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Abstract

Text-to-SQL oriented table acquisition suffers
from heterogeneous semantic gap. To address
the issue, we propose a Reverse Engineering
(RE) based optimization approach. Instead of
forward table search using questions as queries,
RE reversely generates potentially-matched
question conditioned on table schemas, and
promotes semantic consistency verification be-
tween homogeneous questions. We experiment
on two benchmarks, including SpiderUnion
and BirdUnion. The test results show that our
approach yields substantial improvements com-
pared to the Retrieval-Reranker (2R) baseline,
and achieves competitive performance in both
table acquisition and Text-to-SQL tasks.1

1 Introduction

We study SQL table acquisition for Text-to-SQL.
Text-to-SQL is a task of generating the executable
SQL query given a certain question (Yu et al., 2018;
Kim et al., 2020; Li et al., 2023b; Katsogiannis-
Meimarakis et al., 2023; Liu et al., 2025). Table ac-
quisition is a crucial subtask of Text-to-SQL, which
acquires the question-related SQL tables to support
source-aware reasoning of SQL queries (Kothyari
et al., 2023; Zhang et al., 2025). Figure 1 shows
an example, where “✓” denotes the relevant table
needs to be acquired from the SQL database.

The core of SQL table acquisition is relevance-
centered text matching at the semantic level. Cur-
rent studies struggle with the bottleneck of hetero-
geneous semantic gap. Specifically, a SQL table
appears as the semi-structured data, whose schema
is constituted with relation-unaware fragmented
names (e.g., field names). By contrast, the question
is a free text. Therefore, for a pair of mutually-
aligned table and question, it is difficult to facilitate
their semantics to exactly coincide with each other.

*Corresponding author
1Our code and data are available at https://github.com/sido-

meet/Reverse-Engineering.

Figure 1: An example of SQL table acquisition.

This limits the implementation of anti-distraction
relevance measurement.

To address the issue, we propose a Reverse Engi-
neering (RE) based optimization approach. It lever-
ages Large Language Model (LLM) to reversely
generate potentially-matched question for every
SQL table. On this basis, we conduct text matching
between homogeneous data, i.e., the input question
and the reversely-generated question. In our experi-
ments, we use RE to strengthen Retrieval-Reranker
(2R) based table acquisition model. Experiments
on SpiderUnion (Kothyari et al., 2023) and Bir-
dUnion (Kothyari et al., 2023) demonstrate that RE
enables both the BGE-M3 (0.5B) based table acqui-
sition and Text-to-SQL models to perform better.
In addition, it achieves competitive performance
compared to the strong models CRUSH (Kothyari
et al., 2023) and MURRE (Zhang et al., 2025) that
use a larger baseline SGPT (5.8B).

2 Approach

In general, SQL-table acquisition is performed in
a Retriever-Reranker (2R) framework (Chen et al.,
2024b; Kothyari et al., 2023), i.e., retrieving can-
didate SQL tables and re-ranking them according
to question-oriented relevance. Top-k candidates
will be adopted as the results. The 2R framework
is formalized as follows.

Tr = f(q, To) (2.1)
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where, q is a question, To denotes all tables in the
SQL database, Tr is the list of ranked SQL tables,
while f serves as an 2R model.

We propose a reverse engineering approach to
strengthen the 2R framework. It uses a LLM to
reversely generate the potentially-matched ques-
tion qo for each SQL table. We specify qo as a
reference object, and integrate it into the 2R model
to optimize relevance estimation. On this basis, we
form a conditional 2R framework, which is formal-
ized as follows.

Tr = f(q, To|Qo) (2.2)

where, Qo (qo ∈ Qo) refers to the set of potentially-
matched questions generated by LLM for all SQL
tables, which serves as the crucial condition for
optimizing relevance estimation.

In the subsections, we first present the 2R-based
baseline, and further detail our reverse engineering
based approach.

2.1 “2R” Baseline

Retriever— The retriever in the 2R baseline is de-
veloped with BGE-M3 (Chen et al., 2024a), which
is pretrained on 1.2 billions of multilingual data.

In BGE-M3, two BERTs (Devlin et al., 2019)
are coupled with pooling layers, which form two
separate encoding channel. We use one channel to
encode the question q, and use the other to encode
the schema s of SQL table. Note that q is embodied
as a free text, though s appears as semi-structured
data that comprises a SQL table name and its inner
field names, as shown in (1).

(1) Schema Pattern: Table Name (Field Name 1,
Field Name 2, ..., Field Name N )
Example: Retails.nation (Nation key, Nation
key, Orientation, Territorial area, Population)

By BGE-M3, we obtain the embeddings of q and
s, which are referred to Eq and Es respectively (Eq,
Es ∈ R1×1,024). Thus, we estimate the relevance
score by computing the Cosine similarity between
Eq and Es, i.e., r=Cosine(Eq, Es). Given q, we
estimate q-oriented relevance to the schemas of all
SQL tables in the SQL database, and rank them in
descending order of relevance. On this basis, we
adopt top-K schemas, and regard them as the can-
didate results. During training, we follow previous
works (Niu et al., 2023; Wang et al., 2024) to apply
contrastive learning (Hadsell et al., 2006).

Reranker— The reranker serves to re-estimate
the relevance scores of the K candidates for re-
ranking, with the aim to squeeze out top-k (k<K)
most reliable results. We construct the reranker
by coupling XLM-RoBERTa-large (Conneau et al.,
2020) with a two-layer perceptron. Given a can-
didate schema ṡ, we concatenate it with q to form
the input I (I=[CLS]q[SEP]ṡ[SEP]), and feed I
into XLM-RoBERTa-large to produce hidden state
h ∈ R1×1,024 of [CLS]. Conditioned on h, the
perceptron predicts the relevance score ṙ ∈ R1×1.
During training, we use cross-entropy to calculate
loss based on the dataset we constructed.

2.2 Reverse Engineering

Within a reverse engineering process, we infer the
potentially-matched question (viz., qo) for each
SQL table, where qo is required to be a free text.
The utilization of qo in the 2R framework enables
the conversion from heterogeneous semantic match-
ing (between semi-structured schema and question)
to homogeneous (between questions q and qo).

We leverage Qwen2.5-7B-Instruct (Yang et al.,
2024) to generate qo for each SQL table. Dur-
ing generation, we feed the schema of each SQL
table into Qwen2.5-7B-Instruct, and prompt it to
generate qo that aligns with the schema. To avoid
hallucinations like off-topic qo or free-style out-
put structure, we fine-tune Qwen2.5-7B-Instruct
using the training set. In the training set, the gold
question aligning with a SQL table is observable.
Fine-tuning is performed upon two 3090 GPUs
(24G), where LoRA (Hu et al., 2022) is used for
optimizing efficiency, and the loss between qo and
gold question is calculated with cross-entropy.

2.3 Conditional “2R” Model

We use the potentially-matched question qo as an
additional condition that constrains the relevance
estimation. This constraint is imposed upon the
retriever and reranker separately.

For retriever, we compute the similarity ř for
the homogeneous questions q and qo. The compu-
tation process is similar to that of baseline, where
BGE-M3 is used to produce the embeddings Eq

and Eqo for q and qo, and cosine similarity is cal-
culated, i.e., ř=Cosine(Eq, Eqo). Further, we com-
bine ř with the similarity r, i.e., the one obtained
for heterogeneous schema s and question q:

R = α · r + (1− α) · ř (2.3)
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Dataset Model UR@5 UR@10 UR@20 PR@5 PR@10 PR@20

SpiderUnion

Retriever v1 (SGPT 125M) (Zhang et al., 2025) 66.0 75.4 82.2 73.1 80.7 86.3
Retriever v2 (SGPT 5.8B) (Zhang et al., 2025) 86.8 94.1 97.6 91.5 96.2 98.7
Retriever v3 (BGE-M3 0.5B) 79.8 86.9 93.9 86.6 91.9 96.4
Retriever v4 (BGE-M3-finetuned 0.5B) 92.6 97.1 98.6 95.4 98.4 99.3

Retriever v1+RE 66.7 ↑ 76.4 ↑ 85.0 ↑ 74.2 ↑ 81.9 ↑ 88.7 ↑
Retriever v2+RE 86.2 94.7 ↑ 97.6 91.4 96.8 ↑ 98.8 ↑
Retriever v3+RE 81.2 ↑ 87.7 ↑ 94.5 ↑ 87.9 ↑ 92.6 ↑ 97.0 ↑
Retriever v4+RE 92.9 ↑ 96.8 98.5 95.6 ↑ 98.3 99.3

BirdUnion

Retriever v1 (SGPT 125M) (Zhang et al., 2025) 50.3 62.1 70.9 63.2 73.3 80.9
Retriever v2 (SGPT 5.8B) (Zhang et al., 2025) 67.3 79.4 86.4 80.8 88.6 92.8
Retriever v3 (BGE-M3 0.5B) 56.3 71.7 82.7 72.7 83.0 90.1
Retriever v4 (BGE-M3-finetuned 0.5B) 76.0 87.4 92.0 87.1 93.4 95.9

Retriever v1+RE 51.8 ↑ 63.1 ↑ 72.5 ↑ 65.2 ↑ 74.9 ↑ 82.4 ↑
Retriever v2+RE 68.8 ↑ 80.1 ↑ 87.7 ↑ 82.1 ↑ 89.3 ↑ 93.4 ↑
Retriever v3+RE 60.6 ↑ 74.9 ↑ 85.3 ↑ 76.1 ↑ 85.6 ↑ 92.2 ↑
Retriever v4+RE 76.1 ↑ 88.1 ↑ 92.2 ↑ 87.1 93.7 ↑ 96.0 ↑

Table 1: Performance obtained when retriever is solely used for SQL table acquisition. The symbol “↑” denotes that
the performance is improved when Reverse Engineering (RE) is additionally used to enhance the retriever.

where, α is a dynamic weight which is presented in
Appendix A. We preliminarily rank all SQL tables
in descending order of R, and adopt K candidates.

For reranker, all its model structure, inner dis-
tributed representation process and training strat-
egy remain unchanged. We only refine the input
I , which is expanded with the potentially-matched
question qo, i.e., I=[CLS]q[SEP]ṡ[SEP]qo[SEP].
According to the output relevance score Ṙ, we
rerank the K candidates, and adopt top-k (k<K)
highly ranked candidates as the final results.

3 Experimentation

3.1 Datasets, Evaluation and Parameters
Datasets— We experiment on SpiderUnion (Koth-
yari et al., 2023) and BIRDUnion (Kothyari et al.,
2023). Both are constructed by merging SQL ta-
bles in Spider (Yu et al., 2018) and BIRD (Li et al.,
2023b), containing 4,502 and 75 tables respectively,
along with 658 and 1,534 questions. All the data
in SpiderUnion and BIRDUnion are used for test-
ing. We follow Kothyari et al. (2023) to construct
the training set, which contains 18,087 samples,
each of which is a self-harmonic tuple of {question,
table and schema}.

Evaluation— We follow the previous work
(Kothyari et al., 2023; Zhang et al., 2025) to evalu-
ate SQL table acquisition models. Unbroken Recall
(UR@k) and Partial Recall (PR@k) are used as
the metrics. UR@k is specified as the propor-
tion of positive samples in the top-k acquired re-
sults, where a positive sample denotes the one that
holds the same unabridged components (table name

and field names) as the gold table. The free-style
sequential layout of the components is allowed.
PR@k is calculated in the same manner, though it
allows some of the gold components to be omitted.
In a separate experiment, we evaluate the effect
of unabridged Text-to-SQL (table acquisition plus
SQL query generation), where Execution Accuracy
(EX@k) (Yu et al., 2018) is used as the metric,
where k indicates that top-k retrieved SQL tables
are used as evidence for generating the SQL query.

Hyperparameter Settings— The details of all
hyperparameters are presented in Appendix B.

3.2 Main Results

We first evaluate the performance of different re-
trievers for SQL table acquisition, in which a re-
triever is solely used without cooperating with any
reranker. During evaluation, we compare to the
previous work (Zhang et al., 2025) which uses dif-
ferent sizes of SGPT (Muennighoff, 2022) to con-
struct the retriever. Table 1 shows the performance,
where RE denotes that Reverse Engineering (RE)
used for enhancement. As indicated by the sym-
bol “↑”, RE improves the four retriever baselines
in nearly all top-k (k=5, 10 and 20) results when
BirdUnion is used for testing. Similar situation
can be observed when SpiderUnion is used for test-
ing, except the unstable effect on the BGE-M3
fine-tuned by contrastive learning. These test re-
sults demonstrate the reliability of RE in bridging
semantic gaps across heterogeneous question and
table schema.

In a separate experiment, we verify the effect of
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Dataset Model UR@5 UR@10 UR@20 PR@5 PR@10 PR@20

SpiderUnion

1R Baseline (SGPT 125M) (Zhang et al., 2025) 66.0 75.4 82.2 73.1 80.7 86.3
+CRUSH (Kothyari et al., 2023) 71.3 80.7 86.8 76.3 83.4 88.9
+MURRE (Zhang et al., 2025) 74.2 81.0 85.3 77.5 82.3 86.9

1R Baseline (SGPT 5.8B) (Zhang et al., 2025) 86.8 94.1 97.6 91.5 96.2 98.7
+CRUSH (Kothyari et al., 2023) 80.1 88.4 92.2 85.1 91.2 94.5
+MURRE (Zhang et al., 2025) 93.5 96.7 97.3 94.3 96.8 97.5

2R Baseline (BGE-M3 0.5B) 81.9 91.2 95.6 88.7 94.8 97.8
+RE+Conditional 2R (Ours) 93.9 97.0 98.5 97.0 98.4 99.3

BirdUnion

1R Baseline (SGPT 125M) (Zhang et al., 2025) 50.3 62.1 70.9 63.2 73.3 80.9
+CRUSH (Kothyari et al., 2023) 56.1 70.2 77.7 70.0 79.5 86.1
+MURRE (Zhang et al., 2025) 62.7 72.9 78.3 72.7 79.6 84.2

1R Baseline (SGPT 5.8B) (Zhang et al., 2025) 67.3 79.4 86.4 80.8 88.6 92.8
+CRUSH (Kothyari et al., 2023) 63.5 78.4 88.1 77.9 87.5 93.0
+MURRE (Zhang et al., 2025) 80.1 88.7 92.7 87.6 92.6 95.4

2R Baseline (BGE-M3 0.5B) 62.6 78.1 86.9 77.8 87.6 93.1
+RE+Conditional 2R (Ours) 79.7 89.7 94.4 89.4 94.7 97.1

Table 2: Comparing SQL table acquisition performance among different models.

Model SpiderUnion BirdUnion
EX@5 EX@10 EX@20 EX@5 EX@10 EX@20

SGPT (125M)+CRUSH+GPT3.5 (Kothyari et al., 2023) 50.9 55.9 59.6 17.1 19.0 20.5
SGPT (5.8B)+CRUSH+GPT3.5 (Kothyari et al., 2023) 56.4 60.3 60.8 18.0 19.7 21.1
SGPT (125M)+MURRE+GPT3.5 (Zhang et al., 2025) 54.1 54.7 57.4 16.8 19.4 20.0
SGPT (5.8B)+MURRE+GPT3.5 (Zhang et al., 2025) 64.4 64.4 66.7 21.8 22.0 22.4
BGE-M3 (0.5M)+RE+Conditional 2R+GPT3.5 (Ours) 64.4 64.6 66.9 21.7 22.8 23.3
BGE-M3 (0.5B)+RE+Conditional 2R+QwenCoder (Ours) 68.2 64.4 63.5 23.5 22.0 22.2

Table 3: Comparing Text-to-SQL performance among different models, where EX@k is used for evaluation.

our unabridged approach, where the retriever and
reranker in 2R baseline (Section 2.1) are mutually
coupled with, and they are respectively enhanced
by RE (Section 2.2) and conditional 2R framework
(Section 2.3). In this experiment, we compare with
the previous work CRUSH (Kothyari et al., 2023)
and MURRE (Zhang et al., 2025). They are strong
competitors due to their abilities in schema com-
paction and redundancy elimination. We present
them and other related arts in Appendix C.

Table 2 show the test results, where the best per-
formance is highlighted with bold font. It can be
observed that our approach (RE plus Conditional
2R) yields substantial improvements compared to
the 2R baselines, demonstrating its positive effects
(See ablation studies in Appendix D). In addition,
our approach outperforms CRUSH and MURRE
in most cases. Note that our 2R baseline (0.5B)
obtains worse performance than the large version
(5.8B) of 1R baseline on two datasets. This indi-
rectly exhibits the considerable benefits from RE
and Conditional 2R.

Finally, we compare with CRUSH and MURRE
in the complete Text-to-SQL scenario, where the

acquired SQL tables are used as evidence for LLM-
based SQL query generation. In this experiment,
we employ GPT-3.5-turbo (175B) (Ouyang et al.,
2022) for query generation, the same as CRUSH
and MURRE. Furthermore, we also apply Qwen-
Coder (7B) (Gao et al., 2024) for this task. Table 3
shows the test results (EX@k). It can be observed
that our approach enables QwenCoder to achieve
better performance in EX@5 rather than EX@20,
with overall improved performance demonstrated
by our method. This illustrates that the relieving of
heterogeneous semantic gap by RE enables a light-
weight SQL generator to perform well, conditioned
on a smaller number of retrieval results.

4 Conclusion

We propose a reverse engineering based approach
to relieve the semantic gaps between heterogeneous
questions and SQL tables. Experiments show that
our approach achieves substantial improvements.
More importantly, it enables a light-weight table
acquisition model to effectively support Text-to-
SQL using a smaller number of search results.
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Concrete SQL contents (i.e., values), as demon-
strated previously, contribute to table acquisition.
However, the utilization of SQL contents still en-
counters heterogeneity problem. Therefore, we
will generate hybrid groups of SQL schemas and
values in the future, and study graph-based reverse
engineering for table acquisition and Text-to-SQL.

Limitations

The current version of reverse engineering pro-
ceeds in the one-to-one generation manner. Specifi-
cally, we leverage LLM to generate the potentially-
matched question for a sole table in terms of its
schema. However, in some cases, the gold SQL
query induced by a question actually aligns with
multiple SQL tables. This implies the requirement
of decomposing a question into subquestions, and
carrying out multi-directional SQL table acquisi-
tion. As a result, for such cases, it is difficult to
maintain the symmetric information amount be-
tween the input content-rich question and the gen-
erated exclusive question of a SQL table during text
matching. This reveals the requirement of further
studying multi-table reverse engineering, where au-
tomatically discovering inherently-related tables
for information fusion is an indispensable step.
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Dataset Method UR@5 UR@10 UR@20 PR@5 PR@10 PR@20

SpiderUnion

Ours 93.9 97.0 98.5 97.0 98.4 99.3
w/o RE 93.6 ↓ 97.0 98.3 ↓ 96.7 ↓ 98.4 99.2 ↓
w/ original BGE-M3 86.3 ↓ 94.4 ↓ 98.2 ↓ 91.8 ↓ 96.9 ↓ 99.1 ↓
w/o Reranker 92.9 ↓ 96.8 ↓ 98.5 95.6 ↓ 98.3 ↓ 99.3
w/ original Reranker 87.8 ↓ 94.1 ↓ 96.2 ↓ 93.2 ↓ 96.8 ↓ 98.2 ↓

BirdUnion

Ours 79.7 89.7 94.4 89.4 94.7 97.1
w/o RE 79.5 ↓ 89.5 ↓ 94.1 ↓ 89.2 ↓ 94.5 ↓ 97.0 ↓
w/ original BGE-M3 71.0 ↓ 83.2 ↓ 89.8 ↓ 83.4 ↓ 91.0 ↓ 94.8 ↓
w/o Reranker 76.1 ↓ 88.1 ↓ 92.2 ↓ 87.1 ↓ 93.7 ↓ 96.0 ↓
w/ original Reranker 66.2 ↓ 78.4 ↓ 87.1 ↓ 80.8 ↓ 88.3 ↓ 93.3 ↓

Table 4: The ablation results on evaluating our method, compared without Reverse Engineering (RE) (denoted as
w/o RE), using the BGE-M3 without task-specific fine-tuning (denoted as w/ original BGE-M3), without Reranker
(w/o Reranker), and using the Reranking model without task-specific fine-tuning (denoted as w/ original Reranker).

A Dynamic weight for retriever

In this section, we elaborate on constructing the
dynamic weight α. A fixed hyperparameter cannot
adapt to differences because datasets and retriev-
ers vary. Therefore, we propose a dynamic weight
scheme. First, we add Es and Eqo as joint embed-
ding Ec. Then, we estimate the relevance score be-
tween Eq and Ec by compute the Cosine similarity,
i.e., rc=Cosine(Eq, Ec). In retrieval, rc is oriented
by table semantics, with potentially-matched ques-
tion playing a supplementary role. When rc is low,
it signifies that the table schema and the question
are irrelevant, so 1− rc should be allocated the r.
When rc is high, indicating a relatively strong rele-
vance between the table schema and the question,
rc is assigned to the r. Therefore, the dynamic
weight α is formatted as follows:

α = max(rc, 1− rc) (A.1)

To verify the effectiveness of dynamic weight,
we conducted experiments with both dynamic α
and various fixed α values on two datasets using
four models. The results are shown in the figure 2.
The experiments on α show that different mod-
els need different α settings on different datasets.
In the figure 2, the best α for BGE-M3 is 0.7 on
BIRD, but 0.9 on the Spider dataset. However, the
dynamic α setting is always optimal or nearly op-
timal, which shows that it works well. It is also
more practical for real-world applications.

B Hyperparameter settings

For the retriever, we set the candidates K as 40.
For the embedding model (BGE-M3), we set the
number of negative samples to 25, which are ran-
domly selected from 5-200 top-similarity irrelevant

tables. For the reranking model (BGE-ranker-v2-
M3), we set the number of negative samples to
10, which are randomly selected from 5-20 top-
similarity irrelevant tables. To fine-tune both the
embedding model and the reranking model, we
use the FlagEmbedding2 framework. For the Re-
verse Engineering, we adopt the LLaMA-Factory3

framework with LoRA (Hu et al., 2022) technique
to fine-tune Qwen2.5-7B-Instruct model (Yang
et al., 2024), while setting the LoRA rank to 12.

C Related work

Text-to-SQL plays a crucial role for optimizing data
accessibility of SQL (Kim et al., 2020). Recently,
Text-to-SQL performance has been increasingly
improved due to the emergence of Large Language
Models (LLMs) (Liu et al., 2025).

The current studies (Pourreza and Rafiei, 2023;
Li et al., 2023a; Xie et al., 2024; Talaei et al.,
2024) have explored the approaches of task de-
composition, where different data acquisition sub-
tasks are obtained. This allows LLMs to generate
relatively-precise solutions by separately handling
each sub-task. For example, DTS-SQL (Pourreza
and Rafiei, 2024) employs a two-step pipeline, in-
cluding schema linking and SQL generation.

However, the existing models encounter a new
challenge in open-domain Text-to-SQL, where a
model struggles with the retrieval of relevant SQL
tables from a massive number of tables. The lack of
out-of-redundancy and anti-distraction techniques
limits the progressive development of open-domain
Text-to-SQL. To address the issue, CRUSH (Koth-
yari et al., 2023) uses an LLM to generate a min-
imal schema, with the aim to narrow the scope

2Document for FlagEmbedding
3Document for LLaMA-Factory

8040

https://bge-model.com/
https://llamafactory.readthedocs.io/


Figure 2: The ablation results on dynamic weight α compared with fixed alpha values across four models and two
datasets.

of candidate SQL tables that are potentially rele-
vant to the input question. DBCopilot (Wang et al.,
2025) leverages a light-weight differentiable in-
dex for relation-aware retrieval of relevant tables.
Chen et al. (2024b) proposes a relevance re-ranking
approach to optimize the automatic selection of re-
liable SQL tables, where the dense retrieval models
are used and fine-tuned. MURRE (Zhang et al.,
2025) conduct iterative redundancy elimination
within the multi-hop SQL table retrieval process,
where LLM is used to recognize redundant table
schemas. This effectively improves the diversity of
qualified table schemas within a short ranking list.

D Ablation studies

In this section, we conduct ablation experiments
on SpiderUnion and BirdUnion to validate the ef-
fectiveness of key components in our approach.
As shown in Table 4, removing any module leads
to performance degradation, demonstrating their
necessity and effectiveness.

D.1 The effectiveness of Reverse Engineering

We evaluate the impact of Reverse Engineering
(RE) by comparing our method with a variant that
excludes RE. As shown in Table 4, removing RE
leads to performance drops across both datasets.
These consistent declines demonstrate that RE ef-
fectively bridges the semantic gaps across hetero-

geneous question and table schema.

D.2 The effectiveness of Fine-tuning
We verify the impact of task-specific fine-tuning by
comparing our method with variants using original
BGE-M3 and Reranker. Using original BGE-M3
leads UR@5 and PR@5 drop by 7.6% and 5.2%
on SpiderUnion, and 8.7% and 6.0% on BirdUnion.
Similarly, using the original Reranker leads to even
larger declines, with UR@5 decreasing by 6.1%
on SpiderUnion and 13.5% on BirdUnion. These
results demonstrate that task-specific fine-tuning is
important and necessary.

D.3 The effectiveness of Reranker
We analyze the role of the Reranker by compar-
ing our method with two variants: one without
Reranker and another using the original Reranker.
Removing the Reranker causes UR@5 and PR@5
to drop by 1.0% and 1.4% on SpiderUnion, and
3.6% and 2.3% on BirdUnion. Using the original
Reranker leads to even larger declines. These re-
sults confirm that both the inclusion of the reranker
and its task-specific optimization are essential for
filtering out noisy candidates and enhancing final
accuracy.
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