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Abstract

In Natural Language Processing(NLP), Event
Temporal Relation Extraction (ETRE) is to rec-
ognize the temporal relations of two events.
Prior studies have noted the importance of
language models for ETRE. However, the re-
stricted pre-trained knowledge of Small Lan-
guage Models(SLMs) limits their capability to
handle minority class relations in imbalanced
classification datasets. For Large Language
Models(LLMs), researchers adopt manually de-
signed prompts or instructions, which may in-
troduce extra noise, leading to interference with
the model’s judgment of the long-distance de-
pendencies between events. To address these is-
sues, we propose GDLLM, a Global Distance-
aware modeling approach based on LLMs. We
first present a distance-aware graph structure
utilizing Graph Attention Network(GAT) to as-
sist the LLMs in capturing long-distance de-
pendency features. Additionally, we design a
temporal feature learning paradigm based on
soft inference to augment the identification of
relations with a short-distance proximity band,
which supplements the probabilistic informa-
tion generated by LLMs into the multi-head
attention mechanism. Since the global feature
can be captured effectively, our framework sub-
stantially enhances the performance of minor-
ity relation classes and improves the overall
learning ability. Experiments on two publicly
available datasets, TB-Dense and MATRES,
demonstrate that our approach achieves state-
of-the-art (SOTA) performance.

1 Introduction

In Natural Language Processing (NLP), Event Tem-
poral Relation Extraction (ETRE) aims to identify
temporal connections between event pairs. As il-
lustrated in Figure 1(a), in the given sentence, the
relation between the target Event1 continues and
Event2 grip is IS_INCLUDED.
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sentence: A powerful ice storm [EV1] continues [/EV1] to maintain its 
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Figure 1: (a) is an example of the ETRE task. Above
the arrows in the legend are the corresponding relation
categories. “[EVi]” is the hand-crafted symbol that can
explicitly mark event boundaries in such examples. (b)
is the relation distribution on two datasets.

Much of the existing studies pay attention to
the crucial role of language models for ETRE, es-
pecially Small Language Models(SLMs). Some
research utilizes SLMs to form certain rules for
temporal realtion(Zhang et al., 2022; Man et al.,
2022; Zhuang et al., 2023). Prior SOTA model
MulCo(Yao et al., 2024) combines GNNs and the
model of BERT variants via multi-scale knowl-
edge distillation to enhance the performance of
ETRE. However, the restricted pre-trained knowl-
edge of SLMs limits their capability to handle mi-
nority class relations in imbalanced classification
datasets(UzZaman et al., 2013; Guan et al., 2021).
Although some researchers have invested substan-
tial effort in it (Han et al., 2019; Ning et al., 2024;
Yuan et al., 2024), the performance of their models
is still suboptimal on two popular datasets, MA-
TRES(Ning et al., 2019) and TB-Dense(Cassidy
et al., 2014). As depicted in Figure 1(b), the
relation “SIMULTANEOUS” that refers to two
events happening simultaneously only takes 1.5%
in the TB-Dense dataset, while “VAGUE” has
47.7%(Yuan et al., 2024).

Recent advancements have noted the impressive
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capabilities of Large Language Models(LLMs) for
ETRE. However, based on the powerful learning
ability for contextual knowledge, prior studies rely
on manually designed prompts and instructions to
fine-tune LLMs(Hu et al., 2025; Xu et al., 2025),
leading to noise accumulation(Chen et al., 2024;
Shi et al., 2024; Zhang et al., 2025a; Diao et al.,
2025; Zhang et al., 2025b; Shi et al., 2025; Wang
et al., 2025; Zhang et al., 2025c) that interferes
with the model’s judgment of the global event rela-
tion feature. As shown in Figure 1(a), unlike most
event pairs among Events “continues”, “grip” and
“toured”, two another events occur between Events
“continues” and “toured” in the text and make their
distance of the occurrence order is longer. This in-
dicates that there are two different event relation
features that constitute the global feature: long-
distance dependency and short-distance proximity
band. Since modeling global event relation feature
poses a challenge for researchers, they often ne-
glect the recognition of long-distance dependency
features when adopting manually designed prompts
or instructions, which is also not conducive to han-
dling minority categories in imbalanced classifica-
tion datasets.

To resolve the aforementioned problems, we pro-
pose GDLLM, a Global Distance-aware modeling
approach based on LLMs, enabling the effective
identification of event relations with the global fea-
ture to alleviate the impact of data imbalance on
classification results. To be specific, we select the
Graph Attention Network(GAT) to assist the fine-
tuned LLMs in capturing event relations with long-
distance dependency features, which circumvents
the limitations of manually designed prompts or in-
struction templates. Compared to the “hard classifi-
cation” (0/1 decision labels) as graph edge features,
we integrate the probability distribution generated
by LLMs into GAT to learn more comprehensive
relation information. Both the probabilistic infor-
mation and the multi-head attention mechanism
augment the identification of relations with a short-
distance proximity band. Since the global feature
can be captured effectively, our framework sub-
stantially enhances the performance of minority
relation classes and the overall learning ability.

Our contributions can be summarized as follows:

• We propose GDLLM, a Global Distance-
aware modeling approach with LLMs. Specif-
ically, we introduce a global modeling method
to enhance the identification of minority cate-

gories in imbalanced classification datasets.

• We present a distance-aware graph structure
utilizing Graph Attention Network to assist
the fine-tuned LLMs in capturing event rela-
tions with long-distance dependency features,
which circumvents the limitations imposed by
manually designed prompts or instructions.

• We design a temporal feature learning
paradigm based on soft inference to augment
the relation extraction with a short-distance
proximity band. Rather than 0/1 decision la-
bels, the probability distribution we selected
as edge features enables more comprehensive
relation information learning.

• We conduct extensive experiments on two pub-
lic datasets, TB-Dense and MATRES, which
demonstrate that our approach outperforms all
existing LLM-based and GNN-based bench-
marks, achieving state-of-the-art (SOTA) per-
formance.

2 Method

In this section, we introduce the overall architec-
ture of our proposed GDLLM method, which is
depicted in Figure 2. Firstly, we formulate the
ETRE task. Secondly, we introduce the LLM-
based probability distribution prediction module.
Thirdly, we present the distance-aware graph atten-
tion module for capturing long-distance features
and a temporal feature learning paradigm for learn-
ing short-distance features. Finally, our framework
will enhance the performance of minority relation
classes in the imbalanced classification dataset by
capturing the global feature.

2.1 Problem Formulation
Following previous work, we define ETRE as a text
classification task. Given a sentence T that contains
two events E1 and E2, our aim is to identify the
temporal relation between these two events. The
output of our model is the prediction of a particular
temporal relation label.

2.2 Probability Distribution Prediction
Input and fine-tuning for the LLM. In our work,
the unified format defined that input to LLMs from
datasets contains manually designed symbols of
the form [EVi] in the given sentence T , where i de-
notes the ordinal number of an event pair. It serves
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Figure 2: Overall architecture of our proposed method.

as a marker to annotate the boundaries of the event.
Before generating probabilistic information, we
fine-tune the LLM based on LoRA(Hu et al., 2022).
As depicted in Figure 2(a), the LoRA fine-tuned
technique is used for sequence classification, which
is adopted for parameter-efficient fine-tuning.

Probability generation. As shown in Fig-
ure 2(a), while applying the LoRA fine-tuning,
the model is ready to make predictions of prob-
abilistic information generated by the LLM to con-
struct edge features of graph structure, forming
the soft inference-based temporal feature learning
paradigm we designed. For each pair of events
(Ei, Ej) in the document, the LLM outputs a prob-
ability distribution over a set of predefined and
annotated event relation classes.

Specifically, we define c as the number of event
relation classes, and the output of the LLM for the
event pair (Ei, Ej) is a vector pij ∈ Rc. In the
inference process of LoRA tuning, the model first
generates a set of logits for each event pair. These
logits are then passed through the softmax function.
This operation converts the logits into probabilities,
which represent the likelihood of each event pair
belonging to different relation labels. For c kinds
of relation types, and a specific event pair (Ei, Ej),
the probability of it belonging to relation r is de-
noted as P (p = r|Ei, Ej). Mathematically, the
logits for an event pair are z1, z2, · · · , zn, then the
probability P (p = r|Ei, Ej) is calculated as:

P (p = r|Ei, Ej) =
ezr∑c
n=1 e

zn
, (1)

which normalizes the logits so that the sum of prob-
abilities for all relation classes is equal to 1, and
they are all stored in the probability distribution
vectors pij ∈ RC . As depicted in Figure 2(a),
rather than determining the most likely temporal re-
lation between events, these probabilities are made
to be a vector sequence distribution to provide more
comprehensive pre-trained information for the sub-
sequent module. For the TB-Dense dataset, which
is shown in Figure 2(a) as an instance, the LLM
provides the prediction distribution of the six labels
it has, while the MATRES dataset does so for the
four labels it possesses.

The training objective is the cross-entropy loss
for multi-class classification based on LLM, which
does not participate in the final loss calculation,
and the calculation details of the loss function are
similar to the final classification.

Notably, a topic that deserves discussion is why
we choose LLMs to be the main language mod-
els. We generate probability distributions through
different language models and visualize these dis-
tributions in scatter plots for comparison of the
accuracy of the probability value. To be specific,
we randomly select a sample sequence from the TB-
Dense and MATRES datasets, respectively. Then,
we compare the distribution of probabilities for
positive samples. It can be seen from Figure 3 that
LLMs can present probability values with higher
accuracy, which always assign a value closer to 1
for the relation category with the highest proba-
bility, while for low probability prediction values,
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Figure 3: The distribution of probabilities generated by different language models on the TB-Dense (a) and the
MATRES (b) datasets.

their distributions tend to be closer to zero.

2.3 Distance-aware Graph Attention Module

From the previous section, we have obtained the
probability distribution vectors pij ∈ RC for event
pair predictions generated by the LLM. Next, we
will introduce the construction of graph features
first, followed by the temporal feature learning
paradigm based on soft inference. Since our graph
structure is a solution for capturing relation features
at different distances, we define the proposed GAT-
based architecture as a distance-aware approach.

Graph feature construction. As depicted in
Figure 2(c), we construct a graph to model the rela-
tions between events based on every complete doc-
ument. Compared with traditional graph construc-
tion methods, our approach aims to be more con-
ducive to enabling the graph structure to learn ac-
curate global relational features at an earlier stage.
Each event Ei in the document and its order and
type information are both represented as a node
vi ∈ V . And the node features h(0)i ∈ Rdh are ob-
tained from the dataset corresponding to the event.

For edge feature, which is shown as Figure 2(b),
it exists between every pair of nodes, and the edge
features are initialized as the probability distribu-
tion vectors pij ∈ RC for the event pair (Ei, Ej),
which is to form our temporal feature learning
paradigm based on soft inference.

Temporal feature learning paradigm. We de-
sign a temporal feature learning paradigm based on
soft inference as depicted in Figure 2(b), which is
to supplement the probabilistic information gener-
ated by LLMs into the multi-head attention mech-
anism. This paradigm shifts the edge feature rep-

resentation from the previous 0/1 decision label
to a probability distribution for “soft inference”,
which augments the identification of relations with
a short-distance proximity band. To achieve this,
we apply this paradigm to the edge feature learn-
ing of GAT, which constructs a graph structure to
model event relations with a multi-head attention
mechanism.

Specifically, our Graph Attention Network archi-
tecture consists of multiple layers of multi-head
attention mechanisms. In our implementation, in
order to enable the model to learn more diverse
feature combinations and interaction information,
we adopt two layers with K = 8 attention heads.
In the first GAT Layer, for each node vi, the output
of the k-th attention head is computed as:

ĥ
(1)
i,k = σ


 ∑

j∈N (i)

αij,kW
(1)
k h

(0)
j


 , (2)

where N (i) is the set of neighboring nodes of vi,
W

(1)
k ∈ Rdh×dh1 is the weight matrix for the k - th

head, σ is the activation function LeakyReLU, and
the attention coefficients αij,k are calculated as:

zij,k = a⊤k [W
(1)
k h

(0)
i ∥ W

(1)
k h

(0)
j ∥ pi,j ], (3)

zim,k = a⊤k [W
(1)
k h

(0)
i ∥ W

(1)
k h(0)

m ∥ pi,m], (4)

αij,k =
exp (LeakyReLU(zij,k))∑
m exp (LeakyReLU(zim,k))

, (5)

where ak ∈ R3dh1 is a learnable attention vector,
“∥” denotes concatenation, and m ∈ N (i). After-
wards, the output of the first layer for node vi is
then concatenated with the outputs of all heads:
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Model Language Model TB-Dense MATRES

P(%) R(%) F1(%) P(%) R(%) F1(%)

TIMERS*(Mathur et al., 2021) BERT-Base 48.1 65.2 67.8 81.1 84.6 82.3
SGT*(Zhang et al., 2022) BERT-Large - - 67.1 - - 80.3
RSGT*(Zhou et al., 2022) RoBERTa-Base 68.7 68.7 68.7 82.2 85.8 84.0
Bayesian (Tan et al., 2023) BART-Large - - 65.0 79.6 86.0 82.7
Unified (Huang et al., 2023) RoBERTa-Large - - 68.1 - - 82.6
TCT (Ning et al., 2024) BART-Large 70.3 71.6 70.9 79.0 87.2 82.9
CPTRE (Yuan et al., 2024) BERT-Base 73.4 69.5 71.4 81.3 86.3 84.2
MulCo* (Yao et al., 2024) RoBERTa-Large - - 85.6 - - 90.4
MAQInstruct (Xu et al., 2025) Llama2-7B - - - 85.5 83.9 84.7
LLMERE (Hu et al., 2025) Llama3.1-8B - - - 82.6 88.7 85.5

SLM(BART) with GAT BART-Large 75.8 68.9 71.3 80.6 84.7 81.2
SLM(RoBERTa) with GAT RoBERTa-Large 70.8 68.8 69.2 82.4 91.7 86.4

GDLLM_Qwen(Ours) Qwen2.5-7B 85.3 86.5 86.1 86.8 94.8 90.6
GDLLM(Ours) Llama3.1-8B 88.3 86.6 87.5 86.5 95.9 90.9

Table 1: The overall experiment results on the two datasets. Models marked with a * use the GNN-based approach.
The F1 score means micro-F1.

h
(1)
i = Concat(ĥ(1)

i,1 , · · · , ĥ
(1)
i,K). For the second

GAT layer, following a similar process of the first
layer, we get the output of the k-th attention head
ĥ
(2)
i,k , and the final average multi-head feature h

(2)
i .

Final Classification. In the final classification
stage, as depicted in Figure 2(c), we integrate the
output of the second GAT layer and the processed
edge features pi,j . We concatenate these two types
of features as: ho = [h

(2)
i ∥ pj ∥ h

(2)
j ]. The con-

catenated feature vector ho is then fed into a fully-
connected layer. The output of the fully-connected
layer is calculated as follows:

s = Wclsho + bcls, (6)

where Wcls ∈ Rdh2×C is the weight matrix of the
classification layer, and bcls ∈ RC is the bias vector
of the classification layer.

Subsequently, we apply the softmax function for
the output of the fully-connected layer to obtain the
predicted probability distribution over the classes.
The softmax function is defined as:

ŷ = softmax(s), (7)

where ŷ is the predicted probability for an event
pair (Ei, Ej).

We employ the cross-entropy loss function to
measure the difference between the final predicted
probability and the true label. Given the true label

y = (y1, y2, · · · , yC), the cross-entropy loss for
this event pair is calculated as:

L(y, ŷ) = −
C∑

k=1

yk log(ŷk). (8)

3 Experiments and Results

3.1 Datasets and Metrics

We validate our approach on two widely adopted
datasets: MATRES (Ning et al., 2019), and TB-
Dense(Cassidy et al., 2014). In accordance with
prior study(Ning et al., 2024; Huang et al., 2023),
we adopt the micro-F1 score, with the VAGUE label
excluded, as the evaluative metric for the datasets.
Our data splits statistics also follow the previous
studies(Ning et al., 2024; Huang et al., 2023).

3.2 Experimental Setup

We compare our method with the following base-
lines: 1) LLM-based approaches: these methods
leverage LLMs to encode contextual information
and perform temporal reasoning through prompt
or instruction tuning(Xu et al., 2025; Hu et al.,
2025). Prior studies also explore zero-shot tempo-
ral relation extraction using different prompt strate-
gies(Yuan et al., 2023; Xu et al., 2025). Following
this work, we conduct zero-shot experiments on
two LLMs, the closed-source GPT4o(Hurst et al.,
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2024) and the open-source Llama3.1. 2) Graph-
based approaches: These models construct event
graphs to capture temporal information, often using
Graph Neural Networks (GNNs) to propagate in-
formation(Mathur et al., 2021; Zhang et al., 2022;
Zhou et al., 2022; Yao et al., 2024). 3) Other
benchmarks: Methods that do not fit into the
above categories but have shown strong perfor-
mance, often combining neural networks or heuris-
tic features(Huang et al., 2023; Tan et al., 2023;
Ning et al., 2024; Yuan et al., 2024). In addition,
we employ RoBERTa-Large (Liu et al., 2019) and
BART-Large (Lewis et al., 2020) as two baseline
models for comparison of SLMs.

As for fine-tuning LLMs, the LoRA rank is set
to 16. All experiments are trained on NVIDIA
A800 GPUs with 80GB of memory. In this paper,
following previous work for hyperparameter op-
timization(Yao et al., 2024), we also employ the
HEBO (Heuristic-Efficient Bayesian Optimization)
algorithm, which is illustrated in Appendix A.

3.3 Main Results
As shown in Table 1, our method achieves SOTA
performance in all existing methods and baseline
methods. It is apparent from this table that very
few models utilize LLMs as their language model
to chase superior performance, but our methods
adopt LLMs and outperform all previous models
without manually designed prompts or instructions
tuning. Meanwhile, unlike previous approaches,
we arrange LLMs not as a standalone reasoning
model, which also shows the effectiveness of uti-
lizing distance-aware graph structure to form our
approach, and is validated to capture the global
feature of temporal event relations.

Additionally, our method GDLLM(Ours) outper-
forms the previous SOTA model(Yao et al., 2024)
that only adopts SLM as its language model, achiev-
ing an increase of 1.9% on the micro-F1 compar-
ison of the TB-Dense dataset. Although the rela-
tively smaller data scale of the MATRES dataset
and its characteristic of extremely imbalanced class
distribution may limit the model’s ability to fully
learn the event categories, our method still effec-
tively outperforms the existing best result by 0.5%.
This not only validates that our temporal feature
learning paradigm based on distance-aware model-
ing enables the model to learn global features with
different proximity more effectively, but also indi-
cates the impressive capabilities of the LLM we em-
ployed. We also observe significant advantages of
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Figure 4: The performance of micro-F1, macro-F1, and
the F1 score of some minority categories between our
methods and the selected study. SIM: SIMULTANEOUS.
INC: INCLUDES. Gap: the difference between micro-
F1 and macro-F1. A lower Gap value indicates better
performance of the model on minority categories.

our method compared with the two SLMs we devel-
oped, the RoBERTa-Large and BART-Large. That
is because, compared with large language models,
SLMs have certain limitations in the volume of
pre-training data and only generate less accurate
probability distribution prediction vectors.

3.4 Performance on Minority Categories

To confirm that our method is valid to identify the
minority categories more effectively in the situation
of imbalanced data, we also compare the micro-F1
score and macro-F1 score between our methods
and the most recent study on a similar issue(Yuan
et al., 2024), which reports that their results out-
perform earlier studies on the macro-F1 score. Ac-
cording to respective definitions, macro-F1 gives
equal weight to each category, while micro-F1
gives equal weight to each sample. This ensures
that if a model achieves a severe gap between mi-
cro and macro, the model cannot perform well on
minority categories.

It can be seen from the data in Figure 4 that
the “Gap” scores on our methods are obviously
lower than those in the model CPTRE. In gen-
eral, our GDLLM (Llama3.1) model outperforms
CPTRE on all minority categories. Although our
method GDLLM_Qwen performs suboptimally on
the EQUAL class when using Qwen as the language
model, we think that is because the EQUAL class
has an exceptionally low count, causing the model’s
severely biased prediction on the categories with
extremely high proportions during training. On the
basis of the analysis above, our proposed model
achieves significantly better performance on all
datasets regarding macro-F1 scores, and it indeed
improves the model’s performance on minority tem-
poral relation classes.
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Method LLMs P(%) R(%) F1(%)

GDLLM Llama3.1 86.5 95.9 90.9
w/o LP - 64.6 73.4 68.7
w/o GD Llama3.1 77.2 79.0 78.1
w/o PI Llama3.1 78.9 86.7 82.6

GDLLM Qwen2.5 86.8 94.8 90.6
w/o LP - 64.6 73.4 68.7
w/o GD Qwen2.5 74.0 82.7 77.1
w/o PI Qwen2.5 75.3 82.1 79.5

Table 2: The ablation experimental results on the MA-
TRES dataset. “w/o LP” only uses the GAT-based multi-
head attention mechanism.

3.5 Ablation Study

Table 2 illustrates the ablation experimental results
on the MATRES dataset (Appendix B shows ab-
lation results on the TB-Dense dataset. Since the
ablation results on the two datasets are equivalent,
in this subsection, we analyze the results on the
MATRES dataset as a representative case). Our
experiments are based on two LLMs (Llama3.1
and Qwen2.5). When analyzing the impact of re-
moving components from the GDLLM method,
we observe that “w/o LP” (without LLM-based
Probability Generation), “w/o GD” (without GAT-
based Distance-aware Structure), and “w/o PI”
(without Probabilistic Soft Inference Learning
Paradigm) lead to a decrease in performance.

Analysis of LP. As shown in Table 2. Through
the comparison of the w/o LP module, the micro-F1
scores decrease by 22.2% and 21.9%, respectively.
When the component responsible for generating
probability distributions via LLMs is removed, the
model consistently achieves the lowest micro-F1
score across all cases. This illustrates that it is chal-
lenging for GAT to identify event relations without
the probabilistic information generated by LLMs,
because the model has been deprived of the pow-
erful capability to capture relation features with a
short-distance proximity band.

Analysis of GD. As shown in Table 2. Com-
paring the w/o GD module, the micro-F1 scores
drop by 12.8% and 13.5% based on Llama and
Qwen, respectively. This indicates the limitation of
utilizing LLMs standalone for ETRE, and further
demonstrates that our GAT-based distance-aware
structure indeed aids the LLMs to better learn the
relation features with long-distance dependency.

Analysis of PI. As depicted in Table 2. We also

Method Distance

2 3 4 5

w/o GD 79.3 80.8 75.7 81.8
w/o PI 78.1 86.3 87.8 90.2
Ours 87.3 93.1 95.7 90.9

Table 3: The comparison of micro-F1 scores(%) of
subsets divided based on different distance conditions
on the MATRES dataset. The data in bold and with
underlines represent the optimal and suboptimal results
under each distance condition, respectively.

remove the probabilistic soft inference paradigm
for temporal feature learning. That is, we make
the LLMs only generate corresponding “0/1” label
prediction values for edge features, transforming
the entire process into a dual-stage hard classifi-
cation. Comparing the w/o PI module, the micro-
F1 scores decline by 8.3% and 11.1% on the two
models. This suggests that enabling the model
to learn probabilistic distribution information im-
proves the identification of the event relation of the
short-distance proximity band.

Compared with the results in “w/o PI”, the re-
sults in “w/o GD” generally exhibit a more pro-
nounced decline in model performance. This is
attributed to the under-learning of a large number
of event pairs with long-distance features in the im-
balanced dataset, among which the majority belong
to minority category labels.

3.6 Performance on Distance Features

We also test the performance with modules w/o
GD and w/o PI under different distance conditions
utilizing Llama3.1. Specifically, we define the dis-
tance feature as follows: If there are n other events
between the target event pair (Ei, Ej), the distance
between them is set to n. As illustrated in Ta-
ble 3, when the distance is progressively increased,
the performance of the w/o GD models becomes
lower than the w/o PI models. This indicates that
our distance-aware graph structure can more ef-
fectively identify temporal relations with longer
event distances. Meanwhile, when we remove the
PI approach, the decline of micro-F1 scores be-
comes less pronounced as the event distance in-
creases. Notably, when the distance increases to
5, our method only outperforms the model w/o PI
by 0.7%. This suggests that the proposed feature
learning paradigm can more effectively enhance
the performance for events with shorter distances.
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Figure 5: The micro-F1 score of the performance com-
parison on the MATRES dataset between our methods
and other benchmarks based on zero-shot.

3.7 Analysis of Zero-Shot Experiment

As depicted in Figure 5, we conduct various experi-
ments to compare the zero-shot performance on the
MATRES dataset with different benchmarks(Yuan
et al., 2023; Xu et al., 2025). 1)For Manually
and Vanilla, Manually means giving manually
designed prompts or instructions to the “Vanilla”
LLMs which are not fine-tuned. Early work(Yuan
et al., 2023) designs three kinds of prompt tech-
niques (ZS, ER, and CoT) to evaluate ChatGPT,
which gives their best performance on the CoT
prompts at 52.4%. We report the result on vanilla
GPT4o, which is higher than the CoT method. It
suggests the importance of the scale of different
LLMs and the limitations of manually designed
prompts. 2)For Zero-GDLLM, it is to directly
generate a probability distribution from Llama3.1
to GAT without LoRA tuning and the GAT oper-
ates with fixed parameters. We can see our Zero-
GDLLM method in Figure 5 outperforms all pre-
vious results above. That indicates the superior
capacity of our distance-aware modeling approach
in zero-shot learning scenarios.

For the input formats in zero-shot scenarios, we
utilize hand-crafted prompts (e.g., “I will give you
a paragraph that uses [EV 1], [/EV 1], [EV 2] and
[/EV 2] to, respectively mark two events, with the
event relations divided into ‘BEFORE’, ‘AFTER’,
‘VAGUE’ and ‘EQUAL’. You only need to provide
the final judgment result of the event relation”)
without task-specific training.

3.8 Case Study for Minority Categories

To evaluate the effectiveness of clustering minor-
ity categories, we visualize the final prediction re-
sult representations of positive samples in high-
dimensional space. Specifically, we first obtain all
representations on the testing set of the TB-dense
dataset, which features highly imbalanced classes.

(a)w/o GD (b)w/o LP

(c)w/o PI (d)Ours

Figure 6: The visualized clustering comparison results
of the ablation study based on Llama3.1-8B.

Given the complex and non-linear nature of the
data, we choose t-Distributed Stochastic Neighbor
Embedding (t-SNE) as the dimension reduction
technique to project the high-dimensional represen-
tations onto a two-dimensional space for visualiza-
tion. We employ three baseline models following
the ablation study.

As depicted in Figure 6(b) and Figure 6(c), the
representation distribution of all positive examples
has almost no obvious boundaries, which indicates
the model performs poorly in clustering. Com-
pared with Figure 6(a), it can be seen from Fig-
ure 6(d) that the t-SNE visualization of the pro-
posed approach clearly separates and clusters mi-
nority relation classes, such as INCLUDES and
IS_INCLUDED, although there is still some minor
overlap between classes, the distinct clustering pat-
terns indicate that the model effectively captures
the unique characteristics of these minority cate-
gories. This demonstrates that our approach effec-
tively augments the capacity of capturing the global
relation feature. Overall, the comparison results
from the t-SNE visualization strongly demonstrate
the superiority of the proposed model in handling
minority temporal relation classes.

3.9 The Performance Comparison on
GNN-based Benchmarks

We analyze the performance of GNN-based meth-
ods with different benchmarks, which is depicted
in Figure 7. The existing SOTA model MulCo(Yao
et al., 2024) contributes various GNN-based re-
sults. Our method, based on two layers of GAT,
outperforms MulCo-RGAT(2), highlighting the ef-
fectiveness of our GDLLM proposed in the GNN-
based approaches. We also test the performance of
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the GCN-based methods, which suggests that GCN
lacks the capacity of multi-head attention, failing to
effectively learn the probabilistic relation features
for the short-distance proximity band.

4 Related Work

Earlier studies for ETRE predominantly rely on
machine learning(Mani et al., 2006; Yoshikawa
et al., 2009). Afterwards, some research integrates
Pre-trained Language Models to capture temporal
semantics in the context (Cheng et al., 2020; Wen
and Ji, 2021; Mathur et al., 2021; Man et al., 2022).
It is also worth noting that more and more studies
focus on the special structure of event temporal
relations. One of the widely employed graph-based
methods is GNNs. Different GNN-based meth-
ods have been proposed to better learn the rela-
tion cues (Mathur et al., 2021; Man et al., 2022).
Differently, other researchers embed events in hy-
perbolic spaces for better hierarchical structure
modeling(Tan et al., 2021). Prior SOTA model
MulCo(Yao et al., 2024) combines GNNs and the
model of BERT variants via multi-scale knowledge
distillation. There are also studies that tackle data
scarcity or imbalance(UzZaman et al., 2013; Wang
et al., 2020; Han et al., 2020; Guan et al., 2021; Tan
et al., 2023; Yuan et al., 2024), while some work
designs certain temporal rules (Ballesteros et al.,
2020; Zhuang et al., 2023; Ning et al., 2024).

With the rapid development of LLMs, re-
searchers pay great attention to the Question-
Answer (QA) mechanism(Xu et al., 2025; Hu et al.,
2025). Similar to the zero-shot studies, another
work proposes a variety of valuable prompt ex-
planations(Yuan et al., 2023) or utilizes a unified
framework(Huang et al., 2023). Appendix C shows
the performance of the previous LLM-based meth-
ods versus our approach on the MATRES dataset.

5 Conclusion

In this paper, we propose GDLLM, a Global
Distance-aware modeling approach based on
LLMs. Specifically, we present a distance-aware
graph structure utilizing GAT to assist LLMs in
capturing long-distance dependency features. Ad-
ditionally, we design a temporal feature learning
paradigm based on soft inference to augment the
event relation extraction with a short-distance prox-
imity band. Our framework also substantially en-
hances the performance of minority relation classes
and improves the overall learning ability. Extensive
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90.4%
88.5%

87.5%

90.9%
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Figure 7: The micro-F1 score of the previous GNN-
based method versus our approach on the two datasets.
“MulCo-RGAT(n)” represents the model adopts n GNN
layers.

experiments on two public datasets, TB-Dense and
MATRES, demonstrate that our approach outper-
forms all LLM-based and GNN-based benchmarks,
achieving SOTA performance without manually
designed prompts or instructions for LLMs.

Limitations

Although our method has already achieved the
current state-of-the-art performance, the limita-
tions may still exist. Due to the different cate-
gory choices of LLMs, their inherent adaptability
to task diversity or bias may pose challenges to our
model training or performance. For example, on
the minority class EQUAL, the baseline utilizing
the Qwen model exhibits suboptimal performance
compared to the model CPTRE. Meanwhile, fu-
ture work is needed to explore more effective and
diverse modeling or training methods for Large
Language Models.
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A HEBO Algorithm for Hyperparameter
Optimization

HEBO is a Bayesian optimization-based algorithm
designed to efficiently search for optimal hyperpa-
rameter combinations in a high-dimensional space.
The algorithm details are as follows:

Suppose x be a vector of hyperparameters, and
y = f(x) be the objective function, which is the
evaluation metric of the model on the validation set.
We utilize the Gaussian Process surrogate model
of HEBO, which is f̂(x) that has a mean func-
tion µ(x) and a variance function σ2(x), such that
f̂(x) ∼ N (µ(x), σ2(x)). The acquisition function,
such as expected value E, is defined as:

a(x) = E[max(0, f(x∗)− f̂(x))], (9)

where x∗ is the optimal hyperparameter point cur-
rently. The next hyperparameter point xnext to
evaluate is selected by maximizing the acquisition
function:

xnext = argmax
x

a(x). (10)

Specifically, we use the HEBOSearch implemen-
tation. The hyperparameter search space includes
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Method LLMs P(%) R(%) F1(%)

GDLLM Llama3.1 88.3 86.6 87.5
w/o LP - 47.3 69.1 53.2
w/o GD Llama3.1 67.8 58.1 62.5
w/o PI Llama3.1 62.4 72.6 66.0

GDLLM Qwen2.5 85.3 86.5 86.1
w/o LP - 47.3 69.1 53.2
w/o GD Qwen2.5 68.0 72.7 70.8
w/o PI Qwen2.5 63.6 71.5 66.0

Table 4: The ablation experimental results on the TB-
Dense dataset. “w/o LP” only uses the GAT-based multi-
head attention mechanism.

85.5% 82.9% 82.6% 86.8% 86.5%83.9% 87.6% 88.7% 94.8% 95.9%

84.7% 85.2% 85.5%
90.6% 90.9%

0

0.2

0.4

0.6

0.8

1

MAQInstruct(Llama2) LLMERE(Llama2) LLMERE(Llama3.1) Ours(Qwen2.5) Ours(Llama3.1) 

P R micro-F1

Figure 8: The performance of the previous LLM-based
methods versus our approach on the MATRES dataset.

parameters such as the dropout rates, class weights,
and the learning rate. We initialize the search pro-
cess with a set of randomly sampled hyperparame-
ter points. For each iteration, the HEBO algorithm
calculates the acquisition function values for all
points in the search space based on the current
surrogate model. The hyperparameter point with
the maximum acquisition function value is then
selected and evaluated on the model. After obtain-
ing the evaluation result, the surrogate model is
updated to incorporate this new information. Com-
pared to traditional hyperparameter optimization
methods such as random search and grid search,
HEBO can more efficiently explore the hyperpa-
rameter space by leveraging the information from
previously evaluated points.

B The Ablation Experimental Results on
the TB-Dense Dataset.

As shown in Table 4, the ablation experimental
results on the TB-Dense dataset also reveal the
importance of different components.

C The Performance Comparison on
LLM-based Benchmarks

As depicted in Figure 8, we test the performance of
the LLM-based methods, which suggests that our
methods outperform all the previous benchmarks.
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