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Abstract
Language models, while capable of generating
remarkably coherent and seemingly accurate
text, can occasionally produce undesirable con-
tent including harmful or toxic outputs. In this
paper, we present a new two-stage approach to
detect and mitigate undesirable content genera-
tions by rectifying activations. First, we train an
ensemble of layerwise classifiers to detect un-
desirable content using activations by minimiz-
ing a smooth surrogate of the risk-aware score.
Then, for detected undesirable contents, we pro-
pose layerwise distributional steering policies
that transform the attention heads. These poli-
cies are computed through principled semidef-
inite programming aims to minimally perturb
the attention distribution while probabilistically
guaranteeing the effectiveness of the editions.
Empirical evaluations across multiple language
models and datasets show that our method out-
performs baselines in reducing the generation
of undesirable output.

1 Introduction

Language models (LMs) have demonstrated a re-
markable ability to understand and generate human-
like documents (Radford et al., 2019; Brown et al.,
2020; Touvron et al., 2023a,b; Jiang et al., 2023;
Dubey et al., 2024). However, inspection of their
output often reveals undesirable generation, includ-
ing inaccurate or toxic texts (Ji et al., 2023; Rawte
et al., 2023; Xu et al., 2024). Meanwhile, devel-
oping effective strategies to control the generation
process of LMs remains a significant challenge
(Tonmoy et al., 2024).

Researchers have proposed numerous methods
for controllable text generation in language mod-
els (Zhang et al., 2023; Li et al., 2024a). These
approaches primarily include model editing and
supervised fine-tuning. Both methods, however,
require altering the model weights using a subset
of text samples, which can result in unstable rep-
resentations for other text instances (Hase et al.,

2024). Additionally, these approaches typically
require substantial computational resources.

To address these limitations, activation interven-
tion has emerged as a promising alternative for con-
trollable text generation (Subramani et al., 2022;
Hernandez et al., 2023; Li et al., 2024b). This
approach involves altering the model activations
responsible for undesirable output during inference.
Previous research has identified interpretable direc-
tions within the activation space of language mod-
els that play a causal role during inference. Studies
by Burns et al. (2022) and Moschella et al. (2023)
suggest that these directions can be manipulated to
adjust model behavior in a controlled manner. This
body of work indicates that the internal represen-
tations of language models are structured in ways
that enable fine-grained control over generated text.

Drawing inspiration from these findings, ac-
tivation intervention frameworks operate on the
premise that the information needed to guide the
model toward generating a target sentence is al-
ready encoded within the model. The hidden in-
formation is extracted as latent vectors and then
used to steer the generation toward producing de-
sirable outputs. The preliminary success of these
activation intervention methods motivates our ap-
proach to improving the quality and controllability
of language model generation.

Problem Statement. We consider a language
model consisting of L layers, each layer has H
heads, each head has dimension d. For exam-
ple, for Llama-2, we have L = 32, H = 32,
and d = 128. The training dataset is denoted by
D = (xi, y∗

i )i=1,...,N , the i-th text is denoted by xi,
and its ground truth label is y∗

i ∈ {0, 1}, where the
label 1 (positive) represents the undesirable text,
and the label 0 (negative) represents the desirable
text. Our goal is twofold: (i) detect an undesir-
able text, and (ii) modify an undesirable text into a
desirable text.

The activations for a text xi at layer ℓ ∈
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{1, . . . , L} is denoted by aℓ,i. The activation at
layer ℓ + 1 is the output of the operation:

aℓ+1,i = amid
ℓ,i + FFN(amid

ℓ,i ),

amid
ℓ,i = aℓ,i +

H∑

i=1
QℓhAtt(Pℓhaℓ,i).

(1)

Here, Pℓh ∈ Rd×dH is the projection matrix that
maps the output of each layer to the d dimensional
head space, Att is the attention operator (Vaswani
et al., 2017), Qℓh ∈ RdH×d is the pull-back matrix
and FFN is the feed-forward layer. Each aℓ,i is
a concatenation of headwise activations aℓh,i for
h = 1, . . . , H . Inspired by Li et al. (2024b), we
aim to perform intervention at some selected aℓh,i,
the activations for head h of layer ℓ, if we detect
that the activation is from undesirable content.
Contributions. We contribute an activation inter-
vention method to detect and rectify the undesirable
generation of LM. We call our method RADIANT
(Risk-Aware Distributional Intervention Policies
for Language Models’ Activations). RADIANT
comprises two components:

1. A layerwise probe: at each layer, we train a
classifier to detect undesirable content from the
layer’s activations. We train a risk-aware logis-
tic classifier for each head that balances the false
positive and false negative rates. Then, we ag-
gregate these headwise classifiers’ predictions
using a voting mechanism to form a layerwise
classifier. We then identify one layer where the
probe delivers the most reasonable predictive
performance. This optimal classifier serves as
the detector of undesirable content.

2. A collection of headwise interventions: given
the optimal layer for the layerwise probe found
previously, we find for each head in that layer
an optimal headwise intervention policy. We
choose a simple linear map for this interven-
tion policy that minimizes the magnitude of
editing while delivering sufficient distributional
guarantees that the undesirable-predicted acti-
vations will be edited into desirable-predicted
activations. We show that this linear map can
be computed efficiently using semidefinite pro-
gramming.

1.1 Related Works

Controllable generation. Controllable text gen-
eration methods aim to alter the outputs of large

language models in a desired way. One possible ap-
proach is model editing (Wang et al., 2023a; Zhang
et al., 2024), which involves modifying the param-
eters of a model to steer its outputs. For exam-
ple, Meng et al. (2022) involves identifying spe-
cific middle-layer feedforward modules that corre-
spond to factual knowledge and then altering these
weights to correct or update the information en-
coded by the model. Other notable methods in-
clude fine-tuning techniques such as Supervised
Fine-Tuning (SFT, Peng et al. 2023; Gunel et al.
2020) and Reinforcement Learning from Human
Feedback (RLHF, Ouyang et al. 2022a; Griffith
et al. 2013).
Probing. Probing is a well-established frame-
work to assess the interpretability of neural net-
works (Alain and Bengio, 2016; Belinkov, 2022).
Probing techniques have been applied to under-
stand the internal representations of transformer
architectures in language models such as BERT
and GPT. For example, Burns et al. (2022) pro-
posed an unsupervised probing method that opti-
mizes consistency between positive and negative
samples. Marks and Tegmark (2023) computes the
mean difference between true and false statements
and skews the decision boundary by the inverse of
the covariance matrix of the activations.
Activation interventions. Activation intervention
at inference time is an emerging technique for con-
trollable generation (Turner et al., 2023; Li et al.,
2024b; Singh et al., 2024; Yin et al., 2024). Un-
like model editing or fine-tuning techniques, in-
ference time intervention does not require altering
the model parameters. Li et al. (2024b) proposed a
headwise intervention method for eliciting truthful
generated answers of a language model. They first
train linear probes on each head of the language
model, then shift the activations with the probe
weight direction or the mean difference direction.

There is a clear distinction between our method
and ITI when choosing the location of the classi-
fiers and, hence, the location of the interventions.
The ITI method builds different headwise classi-
fiers scattered at different layers, and it may suffer
from distribution shifts: if an activation is inter-
vened, this leads to shifts in the activation values at
all subsequent layers in the network. Thus, classi-
fiers trained at subsequent layers can degrade per-
formance, and interventions at subsequent layers
can also degrade. On the contrary, we build a lay-
erwise classifier focusing on all heads in the same
layer and does not suffer from the distributional
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shifts of the activations.

The recent paper by Singh et al. (2024) is closely
related to our work. The authors propose a heuris-
tic intervention rule; then, using empirical estima-
tions of the means and covariances of activations
data’s distributions of desirable and undesirable
text, they calculate a closed-form optimal transport
plan between these two empirical distributions, as-
suming they are standard normal. However, this
framework does not take into account the seman-
tics of sentences. Another recent method, called
LoFit (Localized Fine-Tuning on LLM Represen-
tations Yin et al. 2024), also identifies a specific
subset of attention heads that are crucial for learn-
ing a particular task, but then performs fine-tuning
on the intervention vectors at those chosen heads to
enhance the model’s hidden representations. This
results in additional training overhead.

2 Layerwise Risk-aware Probes

In the first step, we aim to find a classifier Cℓh :
Rd → {0, 1} for each head h = 1, . . . , H at each
layer ℓ = 1, . . . , L to classify the activation value
aℓh of desirable and undesirable texts. We propose
using a linear logistic classifier, parameterized by
a slope parameter θℓh ∈ Rd and a bias parameter
ϑℓh ∈ R. The headwise classification rule is

Cℓh(aℓh) =
{

1 if sigmoid(ϑℓh + θ⊤
ℓhaℓh) ≥ 0.5,

0 otherwise,

=
{

1 if ϑℓh + θ⊤
ℓhaℓh ≥ 0,

0 if ϑℓh + θ⊤
ℓhaℓh < 0.

The training process of Cℓh must take into ac-
count two types of risk: (i) false-negative risk
when an undesirable text is not detected, (ii) false-
positive risk when a desirable text is classified as
undesirable, and is subsequently edited and loses
its original semantics. Therefore, a natural can-
didate for the loss function is a combination of
the False Positive Rate (FPR) and the False Nega-
tive Rate (FNR). However, neither FPR nor FNR
have smooth functions in optimizing variables. We,
hence, resort to smooth surrogates of these two
metrics that use the predicted probability of the
classifier, similarly to Bénédict et al. (2022). In

detail, we use

FPR(θℓh, ϑℓh)

= 1
N0

N∑

i=1
sigmoid(ϑℓh + θ⊤

ℓhaℓh,i)× (1− y∗
i ),

FNR(θℓh, ϑℓh)

= 1
N1

N∑

i=1

(
1− sigmoid(ϑℓh + θ⊤

ℓhaℓh,i)
)
× y∗

i .

The linear probe training loss is thus

min
θℓh∈Rd, ϑℓh∈R

FPR(θℓh, ϑℓh) + αFNR(θℓh, ϑℓh),
(2)

for some positive weight parameters α. A higher
value of α will emphasize achieving a lower false
negative rate, which is critical for detecting undesir-
able inputs. Problem (2) has a smoothed surrogate
loss that is differentiable and can be solved using a
gradient descent algorithm. Finally, we aggregate
{Cℓh}h=1,...,H into a single classifier Cℓ for layer ℓ
by a simple voting rule

Cℓ(aℓ) =
{

1 if
∑H

h=1 Cℓh(aℓh) ≥ τ,

0 otherwise,

where τ ∈ [0, H] is a tunable threshold. When
τ = ⌊H/2⌋, then Cℓ becomes the majority voting
results of the individual (weak) classifiers Cℓh. We
optimize the hyperparameter τ to reduce the False
Negative Rate (FNR), with a secondary focus on
the False Positive Rate (FPR) in cases of equal
FNR rates. The rationality for this choice is that
we believe undesirable content being labeled as
desirable is more problematic than other instances.

To conclude this step, we compute the classifier
Cℓ for layer ℓ = 1, . . . , L by tuning the parameters
α. The layer whose classifier Cℓ delivers the highest
quality (accuracy or any risk-aware metric) will
be the optimal layer to construct the probe. This
optimal layer, along with the collection of headwise
classifiers, is the final output of this step.

3 Headwise Interventions with
Probabilistic Guarantees

We propose a distributional intervention to the ac-
tivations of the samples predicted as undesirable
by the layerwise classifier. In this section, we
will focus on constructing a single headwise inter-
vention, and in the next section, we will combine
multiple headwise interventions into a layerwise
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intervention. A headwise intervention is a map
∆ℓh : aℓh 7→ âℓh that needs to balance multiple cri-
teria: (i) it should be easy to compute and deploy,
(ii) it should be effective in converting the unde-
sirable activations to the desirable regions, (iii) it
should minimize the magnitude of the intervention
to sustain the context of the input. Intuitively, we
propose solving an optimization problem with the
loss and constraints that fit all the criteria listed.
The details are as follows.

To promote (i), we employ a simple linear map
∆ℓh(aℓh) = Gℓhaℓh + gℓh parametrized by a ma-
trix Gℓh ∈ Rd×d and a vector gℓh ∈ Rd. This
linear map can also be regarded as a pushforward
map that transforms the undesirable-predicted acti-
vations to become desirable-predicted activations.
Let us now represent the undesirable-predicted ac-
tivations as a d-dimensional random vector ãℓh.
Its distribution can be estimated using the train-
ing data after identifying the subset D̂+

ℓh of train-
ing samples that are predicted undesirable by Cℓh,
that is, D̂+

ℓh ≜ {i : Cℓh(aℓh,i) = 1}. The acti-
vations of samples in D̂+

ℓh lead to an empirical
distribution P̂ℓh. The linear map ∆ℓh will push-
forward the distribution P̂ℓh to the new distribution
Qℓh = ∆ℓh#P̂.

Using the pushforward distribution Qℓh, we can
impose criteria (ii) and (iii) above in an intuitive
method. To promote (ii), we require that the acti-
vations distributed under Qℓh should be classified
as desirable by Cℓh with high probability. Finally,
to promote (iii), we require that the distributions
Qℓh and P̂ℓh be not too far from each other. Let
γ ∈ (0, 0.5) be a small tolerance parameter, and let
φ be a measure of dissimilarity between probability
distributions, we propose to find ∆ℓh by solving
the following stochastic program

min φ(P̂ℓh,Qℓh)
s.t. Qℓh(ã classified by Cℓh as 0) ≥ 1− γ,

Qℓh = ∆ℓh#P̂ℓh.
(3)

Problem (3) is easier to solve in specific circum-
stances. For example, when we impose that both
P̂ℓh and Qℓh are Gaussian and when we choose φ
as a moment-based divergence, then ∆ℓh can be
obtained by solving a convex optimization problem.
In the next result, we use ∥ · ∥F as the Frobenius
norm of a matrix, and Φ as the cumulative distribu-
tion function of a standard Gaussian distribution.

Theorem 1 (Optimal headwise intervention). Sup-
pose that P̂ℓh ∼ N (µ̂, Σ̂) and Qℓh ∼ N (µ, Σ) and

undesirable

desirable

Figure 1: At head h of layer ℓ, we learn a head-
wise intervention, linear mapping ∆ℓh to transform the
undesirable-predicted activations to desirable-predicted
activations.

φ admits the form

φ(P̂ℓh,Qℓh) = ∥µ− µ̂∥22 + ∥Σ 1
2 − Σ̂

1
2 ∥2F .

Let (µ⋆, S⋆, t⋆) be the solution of the following
semidefinite program

min ∥µ− µ̂∥22 + ∥S − Σ̂ 1
2 ∥2F

s.t. ϑℓh + θ⊤
ℓhµ + Φ−1(1− γ)t ≤ 0

∥Sθℓh∥2 ≤ t
µ ∈ Rd, S ∈ Sd

+, t ∈ R+.

(4)

Then, by defining G⋆
ℓh = Σ̂− 1

2
(
Σ̂ 1

2 (S⋆)2Σ̂ 1
2
) 1

2 Σ̂− 1
2

and g⋆
ℓh = µ⋆ − G⋆

ℓhµ̂, a linear map ∆ℓh that
solves (3) is

∆ℓh(aℓh) = G⋆
ℓhaℓh + g⋆

ℓh.

The proof of Theorem 1 can be found in Ap-
pendix D. Figure 1 illustrates the effect of the
headwise intervention ∆ℓh: The headwise clas-
sifier Cℓh is represented by the red linear hyper-
plane ϑℓh + θ⊤

ℓha = 0 on the activation space; the
undesirable-predicted (label 1) region is towards
the top left corner, while the desirable-predicted
(label 0) region is towards the bottom right corner.
The activations of the undesirable-predicted sam-
ples are represented as a Gaussian distribution with
mean (µ̂, Σ̂), drawn as the red ellipsoid. The edit
map ∆ℓh pushes this distribution to another Gaus-
sian distribution Qℓh drawn as the green ellipsoid.
The distribution Qℓh has a coverage guarantee on
the desirable-predicted region with probability at
least 1− γ. One can also verify that Qℓh has mean
µ⋆ and covariance matrix (S⋆)2. Problem (4) can
be solved using semidefinite programming solvers
such as COPT or Mosek.
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The moment information µ̂ and Σ̂ can be esti-
mated from the subset D̂+

ℓh. One can intuitively
expect a trade-off between the tolerance level γ
and the magnitude of the headwise mapping. If γ
is lower, the activations will be edited at a higher
magnitude so that the edited activations will likely
end up in the desirable-predicted region of the clas-
sifier Cℓh. In contrast, if γ is higher, the activations
will be edited with a smaller magnitude due to the
less stringent constraint to swap the predicted label.

One can view the distribution Qℓh ∼ (µ⋆, (S⋆)2)
as the counterfactual distribution of the undesirable-
predicted activations with minimal perturbation.
This distribution Qℓh is found by optimization,
which is in stark contrast with the design of the
counterfactual distribution in MiMic (Singh et al.,
2024), in which the intervention is computed based
on the activations of the desirable-predicted acti-
vations. As a comparison to ITI (Li et al., 2024b),
we note that the headwise intervention of ITI does
not depend on the value of the activations: ITI
shifts the activations along the truthful directions
for a stepsize multiplied by the standard deviation
of activations along the intervention (truthful) di-
rection. In contrast, our headwise intervention de-
pends on the value aℓh, and one can verify that
the magnitude of the proposed shift amounts to
∥(G⋆

ℓh − I)aℓh + g⋆
ℓh∥2. Moreover, ITI does not

provide any (probabilistic) guarantee for the inter-
vention, while the probabilistic guarantee is inter-
nalized in our method through the design of the
mapping in equation (3).

Remark 1. We observe that the two following
tricks increase the empirical performance of our in-
tervention framework. First, to avoid the collapse
of Qℓh into a Dirac distribution and to ensure the
similarity between the real and the constructed
covariance matrix of desirable content, we can

add the constraint S ⪰ Σ̂
1
2
0 to the optimization

problem (4), where Σ̂0 is the empirical covariance
matrix of the desirable activations {i : y∗

i = 0}.
Second, to avoid taking the inverse cdf of the stan-
dard normal distribution, we use Γ← Φ−1(1− γ)
and finetune Γ instead of γ.

Finally, given the input with activation aℓ at layer
ℓ, suppose that aℓ is predicted undesirable by Cℓ,
we propose to edit the activations of only the heads
that are predicted undesirable by the headwise clas-
sifier Cℓh. More specifically, we edit the headwise
activations aℓh to a new headwise activations âℓh

through the relationship

âℓh =
{

∆ℓh(aℓh) if Cℓh(aℓh)× Cℓ(aℓ) = 1,

aℓh otherwise,

where ∆ℓh(aℓh) = G⋆
ℓhaℓh +g⋆

ℓh for h = 1, . . . , H .
In other words, each new headwise activation âℓh

is computed based on three terms: the original
headwise activations aℓh, the headwise intervention
∆h(aℓh), and the indicator value identifying if head
h and layer ℓ is predicted desirable or undesirable.

4 Experiments

In this section, we present empirical evidence for
the effectiveness of our method RADIANT. We
evaluate RADIANT on the TruthfulQA bench-
mark Lin et al. (2021), consisting of two tasks: the
main task is the generation, and the secondary task
is multiple choice. The generation task requires the
model to generate an entire answer for each ques-
tion using greedy autoregressive decoding. The
accuracy and helpfulness of the answer are best
assessed by humans. However, in almost all recent
works in the field, including Li et al. (2024b) and
Yin et al. (2024), this criterion is measured by an
alternative large language model finetuned on the
target dataset. The multiple-choice task contains
candidate answers to each question, requiring the
model to give probabilities. Higher probabilities
for truthful answers yield higher scores.

4.1 Experimental Settings
Datasets. We evaluate and compare our method
with other baselines using the TruthfulQA bench-
mark Lin et al. (2021). Details about this dataset
and how we preprocess the data can be found in
Appendix A.1. In addition, we also show the gen-
eralization of our method by conducting a transfer-
ability experiment on two other out-of-distribution
datasets, including NQOpen (Kwiatkowski et al.,
2019) and TriviaQA (Joshi et al., 2017). Due to
space constraints, the results for the latter two
datasets are relegated to Appendix A.5.
Hyperparameters. There are two pivotal hyper-
parameters in the RADIANT framework, namely
α in probe loss (2), and Γ = Φ−1(1 − γ) in the
computation of the intervention map (4). The dis-
cussion about their impact on RADIANT and how
to select them is in Appendix A.2.3.
Baselines. We benchmark against:

• Inference-time Intervention (ITI) (Li et al.,
2024b), the state-of-the-art method for
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finetuning-free intervention. The hyperparame-
ters of the baseline follow their original paper
and their GitHub repository.1

• Few-shot prompting (FSP) introduced in Bai
et al. (2022) showcases the effectiveness of 50-
shot prompting in benchmark TruthfulQA.

• Probe-Free Low Rank Activation Intervention
(FLORAIN) (Jiang et al., 2025) which trains a
low rank component for intervening into one
specified hidden representation.

• Instruction Fine-Tuning (IFT, Wang et al. 2022;
Chung et al. 2024) is a popular fine-tuning ap-
proach to boost the truthfulness of language
models. Two notable pretrained models in
this direction, namely Alpaca-7B (Taori et al.,
2023) and Vicuna-7B (Chiang et al., 2023), are
adopted for comparison.

• Representation Intervention Fine-tuning (RIFT)
methods aim to adjust language model activa-
tions for improved truthfulness. However, they
add extra parameters and require extensive com-
putational resources for fine-tuning. We con-
sider LOFiT (Yin et al., 2024) for comparison.

• Non-Linear Inference Time Intervention (NL-
ITI) (Hoscilowicz et al., 2024) extends ITI by
introducing a non-linear multi-token probing
and multi-token intervention method.

• Learnable Intervention for Truthfulness Opti-
mization (LITO) (Bayat et al., 2024) explores
a sequence of model generations based on in-
creasing levels of intervention magnitude and
then selects the most accurate response.

Metrics. Following the standard benchmark in
TruthfulQA (Lin et al., 2021; Li et al., 2024b), we
use the below metrics:

• For the multiple choice task, we use MC1 and
MC2 metrics as defined in Lin et al. (2021).
MC1 measures the model’s accuracy in select-
ing the correct answer from the given choices,
where selection is based on the highest log-
probability score assigned to each completion.
MC2 is the normalized total probability as-
signed to the set of true answers.

1https://github.com/likenneth/honest_llama/
tree/master

• For the generation task, we use two fine-tuned
GPT-3.5-instruct models to classify whether
an answer is true or false and informative or not.
We report two metrics from Li et al. (2024b):
truthful score True (%) and True*Info (%), a
product of scalar truthful and informative score.
We note that there are discrepancies between
the results of ITI reproduced in our work and
the original results reported in Li et al. (2024b),
as the original paper used GPT-3 based mod-
els to score these two metrics; however, at the
time this paper is written, GPT-3 is no longer
available on the OpenAI platform.

• We assess how our method and baselines alter
the original generation distribution using two
extra metrics: the Kullback-Leibler (KL) di-
vergence and Cross-Entropy (CE) loss of the
model’s next-token prediction distribution be-
fore and after intervention. Due to limited space
in the main paper, these metrics for our method
and baselines are detailed in Appendix A.3.

Computing resources. We run all experiments on
4 NVIDIA RTX A5000 GPUs, an i9 14900K CPU,
and 128GB RAM. The semidefinite programs (4)
are solved using Mosek 10.1; the average solving
time for each instance is around 50 seconds.
Our repository:
https://github.com/nguyenngocbaocmt02/OT-
Intervention.

4.2 Numerical Results

4.2.1 Comparison between Finetuning-free
Techniques

We benchmark two fine-tuning-free baselines (ITI
and FSP) along with our framework RADIANT on
Llama-7B, Llama3-8B, and Llama2-chat-13B with
the TruthfulQA dataset. The results are presented
in the first three big rows of Table 1. Across the
three models, the combined method of FSP + RA-
DIANT consistently achieved the highest scores
in metrics such as True * Info and True, with
49% for Llama-7B, 44% for Llama3-8B, and 65%
for Llama2-chat-13B. When running alone, our
method, RADIANT, also demonstrated significant
improvements, particularly in Llama2-chat-13B,
where it achieved a True * Info score of 64% and a
Truthful score of 74%. This suggests the efficiency
of our framework compared with other baselines,
including the current state-of-the-art ITI.
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Model Methods True * Info
(%) ↑

True
(%) ↑

MC1
↑

MC2
↑

L
la

m
a-

7B

Unintervened 21.15 22.16 25.58 40.54
ITI 26.52 28.03 27.78 43.59
FSP 36.13 39.78 34.03 50.34
NL-ITI 29.06 38.04 32.97 45.69
LITO 39.08 41.22 29.22 47.64
FLORAIN 31.46 34.72 31.76 47.43
RADIANT (ours) 40.36 44.48 30.91 46.13

FSP + ITI 40.63 45.16 35.50 52.48
FSP + NL-ITI 45.97 47.31 38.37 53.61
FSP + LITO 49.05 55.68 36.23 54.92
FSP + FLORAIN 45.31 49.23 36.45 54.27
FSP + RADIANT
(ours)

49.31 57.43 37.97 55.31

L
la

m
a3

-8
B

Unintervened 32.88 44.18 30.36 48.98
ITI 35.92 46.88 32.07 49.84
FSP 36.32 39.78 35.74 52.93
NL-ITI 35.98 45.72 33.02 51.37
LITO 37.53 48.20 34.96 52.54
FLORAIN 36.78 48.67 34.56 53.68
RADIANT (ours) 37.78 50.82 33.82 52.98

FSP + ITI 40.63 45.16 35.50 52.98
FSP + NL-ITI 40.70 46.03 34.15 53.35
FSP + LITO 43.95 49.82 38.41 55.31
FSP + FLORAIN 42.15 47.32 36.98 55.83
FSP + RADIANT
(ours)

44.09 52.02 37.98 54.61

L
la

m
a2

-c
ha

t-
13

B

Unintervened 51.87 59.86 35.38 53.32
ITI 57.02 63.04 37.46 55.59
FSP 55.97 58.63 40.76 57.84
NL-ITI 57.13 60.82 39.01 57.24
LITO 58.12 61.36 38.25 57.21
FLORAIN 60.68 67.70 39.65 59.57
RADIANT (ours) 63.68 74.20 39.95 58.18

FSP + ITI 56.78 59.24 41.50 59.01
FSP + NL-ITI 59.62 61.77 42.15 57.87
FSP + LITO 60.74 63.21 41.28 58.46
FSP + FLORAIN 61.14 62.45 44.52 61.48
FSP + RADIANT
(ours)

64.68 67.75 42.52 59.99

A
lp

ac
a Base 30.39 30.85 26.56 41.63

+ ITI 37.67 38.19 28.89 45.19
+ RADIANT (ours) 44.51 45.94 30.79 47.83

V
ic

un
a Base 38.24 42.10 31.83 48.48

+ ITI 49.27 53.25 33.42 51.80
+ RADIANT (ours) 54.87 62.81 35.76 55.14

L
la

m
a

va
ri

an
ts

+
L

O
Fi

T LOFiT (7B) 59.48 69.03 51.04 70.78
+ ITI 60.84 72.29 51.41 70.84
+ RADIANT (ours) 61.50 72.08 51.80 71.29

LOFiT (8B) 68.80 90.08 59.00 77.93
+ ITI 67.57 79.31 55.33 75.85
+ RADIANT (ours) 71.47 90.19 59.30 76.56

LOFiT (Chat-13B) 66.35 81.89 57.04 76.17
+ ITI 66.00 78.09 55.08 75.25
+ RADIANT (ours) 69.63 83.86 57.45 75.47

Table 1: Quantitative results of different intervention
methods on TruthfulQA dataset, across different Lan-
guage Models and fine-tuning approaches. Parameters
of RADIANT: α = 2.5, Γ = 15.

4.2.2 Comparison against ITI with
Instruction Finetuning Methods.

We investigate whether implementing RADIANT
on Alpaca and Vicuna, two instruction fine-tuning
models from Llama-7B, can further enhance their
performances. Results in Table 1 (fourth and fifth
big rows) indicate that applying RADIANT signif-
icantly enhances both the baseline models, with Al-
paca + RADIANT improved to 44.5% in True*Info
score and 46% in Truthful score. Similarly, Vicuna
+ RADIANT achieved the highest scores of 55% in
True*Info score and 63% in Truthful score, show-
casing a marked increase compared to its baseline
performance of 38% and 42.1%, respectively. In
both cases, RADIANT outperformed ITI, demon-
strating its effectiveness in enhancing the models’
accuracy and truthfulness.

4.2.3 Comparison against ITI with
Representation Intervention Finetuning
Methods.

We apply RADIANT and ITI on Llama-7B,
Llama3-8B, and Llama2-chat-13B models, which
were previously fine-tuned by LOFiT, a represen-
tation intervention finetuning method. The experi-
mental results in the last big row of Table 1 show
that RADIANT is better than ITI in improving
correctness and informativeness across different
Llama models. While ITI offers modest improve-
ments in some instances, it generally lags behind
RADIANT, especially in larger models.

4.3 Ablation Studies

We perform two ablation studies to demonstrate
the effectiveness of our framework. Table 2 reports
the performance of the Llama-7B + TruthfulQA
dataset. In the first scenario, we select intervened
heads using ITI, then compare our intervention
approach versus ITI. We noticed that switching
the head selection between RADIANT and ITI im-
proved performance when the RADIANT interven-
tion was applied, reaching 37% in the True * Info
score. In the second scenario, the probing loss func-
tion is replaced by the popular binary cross-entropy
loss. This scenario tests the impact of replacing the
risk-aware loss function with cross-entropy loss,
which resulted in moderate improvements but still
fell short compared to RADIANT’s risk-aware loss
in Section 2 (30.36% vs 40.36% in True*Info).
Overall, these findings suggest that both the choice
of intervention and the loss function play crucial
roles in our framework.
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Methods True * Info (%) ↑ True (%) ↑ MC1 ↑ MC2 ↑
Unintervened 21.15 22.16 25.58 40.54
ITI 26.52 28.03 27.78 43.59
1st scenario: Our linear probe + ITI intervention 26.88 28.00 29.00 44.00
1st scenario: ITI linear probe + our intervention 36.66 39.00 28.00 43.00
2nd scenario: Cross entropy loss 30.36 33.00 29.00 43.00
RADIANT 40.36 44.48 30.91 46.13

Table 2: Ablation study results: in the first scenario, we swap heads selected by RADIANT with ITI intervention,
and vice versa; in the second scenario, we replace our risk-aware loss function with cross-entropy loss in training
linear probe. Performed on TruthfulQA with Llama-7B.

Component Llama-7B Llama3-8B Llama2-chat-13B

Train the linear probe for one layer (s) 15.64 17.32 29.42
Compute intervention for one head (s) 52.33 58.43 55.67
Avg. increase in inference time per answer (%) 3.09 3.32 4.72

Table 3: Wall-clock time breakdown by components of RADIANT for different pretrained models.

4.4 Computational Cost

Our method is computationally cheap: for each
head, our linear probes require one vector-vector
multiplication, and our linear interventions require
only one matrix-vector multiplication. To demon-
strate this, we clocked the running time to calcu-
late the intervention vectors on an A5000 GPU for
the Llama-7B and Llama3-8B models and on two
A5000 GPUs for Llama2-chat-13B and show the
results in Table 3. Our intervention only slightly
increases the running time of the inference pro-
cess. In addition to its simplicity, the preprocess-
ing of our framework for calculating intervention
vectors is much less time-consuming and resource-
intensive than fine-tuning methods.

4.5 Additional Experiments

We perform multiple additional benchmarks to
demonstrate the effectiveness of RADIANT across
diverse settings, but due to the lack of space, we
put the rest of these experiments in the Appendix.
More specifically:

• We conduct a hyperparameter analysis and com-
pare our risk-aware loss function with weighted
negative log-likelihood (Section A.2). We also
report the results for the Kullback-Leibler (KL)
and Cross-Entropy (CE) metric for generation
(Section A.3). We find consistent improvements
of RADIANT compared to other competitors.

• We develop a parallel implementation
(RADIANT-P) in Section A.4 that signif-
icantly reduces computational overhead
while maintaining the performance of the
intervention.

• We conduct a transferability analysis (Sec-
tion A.5) to demonstrate that RADIANT has
better generalization to the NQOpen and Trivi-
aQA datasets than ITI.

• We test RADIANT on various model archi-
tectures, including Gemma and GPT models
(Section B.1), Mistral and Qwen models (Sec-
tion B.2), and sparse MoE architectures (Sec-
tion B.3). We also compare RADIANT with
supervised fine-tuning (Section B.4).

• We evaluate RADIANT on other NLP tasks, in-
cluding toxicity mitigation (Section C.1), long
fact generation (Section C.2), and creative writ-
ing (Section C.3). RADIANT shows compara-
ble performance to computationally intensive
methods while maintaining better fluency.

5 Conclusion

We introduced RADIANT, an activation interven-
tion method consisting of two components: (i) a
layerwise probe to detect undesirable content and
(ii) headwise interventions to rectify the head acti-
vations upon undesirably predicted outcomes. Con-
trary to existing intervention methods, where the
interventions can be scattered across different lay-
ers, our intervention is focused on a single layer of
the network. This focus helps alleviate the distri-
butional shifts of the activations in subsequent lay-
ers. Moreover, our headwise intervention aims to
minimize the perturbations to the activations while
keeping a reasonable guarantee of the effectiveness
of the intervention. This is further demonstrated in
empirical results, where our method outperforms
the baseline intervention methods for various LMs.
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Limitations and Social Impact. Our paper fo-
cuses on improving the truthfulness of LMs, and
the results aim to improve trustworthy artificial in-
telligence. Apart from language generation, our
paper can also be implemented in other domains
for activation editing. However, it is important to
acknowledge the potential misuse of our method.
There exists a risk that adversarial actors could ex-
ploit our approach to transform truthful outputs
into misleading or false information. This dual-
use nature underscores the importance of ethical
guidelines and safeguards in developing artificial
intelligence. By promoting transparency and ac-
countability in using our framework, we want to
raise awareness of the risks while maximizing the
benefits of improved truthfulness in language gen-
eration.
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A Additional Results on TruthfulQA
Benchmark

A.1 Information about TruthfulQA Dataset
The TruthfulQA dataset is a Question-Answer
dataset containing 817 questions that likely elicit
false answers from humans due to common miscon-
ceptions. We follow the same data-processing used
in Li et al. (2024b) and Yin et al. (2024) that splits
the dataset into train/validation/test with the rate of
326/82/407 questions and utilizes two-fold cross-
validation. Each question has an average length
of nine words and has two sets of desirable and
undesirable answers. Following Li et al. (2024b),
we separate the original dataset into 5918 question-
answer pairs; each has a binary label, indicating
desirability. Only pairs associated with questions
in the training dataset are used to create our inter-
vention policy, while those in the validation test are
set aside for parameter tuning.

A.2 Additional Ablation Studies
A.2.1 Layer Selection Threshold with the

Smooth Probing Loss
Figure 2 presents the FNR and FPR results for the
layerwise probes on Llama-7B on the TruthfulQA
dataset. From Figure 2a, one observes that the opti-
mal layer tends to be a mid-layer (ℓ between 11 and
14) with smaller FNR and FPR values. Figure 2b
shows that increasing α will dampen the FNR rate
across layers.

A.2.2 Loss Function of the Classifier
To evaluate the effectiveness of our risk-aware loss
function in (2), we conduct an ablation study that
compares it with weighted negative log-likelihood
(NLL) loss. The weighted NLL loss to train the
classifier is defined as:

LNLL(θℓh, ϑℓh)

= −
N∑

i=1
[w1y∗

i log(pi) + w0(1− y∗
i ) log(1− pi)],

where pi = sigmoid(ϑℓh + θ⊤
ℓhaℓh,i) is the pre-

dicted probability for sample i, and w1 and w0
represent the weights applied to positive and nega-
tive samples, respectively. These weights are cho-
sen to align with the class-imbalance handling and
error-prioritization approach in our proposed loss.
Specifically, we set

w0 = 1
N0

, w1 = α

N1
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(a) False Negative Rate (FNR) and False Positive Rate (FPR)
across layers for intervention threshold τ = 11.
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(b) FNR across layers for different value of regularization
parameter α of the risk-aware loss in (2).

Figure 2: FNR and FPR metrics with different hyperpa-
rameters α across layers of Llama-7B.

to be consistent with the definitions of FPR and
FNR in our formulation. We follow the same pro-
cedure to choose α as we do with RADIANT and
run the experiment for three models: Llama-7B
and Llama3-8B on the TruthfulQA dataset. The
experimental setup is the same as in 4.1. The layers
for intervention found by our framework with the
NLL loss coincide with the layer found by our pro-
posed loss (2) across all three models. We report
the experimental results in Table 5.

Methods True*Info
(%) ↑

True (%)
↑

MC1 ↑ MC2 ↑

Unintervened 21.15 22.16 25.58 40.54
RADIANT
(NLL)

37.64 43.78 31.98 46.11

RADIANT 40.36 44.48 30.91 46.13

Table 4: Results for Llama-7B.

Our results show that, while the weighted NLL
provides a strong baseline, RADIANT consistently
outperforms it in most metrics and models. In par-
ticular, RADIANT improves performance in MC1
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Methods True*Info
(%) ↑

True (%)
↑

MC1 ↑ MC2 ↑

Unintervened 32.88 44.18 30.36 48.98
RADIANT
(NLL)

38.36 47.25 32.12 49.83

RADIANT 37.78 50.82 33.82 52.98

Table 5: Results for Llama3-8B.

and MC2, demonstrating a stronger ability to guide
model interventions. Although weighted NLL is
a standard formulation, our findings suggest that
RADIANT’s approach to error weighting provides
additional benefits beyond simple likelihood-based
weighting.

We provide theoretical intuition for why the RA-
DIANT loss might lead to superior performance in
practical classification tasks compared to weighted
NLL in our problem. The weighted NLL mea-
sures the classification confidence via the negative
logarithm of predicted probabilities. Thus, large
mispredictions incur exponentially large penalties:

− log(pi) −−−→
pi→0

∞, − log(1− pi) −−−→
pi→1

∞.

This exponential penalty will ensure that the bound-
ary does not go deeper into the area of any classes
because if that happens, many samples will have
pi → 1, then the exponential penalty will pull it
back. In our problem, the false negative samples
are critical, so we expect the boundary to go deeper
into the desirable area, and this loss is not suitable.

Methods Llama 7B Llama3-8B

RADIANT(NLL) 0.104 0.128
RADIANT 0.023 0.054

Table 6: False Negative Rate comparison between RA-
DIANT loss and Weighted NLL loss denoted as RADI-
ANT(NLL).

Instead, RADIANT measures risk more directly
(FPR, FNR), penalizing misclassification linearly
in probability. Thus, while weighted NLL severely
penalizes misprediction (logarithmic scale), RADI-
ANT loss penalizes misclassification risk propor-
tionally and is, therefore, more reasonable for our
problem. Moreover, the exponential penalty poten-
tially makes weighted NLL brittle or overly sen-
sitive to outliers, which often exist in deep layers’
activations of complex architectures like transform-
ers. This intuition is backed up by our empirical

observation that the False Negative of the weighted
NLL loss is consistently higher than our loss across
two models, Llama 7B and Llama3-8B.

A.2.3 The Effect of Γ and α on the
Performance of RADIANT

The hyperparameter α controls the conservative-
ness of the classifier in terms of the False Negative
Rate. High values of α ensure that no undesirable
content goes undetected. However, excessively
large values of α may lead to trivial classifiers that
classify all samples as undesirable. Such classifiers
can be identified by checking if their False Posi-
tive Rate in the validation set is one. Therefore,
for a given α, along with other performance met-
rics, we report the average False Positive Rate and
the average False Negative Rate across all trained
classifiers on the validation set denoted FPR and
FNR.

In Table 8, we present metrics on the val-
idation set while varying α within the set
{1.0, 1.5, 2.0, 2.5, 3.0}. We use the base model
Llama-7B. RADIANT’s performance improves as
α increases until a significant drop occurs when
trivial classifiers dominate at α = 3.0. This ob-
servation supports our approach of selecting α as
high as possible without encountering the trivial
classifiers issue. However, the information score
decreases as α increases. This decrease can be at-
tributed to RADIANT becoming more conservative
and avoiding providing uncertain information. In
practice, depending on the information sensitivity
of the application of LMs, we can select α as a
trade-off between the accuracy of the information
and the informativeness. For example, LMs in the
medical or legal sectors should avoid providing in-
correct or uncertain information, so high values of
α are recommended.

We report the performance metrics of Llama-7B
when varying Γ in Table 7. This hyperparameter
decides how much RADIANT post-intervention ac-
tivations deviate from the original ones if detected
as undesirable. We observe that the True score
of RADIANT increases in Γ. This is because the
increasing value of Γ drives activations to reside
deeper inside the desirable area, thus increasing the
probability of desirable generation. However, the
larger value of Γ makes activations move farther
from the original value, as shown by the increase
in the CE and KL metrics. The extreme devia-
tion from the original activations leads to incon-
sistency in semantics. It creates more non-natural
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Γ True * Info (%) ↑ True (%) ↑ Info (%) ↑ MC1 ↑ MC2 ↑ CE ↓ KL ↓
Unintervened 21.15 22.16 95.47 25.58 40.54 2.13 0.00
5 26.14 28.40 92.04 26.81 41.91 2.14 0.01
10 33.04 36.11 91.49 27.17 43.11 2.17 0.04
15 40.36 44.48 90.75 30.91 46.13 2.19 0.07
20 36.59 43.46 84.20 28.15 44.92 2.29 0.18

Table 7: The performance of RADIANT when varying Γ and fixing α of 2.5.

α True * Info (%) ↑ True (%) ↑ Info (%) ↑ FPR ↓ FNR ↓ CE ↓ KL ↓
Unintervened 21.15 22.16 95.47 - - 2.13 0.00
1.0 24.39 25.95 94.00 0.32 0.32 2.14 0.01
1.5 29.07 31.95 91.00 0.67 0.11 2.18 0.05
2.0 34.75 39.54 91.88 0.76 0.05 2.19 0.06
2.5 40.36 44.48 90.75 0.78 0.00 2.19 0.07
3.0 34.21 38.92 87.88 0.97 0.00 2.20 0.13

Table 8: The performance of RADIANT when varying α and fixing Γ of 15.

sentences, which can be observed at Γ = 20 with
the drop in the Information score. Therefore, a
reasonable score should balance the True and In-
formation scores.

In our implementation, for each pre-trained
model, we perform a grid search where α
ranges over {1.0, 1.5, 2.0, 2.5} and Γ over
{5, 7.5, 10, 15, 20} to select the optimal combina-
tion based on the True * Info score in the validation
set. After running RADIANT with various pre-
trained models, we find that the combination of
Γ = 15 and α = 2.5 performs effectively in most
cases. Unless otherwise specified, we utilize these
values for our experiments.

A.3 RADIANT Enhances Performance with
Minimal Distribution Shift

Since headwise intervention applies a linear map-
ping to transform undesirable activations into de-
sirable ones, it raises concerns about potential un-
intended shifts in meaning. To mitigate the risk of
semantic drift, our intervention method is explicitly
constrained via semidefinite programming to mini-
mize the shift in activation space while enforcing a
probabilistic guarantee that the modified activation
crosses the classifier’s decision boundary.

To showcase that the meaning shift caused by
RADIANT is minimal, we report two additional
metrics: Kullback-Leibler (KL) divergence of the
model’s next-token prediction distribution (pre- vs.
post-intervention) and Cross-Entropy (CE) loss.
These metrics quantify the shift in the generation
distribution following the intervention. Lower val-
ues indicate smaller deviation from the original
model’s behavior, reducing the likelihood of unnat-

ural outputs or anomalous characters. The calcula-
tion details are provided in Li et al. (2024b). Due to
space constraints, these metrics were omitted from
the main paper.

We report the KL and CE values in Table 9,
which includes all the settings reported in Table 1
from the main text. Our results show that RA-
DIANT maintains comparable KL and CE values
across various scenarios, demonstrating that it pre-
serves the original distribution while significantly
improving truthfulness.

A.4 Computational Cost – Paralled Version
This section studies the impact of ITI and RADI-
ANT on the base models’ inference speed. From
the theoretical aspect, it is evident that a head in-
tervention of ITI, which is just a vector addition, is
faster than that of RADIANT, which comprises a
matrix multiplication and addition operator. This
observation is proved again by the empirical results
shown in Table 10. This table reports the average
percentage increase in inference time per answer
of ITI and RADIANT across the base models. It
is observed that the normal version of RADIANT
imposes more additional time in inference than ITI
does. However, it should be noted that all RADI-
ANT interventions are conducted on the same layer,
while ITI interventions are carried out on multiple
pairs of layer heads. This attribute of RADIANT
allows us to parallel the interventions, which is im-
possible for ITI. We denote the parallel version of
RADIANT as RADIANT-P and include it in Ta-
ble 10. RADIANT-P offers the same decent results
as RADIANT but imposes less computation cost
to base models than RADIANT and ITI.
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Model Methods CE ↓ KL ↓

L
la

m
a-

7B
Unintervened 2.13 0.00
ITI 2.20 0.07
FSP 2.13 0.00
NL-ITI 2.19 0.07
LITO 2.19 0.07
RADIANT (ours) 2.19 0.07

FSP + ITI 2.20 0.07
FSP + NL-ITI 2.20 0.07
FSP + LITO 2.20 0.07
FSP + RADIANT (ours) 2.20 0.08

L
la

m
a3

-8
B

Unintervened 2.38 0.00
ITI 2.50 0.13
FSP 2.38 0.00
NL-ITI 2.50 0.13
LITO 2.48 0.11
RADIANT (ours) 2.48 0.08

FSP + ITI 2.48 0.14
FSP + NL-ITI 2.49 0.14
FSP + LITO 2.54 0.17
FSP + RADIANT (ours) 2.52 0.15

L
la

m
a2

-c
ha

t-
13

B

Unintervened 2.31 0.00
ITI 2.32 0.17
FSP 2.31 0.00
NL-ITI 2.33 0.17
LITO 2.34 0.18
RADIANT (ours) 2.35 0.18

FSP + ITI 2.33 0.13
FSP + NL-ITI 2.34 0.15
FSP + LITO 2.36 0.17
FSP + RADIANT (ours) 2.38 0.18

A
lp

ac
a Base 2.81 0.00

+ ITI 2.88 0.14
+ RADIANT (ours) 2.81 0.13

V
ic

un
a Base 2.67 0.00

+ ITI 2.77 0.26
+ RADIANT (ours) 2.73 0.27

L
la

m
a

va
ri

an
ts

+
L

O
Fi

T LOFiT (7B) 2.35 0.00
+ ITI 2.55 0.14
+ RADIANT (ours) 2.56 0.13

LOFiT (8B) 3.27 0.00
+ ITI 3.33 0.08
+ RADIANT (ours) 3.38 0.11

LOFiT (Chat-13B) 2.52 0.00
+ ITI 2.73 0.21
+ RADIANT (ours) 2.73 0.20

Table 9: Quantitative results of different intervention
methods on the TruthfulQA dataset, across different
Language Models and fine-tuning approaches. Parame-
ters of RADIANT: α = 2.5, Γ = 15.

A.5 Transferability Experiments

We train the intervention mappings for Llama-7B
using the TruthfulQA dataset, but we evaluate its
performance on the NQOpen dataset (Kwiatkowski
et al., 2019). The NQOpen dataset contains ap-
proximately 3600 question-answer pairs. Our in-

tervention vectors show strong performance on the
NQOpen dataset, shown in Table 11. This effective-
ness is also observed with ITI, as noted in its origi-
nal paper. Nevertheless, our experiment indicates
that our intervention mappings offer superior trans-
ferability and generality compared to ITI’s. This
experiment demonstrates RADIANT’s effective-
ness and highlights the generality of the computed
intervention for NLP tasks.

B Additional Comparison Results

B.1 Evaluation on GPT and Gemma Base
Models

In this experiment, we study the performance of
finetuning-free techniques, including ITI, RADI-
ANT, and FSP, on Gemma-2B (Team et al., 2024)
and GPT-2 Large (Radford et al., 2019), which
serve as alternative base models to the Llama model
family. Table 12 shows that RADIANT, using few-
shot prompting, outperforms other methods by a
large gap. In particular, FSP + RADIANT im-
proves the True * Info score of Gemma-2B and
GPT-2 Large by 25.14% and 16.16%, respectively.
Notably, FSP + RADIANT is superior to FSP +
ITI in both True * Info and True and MC1 scores.
Concurrently, RADIANT, implemented separately,
outperforms ITI and FSP in terms of True * Info
and True scores, while only slightly behind in MC1
and MC2.

B.2 Evaluation on Mistral and Qwen Base
Models

RADIANT has already been evaluated on base
models beyond Llama, including Gemma-2B and
GPT-2 Large (Appendix B.1). Because RADIANT
relies solely on activation values (rather than log-
its or internal weights), it is directly applicable to
any transformer-based model. To further validate
this, we conducted an experiment on Mistral-7B-
Instruct-v0.2 and Qwen2-7B-Instruct base models
and evaluated the results using GPT4. The opti-
mal intervention layers found by RADIANT are 18
and 25, respectively, for Qwen2-7B-Instruct and
Mistral-7B-Instruct-v0.2.

Tables 13 and 14 show that RADIANT improves
truthfulness and overall performance across differ-
ent models. For Mistral-7B-Instruct-v0.2, RADI-
ANT achieves the highest True * Info (81.94%) and
True (68.17%) scores, outperforming both the base-
line and ITI. For Qwen2-7B-Instruct, RADIANT
leads in True * Info (77.51%) and True (53.05%).
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Base models ITI RADIANT RADIANT-P

Gemma-2B 2.53 6.82 1.75
GPT-2 Large 2.43 3.01 1.65
Llama-7B 2.46 3.09 1.45
Llama3-8B 2.51 3.32 1.55
Llama2-chat-13B 2.51 4.72 1.57

Table 10: The average percentage increase in inference time per answer of ITI and RADIANT across base models.

Dataset Methods True * Info (%) ↑ True (%) ↑ MC1 ↑ MC2 ↑ CE ↓ KL ↓

NQOpen
Unintervened 17.16 18.50 40.90 53.10 2.13 0.00
ITI 16.97 18.90 40.40 52.94 2.20 0.07
RADIANT (ours) 20.66 22.10 41.50 54.38 2.16 0.04

TriviaQA
Unintervened 87.82 92.25 32.60 64.35 2.13 0.00
ITI 91.14 94.20 32.70 65.16 2.21 0.09
RADIANT (ours) 92.35 96.50 35.30 67.20 2.23 0.09

Table 11: Quantitative results of the transferability of RADIANT’s intervention on different datasets.

Regarding comparisons with knowledge edit-
ing methods such as WISE (Wang et al., 2024)
and ConceptEdit (Wang et al., 2023b), we em-
phasize that our work targets a different setting:
inference-time intervention rather than parameter-
based model editing. While model editing methods
aim to alter stored knowledge via weight updates,
RADIANT operates at inference time by activa-
tion intervention, enabling lightweight, reversible
control over generation.

B.3 Evaluation on Sparse MoE Architectures

We show that RADIANT can be applied to a sparse
Mixture of Experts. The core mechanism of RA-
DIANT, layerwise and headwise activation editing,
relies solely on access to activations at a given layer
and does not depend on weight sharing or archi-
tectural uniformity. Moreover, since our method
operates directly on attention head activations, and
most sparse MoE designs apply sparsity to MLP
layers rather than attention blocks, the architecture-
level sparsity introduced by MoEs does not inter-
fere with our intervention method. To verify our
performance on this MoE architecture, we conduct
experiments with a sparse MoE model, OLMoE-
1B-7B-0924, from Muennighoff et al. (2024). We
provide the results of our method, ITI, and base
model for the TruthfulQA dataset as follows.

Table 15 shows that RADIANT works well for
the OLMoE-1B-7B-0924 model, boosting the True
score by nearly 8%. RADIANT outperforms ITI
regarding True * Info, True, MC1, and MC2. This
showcases its effectiveness in generating truthful
answers in architectures like Sparse MoEs.

B.4 Comparison with Supervised Fine-Tuning

Supervised fine-tuning (SFT) attempts to align
LLMs with human preferences (Ouyang et al.,
2022b). Given a prompt, SFT encourages the
model to generate desirable answers and reduce
the likelihood of generating undesirable answers
by optimizing the cross-entropy loss. However,
SFT’s requirement to fine-tune all LLM parameters
demands substantial GPU resources for the back-
propagation operations. Due to computational con-
straints, we can only perform SFT on the GPT2-
large, the smallest model in our experiments.

Table 12 highlights the advantages of inference-
time methods like ours: by avoiding gradient
computation or backpropagation, they offer a
lightweight, fast, versatile, and economical way
to improve the performance of LLMs. This is es-
pecially useful in low-resource scenarios. Because
Llama-7B is used as a base model for many of our
experiments, we also include the results of SFT on
Llama-7B for comparison, but it is worth noting
that the number is taken from the ITI paper (Li
et al., 2024b). Since our evaluation framework
differs from ITI in terms of the GPT-judge and
GPT-info models, which is attributed to the fact
that these models in the ITI paper are no longer
available on OpenAI, the results may not be fair for
comparison. From Table B.1, SFT achieves the best
performance in terms of MC metrics and reaches
a high score of True * Info and True. Regarding
the True score, RADIANT still outperforms SFT
in the individual and integrating versions with FSP,
offering 38.73% and 40.41% correct answers, re-
spectively. When combined with FSP, RADIANT
achieves 35.36% in True * Info score, surpassing
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Methods True * Info (%) ↑ True (%) ↑ MC1 ↑ MC2 ↑ CE ↓ KL ↓
Unintervened 31.00 51.23 27.12 43.62 2.55 0.00
ITI 33.42 54.74 29.14 46.01 2.64 0.17
FSP 34.92 42.23 35.10 49.24 2.55 0.0
RADIANT(ours) 35.62 59.62 30.34 48.06 2.62 0.15

FSP + ITI 48.83 61.57 38.27 54.73 2.69 0.16
FSP + RADIANT(ours) 56.14 64.71 39.54 56.98 2.65 0.09

(a) Gemma-2B

Methods True * Info (%) ↑ True (%) ↑ MC1 ↑ MC2 ↑ CE ↓ KL ↓
Unintervened 19.20 21.91 23.57 40.75 2.8 0.0
SFT 35.16 38.28 35.70 53.57 3.27 0.46
ITI 26.94 31.09 24.68 42.31 2.94 0.13
FSP 21.82 27.30 25.34 42.07 2.8 0.0
RADIANT (ours) 30.18 38.73 25.14 42.14 2.92 0.12

FSP + ITI 29.53 30.45 25.12 44.79 2.98 0.18
FSP + RADIANT (ours) 35.36 40.41 26.18 44.29 2.94 0.16

(b) GPT-2 Large

Table 12: Quantitative results of different intervention methods on TruthfulQA dataset, across different language
models. Parameters of RADIANT: α = 2.5, Γ = 15.

Methods True * Info (%) ↑ True (%) ↑ MC1 ↑ MC2 ↑
Unintervened 80.05 67.20 55.69 70.93
ITI 76.87 62.30 54.23 70.41
RADIANT (ours) 81.94 68.17 55.23 71.75

Table 13: Experimental results of baselines for Mistral-7B-Instruct-v0.2.

SFT but requiring fewer resources. For the imple-
mentation of SFT, we use the SFTTrainer frame-
work2, one of the most popular frameworks for
this algorithm. While we remained almost the de-
fault parameters proposed by the library, we had
to tune many important parameters like learning
rate, parameters of the Adam optimizer, weight
decay, and so on, to get a consistent and stable
fine-tuned model. Some important parameters for
SFT are reported in Table 16, while its best per-
formance is shown previously in Table 12. This
observation strongly supports the practicability of
RADIANT, which only necessitates tuning two
key hyperparameters α in the probe loss (2), and
Γ = Φ−1(1 − γ) in the computation of the in-
tervention map (4). A detailed analysis of these
parameters to provide insight into their impact is
presented in Appendix A.2.3. This section offers
useful insights and guidelines for selecting values
for any new models. Furthermore, compared to
other methods like ITI, the grid search on two hy-
perparameters like ours is efficient and reasonable,
so it is not harder to tune the hyperparameters of
RADIANT than other previous works.

2https://huggingface.co/docs/trl/en/sft_
trainer

C Experiments on Other NLP Tasks

C.1 Toxicity Mitigation Benchmark

In this section, we show the performance of RA-
DIANT in mitigating toxicity in long-form text
generation. In this task, the language models are
required to complete an incomplete prefix piece of
a text. Normally, the prefix prompt is selected to
elicit toxic content from LLMs. For a fair com-
parison to previous works, we set up experiments
following Singh et al. (2024) and Pozzobon et al.
(2023), which is detailed below.
Training dataset. We use the Toxic Comments
Classification Challenge data.3 The dataset com-
prises sentences and their human toxicity labels.
We follow the data preprocessing steps from Singh
et al. (2024) while the activations gathering is iden-
tical to the procedure of the QA task.
Models. Following existing works in the field, we
adopt the GPT2-Large as the base model across all
experiments of the toxicity mitigation task.
Hyperparameter As mentioned in the QA task
section, there are two important hyperparameters
in our framework, namely α, and Γ = Φ−1(1− γ),

3https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge
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Methods True * Info (%) ↑ True (%) ↑ MC1 ↑ MC2 ↑
Unintervened 64.13 50.55 40.02 59.89
ITI 73.68 50.30 40.88 60.86
RADIANT (ours) 77.51 53.05 40.39 61.17

Table 14: Experimental results of baselines for Qwen2-7B-Instruct.

Methods True * Info (%) ↑ True (%) ↑ MC1 ↑ MC2 ↑ CE ↓ KL ↓
Unintervened 23.43 31.42 28.92 45.42 2.67 0.00
ITI 25.52 32.74 28.48 45.50 2.84 0.13
RADIANT (ours) 28.56 39.17 30.13 47.05 2.68 0.12

Table 15: Performance on TruthfulQA with OLMoE-1B-7B-0924.

Parameter Value
learning_rate 0.00002
weight_decay 0
adam_beta1 0.8
adam_beta2 0.999

adam_epsilon 1× 10−8

max_grad_norm 1
batch_size 32
epochs_num 5

lr_scheduler_type linear

Table 16: Parameter values for SFT.

which would be selected by a grid search procedure
detailed in Appendix A.2.3.
Baselines. We include several baselines
that have the same goal of reducing the
toxicity of LLMs, including MIMIC (Singh
et al., 2024), DEXPERTS (Liu et al., 2021),
DAPT (Gururangan et al., 2020), UDDIA (Yang
et al., 2022), PPLM (Dathathri et al., 2019),
GOODTRIEVER (Pozzobon et al., 2023). As for
MIMIC, we consider two versions: Mean Matching
(MM) and Mean+Covariance Matching (MCM), in-
troduced in their original paper.
Metrics. We assess the performance using three
key metrics: toxicity, fluency, and diversity.

Hyperparameter Value

Number of Samples 25
Max Length 20
Temperature 1
Top-p (sampling) 0.9
Top-k (sampling) 0

Table 17: Hyperparameter settings for the decoding
mechanism in the toxicity mitigation task

(i) Toxicity: we use the non-toxic split of RealTox-

icityPrompts (Gehman et al., 2020) and utilize
the evaluation framework in Liu et al. (2021)
and Singh et al. (2024). For each prompt in the
dataset, the models generate 25 outputs, each
capped at 20 tokens in length. The parame-
ters of the shared decoding mechanism of all
algorithms are presented in Table 17. These
outputs are analyzed using Perspective API,4

which estimates the likelihood that a human
would perceive the text as toxic. Two metrics
are derived:

• Expected Maximum Toxicity is denoted as
Exp. Max. Tox. We identify the output with
the highest toxicity score for every prompt
and compute the average of these maximum
scores across all prompts.

• Toxic Completion Proportion is abbreviated
as Tox. Prob. This metric tracks the fraction
of outputs considered toxic, where toxicity
is defined as a score above 0.5 based on the
Perspective API’s threshold.

(ii) Fluency is evaluated by calculating the perplex-
ity of the generated outputs, using GPT-2 (XL)
as a reference model. Lower perplexity values
suggest that the text is more coherent and gram-
matically fluent.

(iii) Diversity is assessed by examining the ratio of
unique n-grams (1-gram, 2-gram, and 3-gram)
to the total number of tokens in the generated
text. This metric captures the range of vari-
ation in the outputs, with higher values indi-
cating more diverse and varied language use.
This methodology ensures a balanced evalua-
tion, providing insights into the ability of mod-
els for non-toxic, fluent, and diverse generation.

4https://perspectiveapi.com/
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Results. The experimental results of the baselines
are shown in Table 18, where the base model for
all methods is GPT-2 Large. The result of the
original model is described in the first row. We
divide the baselines into two groups. Using an
extensive fine-tuning procedure, the first group
comprises DAPT, GeDI, PPLM, UDDIA, DEx-
perts, and GOODTRIEVER. In contrast, the sec-
ond group contains inference-time fine-tuning-free
methods like MIMIC, ITI, and RADIANT. The
baselines in the first group are better than their
counterparts in the second group regarding toxic-
ity metrics. However, these methods require fine-
tuning or computing gradients at inference time,
which can be computationally intensive. MIMIC,
ITI, and RADIANT achieved a toxicity reduction
comparable to many algorithms in the first group,
but consumed much fewer resources. Specifically,
RADIANT is superior to PPLM and is equally com-
petitive to DAPT. In particular, RADIANT offers
the best toxicity reduction impact within the second
group compared to ITI and MIMIC while main-
taining a better fluency and diversity of generated
sentences. The fluency of RADIANT is even more
favored than almost all algorithms in the first group,
except for UDDIA. At the same time, its diversity
metric is better than that of other baselines except
for PPLM.

C.2 Long-Fact Generation Benchmark
We inspected the performance of our method and
ITI on the Long-Fact task. We followed the exper-
imental setup and prompt format in Cheng et al.
(2024) and used their code repository5 for evalu-
ation. This task requires models to generate de-
tailed document-length descriptions of queried ob-
jects, often exceeding 1,000 tokens. Evaluation
involves breaking responses into atomic facts us-
ing LLaMA3.1-70B-Instruct and evaluating their
truthfulness with GPT-4. Metrics include Precision
(truthful fact proportion), Recall@128 (truthful
facts per 128), and F1@128. Results are based on
120 samples. Because we do not have a set of true
and wrong samples in this dataset, we cannot learn
the mapping for ITI and RADIANT. Therefore,
we transfer the learned mappings of ITI and RA-
DIANT from Truthful QA for Qwen2-7B-Instruct
and Mistral-7B-Instruct-v0.2.

The results for Qwen2-7B-Instruct are reported
in Table 20, while the results for Mistral-7B-

5https://github.com/YiCheng98/
IntegrativeDecoding

Instruct-v0.2 are reported in Table 21.
The results demonstrate that RADIANT’s inter-

vention mapping effectively enhances truthfulness
in the long-fact task, showcasing strong general-
ization across models. In contrast, ITI’s mapping
transfers well to Qwen2-7B-Instruct but performs
poorly on Mistral-7B-Instruct-v0.2, highlighting
its limited adaptability. RADIANT achieves the
highest precision across both models, indicating
its strength in generating truthful facts. While ITI
slightly outperforms in recall for Qwen2-7B, and
the unintervened model leads in recall for Mistral-
7B, RADIANT maintains a strong balance between
precision and recall. This is reflected in its high-
est F1@128 scores, making it the most effective
overall. The small variations in recall suggest that
interventions refine the accuracy of the facts rather
than significantly increasing the number of truthful
facts generated.

C.3 Creative Writing Benchmark
To further address the concern about meaning shift,
we tested our method on the Creative Writing v3
task from the EQ-Bench benchmark (Paech et al.,
2023) using Qwen2-7B-Instruct. This experiment
evaluates how intervention mapping affects the
meaning of creative text. The ELO scores in Ta-
ble 19 show a slight decrease when applying ITI
and RADIANT, which is expected, since these in-
terventions enhance truthfulness, potentially lim-
iting word choice flexibility. However, the results
indicate that the interventions do not significantly
harm the model’s creative capabilities.

D Mathematical Proof

Proof of Theorem 1. The logistic classifier Cℓh out-
put a prediction 0 if ϑℓh + θ⊤

ℓhaℓh < 0. If Qℓh is
Gaussian N (µ, Σ), then by (Prékopa, 1995, The-
orem 10.4.1), the probability constraint of (3) can
be written as

ϑℓh + θ⊤
ℓhµ + Φ−1(1− γ)

√
θ⊤

ℓhΣθℓh ≤ 0.

Next, we add an auxiliary variable t ∈ R+ with
an epigraph constraint

√
θ⊤

ℓhΣθℓh ≤ t. Because
Φ−1(1 − γ) > 0 for γ ∈ (0, 0.5), problem (3) is
equivalent to

min ∥µ− µ̂∥22 + ∥Σ 1
2 − Σ̂ 1

2 ∥2F
s.t. ϑℓh + θ⊤

ℓhµ + Φ−1(1− γ)t ≤ 0,√
θ⊤

ℓhΣθℓh ≤ t

µ ∈ Rd, Σ ∈ Sd
+, t ∈ R+.
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Model Exp. Max. Tox. ↓ Tox. Prob. ↓ Fluency ↓ 1-gram ↑ 2-gram ↑ 3-gram ↑
GPT-2 (large) 0.39 0.25 24.66 0.58 0.85 0.85

DAPT 0.27 0.09 30.27 0.57 0.84 0.84
GeDI 0.24 0.06 48.12 0.62 0.84 0.83
PPLM (10%) 0.38 0.24 32.58 0.58 0.86 0.86
UDDIA 0.24 0.04 26.83 0.51 0.80 0.83
DExperts 0.21 0.02 27.15 0.56 0.84 0.84
GOODTRIEVER 0.22 0.04 27.11 0.58 0.82 0.83

MM (MIMIC) 0.33 0.16 28.00 0.58 0.85 0.85
MCM (MIMIC) 0.29 0.09 30.70 0.54 0.84 0.84
ITI 0.31 0.12 33.12 0.57 0.85 0.85
RADIANT 0.27 0.09 27.10 0.58 0.85 0.85

Table 18: Quantitative results of different intervention methods on RealToxicityPrompts dataset. Parameters of
RADIANT: α = 2.5, Γ = 15.

Methods ELO ↑
Unintervened 592.5
ITI 554.6
RADIANT (ours) 578.6

Table 19: ELO Scores on Creative Writing v3 Task.

Let S ← Σ 1
2 ∈ Sd

+, the constraint
√

θ⊤
ℓhΣθℓh ≤ t

is equivalent to ∥Sθℓh∥2 ≤ t, which leads to (4).
Thus, the optimal pushforward ∆ℓh should push
P̂ℓh ∼ N (µ̂, Σ̂) to Qℓh ∼ N (µ⋆, (S⋆)2). One can
verify through simple linear algebraic calculations
that the mapping ∆ℓh(aℓh) = G⋆

ℓhaℓh+g⋆
ℓh defined

in the theorem statement is the desired mapping.
This completes the proof.
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Methods Precision ↑ Recall@128 ↑ F1@128 ↑
Unintervened 87.54 55.42 69.02
ITI 88.01 56.73 68.50
RADIANT (ours) 88.52 56.17 70.13

Table 20: Performance on the Long-Fact task with Qwen2-7B-Instruct.

Methods Precision ↑ Recall@128 ↑ F1@128 ↑
Unintervened 88.18 59.23 72.15
ITI 87.82 58.73 72.20
RADIANT (ours) 89.03 59.22 73.73

Table 21: Performance on the Long-Fact task with Mistral-7B-Instruct-v0.2.
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