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Abstract

As large language models (LLMs) process in-
creasing context windows, the memory usage
of KV cache has become a critical bottleneck
during inference. The mainstream KV com-
pression methods, including KV pruning and
KV quantization, primarily focus on either to-
ken or precision dimensions separately. How-
ever, these works have left the trade-off be-
tween these two orthogonal dimensions largely
unexplored. In this paper, we leverage the In-
formation Bottleneck principle to formulate
KV cache compression within a unified the-
oretical framework. We demonstrate that a
carefully managed token-precision trade-off
can achieve an optimal point within the In-
formation Bottleneck compared to standalone
KV pruning or KV quantization. Experi-
ments reveal that storing more tokens in the
KV cache at lower precision—a strategy we
term quantized pruning—can significantly en-
hance the long-context performance of LLMs.
An in-depth analysis of this token-precision
trade-off across key aspects shows that quan-
tized pruning achieves substantial improve-
ments in retrieval-related tasks and consistently
performs well across varying input lengths.
Furthermore, quantized pruning exhibits no-
table stability and effectiveness across differ-
ent KV pruning methods, quantization strate-
gies, and model scales. These findings offer
valuable insights into optimizing KV cache
compression through balanced token-precision
trade-off strategies. Our code is available at
https://github.com/zhzihao/QPruningK'V.

1 Introduction

Current long-context Large Language Models
(LLMs) heavily depend on the Key-Value (KV)
cache mechanism, which stores intermediate keys
and values during text generation to avoid redun-
dant computations (Waddington et al., 2013). As
the input sequence length increases, the KV cache
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size expands proportionally, leading to substantial
memory overhead (Achiam et al., 2023; Reid et al.,
2024; Liu et al., 2025). Take Llama3-8B (Dubey
et al., 2024) as an example, storing the KV cache
of a single sequence with 100k tokens necessitates
a substantial memory overhead of 20GB — ex-
ceeding the model’s parameter memory of approx-
imately 14GB. Moreover, since the decoding pro-
cess is highly dependent on GPU memory band-
width, the large KV cache also results in a signif-
icant increase in decoding time (Fu, 2024). As a
result, efficiently compressing the KV cache has
become a critical challenge in advancing LLM de-
velopment (Pope et al., 2023).

To optimize KV cache memory usage, two pri-
mary approaches, focusing on token and precision
dimensions, are widely adopted: KV pruning and
KV quantization. For the token dimension, KV
pruning methods reduce the KV cache footprint by
discarding less salient tokens, thereby maintaining
a fixed cache size (Xiao et al., 2023; Zhang et al.,
2024b; Ren and Zhu, 2024; Li et al., 2024). For
the precision dimension, KV quantization meth-
ods reduce memory usage by approximating KV
cache with lower precisions, like 4-bit or even
lower (Sheng et al., 2023; Liu et al., 2024c; Hooper
et al., 2024; Yang et al., 2024b).

From the perspective of the Information Bottle-
neck (IB) principle, we propose a unified theoret-
ical framework to describe KV pruning and KV
cache quantization, and find an exclusive focus on
optimizing either pruning or quantization in isola-
tion may lead to a suboptimal trade-off between
model performance and compression efficacy.

In this paper, we demonstrate that a strategy co-
optimizing both pruning and quantization aspects
can achieve a better optimal operating point within
the information-theoretic trade-off space than opti-
mizing either aspect in isolation. Specifically, we
uncovered an intriguing finding: storing more to-
kens in the KV cache with lower precision, a strat-
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egy we term quantized pruning, can significantly

enhance the long-context performance of LLMs.

For instance, storing 4x tokens in 4-bit precision

outperforms storing 1x tokens in 16-bit precision

across various KV cache budgets. Notably, in ex-
tremely low-resource scenarios, quantized pruning
effectively preserves performance, whereas rely-
ing solely on KV pruning or quantization often
leads to a significant performance collapse. Further-
more, we conduct in-depth analysis of the token-
precision trade-off across critical aspects, includ-
ing task type, input length, model scaling, quan-
tization strategies, and layer-wise configurations.
Extensive experiments reveal that quantized prun-
ing achieves considerable gains in retrieval tasks
and maintains robust performance across varying
input lengths. Moreover, quantized pruning demon-
strates strong stability across different KV pruning
methods, quantization strategies, and model scales.
In summary, our contributions are as follows:

* We are the first to describe KV pruning and
KV cache quantization from a unified theoret-
ical framework, and find an optimal trade-off
between model performance and compression
efficacy leveraging token-precision trade-off.

* An important finding is revealed: storing more
tokens with lower precision significantly outper-
forms standalone KV pruning or KV quantization
methods under various KV cache budgets, high-
lighting the importance of balancing token count
and precision in KV cache compression.

* We conduct extensive experiments exploring the
token-precision trade-off across various criti-
cal aspects, including task types, input lengths,
model scales, and quantization strategies, provid-
ing valuable insights for optimizing KV cache
compression.

2 Related Work

KV Pruning KV pruning compresses the KV
cache along the token dimension by selectively
discarding less salient tokens to reduce memory us-
age. Mainstream methods typically identify salient
tokens based on attention scores, as seen in (Liu
et al., 2024b; Zhang et al., 2024b; Oren et al., 2024;
Li et al., 2024). Other methods use alternative
factors such as initial tokens (Xiao et al., 2023),
variance (Ren and Zhu, 2024), special tokens (Ge
et al., 2024) or the L2 norm (Devoto et al., 2024) to
determine token importance. Recent studies delve
deeper into optimizing the allocation of KV cache

memory budgets. Some explore KV cache budget
allocation strategies across layers (Cai et al., 2024;
Yang et al., 2024a), while other studies explore
head-level KV cache budget allocation (Feng et al.,
2024; Tang et al., 2024; Fu et al., 2024; Xiao et al.,
2024).

KV Quantization KV quantization compress
KV cache from the precision dimension by stor-
ing KV cache using a reduced number of bits.
FlexGen (Sheng et al., 2023) utilizes group-wise
4-bit quantization for both key and value cache.
KIVI (Liu et al., 2024c) applies per-channel quan-
tization on key cache and per-token quantization
on value cache. KVQuant (Hooper et al., 2024)
and CQ (Zhang et al., 2024a) use RoPE-related
quantization, while KVQuant also preverses out-
liers without quantization. Atom (Zhao et al., 2024)
and SKVQ (Duanmu et al., 2024) reorders the out-
lier channels for fine-grained group quantization
with mixed-precision. QAQ (Dong et al., 2024) and
MiKYV (Yang et al., 2024b), inspired by KV pruning
methods, store discarded tokens from KV pruning
methods using lower bit precision while retaining
salient tokens in full precision. However, their
memory usage scales proportionally with context
length. In contrast, quantized pruning, fundamen-
tally based on KV pruning, theoretically enables
compression to a pre-defined memory budget.

Other KV Compression Methods Compressing
KV cache from other dimensions typically requires
modifying the model architecture, which usually
necessitates additional training for adaptation. For
the layer dimension, LCKV (Wu and Tu, 2024),
CLA (Brandon et al., 2024) and MLKYV (Zuhri
et al., 2024) reduce memory usage by sharing the
KV cache across adjacent layers. ShortGPT (Men
et al., 2024) and DynamicSlicing (Dumitru et al.,
2024) achieve compression by eliminating redun-
dant layers. YOCO (Sun et al., 2024) changes
the model structure and shares a single global
KV cache across layers. For the head dimen-
sion, MQA (Shazeer, 2019) and GQA (Ainslie
et al., 2023) share the KV cache within each head
groups. DeepSeek-v2 (Liu et al., 2024a) employs
dimension-reduction techniques to compress all
heads into a single low-rank vector.

3 Preliminaries

During inference, KV cache is implemented within
the self-attention module and operates in two dis-
tinct phases: i) the prefill phase, where the input
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prompt is used to generate KV cache for each trans-
former layer of LLMs; and ii) the decoding phase,
where the model uses KV cache to generate the
next token, and updates the KV cache with the new
token.

Prefill Phase. Let X € RY*WromnXd be the input
tensor, where b is the batch size, l,ompt 18 the
length of the input prompt, and d is the model
hidden size. For clarity, we omit the layer index
here. The key and value tensors can be computed
by:

X =XWg, Xyv = XWy (1)

where Wi, Wy € R%*9 are the key and value
layer weights. X g, Xy are cached in the memory
for utilization in the subsequent decoding phase.

Decoding Phase. Let h € R?*1*? be the hidden
state of the current input token. hx = hWi and
hy = hWy, are the current key and value states.
hgi and hy are first employed to update the KV
cache:

Xk « Concat(X g, hg),
Xy + Concat( Xy, hy) ()

then the attention output ho is calculated by:
ho = Softmax(hg X &) Xv (3)

where hg = hW(g is the output of the query layer.
For ease of illustration, we ignore the FFN module
and other parts of the inference workflow that are
not addressed in our approach.

KV Quantization The B-bit KV quantization
process during the prefill phase can be expressed
as follows: First, determine the minimum number
z; and the maximum number m; in G;, where G;
is a group of numbers in X i or Xy . Using these
numbers, compute the quantized result Q(G;) for
each group according to the formula:

m; — zZ;

Gi—z
maaz{ Zw si=oh—p @

The notation | -] represents rounding to the nearest
integer. The results from all groups are aggregated
to obtain Q(X g) and Q(X7/). During the decoding
phase, the quantized Q(X i) and Q(Xy/) and the
stored quantization parameters z; and s; are used
to recover the original values. In the decoding

FlexGen @~ AdakVv H20
KIVI —%¥— HeadKV —— SnapKkV

—&— PyramidkKV

Avg. Cross-Entropy
= L - N N
N o ® o N

=
[N}

>

yoo

S &

© 0 >
I\ K% R K3
KV Cache Budget

Figure 1: Cross-Entropy of Representative KV Com-
pression methods under different KV Cache Budget on
Gov_Report Dataset.

phase, the dequantized results X §-, X{, are used
to calculate the attention output. X, X{, are

s . ’ l4
obtained through aggregating G7; for each G;. G
can be computed using:

G; = Q(G;) - 52+ 2 ®)

KV Pruning The goal of KV pruning is to find
two submatrices X, X{, € Rb*sxd from the
full matrices X i and Xy, during the prefill phase,
given a cache budget s < lprompt, While maximiz-
ing performance preservation. During the decoding
phase, LLMs with KV pruning only use X7 and
X7 to update KV cache and generate new tokens.

4 Quantized Pruning

4.1 Information Bottleneck

From the perspective of the Information Bottle-
neck (IB) principle, we propose a unified theoret-
ical framework to describe KV pruning and KV
cache quantization. Previous work has leveraged
the Information Bottleneck to formulate the objec-
tive of deep learning as an information-theoretic
trade-off between representation compression and
predictive information preservation (Tishby and Za-
slavsky, 2015; Shwartz-Ziv and Tishby, 2017). In
this work, we apply the perspective of IB to the KV
cache. Given the input KV cache, denoted as X
and Xy, and the model’s output Y generated using
the KV cache, KV cache compression techniques,
such as KV pruning and KV quantization, aim to
minimize the following Lagrangian:

L=I(KV,KV,) - BI(KV:Y)  (6)

where I(KV; KV.) represents the mutual infor-
mation between the original KV cache (K'V') and
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LongBench

Pruning Method | Token=128 | Token=512 | Token=2048
| 16-bit  8-bit 4-bit 2-bit | 16-bit 8-bit 4-bit 2-bit | 16-bit 8-bit 4-bit 2-bit
StreamingLLM | 32.1 322 31.7 19.1 | 346 345 339 207 | 381 382 378 238
H20 356 356 347 158 | 375 374 367 177 | 398 397 390 211
SnapKV 357 357 351 166 | 403 404 397 202 | 417 417 410 229
PyramidKV | 374 373 364 17.5| 403 403 39.6 209 | 41.8 418 413 23.6
Ada-KV 393 392 374 119 | 409 408 39.0 125 | 417 417 400 137
HeadKV 409 409 395 116 | 419 419 403 121 | 424 424 410 134
‘ Needle-in-a-Haystack
Pruning Method | Token=128 | Token=512 | Token=2048
| 16-bit  8-bit 4-bit 2-bit | 16-bit 8-bit 4-bit 2-bit | 16-bit 8-bit 4-bit 2-bit
StreamingLLM | 27.7 27.7 275 309 | 353 353 355 373 | 664 66.5 664 618
H20 469 466 468 364 | 912 911 91.0 548 | 100 100 100 74.1
SnapKV 837 837 825 559 | 974 974 972 663 | 100 100 100 78.1
PyramidKV | 98.9 989 988 675 | 100 100 100 786 | 100 100 100 79.6
Ada-KV 87.7 882 810 1.1 | 986 986 974 119 | 100 100 100 273
HeadKV 98.6 985 984 9.1 | 100 999 99.7 11.5| 100 100 100 27.6

Table 1: Feasibility of quantized pruned tokens on LongBench and Needle-in-a-Haystack with Llama-3-8B-Instruct
as backbone model. We use six different KV pruning methods to retain 128, 512 and 2048 tokens, and report the
results of further quantization. KIVI is used as the default quantization method, except for Ada-KV and HeadKYV,
which adopt FlexGen. As they retain different tokens per head, making them difficult to be compatible with KIVI.
The best results for each token-precision setting are in bold, the second best results are underlined.

the compressed KV cache (K'V.), quantifying the
information retained in the compressed represen-
tation K'V.. The term I(KV,;Y’) quantifies the
amount of information in KV that is pertinent to
predicting the output distribution Y. 3 serves as a
trade-off hyperparameter between representation
compression and information preservation of the
compressed KV cache.

With the Information Bottleneck, KV pruning
and KV quantization can be understood as distinct
yet complementary mechanisms for achieving this
optimal compressed representation K'V,. KV prun-
ing primarily influences the I(K'V; K'V,) term by
determining the amount of information selected
for transmission from the original K'V. By dis-
carding certain tokens, KV pruning reduces the
complexity and raw information content that K'V,
must encode from KV. KV quantization, con-
versely, primarily impacts the fidelity of this se-
lected information within K'V,. It introduces noise
or distortion due to reduced numerical precision,
which can affect how much relevant information
KV, ultimately provides for predicting Y, thereby
influencing I(K'V,;Y').

However, an exclusive focus on optimizing ei-
ther pruning or quantization in isolation may lead

to a suboptimal trade-off between model perfor-
mance and compression efficacy. To illustrate
this, we evaluate standalone KV pruning and KV
quantization methods, reporting their achieved KV
cache compression ratios and the corresponding im-
pact on model performance, as measured by cross-
entropy. More detailed can be seen in Appendix B.
As demonstrated in Figure 1, both uni-dimensional
approaches inherently encounter limitations in bal-
ancing information retention against the degree of
compression; notably, cross-entropy escalates at an
accelerated rate as the compression ratio increases.

Quantized Pruning Drawing upon the preceding
analysis, we hypothesize that a unified strategy co-
optimizing both pruning and quantization aspects
can achieve a more favorable operating point within
the information-theoretic trade-off space than op-
timizing either aspect in isolation. We propose
quantized pruning based on this idea.

Specifically, quantized pruning first employs KV
pruning methods to obtain the pruned key-value
states X § and X7,. Subsequently, these preserved
states are quantized to Q(X§ ) and Q(X{,) us-
ing KV quantization techniques during the prefill
phase. In the decoding phase, the dequantized re-
sults derived from Q (X, ) and Q(X7,) are utilized
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Figure 2: The token-precision trade-off under varying memory budgets on LongBench and NIAH. We report the
results of SnapKV-based and PyramidKV-based quantized pruning on Llama-3 and Mistral-v0.2. We compare
three configurations with approximately equivalent memory usage: 1) Using standalone KV pruning to retain 1x
tokens in 16-bit precision. 2) Quantized pruning by retaining 2 X tokens in 8-bit precision. 3) Quantized pruning
by retaining 4 x tokens in 4-bit precision. Quantized pruning, which preserves more tokens at a lower precision,
consistently outperforms standalone KV pruning methods across various budgets.

to generate new tokens. The primary objective of
quantized pruning is to maximize the model’s per-
formance when utilizing the compressed KV cache,
subject to a predefined KV cache budget By .

Memory(Q(X %), Q(X{))
Memory(X 5, Xv)

<Bgv ()

Given that the memory budget for quantized
pruning is jointly determined by the number of
preserved tokens and their average bit-width, quan-
tized pruning is equivalent to identifying an opti-
mal token-precision trade-off under fixed memory
budget. This optimization aims to achieve a more
favorable operating point within the Information
Bottleneck.

S Experimental Setup

Benchmarks We evaluate the performance of
quantized pruning using the LongBench bench-
mark (Bai et al., 2024) and Needle-in-a-Haystack
test (Kamradt, 2023). To better distinguish the per-
formance impacts related to input lengths and layer-
wise configurations (Sections 7.1 and C), we further
utilize RULER (Hsieh et al., 2024), a dataset with
different input length and diverse types of needles

across 4 task categories. Detailed information on
these datasets can be found in Appendix A.

LLMs In our primary evaluations, We employ
state-of-the-art open-weight LLMs, specifically
Llama-3-8B-Instruct (Dubey et al., 2024) and
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023). For
scaling experiments in Section 7.2, we addition-
ally assess the performance of Llama-3.2-1B,
Llama-3.2-3B (Dubey et al., 2024) and Llama-3-
70B (Dubey et al., 2024).

Setup Our experiments are designed to compre-
hensively investigate the optimal token-precision
trade-off in KV cache compression. We quantify
memory budget by reporting the compression ratio
of the KV cache relative to the full, uncompressed
KV cache. For KV pruning, we utilize Pyra-
midKV (Cai et al., 2024) and SnapKV (Li et al.,
2024) as representative state-of-the-art methods.
To assess the feasibility of quantized pruning (Sec-
tion 6), we also include StreamingL.LM (Xiao et al.,
2023), H20 (Zhang et al., 2024b), Ada-KV (Feng
et al., 2024), and HeadKV (Fu et al., 2024). For
KV quantization, we adopt KIVI (Liu et al., 2024c)
as our primary method due to its stability and broad
compatibility. Furthermore, in Section 7.3, we eval-
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uate quantization strategies from FlexGen (Sheng
et al., 2023) and KVQuant (Hooper et al., 2024) for
a comprehensive comparative analysis. Additional
setup details are provided in Appendix B.

6 Optimal Token-Precision Trade-Off

In this section, we aim to find the optimal token-
precision trade-off in KV cache compression. We
first examine the feasibility of integrating KV prun-
ing and quantization(Q1). Subsequently, we ex-
plore the best optimal allocation strategy between
precision and token under varying memory bud-
gets(Q2).

'@' Q1. Is it feasible to integrate KV pruning
and quantization for a lower compression
rate?

We first evaluate the feasibility of integrating
KV pruning and quantization as a prerequisite for
exploring the token-precision trade-off. We employ
Llama-3-8B-Instruct and evaluate a range of KV
pruning methods on the LongBench and NIAH.
We report the results of quantizing the remaining
tokens to different precision levels after applying
KV pruning.

From Table 1, we observe that it is feasible to
quantize pruned KV cache for a lower compression
rate. For most KV pruning methods we evaluate,
further quantizing the preserved tokens to as low
as 4-bit precision results in minimal performance
degradation, while quantizing to 8-bit precision
shows negligible impact. However, reducing preci-
sion to 2-bit leads to a drastic performance decline
across most KV pruning methods. This observa-
tion holds consistently across different KV pruning
methods and varying numbers of preserved tokens.

Compared with precision, reducing the number
of preserved tokens leads to more significant perfor-
mance degradation. Specifically, when the number
of preserved tokens is reduced to 1/4 (from 2048
to 512), all KV pruning methods experience a no-
ticeable performance drop. In contrast, when the
precision is reduced to 1/4 (from 16-bit to 4-bit),
which has the same memory budget as token di-
mension, the performance degradation is relatively
mild. This suggests that, under the same mem-
ory budget, tokens might have a more significant
impact on the results compared to precision.

To conclude, KV pruning can be effectively inte-
grated with KV quantization at a precision level of
4-bit without substantial performance degradation.

\

@’- Q2. What is the optimal allocation strategy
between precision and token under varying
memory budgets?

Observing that KV pruning and KV quantization
can be effectively integrated, we further investigate
that, given a fixed memory budget, how to balance
the trade-off between number of preserved tokens
and precision to achieve optimal performance. To
this end, we evaluate the performance of quantized
pruning using two leading KV pruning methods,
SnapKV and PyramidKYV, across different memory
budgets on LongBench and NIAH.

As shown in Figure 2, we observe that quantized
pruning, which preserves more tokens at a lower
precision, consistently outperforms standalone KV
pruning methods across various budgets. Besides,
the 1/4 KV cache budget of quantized pruning on
8-bit 2x KV tokens outperforms 4-bit 4x tokens
which represents the standalone KV quantization
methods. This conclusion demonstrate that quan-
tized pruning can achieve a more favorable op-
erating point within the Information Bottleneck
than optimizing either aspect in isolation.

For the NIAH task, the improvements from quan-
tized pruning are particularly pronounced. This
may be attributed to that quantized pruning can
cover more tokens for retrieval under the same
memory budget compared to standalone KV prun-
ing.

In high-budget scenarios, the 8-bit strategy tends
to deliver slightly better performance, which may
due to the number of tokens at this budget is al-
ready quite large. In low-budget scenarios, such
as 1/128 KV cache budget, storing more tokens at
4-bit precision yields superior results, highlighting
the importance of token coverage when resources
are constrained. Overall, using lower precision to
preserve more tokens under a limited budget re-
sults in notable performance gains, compared to
standalone KV pruning methods that use full preci-
sion to store fewer tokens.

7 Further Analysis

In this section, we further investigate series of key
aspects regarding token-precision trade-off, includ-
ing the impact of quantized pruning on various
downstream task types and input lengths, model
scaling effect and ablation on quantization strate-
gies. We also explore fine-grained layer-wise quan-
tized pruning in the Appendix C.
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‘ Token Bit ‘

Task Types

Models
| | SQA MQA SUMM Fewshot Syn. Code RULER-8k
512 16 | 282 319 23.5 67.6 377 576 67.5
Llama-3-8B-Instruct 1024 8 | 296 331 243 67.9 374  58.0 74.9
2048 4 | 30.7 325 253 68.8 372 57.6 82.2
512 16 | 33.7 273 243 65.6 4175 54.0 53.1
Mistral-7B-Instruct-v0.2 | 1024 8§ | 342  29.0 25.6 66.4 43.73 548 62.1
2048 4 | 352 28.14 26.6 66.9 43.08 554 73.6

Table 2: The token-precision trade-off in different task types. We report the results of 6 task types in LongBench and
8k subset of RULER. We use PyramidK'V-based quantized pruning. The best results for each task type are in bold.

7.1 TImpact on Task Types and Input Lengths

Task Types To further investigate the token-
precision trade-off in different task types, we eval-
uate PyramidKV-based quantized pruning on six
task types from LongBench and the 8K subset of
the RULER dataset. We use 1/16 KV cache bud-
get, and explore the token-precision trade-off under
this fixed memory budget, as this setting exhibits
minimal performance differences across three set-
tings, facilitating a more direct comparison of per-
formance across task types.

As illustrated in Table 2, we observe that the
performance of quantized pruning is remarkably
consistent across different task types. Specifically,
lower precision, which retains more tokens in KV
cache, leads to substantial performance improve-
ments in the RULER task, which heavily relies
on retrieving contents from the input. Tasks with
high retrieval demands, such as Summarization and
Single-Doc QA, also show noticeable gains with
quantized pruning, particularly when 4x tokens
are preserved at 4-bit precision.

For tasks requiring more reasoning rather than
intensive retrieval, such as Code Completion, Syn-
thetic and Multi-Doc QA, the benefits of trading
precision for more tokens are less pronounced. In
these cases, storing fewer tokens with higher preci-
sion generally performs better. For example, using
1024 tokens in 8-bit precision achieves the hightest
score of 58 in Code task.

Input Lengths To evaluate the token-precision
trade-off across various input lengths, we conduct
experiments on subsets with different input length
of the RULER dataset. Additionally, we analyze
LongBench by grouping its data based on input
length, more detailed information can be found in
Appendix A. The results are shown in Figure 3.
Our observations are as follows: quantized prun-

Llama-3-8B-Instruct-PyramidKV
512 KV tokens, 16-bit #1024 KV tokens, 8-bit M 2048 KV tokens, 4-bit

80
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. I I I
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I
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Mistral-7B-Instruct-v0.2-PyramidKV
512 KV tokens, 16-bit M 1024 KV tokens, 8-bit M 2048 KV tokens, 4-bit

LB-4k LB-8k LB-16k RULER-4k RULER-8k RULER-16k
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&
(=}

%)
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Figure 3: The token-precision trade-off in different input
lengths. We report the results of LongBench and three
subsets of RULER. We use PyramidKV-based quantized
pruning.

ing consistently outperforms standalone KV evic-
tion methods across various input lengths, regard-
less of the models and task types. Within the same
dataset, scores decrease as input length increases;
however, the relative differences among different
compression methods remain similar across vary-
ing input lengths. Moreover, quantized pruning
achieves significant performance improvements
across all input lengths for retrieval demanded tasks
like RULER.

7.2 Scaling Effect on Quantized Pruning

To investigate the impact of model scaling on
quantized pruning, we conducted experiments on
four models from the Llama series: Llama3-70B,
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Figure 4: Scaling effect on Llama family models, with
PyramidKV-based quantized pruning. All models are
under 1/64 KV cache budget.

Llama3-8B, Llama3.2-3B and Llama3.2-1B. Since
the Llama3 series does not include 1B and 3B ver-
sions, we used the Llama3.2 series as substitutes.
However, it is important to note that the perfor-
mance of Llama3.2-3B-Base is quite similar to
Llama3-8B-Base. For both the Base models and
Instruct models, we evaluated their performance on
LongBench under 1/64 KV cache budgets. To fur-
ther validate the conclusion, we also experimented
with a 1/16 KV cache budget, and the results are
presented in the Appendix C.

As shown in Figure 4, we observe that quan-
tized pruning consistently achieves better perfor-
mance across all scaling levels. Notably, the per-
formance gap between quantized pruning and stan-
dalone KV pruning methods remains relatively sta-
ble across different model scales. For Base mod-
els, although the performance improvement from
scaling is smaller compared to Instruct models,
quantized pruning still provides a noticeable per-
formance boost.

7.3 Ablation on Quantization Strategies

While there has been extensive research on strate-
gies for KV quantization, it remains unclear
whether existing quantization strategies remain ef-
fective when integrated with KV pruning methods.
In this section, we aim to investigate the impact
of KV quantization strategies on quantized prun-
ing. We also conducted analysis of the effect of
quantization group size on the quantized pruning.

Quantization methods We explore the methods
in FlexGen (Sheng et al., 2023), KIVI (Liu et al.,
2024c), and KVQuant (Hooper et al., 2024). To
elaborate, for the FlexGen methods, KV quantiza-
tion is applied to both the key and value caches
along the token dimension, grouping every 64 ele-

FlexGen WM FlexGen+Outlier 1% KIVI B KIVI+Outlier 1%

5
Llama-3-SnapKV  Llama-3-PyramidKV Mistral-v0.2-SnapKV Mistral-v0.2-PyramidKV

Figure 5: Ablation of quantization strategies on quan-
tized pruning, remaining 512 KV tokens in 4-bit.

ments without filtering outlier numbers. We modify
the FlexGen by (1) filtering 1% of outlier numbers
in both the key and value cache, as mentioned in
KVQuant (2) quantizing the key along the channel
dimension, as in KIVI and (3) combining (1) and
(2). These correspond to the results labeled as Flex-
Gen+Outlier 1%, KIVI, and KIVI+Outlier 1% in
the Figure 5.

We can observe that none of the quantization
strategies show significant performance degrada-
tion when combined with KV pruning methods,
demonstrating the relative stability of quantized
pruning. The KIVI method consistently outper-
forms FlexGen across various models and KV prun-
ing methods. The improvement is particularly pro-
nounced for PyramidKV on the Mistral model, un-
derscoring the significance of quantizing key states
along the channel dimension. Filtering 1% of out-
lier numbers proves effective for the FlexGen strat-
egy but yields limited improvements for KIVI. It
shows some benefit on Llama models but results in
negligible gains on the Mistral models.

Overall, KIVI demonstrates strong performance
when integrated with KV pruning methods, while
other KV quantization strategies also maintain
good results, highlighting the stability of quantized
pruning.

Group Size We analyze the impact of group size
during KV quantization. We employ SnapKV and
PyramidKYV to retain 512 tokens with 4-bit KIVI
quantization and report the performance variations
when the group sizes were set to 32, 64 and 128.
As shown in Table 4, smaller group sizes lead to
performance improvements at the cost of higher
memory usage. Reducing the group size from 128
to 64 resulted in a notable improvement, but fur-
ther decreasing it from 64 to 32 yielded minimal
gains for the Mistral model. Therefore, we set the
default quantization group size to 64 to balance per-
formance and memory usage in our experiments.
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Token-Precision Throughput (tokens/s) KV Cache Memory | LongBench | NIAH
Settings batch=64 batch=96 batch=128 per Batch Item Avg Avg
128 tokens, 16-bit 634.9 1460.1 1658.8 ~18 MB 35.24 81.16
256 tokens, 8-bit 575.9 1250.8 1389.5 ~19.1 MB 38.98 89.83
512 tokens, 4-bit 554.8 1317.6 1482.8 ~20.2 MB 40.3 93.28

Table 3: Speed Evaluation on Mistral-7B-v0.2 with SnapKV-based pruning and KIVI-based quantization. We report
the decoding speed of different methods on single NVIDIA A100 GPU.

Group Size
Model Method
64 128
Ll  SmapKV 404 396 389
PyramidKV 403 39.6 38.9
. SnapKV 404 403 40.1
Mistral-v0.2 = o0 midKV 403 405 40.0

Table 4: The impact of group size for quantized pruning
on LongBench.

Speed Evaluation Both KV Pruning and KV
Quantization primarily aim to reduce the mem-
ory footprint of the KV cache. During the auto-
regressive decoding phase, performance is often
bandwidth-bound, meaning the latency is highly
correlated with the amount of data that needs to
be read from and written to memory (i.e., the size
of the KV cache). Therefore, methods achieving
similar memory compression levels are expected
to yield similar throughput. To provide concrete
data on this, we conducted additional experiments
measuring throughput alongside accuracy for three
configurations using Mistral-7B-v0.2. The config-
urations maintain nearly identical memory usage
while varying the token-precision balance:

As shown in the table 3, the KV cache memory
consumption and the resulting throughput are very
similar across these three settings. However, the
task performance on LongBench and NIAH shows
marked differences, with the quantized pruning ap-
proach (512 tokens with 4-bit precision) achieving
significantly higher accuracy. This demonstrates
that while the speed impact of these configurations
is similar (due to similar memory bandwidth re-
quirements), the choice of token-precision trade-off
has a substantial impact on model quality.

8 Conclusion

We investigate a series of critical yet unexplored
questions regarding the effectiveness and feasibility

of token-precision trade-off in KV cache compres-
sion. We leverage the Information Bottleneck prin-
ciple to formulate KV cache compression within a
unified theoretical framework and demonstrate that
a carefully managed token-precision trade-off can
achieve an optimal point within the Information
Bottleneck. Through comprehensive experiments,
we demonstrate that storing more tokens in the KV
cache with lower precision can significantly en-
hance the long-context performance of LLMs, and
demonstrating robust performance across diverse
input lengths, downstream tasks, with particularly
significant gains in retrieval tasks. Moreover, we
show that quantized pruning demonstrates strong
feasibility across different KV pruning methods,
quantization strategies, and model scales. Our anal-
ysis sheds light on the token-precision trade-off of
KV cache memory optimization, offering valuable
insights into designing more efficient compression
strategies. We hope this work deepens the under-
standing of KV cache compression and inspires
future research.

Limitations

While our work demonstrates the effectiveness of
KV compression through trade-offs between token
and precision dimensions, other potential dimen-
sions, such as head and layer, remain unexplored.
Investigating the feasibility of combining these di-
mensions with token and precision for a more sub-
stantial compression potential represents an avenue
for future research.
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A Datasets

LongBench LongBench (Bai et al., 2024) in-
cludes 17 datasets covering 6 categories of
tasks, which can be divided into single-document
QA (Dasigi et al., 2021; Kocisky et al., 2018),
multi-document QA (Yang et al., 2018; Ho et al.,
2020), summarization (Huang et al., 2021; Fab-
bri et al., 2019; Zhong et al., 2021), few-shot
learning (Gliwa et al., 2019; Joshi et al., 2017;
Li and Roth, 2002), synthetic, and code genera-
tion (Guo et al., 2023; Liu et al., 2023). Long-
Bench features an average input length ranging
from 1,235 to 18,409 tokens. For inputs exceeding
the model’s context window length(8k for Llama-3-
8B-Instruct (Dubey et al., 2024), we split the data
and only take the beginning and end segments of
the input to fill the context window length. Ad-
ditionally, we reserve sufficient space for newly
generated tokens based on the specific type of sub-
dataset. For evaluate the impact of input lengths,
we select datasets with sufficient data to cover
three input length ranges: (<4k, 4k 8k, and >8k).
These datasets include MultiFieldQA-en, 2Wiki-
MultihopQA, GovReport, TREC, TriviaQA, SAM-
Sum, and RepoBench-P, representing a variety of
task types. We refer to the three subsets as LB-4k,
LB-8k, and LB-16k, respectively.

NIAH Needle-in-a-Haystack(NIAH) (Kamradt,
2023) is a challenging pressure test designed to
assess the ability of models to accurate identify and
retrieve relevant information from lengthy context.
NIAH randomly inserts key information into an
arbitrary position within a long essay. In our setup,
we use PaulGrahamEssays as the haystack and the
sentence "The best thing to do in San Francisco is
eat a sandwich and sit in Dolores Park on a sunny
day." as the needle, which is the default setting
of NIAH. We vary the essay length from 1,000
tokens up to the models’ context window limits,
increasing by 100 tokens per step for Llama-series
models and 400 tokens per step for Mistral. The
results are reported as the average score across all
tests.

RULER RULER (Hsieh et al., 2024) generates
synthetic examples to evaluate long-context lan-
guage models with configurable sequence lengths
and varying task complexities. It includes four
task categories: Retrieval, Multi-hop Tracing, Ag-
gregation, and Question Answering. The dataset
comprises six subsets with input lengths of 4K, 8K,
16K, 32K, 64K and 128K tokens. In our experi-
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Figure 6: Scaling effect on Llama family models, with
PyramidKV-based quantized pruning. All models are
under 1/16 KV cache budget.

ments, we use the 4K, 8K and 16K subsets to test
the models within their context window limits.

B Experiment Setup

Memory Budgets We report the ratio of com-
pressed KV cache and the full KV cache for mem-
ory budge. The full KV cache for Llama-3 is 8k
KV tokens in 16-bit on both LongBench and NIAH,
while for Mistral-v0.2 is 16k KV tokens on Long-
Bench and 32k KV tokens on NIAH in 16-bit.

KV pruning methods We retain the last 32
tokens for Streamingl.LM (Xiao et al., 2023),
H20 (Zhang et al., 2024b), and SnapKV (Li et al.,
2024), while keeping 8 tokens for PyramidKV (Cai
et al., 2024), Ada-KV (Feng et al., 2024) and
HeadKV (Fu et al., 2024), as recommended in the
corresponding paper (Cai et al., 2024; Fu et al.,
2024). For other settings, we adopt the default
configurations from their papers.

KV quantization We utilize HQQQuantized-
Cache from Huggingface and adjust the group di-
mensions of keys and values to implement grouped
quantization strategies from FlexGen (Sheng et al.,
2023) and KIVI (Liu et al., 2024c). We use 64
as the default group size which is suggested in
FlexGen (Sheng et al., 2023). In the experiments
involving outlier filtering, we exclude numbers in
the KV cache with a absolute value exceeding 6
from quantization, which roughly corresponds to
the top 1% of outliers based on our validation set
analysis.

Cross-Entropy Experiments Setup We use the
Mistral-v0.2 with 16k KV tokens as baseline and
calculate the cross-entropy using different KV prun-
ing and KV quantization methods with it. We re-

LB-Avg of 2xtokens,8-bit ~ —#— LB-Avg of 1xtokens,16-bit
RULERA4k of 2xtokens,8-bit = RULER4k of Ixtokens,16-bit
— == Baseline of 4xtokens,4-bit

Relative Change
M
=~

Layerl-4 Layer5-12 Layer13-20 Layer21-28 Layer29-32

Figure 7: The results of layer-wise quantized pruning on
Llama-3-8B-Instruct, with SnapKV as pruning method.
We use 4x KV token 4-bit as baseline and report the
relative change. Configurations are modified every 4
layers for the initial and final layers, while intermediate
layers are reconfigured every 8 layers.
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Figure 8: The results of Layer-Wise Quantized Prun-
ing on Llama-3-8B-Instruct, with SnapKV as pruning
method. KV cache budget=1/16.

port the average cross-entropy on the output tokens
in Figure 1.

C More results in Experiments

Scaling Effect on Quantized Pruning We val-
idate our findings by measuring performance at a
budget of 1/16, with the results shown in Figure 6.
This corroborates the conclusion reported in the
main text using a budget of 1/64. When the KV
cache budget is relative small to 1/64 , the perfor-
mance improvement brought by quantized pruning
is higher compared to 1/16 KV cache budget, which
aligns with the conclusions we observed earlier in

Q2.

Layer-Wise Quantized Pruning Inspired by the
observation that different layers may have varying
requirements for the number of tokens in Pyra-
midKV (Cai et al., 2024) and PyramidInfer (Yang
et al., 2024a), we further investigate whether the
demands for precision and preserved tokens are
consistent across layers. To explore this, we use
the best-performing configuration from previous
experiments, 4-bit precision with 4x tokens, as the
baseline and compare it against layer-wise configu-
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Figure 9: The results of Layer-Wise Quantized Pruning
on Mistral-7B-v0.2-Instruct, with SnapKV as pruning

method. KV cache budget=1/64.
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Figure 10: The results of Layer-Wise Quantized Pruning
on Mistral-7B-v0.2-Instruct, with SnapKV as pruning
method. KV cache budget=1/16.

rations adopting 8-bit precision with 2x tokens and
16-bit precision with 1x tokens. Using SnapKV as
the KV pruning method, we present the results for
Llama-3 under 1/64 KV cache budget in the Fig-
ure 7. The x-axis shows the modified layers range,
while the y-axis shows the relative change to the
baseline (4-bit precision with 4 x tokens) on Long-
Bench and RULER-4k. Furthermore, we present
the results for Llama-3 evaluated with a 1/16 KV
cache budget and Mistral-v0.2 evaluated with 1/64
and 1/16 KV cache budgets.

It is evident that for most layers, transitioning
from 4 x tokens with 4-bit precision to higher pre-
cision and fewer tokens results in a performance de-
cline under constrained KV cache budgets. Specif-
ically, the shift to 8-bit shows a relatively minor
performance drop, whereas moving to 16-bit with
fewer preserved tokens leads to a more significant
decrease. These layers-wise trade-off conclusions
are consistent with our experiments before.

Notably, modifying intermediate layers causes
a drastic performance decline, while adjustments
made at the initial and final layers result in compar-
atively smaller performance reductions. This effect
is especially pronounced in retrieval-related tasks
such as RULER-4k, where significant performance
differences are observed. On LongBench, changes
are less significant, with a notable performance

drop only observed at 16-bit precision. These find-
ings highlight that, under the same memory budget,
preserving more tokens with lower precision in in-
termediate layers is crucial for the performance,
while the token-precision trade-off in the initial and
final layers exerts a more balanced influence.

For Mistral-v0.2 in Figure 9 and Figure 10, we
can see the layer-wise results are similiar to Llama-
3. Modifying intermediate layers causes a drastic
performance decline, while adjustments made at
the initial and final layers result in comparatively
smaller performance reductions. This effect is es-
pecially pronounced in retrieval-related tasks such
as RULER-4k, where significant performance dif-
ferences are observed. On LongBench, changes are
less significant, with a notable performance drop
only observed at 16-bit precision.
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