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Abstract
Mixture-of-Experts (MoE) has emerged as a
promising approach for scaling large language
models efficiently. However, how to design a
desired MoE architecture given performance,
efficiency, or safety goals remains absent. Ex-
isting benchmarks often focus on isolated as-
pects (e.g., reasoning, efficiency, safety), and
there is a lack of consensus on optimal de-
sign choices, such as the number and size of
experts, the type of routers, and the regular-
ization during pre-training, or strategies like
freezing, learning rate adjustments, and lim-
iting expert collaboration during fine-tuning,
with prior works often yielding conflicting con-
clusions. Motivated by this research gap, we
introduce MoE-Bench, the first comprehensive
assessment of MoE designs across the three di-
mensions of reasoning ability, efficiency, and
safety. Our benchmark systematically evalu-
ates optimal architectural choices during both
pre-training and fine-tuning phases. We evalu-
ate two popular MoE backbones across four
dimensions of design choices on over eight
metrics. Our empirical findings uncover hid-
den underlying correlations among MoE design
choices. Specifically, we observe that (1) token-
level routing and z-loss regularization improve
reasoning performance; (2) shared experts en-
hance training stability but reduce specializa-
tion; and (3) collaboration-constrained routing
and freezing strategies significantly influence
load balance, specialization, and safety align-
ment. Furthermore, we propose three "sweet
point" combinations of optimal strategies tai-
lored to different scenarios. We hope this
study provides actionable insights for building
more robust, efficient, and secure MoE mod-
els. Code, checkpoints, and raw data will be
released upon acceptance of the paper.

1 Introduction

The pursuit of enhanced capabilities in Large Lan-
guage Models (LLMs) has demonstrated a strong
correlation between model scale and performance

(Achiam et al., 2023; Yang et al., 2024; Kaplan
et al., 2020). However, naively increasing model
size leads to prohibitive computational costs for
training and substantial inference latency (Kaplan
et al., 2020). To mitigate these challenges, various
techniques have been investigated, including quan-
tization (Lin et al., 2024; Frantar et al., 2022), low-
precision training (Wang et al., 2023), and sparse
computing (Shazeer et al., 2017; Lepikhin et al.,
2020; Frankle and Carbin, 2018). Among these
diverse approaches, Mixture of Experts (MoE) has
emerged as a particularly compelling paradigm,
adopted by numerous state-of-the-art (SoTA) mod-
els (Grattafiori et al., 2024; Guo et al., 2025;
Achiam et al., 2023). The fundamental principle
of MoE architectures involves selectively activat-
ing only a sparse subset of the model’s parameters
for each input token, thereby decoupling the total
parameter count from the per-token computational
load. MoE first demonstrated significant success
in language modeling (Shazeer et al., 2017) and
machine translation (Lepikhin et al., 2020), and
its use has since been extended to computer vi-
sion (Riquelme et al., 2021) and multi-modal ap-
plications (Mustafa et al., 2022). A primary driver
of MoE’s success lies in its capacity to expand
model size cost-effectively while maintaining fa-
vorable scaling properties (Krajewski et al., 2024).
Moreover, the inherent sparse activation mecha-
nism within MoE models offers potential avenues
for enhanced model interpretability (Lewis et al.,
2021; Zoph, 2022).

Despite the remarkable success of MoE models,
their intricate design introduces significant com-
plexities. The choice of expert architecture and
routing mechanisms, for instance, profoundly im-
pacts the model’s reasoning capabilities (Krajew-
ski et al., 2024; Zhou et al., 2022). Furthermore,
considerations such as inter-expert load balancing
and collaborative behavior necessitate the intro-
duction of auxiliary regularization techniques to
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Figure 1: Overview of MoE-Bench. Left: Evaluation of various MoE designs during pretraining and fine-tuning
across Reasoning Ability, Safety, and Efficiency dimensions using over six metrics, including analysis of their
intercorrelations. Right: "Sweet point" fine-tuning techniques demonstrate comprehensive improvements over the
baseline in performance, safety, and efficiency. None denotes full-parameter fine-tuning; None->Router denotes
full-parameter fine-tuning for the initial training phase, then fine-tuning with a frozen router.

maintain efficiency and performance (Zoph et al.,
2022; Wang et al., 2024; Zhang et al., 2025). Com-
pared to their dense counterparts, MoE models of-
fer additional avenues for optimization, such as
expert pruning (Li et al., 2023) and enhancing
inter-expert communication protocols (Zhang et al.,
2025), which can further reduce inference latency
but also add layers to the design complexity. How-
ever, existing research on MoE models predomi-
nantly focuses on singular evaluation dimensions,
such as reasoning ability, often neglecting a holistic
assessment across multiple critical aspects includ-
ing efficiency and safety (Fu et al., 2024; Chen
et al., 2024). Critically, prevalent metrics for eval-
uating load balancing are often inadequate for as-
sessing the efficacy of many contemporary MoE
optimization strategies utilizing expert activation or
collaboration(Zhang et al., 2025; Luo et al., 2025).
This yields the primary question to be explored:

(Q) Can we establish a comprehensive bench-
marking framework combined with a bag of
tricks, to significantly enhance the design, ef-
ficiency, and safety of MoE models across
diverse tasks and architectures?

Motivated by these limitations and the research
question, we introduce MoE-Bench, a comprehen-
sive benchmark designed to rigorously evaluate
MoE architectures across multiple performance di-
mensions. As illustrated in Figure 1, MoE-Bench
quantifies and assesses a suite of metrics spanning
three key domains: (1) We introduce novel con-
cepts of expert capacity and specialization to gauge
the importance and potential redundancy of indi-
vidual experts. (2) We incorporate metrics for eval-
uating expert collaboration, offering insights for

the development of advanced optimization tech-
niques. (3) We conduct a thorough assessment
of model-generated content for hallucinations and
safety. Furthermore, MoE-Bench systematically ex-
plores the vast MoE design space, scrutinizing a
range of MoE-specific hyperparameters, including
expert granularity, load balancing schemes, and
routing strategies, to identify optimal design con-
figurations.

Our contributions are summarized as follows:

➢ First Comprehensive Evaluation of MoE
Training Across Multiple Dimensions: Go-
ing beyond prior studies that primarily focus
on isolated aspects such as reasoning ability
or training cost (Fu et al., 2024; Cai et al.,
2025), we present the first systematic and uni-
fied evaluation of MoE training techniques
across three key dimensions: reasoning capa-
bility, reliability and general utility. Our anal-
ysis reveals several key insights: ❶ The fine-
tuning strategy of full-parameter fine-tuning
followed by freezing the router yields the best
reasoning performance and safety alignment.
Simultaneously, its load balance, capacity, and
collaboration also enable better application
of optimization techniques like pruning and
Collaboration-Constrained Routing (C2R) to
enhance efficiency. ❷ We observed inher-
ent correlations among MoE model efficiency
metrics such as load balance, expert collabora-
tion, and specialization. This overall perspec-
tive enables a more balanced and in-depth un-
derstanding of what truly drives performance
in MoE models.

➢ Unified and Reproducible Evaluation
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Framework:We propose a standardized eval-
uation setup with consistent hyperparameters,
dataset splits, and training protocols, imple-
mented within a modular and extensible code-
base. To achieve this, we integrated all MoE
training strategies into a common infrastruc-
ture built on top of OLMoE (Muennighoff
et al., 2024) and MegaBlocks (Gale et al.,
2023) libraries, ensuring that each experiment
runs under identical conditions. This unified
framework enables fair and reproducible com-
parisons across different MoE training strate-
gies. This design novelty isolates the effect
of routing and expert selection mechanisms
by controlling for all other variables, enabling
truly fair comparisons. Furthermore, all con-
figurations and scripts are released publicly,
supporting full reproducibility and extensibil-
ity by the community.

➢ Bag of Tricks for MoE Training Technique
Combinations: We investigate the interac-
tions between various MoE training meth-
ods across OLMoE and DeepSeek MoE back-
bones and over six datasets such as Massive
Multitask Language Understanding (MMLU),
Winogrande, and Hellaswag, and also in-
cludes three safety datasets such as Malicious,
CoNa, and Controversial. We find that our
identified sweet-point fine-tuning strategy of
full-parameter fine-tuning followed by freez-
ing the router achieves significant improve-
ments over the baseline across all three dimen-
sions: reasoning, efficiency, and safety. This
finding offers practical guidelines for select-
ing and integrating MoE strategies targeting
diverse performance requirements.

2 Related Works

2.1 Basic Architecture of Mixture of Experts

A MoE layer replaces a standard feed-forward
network within a transformer block. Given an
input token representation x, the output of an
MoE module, y, is a weighted sum of the out-
puts from its n expert networks {E0, . . . , En−1},
as y =

∑n−1
i=0 G(x)i · Ei(x), where Ei(x) is the

output of the i-th expert network when process-
ing input x. The term G(x)i represents the gating
weight assigned by the router network G(·) to the
i-th expert for input x. The design of the router
network G(·) is a critical component and can vary

across different MoEs (Fedus et al., 2021; Lepikhin
et al., 2020).

A prevalent routing strategy is the top-k gating
mechanism. In this approach, the router, typically
a linear layer followed by a softmax function, cal-
culates a probability distribution over the experts.
The top k experts with the highest probabilities are
selected to process the input. The gating values
G(x) are formally computed as:

G(x) = Top-K(softmax(Wgx)) (1)

where Wg is the learnable weight matrix of the
router’s linear layer. For fine-grained control over
expert selection and to prevent representational col-
lapse or expert starvation, MoE models are often
trained with auxiliary loss functions. During pre-
training, a load balancing loss is commonly em-
ployed to encourage a more uniform distribution
of tokens across experts (Lepikhin et al., 2020;
Shazeer et al., 2017; Zoph et al., 2022). Conversely,
some fine-tuning strategies might employ losses
that encourage specialization, concentrating assign-
ments to a few experts for specific downstream
tasks (Zhang et al., 2025).

2.2 Pretrain Designs

The pretrain phase is pivotal for establishing the
foundational capabilities of MoE models. Key
design decisions during this phase, which signifi-
cantly influence subsequent model characteristics,
revolve around three main areas: expert architec-
ture, router design, and regularization strategies.
Our exploration covers variations in expert granu-
larity and the inclusion of shared experts (Dai et al.,
2024); different router choice strategies and gran-
ularities (Shazeer et al., 2017; Fedus et al., 2021;
dos Santos et al., 2023); and diverse regularization
techniques including auxiliary losses and auxiliary
loss-free approaches (Shazeer et al., 2017; Lep-
ikhin et al., 2020; Zoph et al., 2022). For a detailed
exposition of these design considerations and the
specific combinations investigated, please refer to
Appendix B.1.

2.3 Finetuning Designs

While MoE models benefit from large-scale pre-
training, their unique structure introduces specific
considerations during finetuning. Unconstrained
updates can potentially destabilize learned routing
patterns or degrade expert specialization.
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2.3.1 Freeze Strategy: Freeze Router/Expert
& Different Learning Rates

Selectively freezing parts of the MoE architecture
is one approach to stabilize finetuning. This can
involve: ❶ Freezing the Router (Dai et al., 2022):
This strategy aims to maintain the expert assign-
ment patterns learned during pretraining. This can
be particularly relevant when finetuning on domain-
shifted data where re-learning routing might be
challenging. ❷ Freezing Experts (Seo et al.,
2025): This approach preserves the functional spe-
cialization of experts acquired during pretraining,
which can be beneficial when downstream task data
is limited. ❸ Interleave Freezing (Dai et al., 2022):
This involves a combination, such as freezing the
router while updating experts, or vice-versa, poten-
tially in different phases of finetuning.

In conjunction with freezing strategies, employ-
ing different learning rates for different compo-
nents, such as a smaller learning rate for the
router (Dikkala et al., 2023), can also be used. This
allows experts to adapt more readily to downstream
tasks while preserving the more slowly evolving
routing patterns.

3 Bag of Tricks for Improving MoE
Reasoning Ability

3.1 Experiments Setup
We evaluate two representative MoE models (OL-
MoE (Muennighoff et al., 2024) and DeepSeek
MoE (Guo et al., 2025)) across pre-training and
fine-tuning stages using Minipile (Kaddour, 2023a)
and LIMA datasets (Zhou et al., 2023). These
models differ significantly in scale, routing strate-
gies, and architectural design. Full model and
dataset details are provided in Appendix B.2 and
Appendix B.3.

3.2 Evaluation Metrics
To comprehensively evaluate the reasoning ability
of MOE models, we use a range of reasoning and
knowledge-intensive tasks: MMLU, ARC-easy,
ARC-challenge, Physical Interaction QA (PIQA),
Winogrande, and Hellaswag. For the detail of these
matrices, please refer to Appendix B.5.

3.3 Takeaways
3.3.1 Impact of Pretraining Expert

Architecture on Reasoning Performance
Contrasting Shared Expert Performance in Dif-
ferent Architectures. Our analysis of the relation-
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Figure 2: Reasoning ability comparison of OLMoE
and DeepSeek MoE with different expert granularity
and shared expert settings. The dashed line indicates
the average performance across six settings. 3/15 +
1 denotes a configuration with 3 top experts selected
from 15 routed experts, augmented by one fixed, always-
activated shared expert.

ship between model reasoning ability and architec-
tural design reveals several interesting and counter-
intuitive results. For instance, under identical train-
ing datasets and evaluation setups, shared experts in
the DeepSeek MoE architecture demonstrate con-
sistent improvements in reasoning capabilities over
dense models. However, the shared expert design
in OLMoE does not exhibit a similar advantage,
as illustrated in Figure 2. This consistent discrep-
ancy, aligning with the respective findings of their
original papers, suggests that specific architectural
differences may significantly influence the efficacy
of shared experts.
Suboptimal Efficacy of Fine-Grained Experts.
Furthermore, in our experiments, fine-grained ex-
perts did not perform optimally. As seen in Fig-
ure 3, fine-grained experts also showed no clear
advantage in terms of training convergence speed.
This contradicts the conclusions from both OL-
MoE and DeepSeek MoE studies. We hypothesize
that model size and vocabulary size might be con-
tributing factors to this disparity, warranting further
investigation. There remains considerable scope
for exploring the underlying principles of existing
MoE designs.

3.3.2 Impact of Pretraining Regularization on
Model Convergence and Performance

Coarse-Grained Experts Consistently Achieve
Faster Convergence. Figure 3 illustrates the
training loss curves for models during pretraining.
We observe that: Across all four settings, coarse-
grained experts achieve faster convergence speeds
compared to fine-grained experts. The presence of
shared experts, the removal of auxiliary loss (Aux
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Figure 3: OLMoE pretraining loss curves under different design configurations. AuxFree Routing refers to using
bias for load balancing(Wang et al., 2024). The Baseline setting indicates no shared expert, presence of auxiliary
loss, and no bias for load balancing.
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Figure 4: Average accuracy of OLMoE and DeepSeek
MoE under different fine-tuning freezing strategies.
N→E indicates no freezing in the first half of training
and freezing the router in the second half. The aver-
age performance across nine settings is marked with a
dashed line.

Free Routing), or the use of bias for load balancing
did not alter this trend.
Auxiliary Loss Absence Amplifies Convergence
Disparities. Compared to the baseline setting, the
"aux-free" setting exhibits a more pronounced dif-
ference in convergence speeds between different
granularities of experts. This could be because
the auxiliary loss in baseline settings typically aids
in stabilizing the training of fine-grained experts
by promoting more balanced expert utilization; its
absence in "aux-free" settings may therefore accen-
tuate any inherent instabilities or slower learning
characteristics of fine-grained experts. For more de-
tailed performance metrics of each setting, please
refer to Appendix C.1.

3.3.3 Influence of Fine-tuning Freezing
Strategies on Reasoning Capabilities

Early-Stage Freezing Impacts Reasoning More.
Our experiments reveal that:The freezing strategy
employed during the first half of fine-tuning has a
more pronounced impact on the model’s reasoning
ability compared to strategies applied in the latter
half. We have grouped our experimental results
accordingly. This phenomenon might be attributed

to the learning rate scheduler.

Expert Freezing Detrimentally Affects Reason-
ing Ability. Freezing experts during the second
half of training consistently results in inferior per-
formance compared to the other two freezing strate-
gies (freezing the router or no freezing). Further-
more, freezing experts during the first half of train-
ing for DeepSeek MoE also led to a significant
performance degradation. This underscores the
necessity of keeping experts unfrozen during fine-
tuning to maintain reasoning capabilities.

Full Fine-tuning and Router Freezing Yield
Comparable Performance. Full parameter fine-
tuning and freezing only the router show compara-
ble performance, suggesting flexibility in choosing
between these two approaches when expert param-
eters are active.

3.4 Summary of Reasoning Ability Findings

Our investigation into MoE models’ reasoning abil-
ities yields several key insights. During the pre-
training phase, the design choices for shared ex-
perts and the granularity of experts (coarse vs. fine)
exert a consistent influence on reasoning perfor-
mance. However, the optimal design appears to
be contingent upon the specifics of the backbone
architecture. Regularization losses, such as auxil-
iary load balancing losses, can help mitigate some
of the reasoning performance discrepancies arising
from these architectural choices. In the fine-tuning
stage, the freezing strategy adopted in the initial
phase is more critical than in later stages. Notably,
freezing expert parameters consistently leads to
suboptimal reasoning performance, highlighting
the importance of allowing experts to adapt during
fine-tuning.
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Figure 5: Finetuning Capacity Analysis. This figure illustrates the relationship between different freezing settings
and model efficiency metrics. N denotes freezing None, E denotes freezing Experts, and R denotes freezing the
Router. X→Y (where X, Y ∈ {N, E, R}) indicates freezing component X in the first half of fine-tuning and component
Y in the second half. The results are grouped by the freezing setting in the first stage. We observe that the freezing
setting in the initial phase has a more significant impact on model’s efficiency metrics, potentially due to the learning
rate scheduler. The dashed line represents the average efficiency for each metric across all nine settings. We have
highlighted the border of the sweet point setting (N→R).

4 Bag of Tricks for Improving MoE
Efficiency

4.1 Evaluation Metrics

To systematically evaluate the efficiency of MoE
models, we adopt four key metrics, each reflecting
a distinct aspect of expert utilization:

Load Balance. We measure the uniformity of
expert selection using the entropy of the routing
distribution H(p) = −∑N

i=1 pi log pi, where pi
denotes the probability of selecting expert i among
N experts. A higher entropy indicates a more bal-
anced load across experts, which is desirable for ef-
ficient resource utilization(Fedus et al., 2021; Zoph
et al., 2022).

Capacity. To assess whether all experts are ef-
fectively utilized and not collapsed during training,
we define capacity as the performance gap between
the full model and a pruned variant where the least
activated expert is removed for each MoE layer
∆cap = ACCBase − ACCPruned, where ACCBase is
the accuracy of the original model and ACCPruned is
the accuracy after pruning the least utilized expert.
A smaller gap indicates better capacity utilization.

Specialization. We quantify the degree to
which experts learn distinct functions by compar-
ing the model’s performance with normal routing
v.s. under random routing: ∆spec = ACCBase −
ACCRandom, where ACCRandom is the accuracy
when expert assignments are randomized. A larger
gap suggests higher specialization among experts.

Collaboration. To evaluate the tendency of ex-
perts to collaborate (i.e., be co-activated by the
same tokens), we compute the co-activation en-
tropy for each expert Ci = −∑N

j=1
j ̸=i

qij log qij ,

where qij denotes the empirical probability that

experts i and j are co-activated. A higher Ci indi-
cates that expert i is more likely to collaborate with
others. Experts that frequently collaborate can be
preferentially placed on the same device, thereby
reducing communication overhead in distributed
training and improving overall efficiency(Zhang
et al., 2025; Luo et al., 2025).

4.2 Takeaways
Our analysis of efficiency metrics, particularly dur-
ing the fine-tuning of OLMoE models, reveals sev-
eral key insights and trade-offs. We observe a gen-
eral positive correlation between Load Balance,
Specialization, and Collaboration, whereas Load
Balance tends to exhibit a negative correlation with
Capacity. This holds throughout the training pro-
cess 6. This section primarily discusses the impact
of various metrics on model efficiency during fine-
tuning; for the influence of different designs on
model efficiency metrics during the pre-training
phase, please refer to Appendix D.1.

4.2.1 Trade-offs and Interdependencies
Among Efficiency Metrics

Metrics Exhibit Dynamic Trends and Interre-
lations During Fine-tuning. ❶ Specifically, as
illustrated in Figure 5, which tracks these metrics
over fine-tuning epochs, Load Balance, Specializa-
tion, and Collaboration typically reach their peak
values in the early stages of fine-tuning before sub-
sequently declining. ❷ In stark contrast, Capac-
ity generally demonstrates a continuous increase,
presenting an inverse trend to the other three met-
rics. This suggests that while initial fine-tuning
may rapidly optimize for expert differentiation and
utilization balance, prolonged training tends to en-
hance overall expert capacity, potentially at the
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expense of these initial optima. ❸ Furthermore, as
depicted in Figure 6, experiments involving freez-
ing different model components during fine-tuning
consistently show a positive interrelation among
Load Balance, Specialization, and Collaboration,
suggesting that interventions targeting one can ben-
eficially impact the others under such conditions.
For additional experimental results, please refer to
Appendix A.2.
Load Balance Decline Suggests Router Over-
training. The observed trajectory of Load
Balance—an initial increase followed by a de-
cline—aligns with prior research identifying router
over-training as a potential issue (Dikkala et al.,
2023). This implies that strategic interventions,
such as freezing the router or reducing its learn-
ing rate in later training phases, could potentially
sustain or improve load balance.
Consistent Capacity Growth Favors Early Stop-
ping for Prunability. Concurrently, the consistent
growth of Capacity throughout training suggests
an increasing importance of experts that were ini-
tially less frequently activated. This observation
indicates that early stopping might be an effective
strategy to maintain model pruning performance,
as it captures a state where expert roles are less en-
trenched and low-activity experts are more readily
dispensable.
Diminishing Collaboration Aligns with Reduced
Load Balance, Aiding Restriction Strategies. Fi-
nally, Collaboration is observed to generally dimin-
ish throughout training. This decline is potentially
linked to the diminishing load balance observed
in later epochs. This evolution creates an oppor-

tunity for efficiency optimization that communi-
cation overhead can be restricted in later training
stages with minimal performance impact, as the
model organically develops reduced expert collab-
oration (Zhang et al., 2025; Luo et al., 2025).

4.2.2 Impact of Freezing Strategies on Model
Efficiency Metrics

Our experiments with different freezing strategies
during fine-tuning reveal significant implications
for MoE efficiency metrics. As evidenced in Fig-
ure 5 demonstrates that different freezing strategies
produce distinct patterns across efficiency metrics,
illuminating critical trade-offs in the optimization
of MoE architectures.
Freezing Experts Decreases Capacity and In-
creases Collaboration. When experts are frozen
during fine-tuning, we observe a notable decrease
in Capacity measurements. This indicates that
pruning the least active expert has a diminished
performance impact. Simultaneously, the router
compensates for the static expert parameters by fa-
cilitating enhanced inter-expert collaboration, lead-
ing to a substantial increase in Collaboration. This
demonstrates the adaptive nature of the routing
mechanism freezing confronted wit in the expert
modules.
Freezing Router Heightens Capacity but Com-
plicates Pruning. Conversely, when the router is
frozen, each expert maintains its established spe-
cialization while continuing to be fine-tuned within
that designated role. This combination preserves
the functional differentiation among experts while
allowing for parameter refinement, resulting in
heightened Capacity measurements. Consequently,
pruning even the least frequently activated expert
may significantly degrade model performance, as
each expert has been optimized for its specific func-
tion domain. This finding suggests that router freez-
ing strategies, while beneficial for maintaining load
balance as previously observed, may complicate
expert pruning efforts in scenarios where model
compression is desired.
Early Router Freezing Reduces Load Balance
and Collaboration, Aiding Inference Optimiza-
tion. Furthermore, as shown in Figure 5, freezing
the router in the first half of fine-tuning (e.g., R→N,
R→E, R→R strategies) tends to decrease Load Bal-
ance but also results in lower Collaboration. This
lower collaboration can be advantageous for ap-
plying optimizations that reduce inter-expert com-
munication, thereby enhancing model inference
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efficiency(Zhang et al., 2025; Luo et al., 2025).
Validation on Larger Scale Model. To validate
our findings at scale, we conducted experiments on
the 16B DeepSeek-MoE model. As illustrated in
Figure 7, our proposed fine-tuning strategy (N→R)
achieved the strongest collaboration score, second-
best load balance and specialization, and third-
highest average accuracy among all tested configu-
rations. These results affirm that our conclusions
generalize to large-scale settings. Furthermore, we
are collaborating with the OLMoE team to eval-
uate additional pre-training checkpoints that vary
in expert granularity, shared expert design, and
auxiliary loss usage. While this extended valida-
tion is ongoing, we commit to including a compre-
hensive large-scale analysis in the final version to
strengthen cross-validation of our findings.
Freezing Strategies Highlight Specialization-
Redundancy Trade-off. These observations un-
derscore the nuanced relationship between freezing
strategies and efficiency metrics, revealing that ar-
chitectural decisions during fine-tuning must care-
fully consider the downstream deployment con-
straints and optimization objectives. The trade-
off between expert specialization and redundancy
emerges as a critical consideration when imple-
menting freezing strategies in MoE optimization.

4.2.3 Impact of Router Learning Rate on
Model Efficiency Metrics

Motivation for Differential Router Learning
Rates. Our preceding analysis, along with prior re-
search, indicates a decline in Load Balance as train-
ing progresses, potentially attributable to router
over-training (Dikkala et al., 2023). Observations
from Figure 5 show that freezing the router during
the latter half of fine-tuning yields optimal Load
Balance. Conversely, freezing the router in the ini-
tial half results in Load Balance figures that are
merely average or sub-par compared to other fine-
tuning configurations. This discrepancy prompts
further investigation into the effects of applying
a consistently smaller learning rate to the router
component throughout the training duration, as an
alternative to outright freezing, to ascertain its im-
pact on load balancing.
Reduced Router Learning Rate Diminishes
Load Balance. Contrary to expectations, the exper-
imental results presented in Figure 8 demonstrate
that employing a smaller learning rate for the router
does not enhance Load Balance. In fact, for both
DeepSeek MoE and OLMoE models, Load Bal-

ance deteriorates as the router’s learning rate is
reduced. This outcome suggests that implementing
an early stopping strategy specifically for the router
might prove to be a more efficacious approach for
maintaining or improving load distribution.

4.3 Identifying a Sweet Point for
Efficiency-Focused Fine-tuning

Optimal Strategy: Unrestricted Initial Phase
Followed by Router Freezing. For fine-tuning
paradigms prioritizing efficiency, a particularly
compelling strategy emerges: maintaining an un-
restricted training regimen (i.e., no components
frozen) during the initial phase, followed by freez-
ing the router in the subsequent phase (denoted as
N→R). Our empirical evaluations on OLMoE reveal
that this approach consistently achieves superior
outcomes across multiple efficiency dimensions
when juxtaposed with alternative fine-tuning strate-
gies. Specifically, the N→R configuration yields
the most favorable Load Balance, minimizes the
performance degradation post-pruning (Capacity),
and fosters the highest degree of expert Special-
ization. Furthermore, it maintains a Collaboration
level below the observed average, a characteristic
conducive to optimizations aimed at reducing inter-
expert communication overhead. Notably, analo-
gous tendencies are discernible in experiments con-
ducted with DeepSeek MoE as mentioned in Ap-
pendix C.2, reinforcing the proposition that freez-
ing the router in the latter stages of fine-tuning rep-
resents a "sweet point" for optimizing MoE model
efficiency.

5 Bag of Tricks for Improving MoE
Safety

Due to space constraints, please refer to Ap-
pendix A for the discussion on safety.

6 Conclusion

In this work, we present MoE-Bench, the first com-
prehensive benchmark for evaluating MoE archi-
tectures across reasoning, efficiency, and safety.
Our findings reveal key trade-offs and highlight
N→R (no freezing then router freezing) as a par-
ticularly effective fine-tuning strategy, balancing
resource efficiency and model performance. These
results emphasize the importance of co-designing
pretraining and fine-tuning to build MoE models
that are not only powerful but also safe and efficient.
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Figure 7: Performance of DeepSeek-MoE-16B under different fine-tuning strategies. This figure presents four key
metrics: average accuracy, Load Balance, Specialization, and Collaboration. The N→R strategy (full-parameter
training followed by router freezing) demonstrates strong performance, achieving the best collaboration score,
second-best load balance and specialization, and third-highest average accuracy, validating its effectiveness on a
large-scale model.
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MoE-Bench offers a solid foundation for advancing
responsible MoE development.

We acknowledge that our work does not propose
a new algorithmic method, but rather centers on
benchmarking. Our primary contribution lies in
designing and executing a systematic and repro-
ducible evaluation that unifies the critical axes of
reasoning, efficiency, and safety. By consolidating
these dimensions into a unified framework, accom-
panied by an open codebase, we surface hidden
trade-offs and provide a robust foundation for fu-
ture MoE research. We believe this fills an impor-
tant gap in the literature and enables more informed
and targeted development of MoE architectures.

Limitation

While our benchmark provides a comprehensive
evaluation of MoE design choices, it has several
limitations. First, the space of MoE architectures is
vast, and we only cover a subset of commonly used
expert routing and training strategies. Second, due
to resource constraints, our experiments are limited
to small-scale MoE models, which may not fully re-

flect the dynamics observed at larger scales. Third,
our study focuses solely on language-only models,
while we leave the extension to multimodal MoE
architectures for future work.we designed MoE-
Bench to support extensibility and will provide
guidance for adaptation to multimodal MoE archi-
tectures.
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A Bag of Tricks for Improving MoE
Safety

A.1 Evaluation Metrics

To evaluate the safety of MoE models, we employ
a set of pretrained language model-based reward
and moderation metrics designed to assess harm-
fulness and policy alignment. Specifically, we use:
❶ Reward Model (Rafailov et al., 2023): A lan-
guage model trained to predict human preferences
regarding helpfulness, harmlessness, and honesty.
It assigns higher scores to responses judged as
higher possibility with harmful behavior. ❷ Llama
Guard (Inan et al., 2023): A safety-focused classi-
fier built on top of LLaMA, fine-tuned to detect un-
safe, toxic, or policy-violating content. It provides
a structured risk assessment for model outputs. ❸

OpenAI Content Moderation API (Markov et al.,
2023): A robust, production-grade moderation tool
that flags content across multiple harm categories
(e.g., hate, self-harm, sexual content, and violence).
The API returns category-specific scores indicating
the likelihood of violation.

In all cases, higher scores reflect greater harmful-
ness or policy risk. These metrics enable automatic,
fine-grained evaluation of the safety implications of
different MoE training or routing strategies. They
are especially valuable when auditing large-scale
models where manual review is infeasible.

Additionally, we examine factual accuracy
and robustness against hallucination using
two specialized datasets. Natural Questions
(NQ) (Kwiatkowski et al., 2019) evaluates open-
domain factual accuracy. And TruthfulQA (Lin
et al., 2022) measures the avoidance of prevalent
human misconceptions.

We agree that human adjudication remains the
gold standard for nuanced safety assessment. For
a benchmark of this scale, however, we relied on
established automated tools to ensure consistency,
scalability, and reproducibility, following prece-
dents such as MoE-RBench. Nevertheless, we ac-
knowledge the limitations of automated detectors,
including susceptibility to false positives and lim-
ited context sensitivity.

A.2 Takeways

Impact of Fine-tuning Strategies on Safety Out-
comes. We evaluated the safety alignment of MoE
models using various freezing fine-tuning strate-
gies. DeepSeek MoE models consistently exhibited
low safety risk metrics pre- and post-fine-tuning;

thus, our analysis primarily centers on the OL-
MoE series, where strategic impacts were more
discernible. As illustrated in Figure 9, a strategy
involving full parameter fine-tuning initially, fol-
lowed by freezing the router (N→R), achieved the
highest truthfulness scores and yielded the least
harmful model outputs. Conversely, freezing ex-
pert parameters during the latter fine-tuning stages
severely compromised model reliability and signifi-
cantly increased the propensity for harmful content
generation.
Consistency with Prior Findings and Validation
of the N→R Sweet-Point Strategy. These safety
fine-tuning outcomes align remarkably with con-
clusions from our prior analyses of reasoning abil-
ity (Section 3) and efficiency (Section 4). This
congruence underscores the general effectiveness
and versatility of the N→R "sweet point" freezing
strategy in optimizing MoE models across diverse
attributes, including safety.

B Additional Experiment details

B.1 Pretrain Designs

The pretrain phase plays a crucial role in establish-
ing the foundational capabilities of MoE models.
Key design decisions during this phase include the
expert architecture, router design, and regulariza-
tion strategies, all of which influence the model’s
subsequent characteristics.

B.1.1 Expert Design: Expert Granularity &
Shared Experts

Expert Granularity refers to both the total num-
ber of experts in the model and the number of ex-
perts activated per input token (i.e., top-k selection).
This granularity controls the sparsity level of the
MoE architecture and directly affects the model’s
expressivity, computational cost, and specializa-
tion capacity. A larger number of experts increases
the model’s capacity and enables fine-grained spe-
cialization, allowing different experts to focus on
distinct reasoning patterns, knowledge domains, or
input types (Dai et al., 2024). However, without
sufficient regularization or data diversity, this can
lead to underutilization of experts. The number of
activated experts per token determines how much
collaboration occurs among experts. Activating
more experts can enhance expressivity and redun-
dancy but comes with more computation.

Shared Experts (Dai et al., 2024) refer to a subset
of experts within a layer that are independent of

828



N→
N

N→
E

N→
R

E→
N
E→

E
E→

R
R→

N
R→

E
R→

R

Freeze Component

0.240

0.242

0.244

0.246

0.248

0.250
Av

g 
Sc

or
e 

(N
Q

, M
C1

 &
 2

)

0.2455

Truthfulness ↑

N→
N

N→
E

N→
R

E→
N
E→

E
E→

R
R→

N
R→

E
R→

R

Freeze Component

1.05

1.10

1.15

1.20

1.25

Av
g 

H
ar

m
 S

co
re

1.1447

Malicious ↓

N→
N

N→
E

N→
R

E→
N
E→

E
E→

R
R→

N
R→

E
R→

R

Freeze Component

1.27

1.29

1.31

1.33

1.35

1.37

Av
g 

H
ar

m
 S

co
re

1.3234

CoNa ↓

N→
N

N→
E

N→
R

E→
N
E→

E
E→

R
R→

N
R→

E
R→

R

Freeze Component

1.08
1.12
1.16
1.20
1.24
1.28
1.32

Av
g 

H
ar

m
 S

co
re

1.2075

Controversial ↓

Figure 9: Effect of safety supervised fine-tuning on safety benchmarks. N→R indicates fine-tuning all parameters in
the first half and freezing the router in the second half. The dashed line indicates the average performance across
nine settings.

the router and always activated for all tokens. Un-
like standard MoE experts selected dynamically
via the router, shared experts contribute univer-
sally to every input, regardless of content or token
type. This design introduces a hybrid architec-
ture, where shared experts offer a stable transfor-
mation, while routed experts provide conditional
processing. Shared experts can help stabilize train-
ing by ensuring a consistent data flow. However,
too many shared experts increase the computational
cost compared to fully sparse MoE architectures.
Additionally, excessive reliance on shared experts
can reduce the functional diversity of MoE, as these
shared experts are not specialized through selective
routing.

B.1.2 Router Design: Choice Strategy &
Router Granularity

The router is the key control component of an MoE
model, determining which experts are activated
for a given input. Its design directly influences
model sparsity, expert load balance, and reasoning
performance. Two key dimensions are the choice
strategy and the router granularity.

Choice Strategy governs how a token selects ex-
perts. Notable strategies include: ❶ Token choice
strategy (Shazeer et al., 2017) assigns experts to
tokens based on the router score. This enables
token-level expert routing that adapts dynamically
to input content. ❷ Expert choice strategy (Fedus
et al., 2021) assigns tokens to experts. In this ap-
proach, each expert selects the top-k tokens it will
process from a batch, forming an inverted mapping
from expert to tokens. This design allows for more
direct control over expert computational load by
fixing the number of tokens each expert processes.

Router Granularity determines the input unit
over which routing decisions are made. Different
granularities include: ❶ Token-level routing treats

each token as an independent unit for routing de-
cisions. ❷ Word-level routing (dos Santos et al.,
2023) computes expert assignments at the word
level. Tokens belonging to the same word receive
the same routing assignment, potentially reducing
routing variance for semantically grouped tokens.
❸ Sentence-level routing extends this concept by
treating all tokens within a sentence as a single unit
for expert assignment.

B.1.3 Regularization Design: Load Balancing
and Beyond

To ensure that experts are utilized efficiently and
to prevent issues like expert starvation (where
some experts are rarely chosen), regularization
techniques are often employed during pre-training.
These techniques aim to promote balanced expert
utilization and stabilize training.

A common approach is the use of an auxiliary
load balancing loss (Shazeer et al., 2017; Lep-
ikhin et al., 2020; Zoph et al., 2022). This loss
encourages a more uniform distribution of tokens
across all available experts. For a batch of T to-
kens {x1, . . . , xT }, the auxiliary load balancing
loss Lbalance is defined as:

Lbalance = α

n∑

j=1

fjPj ,

fj =
1

T

T∑

t=1

I(token xt selected expert j),

Pj =
1

T

T∑

s=1

(softmax(Wgxs))j .

(2)
Here, fj represents the fraction of tokens in the
batch routed to expert j, and Pj is the average
router probability (i.e., the j-th component of the
softmax output of the router logits Wgxs for ex-
pert j, before top-k selection) averaged over the
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batch tokens xs. The term I(·) is the indicator func-
tion, n is the total number of experts, and α is a
hyperparameter controlling the strength of this reg-
ularization. This loss is minimized when tokens are
distributed uniformly and the router assigns similar
probabilities to all experts on average.

Another regularization technique aimed at im-
proving training stability is the router z-loss (Fe-
dus et al., 2021). This loss penalizes large logits
from the router’s linear layer Wgx, encouraging
them to be centered around zero. For a batch of T
tokens, let h(xt) = Wgxt be the vector of logits
for token xt. The router z-loss Lz is defined as:

Lz =
1

T

T∑

t=1


log

n∑

j=1

eh(xt)j




2

(3)

This penalizes the squared log-sum-exp of the log-
its for each token, which can prevent overly confi-
dent or extreme logit values that might destabilize
training.

Beyond explicit auxiliary losses, some architec-
tural designs inherently promote better load distri-
bution. The Expert Choice routing strategy (Fedus
et al., 2021) is a prime example of auxiliary loss-
free load balancing. In this paradigm, instead of
tokens choosing experts, each expert Ej selects a
fixed number of tokens, cj (its capacity), from the
batch that it will process. This selection is typically
based on which tokens have the highest routing
scores (e.g., (Wgxt)j) for that particular expert.
By design, each expert processes a predetermined
number of tokens (assuming enough tokens are
available in the batch), thus ensuring a balanced
computational load across experts without requir-
ing an additional loss term to enforce it.

B.2 Model Size
We evaluate several representative LLMs with vary-
ing architectures: ❶ OLMoE: A recent mixture-of-
experts (MoE) model introduced by Allen AI in late
2024, achieving outstanding performance among
7B-scale MoE models. OLMoE is distinguished by
its fully open-sourced training and fine-tuning pro-
cedures, as well as notable empirical performance.
This model comprises a total of 7 billion param-
eters with only 1 billion parameters are activated
per forward pass. It employs 8 experts per layer
and uses a top-2 routing mechanism. ❷ DeepSeek
MoE: Developed by DeepSeek, this 16B-parameter
MoE model employs fine-grained expert partition-
ing and isolated shared experts to maximize expert

specialization. It also integrates expert-level and
device-level load balancing losses to mitigate rout-
ing collapse and ensure computational efficiency.
It utilizes 64 experts per layer and also adopts top-2
routing.

These models illustrate the diversity in MoE ar-
chitectural design, offering insights into the impact
of expert structures, routing strategies, and regular-
ization techniques.

B.3 Datasets
We conduct all pre-training experiments using the
Minipile (Kaddour, 2023b) dataset, a high-quality
corpus designed to reflect the structure and content
diversity of LLM dataset Pile (Gao et al., 2020).
Minipile offers a manageable scale for rapid ex-
perimentation while preserving linguistic variety
and complexity, making it ideal for benchmark-
ing architectural and training design choices. For
fine-tuning, we use the LIMA (Zhou et al., 2023)
dataset, which consists of high-quality, human-
curated instruction-response pairs aimed at aligning
language models with helpful and harmless behav-
iors. Its compact size and strong supervision sig-
nals make it well-suited for evaluating safety and
alignment strategies during the fine-tuning phase.

B.4 Finetuning Hyperparameter Details
We fine-tune both OLMoE and DeepSeek MoE us-
ing the HuggingFace accelerate library and Deep-
Speed Zero Stage-3. Table 1 shows the default
hyperparamters of finetuning.

Hyperparameter OLMoE / DeepSeek MoE

Precision bf16
Attention FlashAttention
Max Sequence Length 2048
Per-device Batch Size 1
Gradient Accu. Steps 4
Learning Rate 2e-5
Scheduler Type Linear
Warmup Ratio 0.03
Weight Decay 0.0
Num Training Epochs 3

Table 1: Fine-tuning hyperparameter configurations for
OLMoE and DeepSeek MoE models.

B.5 Evaluation Details
We evaluate the reasoning capabilities of the fine-
tuned models using the EleutherAI Language
Model Evaluation Harness (Gao et al., 2024). This
toolkit provides a standardized interface and metric
computation for a wide range of benchmark tasks.
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All evaluations are conducted in a zero-shot or few-
shot setting depending on the task, using consistent
model interfaces.

Task Few-shot Num Metric

Winogrande 5 Accuracy
Hellaswag 10 Norm Accuracy
ARC-Easy 25 Accuracy
ARC-Challenge 25 Accuracy
PIQA 0 Accuracy
MMLU 5 Accuracy

Table 2: Evaluation configurations for each benchmark
task used in the LM Evaluation Harness.

We follow the recommended evaluation proce-
dure of the LM Evaluation Harness and use the
respective default test sets.

B.6 Computational Resources
All experiments were conducted on a high-
performance workstation running Ubuntu 20.04.6
LTS. The system is equipped with a dual-socket
AMD EPYC 7763 processor, providing a total of
128 physical cores and 256 threads. For GPU accel-
eration, we utilized an NVIDIA RTX A6000 Ada
graphics card.

C Additional Reasoning Ability Analysis

C.1 Pre-training Stage
To evaluate the impact of expert design and router
configuration during the pre-training stage, we ex-
periment with varying expert granularities (2/8 and
16/64), shared expert settings (enabled or disabled),
and router designs (Token choice strategy, Expert
choice strategy, Word-level routing, Sentence-level
routing). Table 3 summarizes the average task accu-
racy across six reasoning benchmarks. Overall, our
results indicate that the choice of router strategy
and expert configuration significantly impacts rea-
soning performance, with the expert choice router
consistently yielding the strongest results across
various settings.

Our findings suggest that using expert-level rout-
ing and enabling shared experts consistently im-
proves average accuracy across tasks. The highest
performance (37.68%) was achieved with the 16/64
configuration, shared experts enabled, and expert-
level routing.

C.2 Fine-tuning Stage
To assess the impact of component freezing strate-
gies on reasoning ability during fine-tuning, we ex-

periment with various freeze configurations. These
include freezing the router, experts, or combina-
tions thereof across different training phases. We
also test the effect of adjusting router-specific learn-
ing rates.

Table 4 and Table 5 report the accuracy on five
reasoning benchmarks for OLMoE and DeepSeek
MoE, respectively. Our experiments with OLMoE
show that a staged fine-tuning approach, where the
router is initially unfrozen and then frozen in a later
phase (None → Router), yields the highest average
accuracy (65.35%).

D Additional Efficiency Analysis

D.1 Pre-training Stage
To investigate expert utilization efficiency during
pre-training, we evaluate various MoE configura-
tions using four diagnostic metrics. These met-
rics are designed to surface different dimensions of
routing and expert dynamics: load balance, capac-
ity, specialization, and collaboration. We evaluate
these metrics across varying expert granularities as
well as under ablation settings with the auxiliary
loss and z-loss removed. The results are summa-
rized in Table 6. The results indicate a clear trend
where both load balance and collaboration scale
with the number of available experts. Furthermore,
a comparison across training settings reveals that
the auxiliary loss significantly boosts these metrics,
while expert specialization and capacity remain
relatively stable.

D.2 Fine-tuning Stage
To better understand the efficiency behavior of
MoE models under different fine-tuning configura-
tions, we report four key metrics: load balance,
capacity, specialization, and collaboration. We
present results in Table 7 and Table 8 for OLMoE
and DeepSeek MoE, respectively. Our analysis of
fine-tuning efficiency reveals that, unlike in the pre-
training stage, the expert utilization dynamics for
both OLMoE and DeepSeek MoE are highly stable.
While minor fluctuations exist, none of the tested
fine-tuning configurations meaningfully shifted the
metrics from their baseline values, indicating that
the models’ collaborative and specialization behav-
iors are well-preserved after pre-training.

E Additional Safety Analysis

To assess the safety properties of our fine-tuned
MoE models, we evaluate them using multiple
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Backbone Setting Shared Router ARC-C ARC-E MMLU PIQA Wino Hella Avg

OLMoE

2/8

Yes

Token 15.61 34.68 25.75 59.58 52.09 27.18 35.82
Expert 18.26 37.42 25.86 61.10 51.54 27.09 36.88
Word 17.92 36.53 25.91 58.92 50.20 27.24 36.12

Sentence 18.77 36.20 26.05 57.62 50.91 26.96 36.09

No

Token 18.00 37.24 25.44 59.96 51.22 26.80 36.44
Expert 18.34 38.89 27.03 59.79 52.09 27.03 37.20
Word 19.80 36.74 25.62 57.94 52.09 27.22 36.57

Sentence 17.66 35.40 25.63 0.58 52.09 26.85 26.37

16/64

Yes

Token 18.17 36.83 25.80 58.92 50.36 27.42 36.25
Expert 18.43 38.80 27.32 60.72 53.28 27.52 37.68
Word 18.26 36.74 25.44 59.79 50.20 27.22 36.28

Sentence 19.37 35.02 25.88 58.43 50.99 27.28 36.16

No

Token 17.83 35.77 25.25 58.49 52.72 27.25 36.22
Expert 18.77 38.80 26.02 59.52 51.14 27.54 36.97
Word 17.32 35.94 25.40 58.32 51.22 27.33 35.92

Sentence 18.60 35.73 25.16 57.45 51.78 26.75 35.91

Table 3: Performance across reasoning tasks under different expert granularities (2/8, 16/64), shared expert
settings (Yes/No), and router designs (Token choice strategy, Expert choice strategy, Word-level routing, Sentence-
level routing). Metrics are accuracy scores on ARC Challenge (ARC-C), ARC Easy (ARC-E), MMLU, PIQA,
Winogrande (Wino), and HellaSwag (Hella). Highest values in each metric column are highlighted in bold.

Model Setting ARC-C ARC-E MMLU PIQA Wino Avg

Baseline 46.50 78.75 51.07 80.96 68.51 65.16
Expert 46.42 78.79 50.89 80.47 68.82 65.08
Router 46.08 79.04 51.09 81.12 68.43 65.15
Expert → Router 45.90 78.70 50.68 81.01 69.22 65.10
Router → Expert 46.16 78.70 50.93 80.74 68.82 65.07
Expert → None 46.50 78.79 51.00 80.69 68.75 65.14
Router → None 46.25 79.08 51.05 81.01 68.75 65.23
None → Expert 45.73 78.58 50.80 80.41 68.11 64.73
None → Router 46.67 79.34 50.99 81.23 68.51 65.35

Router LR 1e-5 46.42 78.79 50.89 80.47 68.82 65.08
Router LR 5e-6 46.08 79.04 51.09 81.12 68.43 65.15
Router LR 2e-6 45.90 78.70 50.68 81.01 69.22 65.10

Table 4: OLMoE fine-tuning results under different freeze strategies and router learning rates. Metrics are accuracy
scores on ARC Challenge (ARC-C), ARC Easy (ARC-E), MMLU, PIQA, and Winogrande (Wino). Values are
presented as percentages.

Model Setting ARC-C ARC-E MMLU PIQA Wino Avg

Baseline 50.00 77.69 46.67 80.03 70.48 64.97
Expert 47.61 76.85 46.04 79.82 71.11 64.29
Router 50.00 77.44 46.67 80.14 70.24 64.90
None → Expert 49.32 78.03 46.45 79.82 70.88 64.90
None → Router 50.00 77.57 46.67 79.76 70.48 64.90
Expert → None 48.29 76.73 46.12 80.03 71.51 64.54
Expert → Router 48.46 77.06 46.22 79.76 71.11 64.52
Router → None 50.17 77.44 46.71 80.03 70.32 64.94
Router → Expert 49.32 77.86 46.50 79.92 70.64 64.85

Router LR 1e-5 49.57 77.99 47.17 79.92 70.64 65.06
Router LR 5e-6 47.95 77.31 47.44 80.03 71.35 64.82
Router LR 4e-6 47.01 77.65 47.26 80.03 71.19 64.63
Router LR 2e-6 47.70 77.40 47.71 79.87 70.64 64.66

Table 5: DeepSeek MoE fine-tuning results under different freeze schedules and router learning rates. Metrics
are accuracy scores on ARC Challenge (ARC-C), ARC Easy (ARC-E), MMLU, PIQA, and Winogrande (Wino).
Values are presented as percentages.
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Model Setting Load Balance Capacity Specialization Collaboration

With Auxiliary Loss

1/7 + 1 2.7517 0.0389 0.0532 0.0000
3/15 + 1 3.7984 0.0380 0.0579 2.9539
7/31 + 1 4.8152 0.0237 0.0521 4.0424
15/63 + 1 5.8398 0.0181 0.0511 5.0430
2/8 2.9170 0.0231 0.0603 2.0578
4/16 3.8990 0.0298 0.0512 3.1398
8/32 4.8448 0.0300 0.0556 4.1387
16/64 5.8556 0.0312 0.0487 5.1096

No Auxiliary Loss

1/7 + 1 1.3640 0.0457 0.0489 0.0000
3/15 + 1 3.0777 0.0547 0.0589 2.3178
7/31 + 1 3.3819 0.0000 0.0015 1.2631
15/63 + 1 4.7454 0.0488 0.0520 2.9654
2/8 2.2758 0.0444 0.0546 1.4909
4/16 3.2426 0.0541 0.0508 2.6772
8/32 4.0311 0.0449 0.0484 3.2661
16/64 4.8368 0.0398 0.0419 3.0372

No z-loss

1/7 + 1 2.8112 0.0285 0.0498 0.0000
3/15 + 1 3.8538 0.0163 0.0543 2.9225
7/31 + 1 4.6532 -0.0004 0.0008 3.5076
15/63 + 1 5.8669 0.0167 0.0463 5.0401
2/8 2.9125 0.0281 0.0536 2.0135
4/16 3.8574 0.0400 0.0611 3.1201
16/64 5.8511 0.0322 0.0590 5.0934

Table 6: Efficiency metrics under different expert granularities and training settings. 3/15+1 denotes a configuration
with 3 top experts selected from 15 routed experts, augmented by one fixed, always-activated shared expert. Metrics
include load balance (token spread across experts), capacity (top-pruned delta), specialization (top vs. random
output difference), and inter-expert collaboration.

Model Setting Load Balance Capacity Specialization Collaboration

Baseline 5.6884 0.0480 0.3094 4.7622
Expert 5.7009 0.0434 0.3108 4.7694
Router 5.6935 0.0462 0.3108 4.7647
Expert → Router 5.6854 0.0484 0.3083 4.7700
Router → Expert 5.6717 0.0451 0.3091 4.7572
Expert → None 5.7019 0.0384 0.3117 4.7679
Router → None 5.6897 0.0545 0.3100 4.7608
None → Expert 5.6930 0.0463 0.3054 4.7608
None → Router 5.7025 0.0362 0.3118 4.7640

Router LR 1e-5 5.7009 0.0434 0.3108 4.7694
Router LR 5e-6 5.6935 0.0462 0.3108 4.7647
Router LR 2e-6 5.6854 0.0484 0.3083 4.7700

Table 7: Efficiency metrics during fine-tuning for OL-
MoE under various component freezing and router LR
strategies.

safety-oriented metrics covering harmfulness, fac-
tuality, and controversial content. These evalua-
tions help quantify how expert freezing strategies
and router configurations impact model alignment
and safety. We present the safety results for both
OLMoE and DeepSeek MoE under a range of com-
ponent freezing strategies and router-specific learn-
ing rates in Table 9 and Table 10. And we present
the hallucination results in Table 11 and Table 12
Higher scores on safety metrics (Reward, LLaMA
Guard, OpenAI) reflect greater harmfulness or risk,
whereas lower hallucination scores are preferred.
In our comprehensive safety analysis, we iden-
tify two critical findings. First, there is a substan-

Model Setting Load Balance Capacity Specialization Collaboration

Baseline 5.7830 -0.0001 0.3001 4.6937
Expert 5.7700 -0.0028 0.2921 4.7080
Router 5.7830 0.0011 0.2988 4.6942
None → Expert 5.7826 -0.0005 0.2983 4.6965
None → Router 5.7827 0.0003 0.3000 4.6913
Expert → None 5.7729 -0.0012 0.2933 4.7140
Expert → Router 5.7727 0.0004 0.2956 4.7125
Router → None 5.7830 -0.0003 0.2997 4.6932
Router → Expert 5.7821 -0.0016 0.2978 4.6961

Router LR 1e-5 5.7788 -0.0006 0.2991 4.7039
Router LR 5e-6 5.7725 0.0004 0.2994 4.7073
Router LR 4e-6 5.7708 -0.0011 0.2987 4.7050
Router LR 2e-6 5.7694 -0.0025 0.2972 4.6995

Table 8: Efficiency metrics during fine-tuning for
DeepSeek MoE under various component freezing and
router LR settings.

tial disparity in the baseline safety between mod-
els, with DeepSeek MoE exhibiting robust safety
against harmful content generation irrespective of
the fine-tuning strategy, whereas OLMoE’s safety
is more variable. Second, for both models, we ob-
serve a clear trade-off between certain fine-tuning
approaches and factuality, as strategies involving
frozen experts consistently increase the propensity
for hallucination. These results underscore that the
choice of fine-tuning strategy for MoE models has
complex, model-dependent implications for both
safety and factual reliability.
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Model Setting Malicious CoNa Controversial
Reward LLaMA OpenAI Reward LLaMA OpenAI Reward LLaMA OpenAI

Baseline 2.7631 0.5700 0.2677 2.7722 0.6629 0.5090 2.7722 0.6750 0.2917
Expert 2.7902 0.5400 0.2338 2.6914 0.7528 0.5116 2.6914 0.7000 0.3291
Router 2.7560 0.5700 0.2880 2.6736 0.6966 0.5081 2.6736 0.6500 0.2661
Expert → Router 2.7174 0.5200 0.2175 2.7549 0.7303 0.5028 2.7549 0.6900 0.3158
Router → Expert 2.8187 0.6000 0.2938 2.7527 0.7247 0.5294 2.7527 0.6500 0.3212
Expert → None 2.6698 0.5200 0.2360 2.6002 0.7079 0.4809 2.6002 0.6250 0.2994
Router → None 2.7644 0.5800 0.2778 2.5185 0.7135 0.5067 2.5185 0.6250 0.2572
None → Expert 2.8152 0.6000 0.3013 2.9170 0.7398 0.5109 2.9170 0.6750 0.3411
None → Router 2.6620 0.5700 0.2395 2.4127 0.6810 0.4926 2.4127 0.6000 0.2383

Router LR 1e-5 2.7902 0.5400 0.2338 2.6914 0.7528 0.5116 2.6914 0.7000 0.3291
Router LR 5e-6 2.7560 0.5700 0.2880 2.6736 0.6966 0.5081 2.6736 0.6500 0.2661
Router LR 2e-6 2.7174 0.5200 0.2175 2.7549 0.7303 0.5028 2.7549 0.6900 0.3158

Table 9: OLMoE safety evaluation across Malicious, CoNa, and Controversial content detection metrics using
Reward Model, LLaMA Guard, and OpenAI Moderation tools. Higher scores reflect greater risk.

Model Setting Malicious CoNa Controversial
Reward LLaMA OpenAI Reward LLaMA OpenAI Reward LLaMA OpenAI

Baseline 0.2488 0.0000 0.2863 0.1980 0.0000 0.3358 0.2153 0.0000 0.1567
Expert 0.2570 0.0000 0.2754 0.2603 0.0000 0.3441 0.2144 0.0000 0.1664
Router 0.2495 0.0000 0.2864 0.2452 0.0000 0.3351 0.2183 0.0000 0.1593
None → Expert 0.2436 0.0000 0.2938 0.2488 0.0112 0.3332 0.2012 0.0000 0.1495
None → Router 0.2431 0.0000 0.2846 0.2503 0.0000 0.3328 0.2189 0.0000 0.1502
Expert → None 0.2198 0.0300 0.2936 0.2392 0.0000 0.3411 0.1656 0.0000 0.1856
Expert → Router 0.2145 0.0300 0.2937 0.2530 0.0000 0.3384 0.1500 0.0000 0.1717
Router → None 0.2357 0.0000 0.2856 0.2378 0.0056 0.3351 0.2250 0.0000 0.1602
Router → Expert 0.2444 0.0100 0.2948 0.2550 0.0169 0.3320 0.2200 0.0250 0.1631

Router LR 1e-5 0.2216 0.0200 0.3148 0.2817 0.0000 0.3296 0.1923 0.0000 0.1423
Router LR 5e-6 0.2556 0.0000 0.2938 0.2661 0.0056 0.3345 0.2100 0.0000 0.1631
Router LR 4e-6 0.2368 0.0000 0.3014 0.2801 0.0000 0.3386 0.2021 0.0000 0.1531
Router LR 2e-6 0.2146 0.0000 0.3143 0.2286 0.0000 0.3475 0.1910 0.0000 0.1610

Table 10: DeepSeek MoE safety evaluation across Malicious, CoNa, and Controversial content detection metrics
using Reward Model, LLaMA Guard, and OpenAI Moderation tools. Higher scores reflect greater risk.

Model setting Hallucination

NQ TruthfulQA MC1 TruthfulQA MC2

Baseline 0.1194 0.2521 0.3745
Expert 0.1368 0.2338 0.3562
Router 0.1197 0.2521 0.3736
Expert → Router 0.1360 0.2399 0.3571
Router → Expert 0.1186 0.2485 0.3637
Expert → None 0.1355 0.2387 0.3593
Router → None 0.1191 0.2521 0.3716
None → Expert 0.1169 0.2460 0.3626
None → Router 0.1199 0.2534 0.3722

Router LR 1e-5 0.1368 0.2338 0.3562
Router LR 5e-6 0.1197 0.2521 0.3736
Router LR 2e-6 0.1360 0.2399 0.3571

Table 11: OLMoE hallucination scores on NQ and
TruthfulQA. Lower values reflect better factual align-
ment and fewer hallucinations.

Model setting Hallucination

NQ Truthful QA MC1 Truthful QA MC2

Bseline 0.0731 0.3207 0.4725
Expert 0.1252 0.3035 0.4529
Router 0.0734 0.3207 0.4737
None → Expert 0.0773 0.3182 0.4717
None → Router 0.0753 0.3207 0.4741
Expert → None 0.1108 0.3035 0.4509
Expert → Router 0.1158 0.3060 0.4509
Router → None 0.0759 0.3219 0.4744
Router → Expert 0.0781 0.3207 0.4713

Router LR 1e-5 0.1014 0.3195 0.4699
Router LR 5e-6 0.1133 0.3146 0.4648
Router LR 4e-6 0.1127 0.3097 0.4633
Router LR 2e-6 0.1089 0.3060 0.4638

Table 12: DeepSeek MoE hallucination scores on NQ
and TruthfulQA. Lower values reflect better factual
alignment and fewer hallucinations.
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F Practical Trade-offs in Real-World
Deployment

A comprehensive understanding of MoE models
must account for the engineering trade-offs in-
volved in deployment. While our primary focus
has been evaluation, we acknowledge that latency,
memory footprint, and implementation complex-
ity are equally critical for practical adoption. Our
benchmark builds on efficiency techniques such
as C2R, whose systems-level implications have
been carefully studied in prior work (e.g., C2R
and Occult). To make this connection explicit, we
summarize here the key deployment considerations
highlighted in these studies and point readers to
the relevant literature for in-depth analysis. This
contextualization complements our evaluation by
clarifying how algorithmic design choices translate
into real-world engineering costs.

G Potential Risk

While MoE architectures offer significant advan-
tages in terms of scalability and efficiency, they also
present potential risks that warrant careful consid-
eration. The capacity for MoE models to generate
highly fluent and coherent text could be misused
for spreading misinformation or generating other
forms of harmful content if not adequately aligned
with safety protocols. Future research should con-
tinue to explore robust alignment techniques and
thorough evaluation methodologies specifically tai-
lored to the unique characteristics of MoE models
to address these potential risks effectively.
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