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Abstract only generate natural, human-like speech responses

Spoken Dialogue Models (SDMs) have
achieved significant progress in recent years,
yet they continue to face challenges in han-
dling nuanced interactional phenomena. A sig-
nificant bottleneck hindering further advance-
ment is the scarcity of publicly available, high-
quality datasets meticulously designed to train
and evaluate these fine-grained interactive ca-
pabilities. We introduce InteractSpeech, a
150-hour English speech interaction dialogue
dataset designed to empower spoken dialogue
models with nuanced real-time interaction ca-
pabilities, such as handling interruptions and
backchannels. InteractSpeech was created by
synthesizing interactive dialogues from text
using advanced speech synthesis, and by fil-
tering real-world spoken dialogues for inter-
active segments. The dataset features pre-
cise speaker timestamps and annotations for
diverse dialogue interactions, underpinned by
a formal framework for interaction dynam-
ics. We demonstrate InteractSpeech’s util-
ity by fine-tuning a LLaMA 3-8B model on
its textual scenarios and, crucially, by train-
ing a speech understanding model that accu-
rately classifies key interactional events di-
rectly from audio. This highlights the dataset’s
value in developing models capable of more
natural and responsive conversational turn-
taking. Audio samples are available at https:
//interactspeech.github.io/.

1 Introduction

Recently, spoken dialogue models such as GPT-
40 (OpenAl, 2024) and Moshi (Défossez et al.,
2024) have garnered significant attention in the
speech domain. These end-to-end spoken dialogue
models (Ji et al., 2024a; Xie and Wu, 2024a; Fang
et al., 2024; Chen et al., 2024; Xie and Wu, 2024b;
Wang et al., 2024; Chen et al., 2025a,b) can not
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but also demonstrate an advanced understanding
and generation of acoustic features beyond text,
such as timbre, emotion, and style (Wenan et al.,
2012; Yunhui et al., 2018). Their realistic con-
versational interactivity and low-latency dialogue
experiences further distinguish them among the
traditional spoken dialogue models (Huang et al.,
2024). However, for spoken dialogue models to
achieve truly natural and effective human-computer
interaction, they must master the subtle art of con-
versational turn-taking and interaction dynamics.
This includes appropriately handling interruptions,
providing timely backchannels, and managing con-
versational flow—capabilities that are often under-
developed. A primary bottleneck is the lack of high-
quality, open-source datasets specifically designed
to train and evaluate these fine-grained interactive
abilities. Existing resources present several chal-
lenges: 1) Some prominent models, like Moshi (Dé-
fossez et al., 2024), still rely on outdated datasets
such as the Fisher corpus (Cieri et al., 2004) for
fine-tuning, which may not reflect contemporary
conversational patterns or provide sufficient detail
for interaction modeling. 2) Recent open-source
interactive datasets (Ma et al., 2024) often focus on
command-based interruptive words rather than the
diversity of real-world conversational interruptions
and other interactional phenomena. Given these
limitations, we propose InteractSpeech, an open-
source, multi-turn, and highly diverse interactive
dialogue dataset. InteractSpeech is specifically de-
signed to facilitate the development and evaluation
of models that can understand and participate in
complex spoken interactions. It provides detailed
annotations crucial for modeling the interactional
dynamics we formalize within this work, moving
beyond simple speech recognition or generation.
InteractSpeech is a mixed dataset consisting of
synthetic and real-world data, containing approx-
imately 150 hours of spoken dialogue data. Com-
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g Response

Hil I'm looking for a good book recommendation.

Sure! What genre are you in the mood for?
Mystery, sci-fi, romance?

Hmm, | think I'd prefer a good mystery novel today.

Excellent choice. | think “The Silent Patient”
is a nice mystery novel.

&

Interval

| need to buy some groceries: milk, bread,
and... erval] ... cheese.

Milk, bread, and cheese. Anything else?

Oh, and | almost forgot... [interval] ... coffee.

Alright, coffee added to the list.

&

g Backchannel
I'm trying to learn how to bake
sourdough bread. It seems

quite complicated with the
starter and all. the hydration
levels and proofing times are
tricky to get right.

Mmm.

It definitely takes practice.
Many bakers find it
rewarding though.

Mmm-hmm.

&

Interrupt

=

I'm redecorating the living room. Thinking of
painting the walls blue, and getting a new sof:

Blue's tricky in low light; feels cold.
Maybe a warmer tone, or very light yello

How about just one blue accent wall then?

&

Accent wall could work. Better balance.

Okay, good idea.

Figure 1: An illustrative interaction in the InteractSpeech, with red text denoting the locations of interruptions.

pared to previous spoken dialogue datasets in Ta-
ble 1, InteractSpeech contains more realistic and
diverse topics and over 10 types of interuptions
events, such as disagreements, supplements, or
requests for information, as well as subtle cues
like backchannels and various forms of inter-
ruptions. Furthermore, InteractSpeech supports
multi-turn interactions and mutual interaction be-
tween speakers, where Al can also interrupt hu-
mans, as well as preserving the modal expressions
in dialogue scenarios. An exemplary illustration
of dialogue interaction with interruptions is pre-
sented in Figure 1. During multi-turn dialogues,
Al can provide feedback at any time based on the
specific conversation content. To obtain diverse
and comprehensive dialogue interaction data, we
constructed corresponding interactive text using
multi-stage prompt programming and language
models, and then generated multi-turn dialogue
multi-speaker dual-track speech using advanced
speech synthesis models (Du et al., 2024a; An et al.,
2024; Du et al., 2024b). Due to the scalability of
the synthesis system, we annotated the start and
end time of each speaker in InteractSpeech. More-
over, this pipeline can adjust the speaker overlap
ratio according to the different requirements of the
dialogue system. Furthermore, we curated open-
source dialogue speech data and filtered interactive

segments using overlap detection and speaker tim-
bre consistency models. Finally, We had speech
experts manually evaluate interactive scenarios
of the generated text in the InteractSpeech to
ensure the quality. We evaluated InteractSpeech
comprehensively. We analyzed its topic distribu-
tion and audio quality. To assess its utility for
building text-level interaction understanding, and
considering the lack of open-source end-to-end spo-
ken dialogue systems, we fine-tuned a pre-trained
LLaMA 3-8B (Touvron et al., 2023) model on the
textual component of InteractSpeech to evaluate
the reasonableness of generated interaction scenar-
ios. More importantly, to demonstrate its value
for speech-level interaction modeling, we trained a
dedicated speech understanding model to classify
various interactional events directly from the audio
data in InteractSpeech. The primary contributions
of this work are as follows:

* We propose InteractSpeech, a novel open-
source dialogue dataset specifically designed
for spoken dialogue interaction scenarios, sup-
porting multi-turn dialogue, containing di-
verse interruptions events and high-quality au-
dio, and annotated to facilitate the modeling
of detailed interaction dynamics as defined in
our formal interaction framework.

* We provide a detailed pipeline for creating In-
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teractSpeech. Through multi-stage prompt
programming, advanced speech synthesis,
real-world data filtering, and human expert
validation, we ensured the diversity, quality,
and reasonableness of the interaction scenar-
ios.

* We thoroughly evaluated InteractSpeech,
demonstrating its audio quality and the rea-
sonableness and confirming its suitability for
developing more nuanced interactive systems.

2 Related Work

Modeling Conversational Interactions. The
pursuit of human-like conversational Al has
spurred research into modeling complex interac-
tion dynamics. Early work in conversation anal-
ysis (Reimann et al., 2024) laid the foundation
for understanding turn-taking mechanisms. Re-
cently, end-to-end spoken dialogue models (Dé-
fossez et al., 2024; Ji et al., 2024a; Xie and Wu,
2024a; Fang et al., 2024; Chen et al., 2024, 2025a;
Jiet al.,, 2024b, 2025) are increasingly aiming for
full-duplex capabilities, enabling them to process
speech and generate responses concurrently. This
inherently requires a deeper understanding of inter-
actional cues to manage barge-ins, provide timely
feedback, and maintain conversational flow. For
example, models like those aiming for "listen while
speaking”" (Ma et al., 2024) implicitly or explicitly
model when to yield or take the turn. However,
the ability of these models to truly understand and
appropriately react to diverse interactional events
is often limited by the data they are trained on. Our
work contributes by providing InteractSpeech, a
resource specifically designed to train and analyze
these interactional modeling capabilities, supported
by a formalization of key interactional events criti-
cal for robust spoken dialogue systems.

3 InteractSpeech

To develop spoken dialogue models capable of nu-
anced, real-time interaction, it is crucial to first de-
fine and understand the fundamental dynamics of
human conversation. Subsequently, datasets must
be constructed to reflect these dynamics, enabling
models to learn appropriate interactive behaviors.
In this section, we first introduce our framework
for Modeling Interaction Dynamics (Section 3.1),
which provides the conceptual basis for Interact-
Speech. We then detail the Overall Structure of

InteractSpeech (Section 3.2), highlighting how it
embodies these interactional principles. Finally, we
present the Data Creation Pipeline (Section 3.3)
used to build this resource.
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Figure 2: Three different word cloud sets about Interact-
Speech

3.1 Modeling Interaction Dynamics

To rigorously assess a Spoken Dialogue Model’s
(SDM’s) capacity for managing real-time conver-
sational dynamics, we establish a formalized rep-
resentation of dyadic spoken interactions between
a human speaker (denoted H) and the model (de-
noted M). The interaction is conceptualized as an
alternating sequence of speech and silence spans,
each anchored by precise temporal boundaries.

Let a Speech Utterance by participant X &
{H, M} be denoted by U, representing the i-th
continuous interval [tyarn(U%), tena(U% )] during
which X produces vocalized speech. Correspond-
ingly, an Individual Silence Period for participant
X is denoted by % = [tsmt(SJ ), tend (S% )], rep-
resenting the j-th continuous interval where X is
vocally inactive. A period of Joint Silence, where
both participants are simultaneously inactive, is de-
fined as Sky = SIj{ N Sk, representing the k-th
such interval.

A Conversational Turn, Ty, for participant X
is defined as a maximal span during which X holds
the speaking floor. A turn T’y typically comprises
one or more Speech Utterances (Ug(, Uz+1 ..) by
X, potentially interspersed with X’s own Individ-
ual Silence Periods (Sg() that occur within the turn.
The boundaries of T’y are delimited either by a
Joint Silence (Sgm) or by the initiation of a Speech
Utterance from the other participant.

Within this temporal structure, we distinguish
two functionally distinct types of silence based on
their discourse context: Pause (P): An Individual
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Table 1: Comparison of different datasets for interaction scenarios. v is supported, X is not supported, A is partially

supported.
InteractSpeech  Switchboard(Godfrey et al., 1992)  Fisher(Cieri et al., 2004) o FD;'t(’;lsap;e:ffzg’%"w\vfoei‘cslﬁgﬁ ?1)\/151 o209

Content 2025s 1990s 1990s 2015s 2015s

Multi-type Interruption over 10 3 4 1 1
Multi-round v A A X

Dual-track v v v X X
Speaker timestamp v X X X X
Diversity v X X X X
Flexibility v X X X X

Silence Period Sg( that occurs within participant
X’s own Conversational Turn T’y (i.e., between
two of X’s utterances U}'( and U?’l within the
same turn). Gap (G): A Joint Silence Sk, that
occurs at a turn boundary, typically between the
end of one participant’s turn and the beginning of
the other’s, signaling a potential transition of the
speaker role.

Leveraging this formalization, we categorize
key interactional events initiated by the human
speaker (H) that necessitate appropriate SDM (M)
responses. These events are critical for evaluat-
ing an SDM’s interactive competence: Turn Ini-
tiation (7Z): Event where H commences a new
Speech Utterance Uy following a Gap G that suc-
ceeded M’s completed turn 7j;. Interruption
(ZN'T): Event where H’s Speech Utterance Uy be-
gins during M’s ongoing Speech Utterance Uy (i.e.,
totart(UM) < tstart(Un) < tend(Um)), thereby vio-
lating turn exclusivity. An Interruption may serve
various functions, such as floor-taking or express-
ing disagreement. Backchannel (3C): Event char-
acterized by a short Speech Utterance Uy produced
by H during M’s ongoing Speech Utterance Uy;.
Crucially, a Backchannel typically signals active
listenership, agreement, or acknowledgment from
H without an intent to claim the primary speaking
floor.

Beyond these canonical events, InteractSpeech
also annotates other spontaneous user actions, such
as clarification requests, expressions of urgency,
or abrupt topic shifts, treating them as discrete,
labeled occurrences within the interaction.

This formalized framework, delineating utter-
ances, silences, turns, and specific interactional
events (TZ, ZNT, BC, P, G), provides a princi-
pled temporal and functional scaffold for the Inter-
actSpeech dataset. It enables fine-grained, consis-
tent annotation of both user and system behaviors,
thereby supporting the supervised learning and rig-
orous evaluation of SDMs that must coordinate not
only what to say, but critically, when and how to

manage the conversational exchange.

3.2 The Overall of InteractSpeech

InteractSpeech is a multi-turn English spoken-
dialogue dataset totaling 150 h of speech and 90 k
text utterances. It comprises a 148h in-domain
training set, a 2h in-domain test set with man-
ual speaker timestamps, and a 1h out-of-domain
(OOD) interactive test set in which humans freely
converse with state-of-the-art end-to-end spoken di-
alogue models (e.g., GPT-40 voice mode, Doubao,
Gemini Live). All audio is dual-track with precise
onset/offset times for each speaker, supporting the
interaction dynamics in Section 3.1.

We benchmark InteractSpeech  against
Fisher (Cieri et al., 2004), Switchboard (God-
frey et al., 1992), Command FDM and Voice
FDM (Ma et al., 2024) (Table 1). Unlike Fisher
and Switchboard—which feature multi-turn
dialogue but lack fine-grained timestamps—and
Command FDM/Voice FDM—which are limited
to single-turn “command — cessation” exchanges
without broader context—InteractSpeech delivers
rich, multi-turn interactions with contemporary
topics and exact speaker timing for turn-taking and
overlap analysis.

InteractSpeech unifies synthetic (112h) and real-
world (38h) data. The synthetic portion uses GPT-
4o to transform text dialog corpora (SODA (Kim
et al., 2022), Dialogsum (Chen et al., 2021),
PLACES (Chen et al., 2023), MultiWOZ 2.2 (Zang
et al., 2020)) into multi-turn interactional scenarios,
rendered by a state-of-the-art TTS model (Du et al.,
2024a) and timestamped. Real-world recordings
are filtered via the pipeline in Section 3.3 and an-
notated with exact timestamps. The 1 h OOD inter-
active test set (excluded from the 150 h total) eval-
uates generalization on free-form human—model
dialogues.

A central feature is the 2h manually labeled in-
domain test set, which includes precise timestamps
for interruptions and other interactional events. We
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Figure 3: The overall pipeline about the creation process of InteractSpeech.

retain brief affirmations (e.g., “ok,” “yeah”) as neg-
ative examples to help models distinguish true
interactional shifts. During end-to-end training
(Figure 4), overlapping input tokens remain intact,
while the model masks out non-target speakers via
timestamps, ensuring only the intended speaker’s
tokens are predicted.

3.3 Data Creation Pipeline

The generation process of InteractSpeech, illus-
trated in Figure 3, involves three main phases: syn-
thetic data generation, real-world data filtering, and
OOD interactive test set collection.

Synthetic Data Generation. We first employ
a multi-stage prompt programming approach with
GPT-4o0 to generate text-based interactive scenarios
from original dialogue texts. Inspired by (Zhou
et al., 2022), this multi-stage process yields better
control over the interaction points and resulting di-
alogue flow. In the initial text generation phase, the
large language model (e.g., GPT-40) is tasked with
enriching dialogues with interactional events. Se-
mantic Placement of Interaction Markers: First,
the model identifies suitable locations within the
original dialogue text to insert markers for interrup-
tions, backchannels, or other specified interaction
points. This process is guided by explicit rules
and prompts designed to ensure the semantic rel-
evance and naturalness of these interactional cues
(e.g., based on perceived urgency or speaker in-
tent inferred from the textual context). Generation
of Interactive Content: Following the placement
of these markers, the language model generates
new conversational content for the interrupting or
backchanneling turn. This generation adheres to

constraints on naturalness, coherence with the on-
going dialogue, and diversity of expression. Dia-
logue experts iteratively tested and refined these
prompts and generation strategies, proceeding to
large-scale deployment only after achieving over
95% satisfaction on small test sets regarding the
quality and appropriateness of the generated inter-
active text. Each generated textual segment was
meticulously reviewed and filtered by human
annotators before speech synthesis. Speech Syn-
thesis of Interactive Scenarios. After obtaining
the curated interactive text (complete with semanti-
cally placed interaction markers and corresponding
content), we use the advanced speech synthesis
model CosyVoice-300M-SFT (Du et al., 2024a) to
generate the speech. This model provides desig-
nated vocal characteristics, ensures voice consis-
tency, and allows for the retrieval of precise times-
tamps for each audio segment. Simulating Diverse
Interaction Timings: To simulate the variability of
real-world interaction timings for the pre-scripted
interruptions, the speech synthesis process can be
configured. For instance, the audio for an interrupt-
ing speaker (whose lines are already determined
by the LLM) can be set to begin after n words or
within the first m seconds of the ongoing speaker’s
turn. This introduces diversity in the auditory re-
alization of the interaction, rather than implying
random textual generation of the interruption itself.
Finally, multiple audio segments are processed and
merged into dual-track speech, with aligned text
and speaker timestamps.

Real-World Data Filtering. For the real-world
data component of InteractSpeech (as depicted in
Figure 3), our objective was to extract segments
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Figure 4: Autoregressive token selection using speaker
timestamps to mask non-target speakers during training.

rich in natural interactional events. To achieve this,
we utilized the publicly available CANDOR corpus,
a large-scale, multimodal dataset of naturalistic En-
glish conversations. We then applied our special-
ized filtering pipeline to CANDOR to isolate and
process these interaction-dense segments. Overlap
Detection: We use the pyannote.audio toolkit™ for
speaker diarization to detect overlapping speech
segments, which are common loci for interruptions.
Vocal Consistency Check: The toolkit’s vocal
consistency model assesses timbre similarity to de-
termine if a speaking turn has legitimately changed
hands following an overlap. After a speech over-
lap segment is detected, we compare the timbre
of the speaker who was speaking before the over-
lap with the timbre of the speaker who continues
after the overlap concludes. A significant change
in timbre, indicating a different speaker has taken
the floor after the overlap, strongly suggests a suc-
cessful interruption and turn-taking event. If the
timbre remains consistent with the original speaker
(i.e., the same speaker continues after the over-
lap), or if the overlapping speech was brief and
did not result in a change of the primary speaker
post-overlap, it is more indicative of a backchannel
or a failed interruption attempt from the original
speaker. Interactive Segment Extraction: We ap-
ply temporal constraints (e.g., minimum duration
for overlaps, minimum/maximum length for inter-
action segments) to filter for high-quality, concise
interactive exchanges, typically lasting several tens
of seconds.

OOD Interactive Test Set Collection. We re-
cruited human participants to engage in free-form
conversations with voice-enabled dialogue systems
(e.g., GPT-40 voice mode, Doubao, Gemini Live).
Each session lasted approximately one hour and is
not included in the 150 hours total. Before each dia-

*https://github.com/pyannote/pyannote-audio

logue, one of four interaction modes—interruption,
pause, normal exchange, backchannel—was ran-
domly assigned, and participants were instructed
to maintain that mode throughout the session. Pro-
fessional annotators then labeled the timestamp of
every interaction event. This OOD set enables rig-
orous evaluation of model generalization to unseen,
structured interaction patterns.

This pipeline ensures that InteractSpeech pro-
vides a richly varied, precisely annotated set of in-
teractional events, suitable for robust training and
evaluation of end-to-end spoken-dialogue models.

4 Experiments

4.1 Modeling Interaction Dynamics from
Speech

To evaluate if models fine-tuned on InteractSpeech
can effectively understand and identify specific
interactional events, we adopted a binary classifi-
cation approach for each event type. This assesses
the model’s ability to confirm or deny the presence
of events defined in our framework (Section 3.1),
aligning with methodologies for benchmarking au-
dio model understanding (Arora et al., 2025).

Task Definition and Data. For each of the four
primary interactional event types—Backchannel
(BC), Interruption (ZN'T), Gap (G), and Pause
(P)—the task was framed as a binary classification.
Given an audio segment z from InteractSpeech
and a target event type £ € {BC,IZNT,G,P},
the model predicts if event E is present in . The
ground truth label y € {0, 1} is 1 (present) if event
FE occurs, and 0 (absent) otherwise, based on Inter-
actSpeech annotations. A data sample consisted of
(audio segment x, event query prompt ¢z, ground
truth binary answer y) tuples from the Interact-
Speech dataset D.

During evaluation, for an audio segment = and
a queried event F, the model received an event-
specific prompt qr (e.g., "Does an Interruption
occur in this audio?") and was expected to output
"Yes" or "No". This output was then mapped to a
binary label y for accuracy calculation.

Model Fine-tuning. We fine-tuned Qwen-2.5-
Omni with true Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024). For each audio
segment x and event prompt gz, we sample G out-
puts {a;} under the current policy 7y and assign
one simple rewards:
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Table 2: Binary Classification Accuracy (%) for understanding specific interactional event types via prompted
queries. IS = InteractSpeech Test Set; RWS = Real-World Scenarios Test Set. Overall Avg. is the macro-average

accuracy across the four event types.

InteractSpeech (IS) Test Set Acc (%)

Real-World Scenarios (RWS) Acc (%)

Model
Backchannel Interaction Gap Pause Overall Avg. Backchannel Interaction Gap Pause Overall Avg.
Random Guess 50.0 500 500 500 50.0 50.0 500 500 500 50.0
Qwen2Audio-Instruct 52.1 485 533 510 512 51.0 472 515 4938 49.9
Qwen-Omni (Base) 53.5 49.1 548 526 52.5 51.8 505 527 480 50.8
GPT-40 55.2 513 560 541 542 55.0 495 558 517 53.0
Qwen-Omni-FT (Ours) 723 748 731 1735 734 70.7 602 609 613 633
w/o Real Data 65.4 756 748 711 71.7 55.3 569 552 577 56.3
w/o Synthetic Data 68.7 619 595 604 62.6 67.1 536 518 562 57.2
Results. Table 2 summarizes the accuracy for
1, ai =y, classifying interactional events. Our Qwen-Omni-
R, = Tacc(ai) = . (1) <. .
0, otherwise. FT model significantly outperforms all baselines,
. . achieving 73.4% overall accuracy on the Inter-
We normalize advantages via : .
actSpeech (IS) test set. This starkly contrasts
A — Ri —p ) with GPT-40 (54.2%) and near-chance level per-
1 T .
o’ formance from Qwen2Audio-Instruct (51.2%) and

with i, o the mean and standard deviation of { R; }.
The GRPO surrogate objective is

G
1
Jarpo(0) = el ; min (r;(6) 4, 3)

clip(r;(0),1 —e,1+¢€) Ai) ,

where 7;(0) = mg(a; | z,qr)/m0, (0 | x,qE).
To keep the fine-tuned policy close to the pre-
trained reference ., we add a KL-penalty. The
final loss is:

L(0) = — Jarro(0)

+ )\DKL(WQ(' ‘ m?QE) || 7Tref(' | vaE))
“4)

Weset G = 4, ¢ = 0.2, A = 0.001, and trained
with AdamW for 1500 steps (learning rate 1075,
batch size 2).

Baselines. We benchmarked Qwen-Omni-FT
(Ours) against: Random Guess: 50% accuracy for
binary classification. Qwen2Audio-Instruct (Chu
et al., 2024) (Zero-shot): Evaluated without fine-
tuning on InteractSpeech, using its general audio
understanding capabilities to respond to prompted
queries about interactional events. Qwen-Omni
(Base) (Zero-shot): The pre-trained Qwen-Omni
model, also evaluated in a zero-shot manner for
this task. GPT-40 (Audio API): OpenAl’s model
queried via its audio API . We conduct further ab-
lation studies on Qwen-Omni-FT variants trained
w/o Real Data and w/o Synthetic Data to assess the
contribution of InteractSpeech’s data components.

Qwen-Omni (Base) (52.5%), underscoring the ne-
cessity of targeted fine-tuning on datasets like In-
teractSpeech to grasp these nuanced interactional
cues. Crucially, Qwen-Omni-FT also demon-
strates strong generalization to Real-World Sce-
narios (RWS) with 63.3% accuracy, again outper-
forming GPT-40 (53.0%). This suggests Interact-
Speech effectively bridges the gap between syn-
thetic training and real-world complexities. No-
tably, the model achieves a high 70.7% on RWS
Backchannel detection, likely benefiting from the
rich, natural backchannel occurrences in real-world
data. Ablation studies further disentangle the roles
of synthetic versus real-world data. Removing syn-
thetic data incurs a large drop on IS (-10.8), indi-
cating its foundational value for in-domain feature
learning, while removing real data barely affects
IS (-1.7). Conversely, on RWS the model suffers
more when real examples are omitted (—7.0) than
when synthetic data is removed (—6.1), underscor-
ing that real exemplars are indispensable for robust
out-of-domain generalization.

4.2 Evaluation of Speech Quality

We first evaluated the audio quality of various spo-
ken dialogue datasets, using the Mean Opinion
Score (MOS) scale (ranging from 1 to 5) to assess
both the naturalness and clarity of the audio sam-
ples. Ten audio segments were randomly selected
from the datasets InteractSpeech, Fisher (Cieri
et al., 2004), and Switchboard (Godfrey et al.,
1992). The experimental results, as shown in Table
3, indicate that most dialogue datasets exhibit sat-
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isfactory audio quality. Although a portion of the
InteractSpeech dataset consists of synthetic data,
the audio quality remains high, owing to the use of
advanced text-to-speech models (Du et al., 2024a).

Table 3: The results of MOS with 95% confidence inter-
vals.

logue history and specific to the newly established
conversational turn.

Table 4: Results of head-to-head human evaluation be-
tween model responses on the InteractSpeech test set.
The main entry shows LLaMA w/ interaction fine-tuned
on InteractSpeech text. The bottom two rows are from
the ablation study in Section 4.4.

Datasets MOS T Model / Prompting Method Natural T Consistent T Specific T Overall 1
: + LLaMA w/ interaction 86% 85% 88% 86%
SWltChboard (GOdfrey et al" 1992) 409 - 0 14 Single-stage prompt programming 25% 18% 22% 21%
Fisher (Clerl et al.’ 2004) 421 +0.11 Multi-stage prompt programming 97% 97% 99% 98%
InteractSpeech 4.35+0.12

4.3 Evaluation of Textual Interactive
Scenarios

Considering the substantial computational cost
and the current lack of readily available open-
source end-to-end spoken dialogue models with
full-duplex capabilities , we undertook a valida-
tion to specifically assess the effectiveness and
quality of InteractSpeech’s textual interaction sce-
narios. Specifically, we fine-tuned LLaMA3-8B
model (Touvron et al., 2023) using LoRA (Hu et al.,
2021) exclusively on the textual training data de-
rived from InteractSpeech. The training process,
as illustrated in Figure 5, tasked this text-based
dialogue model with a challenging objective: to
predict the subsequent interactive text immediately
following a scripted interruption within a given
dialogue. We evaluated the model’s generated re-
sponses on the test set of InteractSpeech. Follow-
ing the methodology outlined in SODA(Kim et al.,
2022), human evaluators measured the quality of
these generated responses across three critical di-
mensions: Naturalness , Consistency , and Speci-
ficity. As shown in Table 4, the results are com-

Target:
A Oh, that's tough. Have you considered using Output Text
vertical gardening techniques to maximize space? T

Dialogue context %

A So, how have your gardening projects been going?
L

B: They're going fine! I'm growing tomatoes this summer.
AA: Cool! Are you growing any peppers too?

Figure 5: Fine-tuning LLaMA3 with interactive conver-

sation text.

B: Not this summer. | had to give up some of my garden
for the new housing development that went [interrupt]

pelling: the fine-tuned dialogue interaction model
achieved an overall agreement rate of 86%. This
high agreement rate signifies that human evaluators
found the LLaMA model’s generated continuations
to be largely natural, consistent with the entire dia-

4.4 Ablation Study on Prompt Programming

We selected the original non-interactive dialogue
segments from the test set’s source texts to per-
form an ablation study comparing single-stage and
multi-stage prompt programming for generating
the interactive scenarios in InteractSpeech. In the
single-stage approach, instructions for generating
interactive dialogues were fed directly into GPT-
40, with rule constraints limited to descriptive ad-
jectives (e.g., "high naturalness, appropriate posi-
tioning, limited number of interactive scenarios")
without example-based guidance. As shown in the
lower part of Table 4, the experimental results in-
dicate that our multi-stage prompt programming
approach significantly improves the quality (natu-
ralness, consistency, specificity, and overall) of the
generated interactive text compared to the single-
stage approach.

5 Conclusion

In this paper, we introduced InteractSpeech, a 150-
hour English spoken dialogue dataset meticulously
designed to address the critical need for resources
that support the development of models with nu-
anced real-time interaction capabilities. We pre-
sented a framework for modeling key interactional
dynamics, which underpins the construction and
annotation of InteractSpeech. The dataset com-
bines synthetically generated dialogues, enriched
with diverse interactional events via multi-stage
prompt programming, with carefully filtered real-
world spoken data. Through extensive experiments,
we demonstrated the utility of InteractSpeech. We
showed our fine-tuned model significantly outper-
formed baselines on both in-domain and out-of-
domain real-world scenarios, highlighting Interact-
Speech’s potential to advance the development of
models that can robustly perceive, interpret, and
appropriately react to the dynamic flow of human
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conversation. We hope InteractSpeech will help
further research into more natural, responsive, and
human-like spoken dialogue systems.

Limitation

While InteractSpeech is designed to empower spo-
ken dialogue models with enhanced interactive abil-
ities, directly quantifying the improvement in holis-
tic, end-to-end interaction modeling presents cer-
tain challenges within the current research land-
scape. The development and fine-tuning of full-
duplex spoken dialogue systems capable of leverag-
ing such nuanced datasets often require substantial
resources and access to proprietary architectures,
with limited open-source counterparts readily avail-
able for comprehensive benchmarking. Further-
more, the field is still evolving robust, standard-
ized metrics to specifically evaluate the intricate
dynamics of turn-taking, interruption handling, and
backchanneling in a fully integrated conversational
agent. Consequently, our current validation focuses
on crucial sub-tasks: demonstrating the utility of
InteractSpeech’s textual scenarios for training lan-
guage models to generate appropriate interactive
responses, and its audio data for training models to
accurately perceive key interactional events. These
evaluations serve as significant intermediate steps,
indicating the dataset’s potential. We believe fu-
ture work, building upon resources like Interact-
Speech and benefiting from advancements in open-
source model availability and interaction evalua-
tion methodologies, will be better positioned to
demonstrate these end-to-end improvements more
directly.

Acknowledgments

This work was supported by the National
Key R&D Program of China under Grant No.
20227D0162000, the National Natural Science
Foundation of China under Grant No. 62222211,
and the National Natural Science Foundation of
China under Grant No. U24A20326.

References

Keyu An, Qian Chen, Chong Deng, Zhihao Du,
Changfeng Gao, Zhifu Gao, Yue Gu, Ting He,
Hangrui Hu, Kai Hu, and 1 others. 2024. Funaudi-
ollm: Voice understanding and generation foundation
models for natural interaction between humans and
llms. arXiv preprint arXiv:2407.04051.

Siddhant Arora, Zhiyun Lu, Chung-Cheng Chiu, Ruom-
ing Pang, and Shinji Watanabe. 2025. Talking turns:
Benchmarking audio foundation models on turn-
taking dynamics. arXiv preprint arXiv:2503.01174.

Maximillian Chen, Alexandros Papangelis, Chenyang
Tao, Seokhwan Kim, Andy Rosenbaum, Yang Liu,
Zhou Yu, and Dilek Hakkani-Tur. 2023. Places:
Prompting language models for social conversation
synthesis. arXiv preprint arXiv:2302.03269.

Qian Chen, Yafeng Chen, Yanni Chen, Mengzhe Chen,
Yingda Chen, Chong Deng, Zhihao Du, Ruize
Gao, Changfeng Gao, Zhifu Gao, and 1 others.
2025a. Minmo: A multimodal large language
model for seamless voice interaction. arXiv preprint
arXiv:2501.06282.

Wenxi Chen, Ziyang Ma, Ruiqi Yan, Yuzhe Liang,
Xiquan Li, Ruiyang Xu, Zhikang Niu, Yangiao
Zhu, Yifan Yang, Zhanxun Liu, and 1 others. 2024.
Slam-omni: Timbre-controllable voice interaction
system with single-stage training. arXiv preprint
arXiv:2412.15649.

Yifu Chen, Shengpeng Ji, Haoxiao Wang, Ziqing
Wang, Siyu Chen, Jinzheng He, Jin Xu, and Zhou
Zhao. 2025b. Wavrag: Audio-integrated retrieval
augmented generation for spoken dialogue models.
arXiv preprint arXiv:2502.14727.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.
2021. DialogSum: A real-life scenario dialogue sum-
marization dataset. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 5062-5074, Online. Association for Computa-
tional Linguistics.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei,
Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng
He, Junyang Lin, and 1 others. 2024. Qwen2-audio
technical report. arXiv preprint arXiv:2407.10759.

Christopher Cieri, David Miller, and Kevin Walker.
2004. The fisher corpus: A resource for the next
generations of speech-to-text. In LREC, volume 4,
pages 69-71.

Alexandre Défossez, Laurent Mazaré, Manu Orsini,
Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard
Grave, and Neil Zeghidour. 2024. Moshi: a speech-
text foundation model for real-time dialogue. arXiv
preprint arXiv:2410.00037.

Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng
Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue Gu,
Ziyang Ma, and 1 others. 2024a. Cosyvoice: A scal-
able multilingual zero-shot text-to-speech synthesizer

based on supervised semantic tokens. arXiv preprint
arXiv:2407.05407.

Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang
Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang, Changfeng
Gao, Hui Wang, and 1 others. 2024b. Cosyvoice
2: Scalable streaming speech synthesis with large
language models. arXiv preprint arXiv:2412.10117.

8032


https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449

Qingkai Fang, Shoutao Guo, Yan Zhou, Zhengrui Ma,
Shaolei Zhang, and Yang Feng. 2024. Llama-omni:
Seamless speech interaction with large language mod-
els. arXiv preprint arXiv:2409.06666.

John J Godfrey, Edward C Holliman, and Jane Mc-
Daniel. 1992. Switchboard: Telephone speech cor-
pus for research and development. In Acoustics,
speech, and signal processing, ieee international con-
ference on, volume 1, pages 517-520. IEEE Com-
puter Society.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Rongjie Huang, Mingze Li, Dongchao Yang, Jia-
tong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu,
Zhiqing Hong, Jiawei Huang, Jinglin Liu, and 1 oth-
ers. 2024. Audiogpt: Understanding and generating
speech, music, sound, and talking head. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 23802-23804.

Shengpeng Ji, Yifu Chen, Minghui Fang, Jialong
Zuo, Jingyu Lu, Hanting Wang, Ziyue Jiang, Long
Zhou, Shujie Liu, Xize Cheng, and 1 others. 2024a.
Wavchat: A survey of spoken dialogue models. arXiv
preprint arXiv:2411.13577.

Shengpeng Ji, Ziyue Jiang, Xize Cheng, Yifu Chen,
Minghui Fang, Jialong Zuo, Qian Yang, Ruiqi Li,
Ziang Zhang, Xiaoda Yang, and 1 others. 2024b.
Wavtokenizer: an efficient acoustic discrete codec to-
kenizer for audio language modeling. arXiv preprint
arXiv:2408.16532.

Shengpeng Ji, Tianle Liang, Yangzhuo Li, Jialong Zuo,
Minghui Fang, Jinzheng He, Yifu Chen, Zhengqing
Liu, Ziyue Jiang, Xize Cheng, and 1 others. 2025.
Wavreward: Spoken dialogue models with generalist
reward evaluators. arXiv preprint arXiv:2505.09558.

Hyunwoo Kim, Jack Hessel, Liwei Jiang, Peter West,
Ximing Lu, Youngjae Yu, Pei Zhou, Ronan Le Bras,
Malihe Alikhani, Gunhee Kim, and 1 others. 2022.
Soda: Million-scale dialogue distillation with so-
cial commonsense contextualization. arXiv preprint
arXiv:2212.10465.

Ziyang Ma, Yakun Song, Chenpeng Du, Jian Cong,
Zhuo Chen, Yuping Wang, Yuxuan Wang, and Xie
Chen. 2024. Language model can listen while speak-
ing. Preprint, arXiv:2408.02622.

OpenAl. 2024. Hello gpt-40. https://openai.com/
index/hello-gpt-4o0/. Accessed: 2024-05-26.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: an asr cor-
pus based on public domain audio books. In 2015
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5206-5210.
IEEE.

Merle M Reimann, Florian A Kunneman, Catharine
Oertel, and Koen V Hindriks. 2024. A survey on dia-
logue management in human-robot interaction. ACM
Transactions on Human-Robot Interaction, 13(2):1—

22.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Xiong Wang, Yangze Li, Chaoyou Fu, Yunhang Shen,
Lei Xie, Ke Li, Xing Sun, and Long Ma. 2024.
Freeze-omni: A smart and low latency speech-to-
speech dialogue model with frozen llm. arXiv
preprint arXiv:2411.00774.

TAN Wenan, WEN Xiang, JIANG Chuanqun, DU Yi,
and HU Xiaoming. 2012. An evaluation model in-
tegrating user trust and capability for selection of
cooperative learning partners. Chinese Journal of
Electronics, 21(1):42-46.

Zhifei Xie and Changgiao Wu. 2024a. Mini-omni: Lan-
guage models can hear, talk while thinking in stream-
ing. arXiv preprint arXiv:2408.16725.

Zhifei Xie and Changgiao Wu. 2024b. Mini-omni2: To-
wards open-source gpt-4o with vision, speech and du-
plex capabilities. arXiv preprint arXiv:2410.11190.

LIU Yunhui, ZHENG Fan, GUO Ruibin, WANG Jian-
gliu, NIE Qiang, WANG Xin, and WANG Zerui.
2018. Robot intelligence for real world applications.
Chinese Journal of Electronics, 27(3):446-458.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara,
Raghav Gupta, Jianguo Zhang, and Jindong Chen.
2020. Multiwoz 2.2: A dialogue dataset with addi-
tional annotation corrections and state tracking base-
lines. In Proceedings of the 2nd Workshop on Natu-
ral Language Processing for Conversational AI, ACL
2020, pages 109-117.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and 1 oth-
ers. 2022. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint
arXiv:2205.10625.

8033


https://arxiv.org/abs/2408.02622
https://arxiv.org/abs/2408.02622
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://cje.ejournal.org.cn/en/article/id/924
https://cje.ejournal.org.cn/en/article/id/924
https://cje.ejournal.org.cn/en/article/id/924
https://doi.org/10.1049/cje.2018.03.007

