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Abstract

Retrieval-augmented generation (RAG) miti-
gates the hallucination problem in large lan-
guage models (LLMs) and has proven effective
for personalized usages. However, delivering
private retrieved documents directly to LLMs
introduces vulnerability to membership infer-
ence attacks (MIAs), which try to determine
whether the target data point exists in the pri-
vate external database or not. Based on the in-
sight that MIA queries typically exhibit high
similarity to only one target document, we in-
troduce a novel similarity-based MIA detection
framework designed for the RAG system. With
the proposed method, we show that a simple
detect-and-hide strategy can successfully obfus-
cate attackers, maintain data utility, and remain
system-agnostic against MIA. We experimen-
tally prove its detection and defense against
various state-of-the-art MIA methods and its
adaptability to existing RAG systems.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Grattafiori et al., 2024) have demonstrated
strength for general and common knowledge. How-
ever, they struggle to answer domain-specific or
personalized questions, resulting in hallucinations
that fabricate non-truth answers from the training
set (Huang et al., 2025). Retrieval-augmented gen-
eration (RAG) (Lewis et al., 2020) mitigates hallu-
cination by giving information from external data
retrieval into LLMs. RAG can provide reliable in-
formation by extracting relevant documents from
an external database.

Membership inference attacks (MIAs) (Shokri
et al., 2017) are malicious machine learning at-
tacks that attempt to determine whether the target
document was used in the training dataset. Recent
work has examined MIAs and extraction attacks
on language models to study the privacy leakage

*Corresponding author. TEqual contribution.

(Shi et al., 2024). Even though MIAs achieve lower
success rates on LLMs due to the massive size of
training data samples (Puerto et al., 2024), privacy
risks in RAG systems are significant (Zeng et al.,
2024). As RAG retrieves a few top-k documents
and conveys them directly to LLMs, various attack
methods (Liu et al., 2025; Naseh et al., 2025) have
succeeded in inferring whether a target document
is stored in a private retrieval database or not.
However, safeguarding LLMs against MIA has
no practical solution due to the huge model size
or properties of language domains (Li et al., 2021).
Within RAG systems, the agent-based query fil-
tering system is the only defense explored so far,
but it is also broken by stealth attacks that evade
detection (Naseh et al., 2025). Thus, in this paper,
we present a new safeguarding framework against
MIAs by focusing on the observation that current
MIAs on the RAG system rely on queries similar
to only a single target document in the database.
In detail, we measure the similarity between an
input query and the retrieved data points. Then, we
check whether this similarity exceeds a threshold
based on the Gumbel distribution (Gumbel, 1935)
or not, which models the maximum values of data
samples. For an input query that exceeds the thresh-
old, indicating that the query is overly correlated
with one specific document in the retrieval, we hide
the data in the top-k document conveyed to the
LLMs. We summarize our contributions as follows:

* We propose a similarity-based method for de-
tecting MIA in RAG systems using Gumbel
distribution, named Mirabel. To the best of
our knowledge, this is the first attempt to study
safeguarding strategies specifically against
MIAs in RAG.

* Mirabel safeguards private external database
against MIA through a simple detect-and-hide
approach, which obfuscates attackers while
preserving the utility of the RAG systems.
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* We empirically show the effectiveness of our
method against various measures, and its com-
parability to existing defense methods.

2 Related Works

2.1 Retrieval-Augmented Generation

RAG is a strategy that enhances LLLMs by inte-
grating external data retrieval into the generation
process (Lewis et al., 2020). At its core, an RAG
system comprises three primary components: an
external database D of textual documents, a re-
triever R, and a generator (i.e., LLM) G. When a
user submits a query g, the retriever identifies the
top-k contextual retrieval from D based on similar-
ity, such as cosine similarity, often computed in an
embedding model ¢(-) (Karpukhin et al., 2020):

Ry (q) = arg topkgepsim(q, d). €))

These retrievals are then combined with the orig-
inal query to form an augmented context, which
is passed to the generator. The generator produces
an output based on the retrieval (Gao et al., 2023;
Shuster et al., 2021) as follows:

p(q) = RAGprompt(q, Rx(q)), (2)

response = G(p(q)). 3)

RAG improves response accuracy and reduces hal-
lucinations frequently observed in pure LLMs. Fur-
thermore, RAG offers architectural flexibility: any
of the three core modules (D, R, and (&) can be re-
placed or updated independently without requiring
end-to-end retraining (Cheng et al., 2023). More-
over, query rewriting (e.g., correcting ambiguous)
and specialized retrieval (e.g., token- or graph-
based) can be used in RAG (Ram et al., 2023).

2.2 Privacy Leakage of RAG System

Despite the utility improvements, the RAG systems
inevitably pose privacy concerns when dealing with
sensitive or proprietary data in the retrieval. For ex-
ample, when dealing with sensitive data, the use of
RAG increases the risk of serious legal complica-
tions and leaks personal privacy if the documents
in the external database for retrieval are exposed
or attacked. Thus, we focus on the privacy of the
private external database in this paper.

The purpose of MIAs for the RAG system is
to determine whether a target document is stored
in the database. Beginning with directly asking

whether the document is in the database or not (An-
derson et al., 2024), various attacks are proposed:
S2MIA (Li et al., 2024) that provides the first half
of the document and requests completion; MBA
(Liu et al., 2025) that prompts prediction of masked
tokens; and IA (Naseh et al., 2025), indicating an
interrogation attack, that asks multiple queries that
are hard to answer without the document. All of the
attacks then exploit the output of the RAG system
to infer the membership of the target document.

2.3 Safeguarding Attacks in RAG

To safeguard against MIAs in RAG systems, Naseh
et al. (2025) investigated a simple filtering method
that asks an LLM agent, such as GPT-4o, to classify
incoming queries as benign or malicious. However,
this agent-based method struggles with several chal-
lenges that will be further discussed in Section 3.1.
As a complementary safeguard system, differ-
ential privacy (DP) provides a mathematically rig-
orous privacy guarantee for sensitive data. Duan
et al. (2023) introduced a DP framework that hides
private information through noisy labeling against
MIAs. DP LLMs have also been explored for in-
context learning (Tang et al., 2024) and private
prompt tuning (Hong et al., 2024). For the RAG
system, DP-RAG (Grislain, 2024) protects the pri-
vacy of data in the data retrieval, and DPVoteRAG
(Koga et al., 2024) uses private voting. Tran et al.
(2025) used a machine unlearning to delete highly
memorized tokens, but their approach targets fine-
tuning LLMs and is not focused on RAG privacy.

3 Scenarios

Following the previous studies (Liu et al., 2025;
Naseh et al., 2025), we assume three parties in our
scenario: 1) the operator of the RAG system with
private external database, 2) the benign users of
the RAG, and 3) the malicious attackers attempt-
ing MIAs to the RAG system. For instance,

“A healthcare Al operator deploys a medical-
diagnosis chatbot that retrieves private patient
records. Benign users consult the chatbot to assess
their health, but attackers attempt MIAs. The oper-
ator must preserve privacy against attackers while
providing accurate answers to benign users."

Types of Queries Based on the scenario, we di-
vide the queries for RAG systems into three types:
member attack query ¢* by attackers of malicious
questions in the external database, non-member at-
tack query ¢/ by attackers of malicious questions
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Figure 1: Distributions of similarity scores between queries and retrieved data. We visualize both the full similarity
distributions and the top-1 similarities. A Gumbel-based threshold | o Sq 1s marked for reference.

but not in the external database, and benign query
qp of benign users without malicious intention.

Details about Attacker Given a target document
d, an attacker aims to decide whether d is contained
in the external database D by classifying its asso-
ciated query g, as a member attack query q.* or
a non-member attack query ¢;'. We assume the at-
tacker cannot access D or the parameters of LLMs.

Details about Operator’s Defenses The defense
should prevent attackers from recognizing the mem-
bership information while delivering correct re-
sponses to benign users without prior knowledge
of attacks, such as their prompts or patterns. The
defender also cannot access LLM parameters, just
relying on access to the external database D and its
embedding model ¢. Each query must be answered
immediately without pending the next queries.

3.1 Motivation and Goals

To safeguard against MIAs, it is essential to de-
termine whether an input query is malicious to
the RAG system for the private external database.
Recently, Naseh et al. (2025) proposed an LLM
agent-based detection method to evaluate the ma-
licious intent of input queries, independent of the
external database. To judge either benign queries g
or attack queries ¢, the agent identifies harmful or
extraction phrases within queries. However, Naseh
et al. (2025) also showed that the agent-based de-
tection can be deceived by stealth queries, which
are crafted attack queries designed to mimic benign
queries. Moreover, simply rejecting all suspected
attack queries may inadvertently reveal to attackers
filtering phrases and detour the detection systems.

These limitations suggest that an effective de-
fense requires not simply blocking queries but ob-
fuscating the attacker’s knowledge. An attack suc-
ceeds only if it can correctly separate ¢;* from

g, using the RAG’s responses. Hence, to defend
against the attack, the responses should be made sta-
tistically indistinguishable. Achieving this in turn
demands that the defender distinguishes between
gy and g7, so the responses can be selectively per-
turbed. Therefore, we set two complementary goals:
1) accurately separate member attack queries from
non-member attack queries, and 2) respond with
the corresponding responses so that an attacker can-
not classify the member and non-member cases.

4 Proposed Method

4.1 Is This Query Too Close to Home?
MIA Detection with Gumbel Distribution

By analyzing the similarity of queries, we propose
a detection method for the RAG system that dis-
tinguishes member attack queries (g),*) from other
types of queries (g and g;}). Specifically, our goal
is to find a threshold 7 to classify a query as a mem-
ber attack ¢]* if the maximum similarity exceeds:

ax sim(q,d) > 7.
%165(51m(q ) >T

“)

To find the threshold 7, we focus on the distribu-
tional differences between member attack queries
and other queries (Wen et al., 2024).

Figure 1a demonstrates [ J, S, the cosine sim-
ilarities between all queries and the external
database, where S, = {sim(q,d)|d € D} is a
set of similarities between a query ¢ and the to-
tal database. The figure shows (i) similarities of
the benign query g, and the total database follow
a (approximately) normal distribution, and (ii) for
the member attack queries ¢/*, the distribution ap-
pears similar to g, in the most likely region, but
exhibits extreme values in the right tail, which are
too similar with a private external database.

Based on these observations, we propose a detec-
tion method using the Gumbel distribution, which
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represents the maximum value of data samples
(Gumbel, 1935). In previous works on LLLM pri-
vacy, the Gumbel distribution is widely used to find
top-k selection (Durfee and Rogers, 2019; Hong
et al., 2024). By extreme value theory, if n random
variables are sufficiently large and follow an i.i.d.
normal distribution, i.e.,

iid.

X1, Xn "N N (g, 07), )

for some ji4 and o, then the maximum of the sam-
ples converges in distribution to a Gumbel distribu-
tion:

max{X1, -+, X,} 4 Gumbel(pn, Brn), (6)
where 3, = o/v2Inn and
fin = pig + 04dr/2Inn — In(Inn) — In(4n)
R g+ 0oqdV2Inn  (asn — o0). 7

Under the observations (i) and (ii) in Figure 1a, we
assume that the samples from S\ { Smax } follow a
normal distribution for each ¢, where sy, is the
maximum similarity in S,. Let p, and o, be the
mean and standard deviation of S\ {smax }. Then,
the threshold 7 can be calculated as follows:

T = pn +c-0q/V2Inn, 8)

where ¢ = — In(—In(1 — p)) is a critical value of
the Gumbel distribution for significance level p.

Figure 1b shows histograms of the maximum
value of each S, i.e., smax for each query. The
dashed line represents the threshold based on a
Gumbel distribution, which was computed from
U @ Sg,- Thresholds computed for each attack type
for separate spyax for non-member attack query g
and member-attack query ¢;* are provided in Fig-
ure 6 in Appendix C. Most sy, values of the mem-
ber attack queries exceed the Gumbel-based thresh-
old, whereas those of benign and non-member at-
tack queries remain below it. These findings sug-
gest that sy, of member attack queries ¢g;' can
be successfully separated from ¢, and ¢ by the
Gumbel-based threshold.

To this end, we name the proposed detection
method as Mirabel, i.e., MIA in RAG systems us-
ing Gumbel. Mirabel not only detects whether the
query q is a member attack, but also identifies the
specific document that is likely the target. More-
over, it can be incorporated into the standard RAG
system naturally, as it uses the similarity scores
already computed for top-k selection. The detailed
method is shown in Algorithm 1.

Testset | Benign | MBA S°MIA 1A
Sy 0469 | 0.027* 0.001* 0.012*
Sg\{smax} | 0400 | 0511 0293  0.226

Table 1: Average p-values of the normality test on the
total data set (S;) and on the set with the maximum
similarity removed (S;\ {Smax})- * : p-value < 0.05.

Algorithm 1 Proposed Mirabel Detection

Input: Query embedding function ¢, corpus
embeddings {e; = ¢(d) : d € D}, query g,
significance level p

Output: detection result, target document dy
Initialization: S, <— {}, e, < ¢(q)

1: foralld € D do

2: Sq < cos(eq,eq) > Compute sim (g, d)

3: Sq — Sq U {Sd}

4: end for

5: Smax, d < max(Sy) > Find (arg)max sim

6: fig,0q = mean(Sy\{smax}), std(:Sg\{smax})

T i & fg +0g-V2Inn > Gumbel mean

8: ¢+ —In(—In(1—p)) > Critical value

9: T 4 pin +c-0q/V2Inn > Threshold
10: return (Spmax > 7), 1[Smax > 7] - d¢
Normality test To validate our assumption, we

conduct a normality test on S, and Sy \ {Smax}-
Table 1 demonstrates the mean p-values from
D’ Agostino and Pearson’s normality test, averaged
across all queries q. Across all MIAs, the p-values
of total similarity scores in S, are less than 0.05,
indicating that we can reject the hypothesis that the
scores follow a normal distribution. In contrast, for
a benign query ¢, p > 0.05, we cannot reject that
Sg, follows a normal distribution.

In contrast, when the maximum similarity score
Smax 18 removed from S, we observe p > 0.05 for
all queries, indicating that we cannot reject that S\
{Smax } follows a normal distribution. As removing
Smax indicates the target document is removed in
the database, we cannot reject the hypothesis of
normality even for non-member attack queries ¢, .

The distributional difference between S, and
S¢\{Smax } indicates that sy, is an extreme outlier
relative to values drawn from a normal distribution
for ¢*. Since spax is distinctive in the Gumbel
distribution, this supports the proposed Mirabel
method, which identifies MIAs for the RAG system
by leveraging the confidence interval of the Gumbel
distribution.
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Figure 2: Illustration of our proposed Mirabel. We perform our detection to classify whether an input query is a
member attack query ¢.*. If it detected as ¢7;*, we hide it from data retrieval and proceed standard RAG system.

4.2 Detect-and-hide to Defend MIA

Leveraging the proposed Mirabel for MIA detec-
tion, we propose a simple defense method that safe-
guards the data sample in the external database
with a simple detect-and-hide strategy. In the de-
tection, the query is evaluated using Mirabel to
determine whether it is a member attack query ¢.".
In the hiding, if the query ¢ is classified as g]*, the
target document identified by Mirabel is hidden
from the external database, and the standard RAG
system proceeds with the remaining documents. If
the query is not classified as a member attack, the
standard RAG system proceeds without any modi-
fication. Figure 2 illustrates our proposed defense
method.

First of all, this simple defense confuses the at-
tacker about whether the RAG output is from mem-
bers or non-members, since the response of the
retriever no longer includes the target document in
both cases. Upon the observation of the normality
in the previous subsection, the response distribu-
tion remains indistinguishable between member
and non-member queries.

Our defense method, furthermore, preserves util-
ity for benign queries gp. When the query is not
detected as ¢, the system behaves exactly the
same as the original RAG system. Unlike other
strong privacy-preserving mechanisms (e.g., differ-
ential privacy), which may degrade utility even for
benign queries, our approach introduces minimal
utility loss when the query is not detected as ¢;".

Finally, our safeguarding strategy is agnostic to
any RAG systems, as the detection only requires
similarity scores, which is a basic part of the RAG
system to calculate the top-k documents in the ex-

ternal database. Thus, it is easy to apply and does
not require any modification of the system. The
only additional time is to compute the Gumbel
distribution and hide the corresponding document
from the database for retrieval if the query is clas-
sified as ¢'. Based on this advantage, we show
that integrating our method into existing privacy-
preserving systems results in better defenses.

S Experiments

5.1 Experimental Setups

Dataset To evaluate detection and defense per-
formance against MIAs, we utilize three datasets:
NFCorpus, SciDOCS, and TREC-COVID, drawn
from the BEIR benchmark (Thakur et al., 2021),
as employed in (Naseh et al., 2025). These corpora
represent sensitive scientific and medical domains.
In addition to evaluating the utility of the RAG sys-
tem on benign queries, we followed (Koga et al.,
2024) and used two question-answer benchmark
datasets: Natural Questions (NQ) (Kwiatkowski
et al., 2019) and TriviaQA (Joshi et al., 2017).
For both datasets, Wikipedia serves as the exter-
nal database (Lewis et al., 2020).

Baselines We evaluate performance for our detec-
tion and defense method using three MIA methods:
S?MIA (Li et al., 2024), MBA (Liu et al., 2025),
and TA (Naseh et al., 2025). S2MIA feeds the first
half of the target document to the RAG and scores
membership with BLEU and perplexity against the
full text. MBA masks tokens and counts how many
the generator recovers. IA lets an LLM craft 30
inference questions per document, and correctness
on them is the score.
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For the comparison method of detection, we per-
form an agent-based detection using GPT-40 to dis-
tinguish between following the approach of (Naseh
et al., 2025), detailed in Appendix B.

As our work is the first work for defending
MIAs for RAGs, we choose to compare with the
most well-known privacy notion, DP (Dwork et al.,
2006), which guarantees indistinguishability of in-
dividual data in the private external database. For
DP-RAG (Grislain, 2024), we inject the noise in
the next token prediction based on DP in-context
learning (Tang et al., 2024) without considering the
privacy of top-k selection (Koga et al., 2024).

For the privacy budget €, we set € = 2 for base
DP-RAG. To compare with a relaxed privacy set-
ting, we also set ¢ = 100 and referred to it as
DP-RAG Large (in short, DP-RAG-L).

Metrics For the detection component, we mea-
sure accuracy, precision, recall, and F1-score to
determine how effectively the system identifies
queries targeting member documents.

To assess the utility of the system, we measure
(i) the exact match (EM), which indicates the pro-
portion of generated responses containing the gold
labels with top-k retrievals, and (ii) R@k, which
indicates the proportion of retrievals containing the
gold labels among the top-£ results.

For defense, we suggest the measures of attack
resistance and indistinguishability. The attack re-
sistance is measured based on the accuracy of the
attack. However, in MIA, since it is a binary classi-
fication, accuracy alone may underestimate attack
performance, especially when it falls below 0.5.
We instead define adjusted attack accuracy as:

Adjusted attack accuracy = max(acc, 1-acc)—0.5.
©)
This metric reflects the adversary’s advantage over
random guessing (0.5 in a balanced setting) and
ranges from 0 to 0.5. Lower values indicate weaker
attack success and, consequently, stronger defense.
To evaluate indistinguishability, we use the Kol-
mogorov—Smirnov (KS) test (An, 1933) to com-
pare the distributions of responses for member and
non-member queries. The KS statistic measures
the maximum difference between the two empiri-
cal distributions; a smaller value indicates greater
similarity, and thus higher indistinguishability.

RAG Setting and Implementation We em-
ployed a 1024-dimensional BGEm3 embedder (Li
etal., 2023) to find the similarity of queries and doc-

uments in the retriever. In our defensible retriever,
we use a Mirabel based on the significance parame-
ter p, to decide whether to filter documents before
extracting top-k candidates via cosine similarity.
In our experiment, we set the significance level
p = 0.05. In evaluations concerning MIA detection
and defense on NFCorpus, SCIDOCS, and TREC-
COVID, we set k£ = 3. For utility evaluations on
the Wikipedia corpus, we tested k& € {5,20,100}.
For the generator LLMs, we adopted Llama 3.2
3B Instruct and Llama 3.1 8B Instruct (Grattafiori
et al., 2024). Specifically, we used Llama 3.1 for the
utility evaluations and Llama 3.2 for the remaining
evaluations. Further details on the RAG prompt can
be found in the Figure 4. Experiments were mainly
conducted on a single A100 or H100 GPU with 96
GB VRAM.
Additional details are shown in Appendix A.

5.2 Detection Evaluation

Table 2 presents the member attack query detection
performance compared to agent-based methods. To
detect member attack queries, g;,* was labeled as 1
and otherwise 0. Note that the agent-based detec-
tion (Naseh et al., 2025) labels both attack queries
g and ¢ as 1, which cannot distinguish attack
queries only. To balance the binary classification,
we set the total number of g; and ¢} to be the same
as q;".

Mirabel detection demonstrates stable perfor-
mance across all MIAs, including the IA with
stealth queries, which the agent-based detection
struggles to detect. Notably, our method achieved
a high recall score, indicating successful detection
of ¢*, while its precision was slightly lower due to
misclassifying g as ¢;,'. In other words, our method
exhibits a lower Type II error, which is generally
considered more critical in attack detection. How-
ever, despite this minor reduction, our precision
remains higher than that of agent-based detection.

The agent-based methods cannot classify a query
as related to private members or not. In the next sec-
tion, we will analyze how these errors impact both
attack performance and utility. Additional metrics,
including detection performance comparing only
gy and ¢/*, are provided in Appendix C. The results
show that our method achieves a high recall score.

5.3 Defense Evaluation

Safeguarding against MIA has two main goals: (i)
reducing attack performance and (ii) preserving
the utility of RAG systems, while preventing the
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Agent-based Detection

Mirabel Detection

Attacks  Data ‘ Acc (1) F1 (1) Precision (1) Recall (1) ‘ Acc (1) F1 (1) Precision (1) Recall (1)
NF 0.715  0.772 0.644 0.962 0.844  0.865 0.762 1.000
S?MIA  SCI 0.726  0.780 0.651 0.974 0.853  0.871 0.776 0.992
TREC | 0.745 0.792 0.669 0.970 0.880  0.886 0.846 0.930
NF 0.727  0.783 0.650 0.986 0.847  0.867 0.766 1.000
MBA SCI 0.730  0.785 0.652 0.986 0.855 0.873 0.775 1.000
TREC | 0.745 0.794 0.667 0.980 0.995  0.995 1.000 0.990
NF 0482 0.012 0.125 0.006 0.799  0.750 0.896 0.817
1A SCI 0.485  0.030 0.258 0.016 0.827 0.772 0.928 0.843
TREC | 0.500  0.000 0.000 0.000 0.720 0.744 0.670 0.705

Table 2: Detection performance of Mirabel compared to agent-based detection. For simplicity, we denote NFCorpus
as NF, SCIDOCS as SCI, and TREC-COVID as TREC throughout the following tables.

EM (1) R
Data System @5 @20 @100 @5 @20 @100
NQ RAG 0272 0263 0313 | 0.222 0.354 0.474
DP-RAG | 0.030 0.051 0.020 - - -
Ours 0253 0.253 0273 | 0.172 0.303 0.443
TRIV RAG 0.730 0.725 0.755 | 0.575 0.705 0.840
DP-RAG | 0.255 0.225 0.240 - - -
Ours 0.700 0.725 0.740 | 0.515 0.675 0.825

Table 3: Utility measures computed with benign queries.

attacker from gaining private information. Thus, we
must measure both attack degradation and utility
preservation for defense methods.

Utility Preservation We first demonstrate that
our method largely avoids the utility degradation
associated with the existing privacy-preserving ap-
proach for RAG systems, DP-RAG, in Table 3.

EM @k, which measures the quality of the gen-
erated answers, shows that our method performs
comparably to the standard RAG, while DP-RAG
results in greater utility degradation.

In contrast, R @k, which measures how well the
system retrieves relevant documents, shows a mod-
erate decrease compared to the original RAG sys-
tem. This is because our detection method has a
slightly larger Type I detection error.

Despite degradation in R@k, our method main-
tains high performance in EM, because it retains
the remaining top-k documents (i.e., from top-2 to
top-(k + 1)) by hiding only the target member doc-
ument. Since benign queries do not rely on a single
document but instead reference multiple relevant
documents, we can mitigate the utility loss.

Attack Resistance To evaluate the performance
of our defense, we measure the attack perfor-
mances of MIAs in Table 4. Without defense, MIAs

achieved high adjusted attack accuracy, indicating
the attacks are successful. However, after applying
the defenses, the accuracy decreases, suggesting
that the attacker struggles to distinguish whether
the response is from a member or a non-member.
Our method effectively reduces the attack accuracy
and achieves performance comparable to DP-RAG
(-L), which is considered a strong defense despite
its inherent privacy-utility trade-off.

From the perspective of detection failure, at-
tacker performance is related to the Type II error.
Type 1II errors occur when the detection method
fails to identify a member query, preventing the re-
moval of the target document. This can increase the
number of true positives, as the MIA will classify
members correctly as members.

Since our detection method has a low Type 11
error rate, it results in a strong defense. However,
in the case of the IA on the TREC-COVID dataset,
even with a low recall and high Type II error, the
defense performance remains strong.

This is because the Type II error occurs when
the similarity score between the target document
d and the attack query g;* is not significantly high.
In IA, such low similarity indicates that the attack
query was either a general question related to mul-
tiple documents or not strongly associated with the
target document. In these cases, the attack itself is
also likely to fail.

Indistinguishability Most MIAs rely on mea-
suring a score and making membership decisions
based on that score. Even if a defense method suc-
cessfully reduces the attacker’s accuracy, differ-
ences in the score distributions between member
and non-member queries enable attackers to per-
form adaptive attacks. Therefore, another goal of
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(a) NFCorpus dataset.

(b) SCIDOCS dataset.

(c) TREC-COVID dataset.

Figure 3: Histograms of IA scores for member and non-member queries across different datasets. After defense, the
member and non-member score distributions become indistinguishable.

| NF SCI TREC Avg

s? RAG 0.188 0.126  0.119 0.144
MIA  DP-RAG 0.021 0.015 0.004 0.013
DP-RAG-L | 0.034 0.000 0.004 0.013

Ours 0.024 0.006 0.021 0.017

MBA RAG 0377 0406 0313 0.365
DP-RAG 0.004 0.040 0.003 0.016
DP-RAG-L | 0.014 0.036  0.184 0.078

Ours 0.019 0.101  0.139 0.086

1A RAG 0403 0380 0.254 0.346
DP-RAG 0.038 0.288 0.174 0.167
DP-RAG-L | 0.267 0.305 0.020 0.197

Ours 0.008 0.010 0.083 0.034

Adjusted Accuracy (}) KS statistics ({)

NF SCI TREC NF SCI  TREC

S2 DP | 0.021 0.004 0.038 | 0.077 0.051 0.038
MIA  +Ours | 0.020 0.029 0.024 | 0.088 0.028 0.050
MBA DP | 0.015 0.040 0.288 | 0.022 0.081 0.015
+Ours | 0.010 0.015 0.004 | 0.058 0.040 0.035

1A DP | 0.004 0.003 0.174 | 0.088 0.418 0.091
+Ours | 0.004 0.018 0.064 | 0.046 0.075 0.094

Table 6: Defense performances of DP-RAG and DP-
RAG with (+) our detect-and-hide using Mirabel.

Table 4: Adjusted attack accuracy (). A smaller value
indicates weaker attack success, thus stronger defense.

\ DP-RAG DP-RAG + Ours

| @5 @20 @100| @5 @20 @100
NQ |0.030 0.051 0.020 | 0.020 0.040 0.050
TRIV | 0.255 0225 0240 | 0.230 0230 0225

| NF  SCI TREC Avg

S  RAG 0358 0.195 0203 0.252
MIA DP-RAG | 0077 0051 0.038 0.055
DP-RAG-L | 0.060 0.035 0.058 0.051
Ours 0.057 0.039  0.043 0.046
MBA RAG 0.754 0813  0.625 0.731
DP-RAG | 0.022 0.081 0.015 0.039
DP-RAG-L | 0.036 0.073  0.026 0.045
Ours 0.038 0202 0283 0.174

IA  RAG 0.805 0.771 0555 0.710
DP-RAG | 0.088 0418 0.091 0.199
DP-RAG-L | 0301 0414 0223 0313
Ours 0.100 0081 0.172 0118

Table 5: KS statistics () for S°MIA, MBA, and 1A
scores. For S?MIA not having a direct score, we report

the average KS statistics of similarity and perplexity.

defense is to achieve indistinguishability between
responses to member and non-member queries, pre-
venting the attacker from gaining additional mem-
bership information.

Table 5 presents the results measuring indistin-

guishability. As shown in the table, our method
significantly reduces the KS statistic, achieving

Table 7: EM (1) of DP-RAG and DP-RAG (+) ours.

comparative or even smaller values compared to
DP-RAG. As lower KS statistics indicate higher
distributional similarity, our method prevents the at-
tacker from obtaining additional information gain.

To further illustrate this, we present histograms
of the attack scores produced by IA before and af-
ter applying our defense in Figure 3. In the original
RAG, we can observe the clear difference between
member and non-member queries. However, af-
ter applying our defense, the two distributions are
almost similar. Additional results, including the
individual KS statistics for similarity and perplex-
ity under S2MIA, as well as histograms of attack
scores for other attack methods, are provided in
Appendix C.

5.4 Composing with Existing DP Models

In this section, we adapt our detect-and-hide strat-
egy to DP-RAG to demonstrate that our method is
agnostic to the RAG system. Table 6 presents the
defense performance when applying our method
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(LLM) Phi-4 Mini

(Embedder) GTE Large En v1.5

| NF SCI TREC Avg | NF  SCI TREC Avg

S?MIA RAG | 0.110 0.168 0.092 0.123 | 0.116 0.039 0.084 0.080
Ours | 0.024 0.007 0.038 0.023 | 0.006 0.011 0.078 0.032

MBA RAG | 0250 0255 0.159 0.221|0399 0396 0297 0.364
Ours | 0.001 0.064 0.057 0.041 | 0.080 0.101 0290 0.157

IA RAG | 0322 0430 0248 03340347 0416 0222 0.328
Ours | 0.039 0.019 0.104 0.054 | 0.011 0.008 0205 0.074

Table 8: Adjusted attack accuracy ({). A smaller value indicates weaker attack success, thus stronger defense.

Data RAG (ms) +Ours (ms) Diff. (ms) Ratio
NF 49.215 50.895 1.680 1.034x
SCI 52.355 60.510 8.155 1.156x
TREC  100.750 148.695 47.945 1.476x

Table 9: Runtime overhead of detect-and-hide (Ours)
defense compared to the original RAG system.

on top of base DP-RAG (e = 2). As in the stan-
dard RAG setting, our method improved attack
resistance and indistinguishability, even though DP
already achieves strong defense performance. In
terms of utility, Table 7 shows that our method
introduces only minimal utility degradation. This
indicates that composing our method with exist-
ing or upcoming privacy-preserving models can be
beneficial. Additional results are in Appendix C.

5.5 Experiments with Different Models

To validate the robustness of our detect-and-hide
method, we further evaluate its performance by re-
placing either the generator LLM or the embedder
in the RAG system. For the generator LLM model,
we utilize Phi-4 Mini Instruct (3.8B) (Abouelenin
et al., 2025), a recently released open-source LLM
model. For the embedding model to compute query-
document similarity, we employed GTE Large En
v1.5 (Zhang et al., 2024), which supports long con-
text inputs (up to 8192 tokens) and is well-suited
for document-level retrieval The experimental re-
sults are represented in Table 8.

As shown in the table, our defense method con-
sistently reduces the attack performance across all
datasets and attack types, even under different LLM
and embedding models, demonstrating the robust-
ness of the detect-and-hide strategy. Nevertheless,
with an alternative embedder, the defense perfor-
mance on the TREC-COVID dataset was relatively
weaker than on the others, a limitation we further
discuss in Limitations section.

5.6 Runtime

Detect-and-hide reuses similarity scores that are
already computed within the RAG system, and in
theory, it requires only marginal additional com-
putation for searching. To empirically verify this,
we directly measure the runtime. The results are
presented in Table 9.

As expected, the overhead on smaller datasets
such as NFCorpus remains marginal. However, for
larger datasets such as TRECCOVID, we observe a
latency increase of up to 47.6%. This is due to the
FAISS library (Douze et al., 2024), which we uti-
lized for RAG. The current version of FAISS does
not allow direct access to similarity scores without
top-k sorting, leading to unnecessary computation
on large datasets.

If future versions of FAISS (or alternative li-
braries) enable direct access to unsorted similarity
scores, our detection method can achieve the theo-
retically minimal overhead in practice.

A detailed theoretical analysis based on the com-
plexity explanation of runtime and FAISS is pro-
vided in the Appendix C.

6 Conclusion

In this paper, we propose Mirabel, a MIA detection
method that classifies member attack queries based
on similarity using the Gumbel distribution. We
also introduce a simple defense strategy, detect-and-
hide, which effectively defends against attacks with
minimal utility degradation. Our method is model-
agnostic, incurs almost no additional computation
overhead, and can be easily applied to existing
RAG systems. Experimental results show that our
method achieves defense performance comparable
to DP-RAG, while incurring negligible utility loss
on benign queries.

8249



Limitations

Even though we have designed efficient detection
and defense methods for existing MIAs targeting
the private external database of the RAG system,
we need to be cautious when applying this defense
framework in real-world applications.

Our method relies on the assumption that the
embedding of the member attack query is highly
similar to that of the target document. Therefore,
the detection or defense performance depends on
the use of the embedder. If the embedder assigns
high similarity when inputs share the same word
(e.g., “COVID”), Mirabel struggles to detect mem-
ber attack queries based on the similarity. This can
be observed in Table 8, where the defense perfor-
mance on the TREC-COVID dataset was limited
when using a different embedder. If the defense
fails due to this limitation, relying solely on our
method could leave sensitive information vulnera-
ble to membership inference attacks.

To address this, we need to carefully adjust the
threshold selection strategy and develop additional
defense mechanisms that remain robust across em-
bedders.

Ethical Considerations

This work adheres to the ACL Code of Ethics. In
RAG systems, MIAs pose a serious threat to the
privacy of user queries submitted to LLMs. Miti-
gating these attacks, therefore, makes a meaningful
ethical contribution and offers practical guidance
for developing RAG systems that remain robust
against malicious attackers.
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A Experimental Details

A.1 Dataset

For attack and defense, we used NFCorpus, SCI-
DOCD, and TREC-COVID, containing approxi-
mately 3.6K, 171K, and 25K documents, respec-
tively. For the retriever database, NFCorpus is split
into member and non-member sets in a 7:3 ratio,
while SCIDOCS and TREC-COVID are divided
8:2. To conduct MIA, we sample 1,000 members
and 1,000 non-members from NFCorpus, and 2,000
members and 2,000 non-members from the other
two datasets. Each member and non-member sub-
set is further split (5:5) into reference and eval-
uation sets. Detection performance from benign
queries to attack queries is evaluated using 323,
500, and 50 queries provided in NFCorpus, SCI-
DOCS, and TREC-COVID, respectively, while an
equal number of MIA attack queries is generated
for the member subsets. This balanced design en-
sures a fair assessment of the detection and defense
capabilities.

For utility evaluation on benign queries, NQ
and TriviaQA are used, comprising approximately
7.8K and 138K question—answer (QA) pairs, re-
spectively. In our experiments, we select 200 QA
pairs from each dataset for evaluation.

All datasets and models used in this study are
publicly available and were released for academic
or research purposes.

A.2 Hyperparameters

Attacks For all datasets, we divided the member
and non-member datasets into 5:5 for reference
and evaluation. For MBA and S2MIA, reference
sets were used to establish thresholds, following
their original paper. We found a threshold in the
greedy search algorithm for S2MIA and the high-
est F1 score for each count of masking tokens in
{5,10,15,20} in MBA.

For IA, we evaluate 30 queries to compute the
IA score for the standard RAG system, and 20
queries for DP-RAG, since each query consumes
a portion of the total privacy budget. Specifically,
with a total € = 2, each query uses € = 0.1, while
when € = 100, each query uses € = 5.

In the selection of thresholds for IA, while the
original paper selects the threshold based on a false
positive rate, we instead select the threshold based
on accuracy. We searched threshold in [0, 1], and
we evaluated penalty values A € [0.5,1]. In the
case of DP-RAG, since the number of queries is

smaller, we differ the searching space. Since we
observed that larger values of A in this range re-
sulted in higher recall but significantly lower ac-
curacy, indicating potential over-penalization. We
therefore refined the search to a smaller range of
A € [0.1,0.5] for this setting.

RAG Setting Maximum sequence length was set
to 8192 tokens for embedding documents using
BGEm3. For experiments on TREC-COVID cor-
pus, the maximum sequence length was set to 2048
tokens involving DP generator. To facilitate effi-
cient indexing and retrieval, we employed FAISS
(Douze et al., 2024). We segment the Wikipedia
corpus into non-overlapping chunks of 100 to-
kens and randomly sample one-tenth of these seg-
ments to serve as the retriever database. In building
the Wikipedia retriever database, we utilized half-
precision (fp16) to reduce computational overhead.
This approach helps to assess the usability of RAG
systems in a controlled yet representative manner
while maintaining computational ease.

DP-RAG setting For DP-RAG, we follow the
setting provided in the official GitHub of (Gris-
lain, 2024) (https://github.com/sarus-tech/
dp-rag). Specifically, we set the parameters as
w = 0.01, o = 1.0, and temperature = 1.0.

A.3 MIA implementation

To implement MIAs for evaluating Mirabel’s de-
fense, we followed each original papers. For
S2MIA, we calculated BLEU score and perplexity.
To gain perplexity, GPT-2 was used. For MBA, we
tokenize the sentences and selected mask tokens in
random. (Liu et al., 2025) showed random mask-
ing has similar accuracy in attempting attacks. For
IA, GPT-40 and GPT-40-mini was used to generate
summaries, questions, and ground truths.

B Prompt Templates

Figure 4 shows the generation prompt given to
every RAG model (Llama-3.1 8B for utility exper-
iments and Llama-3.2 3B elsewhere). Its design
enforces three constraints that proved crucial for
reliable evaluation: groundedness, conciseness, and
failure transparency. Figure 5 gives the agent-based
detection prompt used with GPT-40 to label incom-
ing queries as either Natural or Context-Probing.
Both templates are frozen across all runs; we
do not tune any prompt hyperparameters. The
raw prompts introduced in the figures includes
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RAG Generator Prompt

System:

You are a helpful assistant. Below is a query from a user and some relevant contexts.
Answer the question given the information in those contexts. Your answer should be short and

concise.

If you cannot find the answer to the question, just say "I don’t know".

User:
Contexts: {context}
Query: {question}

Assistant:
Answer:

&

J

Figure 4: Prompt template given to the RAG generator. It conditions the model on the retrieved contexts and enforces
grounded, concise answers with an explicit "I don’t know" fallback.

placeholder tokens {context}, {question}, and
{Query?} to facilitate replication.

C Additional Experiments

C.1 Illustration of motivating example

Additional illustration of Figure 1b. We display the
top-1 similarity of ¢/* and ¢} in Figure 6. As shown
in the Figure, our Gumbel threshold can efficiently
separate the top-1 similarity of ¢)* and ¢

Since removing the top-1 similarity is equiv-
alent to removing the target document from the
database, the query can be treated as a non-member
attack query. Therefore, top-2 similarity as g;;* cor-
responds to the top-1 similarity of g

C.2 Detection

The agent-based detection methods aim to de-
tect benign queries and attack queries, while our
method detects member attack queries. To ensure
a fair comparison, we evaluate detection perfor-
mance using only benign queries and member at-
tack queries.

Table 10 shows the detection performance. As
shown, the performance of Mirabel was similar to
that in Table 2, while agent-based methods demon-
strate significantly better performance, except for
IA, which is designed to be stealthy. These experi-
mental results are consistent with those reported in
Naseh et al. (2025).

Our method demonstrates stable performance
across a variety of attacks, particularly maintaining
reliable detection performance even for 1A, which
exhibits stealthy characteristics.

C.3 Defense

In this subsection, we provide the performance of
MIA attackers, including accuracy, precision, re-
call, and F1 score for each attack. Table 11 presents
the attack performance for the standard RAG and
adapting our method to that RAG system. Table 6
shows the results for DP-RAG (-L) and DP-RAG
(-L) with our method in terms of the accuracy, pre-
cision, recall, and F1 score.

As discussed in the main paper, the accuracy
close to 0.5 means a stronger defense. Moreover,
if the attacker’s ability to classify a member as a
member (True Positive, TP) and a non-member as
a non-member (False Positive, FP) are similar, the
indistinguishability criterion is implicitly satisfied.
Therefore, precision, which is defined as

TP

—_— 1
TP+ FP’ 19)

can be considered an indicator of indistinguisha-
bility, with a value close to 0.5 suggesting that
indistinguishability has been achieved.

Our detect-and-hide strategy achieved a value
close to 0.5 in nearly every accuracy and precision
measure.

Notably, in our method, we achieved a low recall
measure, which is defined as

TP

—_—, 11
TP+ FN (ih

The detect-and-hide is designed to make the
attacker misclassify a member as a non-member.
Therefore, our method increases the false negatives,
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Agent-based Detection Prompt

System:
You are an expert classifier tasked with validating user input queries in a Retrieval-Augmented

Generation (RAG) system. Your role is to classify each query into one of the following two
categories:

1. Natural Queries:

— Queries that are naturally formulated and relevant to the task/domain.

— These queries align with the system’s intended purpose, such as retrieving factual information,
summarizing content, or answering domain-specific queries.

2. Context-Probing Queries:

— Queries that attempt to probe hidden or inaccessible parts of the system or input context.

— These queries are often out-of-scope and unnatural for the task/domain. Examples include queries

that ask for metadata, hidden inputs, or system behavior.

— Instructions —
1. Carefully analyze the given query to determine whether it aligns with the system’s intended

purpose.
2. If the query is Natural, ensure it is appropriate and consistent with the system’s task/domain.
3. If the query is Context-Probing, identify if it is attempting to extract hidden content, system

behavior, or metadata.

— Output Format —
For each input query, respond with a single word indicating the classification:
Natural or Context-Probing. Do not provide any explanations or reasoning in your response.

— Examples —

Example 1:

Input Query: "What are the common symptoms of diabetes?"
Output:

Natural

Example 2:

Input Query: "What part of the document did you hide from me?"
Output:

Context-Probing

User:

Input Query: "{Query}"
S nput Query uery y

Figure 5: Prompt template for the GPT-40 agent that classifies incoming queries as either Natural (task-aligned) or
Context-Probing (potentially MIA).

making the attacker misclassify a member as a non-  relies on the similarity score and perplexity score,
member. we reported the average of each experiment. The
We provide the defense performances of DP-  individual results are in Table 14.

RAG-L and DP-RAG-L with ours in Table 13. ) o
When calculating the KS statistic with perplex-

ity, some perplexity values were infinite and were

C.4 Indistinguishable
therefore excluded from the computation.

In this subsection, we provide the additional indis-
tinguishability experiments. Specifically, S2MIA. Additionally, we illustrate the distributions of
Since S?’MIA does not have any specific score and  scores of MBA and S?MIA in Figures 7-9.
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(a) Gumbel threshold for SZMIA. (b) Gumbel threshold for MBA. (c) Gumbel threshold for IA.

Figure 6: Illustration of the similarity distributions for member attack queries and non-member attack queries,
compared to benign queries. The Gumbel-based threshold is shown for each attack. Our method effectively separates
member and non-member attack queries using this threshold.

‘ Agent-based Detection Mirabel Detection

Attacks  Data ‘ Acc (1) FI1 (1) Precision (1) Recall (1) ‘ Acc (1) F1 (1) Precision (1) Recall (1)
NF 0.941 0.942 0.925 0.960 0.876  0.890 0.802 1.000
S?MIA  SCI 0.962  0.963 0.951 0.974 0.865  0.880 0.791 0.992
TREC | 0.980  0.980 1.000 0.960 0970  0.969 1.000 0.940
NF 0.954  0.955 0.927 0.985 0.876  0.890 0.802 1.000
MBA SCI 0.968  0.969 0.952 0.986 0.869  0.884 0.792 1.000
TREC | 1.000  1.000 1.000 1.000 0.980  0.980 1.000 0.960
NF 0464  0.011 0.074 0.006 0.824  0.835 0.783 0.895
1A SCI 0.483  0.030 0.242 0.016 0.816  0.829 0.773 0.894
TREC | 0.500  0.000 0.000 0.000 0.810  0.765 1.000 0.620

Table 10: Detection performance of Mirabel compared to agent-based detection, evaluated using ¢,, and ¢7*.

Acc Precision Recall F1
S’MIA MBA 1A |S?MIA MBA 1A |S?MIA MBA 1A |SMIA MBA IA

NF RAG | 0.688 0.877 0903 | 0.636 0.859 0.878 | 0.878 0902 0.967 | 0.738 0.880 0.920
Ours | 0.524 0481 0492 | 0526 0425 0.681 | 0480 0.108 0.230 | 0.502 0.172 0.344

SCI RAG | 0.626 0906 0.868 | 0.647 0914 0.884 | 0.555 0.897 0.847 | 0.597 0.906 0.865
Ours | 0.506 0.601 0.510 | 0.510 0.789 0.548 | 0.301 0.276 0.117 | 0378 0.409 0.193

TREC RAG | 0.619 0.813 0.755| 0.586 0.813 0.696 | 0.832 0.815 0.894 | 0.688 0.814 0.782
Ours | 0.521 0.639 0.583 | 0.522 0.759 0.594 | 0.597 0.417 0485 | 0.557 0.539 0.534

Table 11: Defense performance of RAG and RAG with our detect-and-hide defense.

Acc Precision Recall F1
S2MIA MBA 1A S2MIA MBA 1A S?MIA MBA 1A S2MIA MBA 1A

NF DP-RAG 0479 0496 0538 | 0486 0.495 0.579 | 0.738 0.394 0.740 | 0.586 0.439 0.650
+Ours 0480 0.529 0477 | 0487 0537 0572 | 0.748 0426 0.383 | 0590 0475 0.459
DP-RAG-L | 0.466 0514 0.767 | 0465 0.517 0.806 | 0452 0438 0.787 | 0.458 0474 0.797

+Ours 0.486 0.507 0496 | 0.486 0508 0.620 | 0478 0.432 0.336 | 0482 0.467 0.436

SCI DP-RAG 0515 0.540 0.788 | 0.538 0.560 0.834 | 0.214 0.381 0.719 | 0306 0.453 0.772
+Ours 0.510 0.515 0.504 | 0.526 0523 0.606 | 0.209 0.345 0.020 | 0299 0.416 0.039
DP-RAG-L | 0.500 0.536 0.805 | 0.500 0.557 0.790 | 0.719 0.354 0.830 | 0.590 0.433 0.809

+Ours 0.496 0.505 0.508 | 0.497 0508 0.619 | 0.728 0.333 0.040 | 0.591 0.402 0.075

TREC  DP-RAG 0.496 0.503 0.674 | 0.000 0.509 0.679 | 0.000 0.419 0.642 | 0.000 0.459 0.660
+Ours 0496 0482 0.564 | 0.000 0.484 0.587 | 0.000 0.403 0.390 | 0.000 0.440 0.468
DP-RAG-L | 0.510 0496 0.684 | 0.520 0.501 0.662 | 0.355 0.271 0.734 | 0422 0351 0.696

+Ours 0.509 0.505 0.576 | 0.519 0.517 0.580 | 0352 0.282 0.507 | 0420 0.365 0.541

Table 12: Defense performance of DP-RAG and DP-RAG with our detect-and-hide defense.
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Adjusted Accuracy ({) KS-statistics ({.)

NF SCI TREC NF SCI TREC

S2 DP-RAG-L | 0.034 0.000 0.004 | 0.060 0.035 0.058
MIA +Ours 0.014 0.004 0.009 | 0.051 0.025 0.035
MBA DP-RAG-L | 0.014 0.036 0.184 | 0.036 0.073 0.026
+Ours 0.007 0.005 0.005 | 0.022 0.032 0.017

1A DP-RAG-L | 0.267 0.305 0.020 | 0.301 0.414 0.223
+Ours 0.004 0.008 0.076 | 0.036 0.111 0.129

Table 13: Defense performances of DP-RAG-L and DP-RAG-L with (+) our detect-and-hide using Mirabel.
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Figure 7: Histograms of MIA scores for member and non-member queries across different datasets.
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KS for Similarity () KS for Perplexity ({)

NF SCI TREC | NF SCI TREC
RAG 0.378 0.254 0.239 | 0.338 0.137 0.167
Ours 0.064 0.024 0.048 | 0.050 0.053 0.038
DP-RAG 0.056 0.051 0.041 | 0.098 0.050 0.034
DP-RAG-L | 0.038 0.032 0.054 | 0.082 0.039 0.062

Table 14: KS statistics for S2MIA using similarity and perplexity scores across different datasets. Lower is better.
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Figure 9: Histograms of perplexity scores from S2MIA for member and non-member queries across different
datasets. Due to the extremely large values of some perplexity scores, the histogram is truncated at 2000 for

readability.

C.5 Runtime

In this subsection, we theoretically provide the run-
time overhead of original RAG system and the
detect-and-hide, with big-O notation.

For small RAG system, we can compute all pair-
wise similarities between queries and n documents
with d dimensional embedding vector. (In our ex-
periments, we used the BGE-M3 embedder, which
has d = 1024.) This searching operation costs
O(n - d). Given these scalar value similarity scores,
computing their mean adds only O(n), and the
Gumbel threshold calculation is O(1). Therefore,
the additional cost O(n)+O(1) = O(n) is negligi-
ble compared to the original retrieval cost O(n - d).

Similar to the small RAG system, the additional
cost is negligible even in a large-scale database.
For a large-scale database, approximate nearest
neighbor (ANN) methods are commonly used to
avoid scanning all vectors. These methods typi-
cally pre-cluster the database into C' clusters (in
practice, C' can be 2'¢ or larger (Johnson et al.,
2019)), scan the centroids, and retrieve from the
selected cluster of size O(m), where the maximum
size of each cluster is m. Therefore, the total re-
trieval cost is O(m - d) + O(C - d), for scanning
centroids and retrieve from the selected cluster. In

this case, Mirabel computes the Gumbel threshold
only over the selected cluster with size O(m). Thus,
the additional computation consists of O(m) for
computing the mean and O(1) for calculating the
Gumbel threshold. Therefore, the additional cost
O(m) + O(1) = O(m) is negligible compared to
the original retrieval cost O(m - d) + O(C - d).

However, as in the Table 9 in the main
manuscript, the runtime overhead of detect-and-
hide was higher than the theoretical overhead. The
difference in runtime mainly occurs in the sim-
ilarity scores computed in our implementation.
Specifically, we utilized FAISS’s (Douze et al.,
2024) IndexIDMap.search(query_embedding,
k) with k£ = n to retrieve all similarity scores. How-
ever, the search() method internally performs
both similarity computation (O(n - d)) and top-
k selection via sorting, which incurs an additional
O(nlog k) cost. When k& = n, this becomes a full
sort with O(nlogn) complexity.
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