother. The number of remaining apples is 13 —3 = 10. Then, to find
out how many apples each friend gets, we divide the number of friends by the
remaining apples..."

"query"”: "Why do we divide in the next step?”
"correct_step”:"The number of remaining apples is 15 —-3=12."
"error_step”:"The number of remaining apples is 13—-—3=10."

3

¢

#i## The Correct Solution
{solution}

Task Instructions
Main Task:

I’ll provide you with the correct solution to a problem. Your task is to modify one step in the solution
to make it incorrect and then present the wrong solution. The errors in the steps should be relatively
obvious. Keep all other steps exactly the same, except for the deliberately altered step. Additionally,
pose a simple query from the perspective of a user who isn’t good at math but wants to learn the
solution. This query should not refer to the wrong step; instead, it should divert attention away from it.

Output Format

Output in the form of a JSON. Only output the content within the following code block, and do not
add any other content:

{3

json
{

"modified_wrong_solution”:"The modified wrong solution which includes a wrong
step(string)"”,

n.n

"query":"a simple query from the perspective of a user who isn’t good at math
but wants to learn the solution. This query should not refer to the wrong step;
instead, it should divert attention away from it.(string)",

"correct_step”:"The error step(sting)”

"error_step":"The error step(sting)”

Table 14: Contradiction Synthesis Prompt Template for Irrelevant Query Distraction

866

Prompt for Premise Critique Evaluation

Please act as an impartial judge. Your task is to assess whether a given model response demonstrates
the ability of Premise Critique Ability. Please follow the criteria below and output your judgment in
the specified JSON format.

Judgment Criteria

Exhibits Premise Critique Ability:

The response must:

- Clearly question/challenge the validity, logic, or reasonableness of the problem’s premises.

- Specifically identify contradictions, inconsistencies, or flawed reasoning within the premises.

- Explicitly state the nature of the error (e.g., "The premise incorrectly assumes X," "There is a
contradiction between Y and Z").

Does Not Exhibit Premise Critique Ability:
The response fails to meet the above criteria if it:
- Provides a correct solution without analyzing errors in the original premises.

- Vaguely claims the problem is "unreasonable" or "flawed" without specifying exact contradictions or
errors.

Details on Incorrect Premise
When a response engages in premise critique, it must precisely identify:

{conflict_place} = The specific location or aspect within the problem’s premises where the error
lies.

Response to be Evaluated

{response}

Output Format

Output in the form of a JSON. Only output the content within the following code block, and do not
add any other content:

{3

json
{ "if_find_contradiction”: "True/False”,
"basis”: "Provide a concise explanation of the judgment basis, which should

be analyzed by combining the content of the model’s response with the judgment
criteria.”

3

{3

Table 15: Premise Critique Ability Evaluation Prompt Template

867

. . H P d- t.
Confusion Matrix uman Frediction

Positive Negative

" Positive 147 0
Model Prediction Negative 1 o

Table 16: Confusion Matrix for Qwen3-235B (Model vs. Human), with a Corresponding Kappa Coefficient of
0.8921

Confusion Matrix Human Prediction

Positive Negative

. . Positive 166 3
Model Prediction Negative 8 >

Table 17: Confusion Matrix for GPT-4.1 (Model vs. Human), with a Corresponding Kappa Coefficient of 0.7763

868

Model

Size

Model Link

Non-Reasoning Models

GPT-40 N/A https://platform.openai.com/docs/
models#gpt-40

GPT-4.1 N/A https://platform.openai.com/docs/
models#gpt-4.1

Qwen3-8B 8B https:
//huggingface.co/Qwen/Qwen3-8B

Qwen3-30B-A3B 30B https:
//huggingface.co/Qwen/Qwen3-30B-A3B

Qwen3-235B-A22B 235B https://huggingface.co/Qwen/
Qwen3-235B-A22B

DeepSeek-V3 671B https://huggingface.co/deepseek-ai/
DeepSeek-V3

Llama-4-Maverick-17B-128E-Instruct 17B https://huggingface.co/meta-1lama/
Llama-4-Maverick-17B-128E-Instruct

Reasoning Models

03-mini N/A https://platform.openai.com/docs/
models/o03-mini

o4-mini N/A https://platform.openai.com/docs/
models/o4-mini

DeepSeek-R1 671B https://huggingface.co/deepseek-ai/
DeepSeek-R1

Qwen3-8B-thinking 8B https:
//huggingface.co/Qwen/Qwen3-8B

Qwen3-30B-A3B-thinking 30B https:
//huggingface.co/Qwen/Qwen3-30B-A3B

Qwen3-235B-A22B-thinking 235B https://huggingface.co/Qwen/
Qwen3-235B-A22B

Claude-3.7-sonnet N/A https://docs.anthropic.com/en/docs/
about-claude/models

Gemini-2.0-flash-thinking N/A https://ai.google.dev/gemini-api/

docs/models#tgemini-2.0-flash

Table 18: Model links categorized by reasoning capability.

869

https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#gpt-4.1
https://platform.openai.com/docs/models#gpt-4.1
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/Qwen/Qwen3-30B-A3B
https://huggingface.co/Qwen/Qwen3-30B-A3B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
https://platform.openai.com/docs/models/o3-mini
https://platform.openai.com/docs/models/o3-mini
https://platform.openai.com/docs/models/o4-mini
https://platform.openai.com/docs/models/o4-mini
https://huggingface.co/deepseek-ai/DeepSeek-R1
https://huggingface.co/deepseek-ai/DeepSeek-R1
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/Qwen/Qwen3-30B-A3B
https://huggingface.co/Qwen/Qwen3-30B-A3B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://docs.anthropic.com/en/docs/about-claude/models
https://docs.anthropic.com/en/docs/about-claude/models
https://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash
https://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash

