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Abstract

Event argument extraction aims to identify
event arguments and classify their roles within
events, whereas relation extraction classifies
semantic relationships between entities. Ex-
isting methods typically design task-specific
models for EAE, which restricts the integration
of relation-level semantics. Consequently, they
overlook the complementary cues from RE that
are beneficial for argument role disambigua-
tion. To overcome this limitation, we propose
REAR, a Relation-aware EAE Reinforced op-
timization framework. REAR first conducts
joint supervised optimization on reasoning-
enhanced data, which serves as a warm-up to
strengthen the Large Language Model (LLM)’s
ability to perform EAE while incorporating
auxiliary cues from RE. Subsequently, it ap-
plies reinforcement learning to explore diverse
reasoning trajectories and derive near-optimal
strategies for integrating relation-level signals
into EAE. Experiments on the ACE-E, ACE-E™
and ERE benchmarks demonstrate that REAR
consistently surpasses previous decoder-only
LLM methods, achieving F1-score gains of at
least 0.9%, 2.2% and 1.6%, respectively. !

1 Introduction

Event Argument Extraction (EAE) is a crucial task
in Information Extraction (IE), aimed at identi-
fying and classifying arguments into predefined
roles within event contexts (Yang et al., 2024).
Meanwhile, Relation Extraction (RE) seeks to clas-
sify semantic relationships between pairs of enti-
ties (Zhao et al., 2024). Figure 1 provides an illus-
tration of these two tasks. Traditionally, EAE and
RE have been addressed independently. Existing
approaches (Yang et al., 2024; Wang and Huang,
2024) design separate models for EAE without
explicitly incorporating relation-level semantics,
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"The source code is publicly available at https: //github.
com/jwluo-ai/REAR

Event: Life.Injure

EAE Place

Victim !
Sergeant Chuck Hagel was seriously wounded twice in Vietnam.

RE Tl » Relation: Physical

Figure 1: An illustrative example of EAE and RE. EAE
aims to classify “Chuck Hagel” and “Vietnam” into
roles of Victim and Place, respectively. RE seeks to clas-
sify the relation between these two entities as Physical.

thereby overlooking the complementary cues that
RE can provide for argument role disambiguation.
This isolation often leads to incomplete contextual
understanding, especially in cases where entity in-
teractions are crucial for accurate argument classi-
fication. Indeed, RE can provide valuable auxiliary
information for EAE. For instance, classifying the
semantic relations between entities can offer cues
for disambiguating their respective event roles.

Despite the auxiliary benefits of RE, incorporat-
ing it to enhance EAE via multi-task Supervised
Fine-Tuning (SFT) remains challenging. SFT suf-
fers from the inability to fully exploit the seman-
tic cues provided by RE, as it relies on limited
annotated reasoning paths (Wang et al., 2023a;
Trung et al., 2024). This limitation hinders the
model’s ability to capture the subtle interactions
between event arguments and relational informa-
tion, thereby restricting the performance gains for
EAE. In contrast, Reinforcement Learning (RL)
offers a promising alternative. Not only does RL
enable dynamic exploration of diverse reasoning
trajectories, but it also allows iterative trial-and-
error to autonomously discover near-optimal so-
lutions (Jaech et al., 2024; DeepSeek-Al, 2025).
Through this process, RL can effectively integrate
cross-task semantic reasoning to leverage RE sig-
nals more comprehensively to strengthen EAE.

Building on these observations, we pro-
pose REAR, a two-stage Relation-aware EAE
Reinforced optimization framework designed to
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address the limitations of conventional SFT. In the
first stage, REAR leverages reasoning-enhanced
data to perform joint supervised optimization over
EAE and RE, providing the Large Language Model
(LLM) with a warm-up that facilitates reasoning.
In the second stage, RL-based optimization is ap-
plied to transcend the constraints of static annotated
reasoning paths. The LLM dynamically explores
diverse reasoning trajectories, engages in iterative
trial-and-error to refine its decision-making pro-
cess, and discovers near-optimal strategies for inte-
grating relation-level semantics into EAE.

We experimentally validate REAR on the ACE-
E, ACE-E* and ERE benchmark datasets (Dod-
dington et al., 2004; Song et al., 2015). REAR sub-
stantially outperforms previous decoder-only LLM
methods on these benchmarks. These results high-
light the advantage of integrating relation-aware
semantics with dynamic reasoning trajectories and
underscore the effectiveness of REAR in modeling
cross-task interactions between EAE and RE tasks.

2 Approach

In this section, we first formalize the EAE and
RE tasks for reproducibility (§2.1). Subsequently,
we detail our two-stage optimization strategy il-
lustrated in Figure 2, joint supervised fine-tuning
(§2.2) and joint reinforced fine-tuning (§2.3).

2.1 Task Definition

EAE aims to identify and classify arguments in
a sentence associated with a specified event. For-
mally, given an input comprising the sentence, a set
of entities, the event type, the trigger word and cor-
responding roles, the goal of the LLM is to output
a sequence of arguments, each explicitly associated
with a particular role. RE aims to classify the pre-
defined relation type between a pair of arguments
within a sentence. Detailed prompt templates for
both tasks are provided in Appendices D and E.
Note that if a sentence contains multiple events or
relations, each is processed as a separate input.

2.2 Joint Supervised Warm-up

As depicted in Figure 2, the joint supervised warm-
up stage leverages a combined training set from
both EAE and RE tasks, forming tuples of (x, e, y),
where @ denotes the input question derived from
datasets, e represents the reasoning explanation
automatically generated via the DeepSeek-R1 API?

2https://platform.deepseek.com

and y is the corresponding ground-truth answer.
To explicitly capture the joint nature of EAE and
RE, we combine their reasoning-annotated exam-
ples into a unified training pool®, training a single
LLM policy model 7rg. The serialized tokens gen-
erative process of g is defined as a trajectory 7
comprising a sequence of states and actions:

T = (80,(10,51,@1, ce,a7—1, STvaT) ()

where each action a; is a token generated by g
at timestep ¢, and the state s; includes the initial
input along with previously generated tokens. The
sequence generation terminates upon producing a
special token ar = (|lend_of_sentence|).

The joint supervised training objective combines
EAE and RE training instances into one unified
token-level cross-entropy loss, computed over tra-
jectories sampled from combined training pool P:

Lsrr(8) = ~Erap | Yo log (mo(ails0))] @)

2.3 Joint Reinforced Optimization

Following the warm-up stage, we further optimize
the joint model via RL based on the Proximal Pol-
icy Optimization (PPO) algorithm (Schulman et al.,
2017). Figure 2 (bottom pipeline) visualizes this
RL process. Questions sampled via on-policy sam-
pling from the combined task pool are reprocessed
to generate updated reasoning explanations (e’) and
predictions (y’). These outputs are compared to
ground-truth answers (y) to obtain rewards, driving
the joint LLM policy optimization.

We explicitly model joint task rewards to re-
flect improvements across both tasks simultane-
ously. Specifically, to address the issue of reward
sparsity(Riedmiller et al., 2018; Trott et al., 2019;
Trung et al., 2024), we define sparse, terminal-state
rewards for each task. For the EAE task, the reward
function Rgag is formulated as:

K, if [y =0Aly|=0
REAE(y7 yl) = ]:(y7 yl)7 if |y| >0 (3)
0, on exception

where exceptions occur when the LLM produces
structurally invalid outputs causing parsing errors.
The scaling factor x balances EAE and RE rewards,
experimentally set to 2 based on validation results

Note that we utilize all EAE instances from the training
set, whereas RE instances are included only if both arguments
involved serve as event arguments within the same sentence.

7958


https://platform.deepseek.com

K Sentence: Sergeant Chuck Hagel was seriously wounded twice in Vietnam.

¢

Question (x): Identify and fill event argument roles based on

the given sentence.

Reasoning (e): Alright, let's tackle this problem step by

step... Therefore, the output should be [{"role": "Victim", "entity":
"Chuck Hagel"}, {"role": "Place", "entity": "Vietnam"}]

Answer (y): [{"role": "Victim", "entity": "Chuck Hagel"},
{"role": "Place", "entity": "Vietnam"}]

\: RE Task \

ti Al
Question (x): Determine the relation type relation between "Chuck Question (x) nswer ()
Hagel" and "Vietnam" in the sentence. \’ ‘/
Reasoning (e): Alright, let's tackle this problem step by
T

step... Therefore, the output should be {"relation_type": "Physical"}
Answer (y): {"relation_type": "Physical"}

Reasoning Enhanced \
; i Data Construction

¥

Reasoning (e)

Joint Supervised Warm-up (

@@Q

{(x, e, y); oo} A Questions

N

Joint Reinforced Optimization

——> On-Policy Sampling 6 _—

b} Final LLM Policy
@ Reward-function(y, y') .

) — &

Golden Reward [ po /

{(x, €'y, .}

Figure 2: Overview of our REAR framework. Top-left illustrates EAE and RE task definitions. Top-right shows
reasoning enhanced data construction via DeepSeek-R1. Bottom pipeline depicts the LLM policy model evolving
from joint supervised warm-up through joint reinforced optimization into the final optimized policy.

on the ACE-E™ development set (see Section 3.5).
Moreover, function F(y, y’) is computed as:

f(y,y’>=max( WOVl & max(yl, \y’nAo.l) (4)

max(|yl, [y'])

/
where the term (%) measures the propor-

tion of correctly extracted event arguments, ranging
between 0 and 1. The term (o — p-max(|y|, |y']))
penalizes overly verbose predictions, especially
crucial when |y| = 0. The hyperparameters o and
w are empirically set to 0.4 and 0.1, respectively.
(We validate F(y,y’) in Section 3.4.2.)

Similarly, for the RE task, we define:

1, ify=19
Rre(y,y) =401, ify#y Ay #null (5)
0, on exception

where exceptions involve structurally invalid out-
puts or undefined relation predictions.

Following Zheng et al. (2023), the total reward
integrates the task-specific rewards and a KL diver-
gence (Kullback and Leibler, 1951) term(b)etween

0

the current policy and the initial policy 7,

Riotal(¥,Y) = Reae(y,Y) + Rre(y,y)

6
5 KL (maCls). 7 Clsp))

where (3 is dynamically adjusted during training via
an adaptive KL controller (Ziegler et al., 2019a).

We jointly optimize policy and value objectives
through PPO. The policy and value loss is defined
as (see detailed derivations in Appendix A):

. molals)
Lopoticy(0) = —Eern, — = Ay,
pot y( ) €Tt [Hlln <7r00|d(at|5t) "

(at|se) @
. Tol(a¢|St N
clip (Weold(at\st) 1—e 1+ e) ~At>}

1 ~
Evalue((ﬁ) 15 ]EeNm%ld |:Hlax < Vd)(st) - RtH27

(®)
[|clip <}§t — Vi(s1), Ay — €, Ay + 6) |2> :|

where 7, is the previous LLM policy. Advantage
Ay is computed via generalized advantage estima-
tion (Schulman et al., 2018). V¢(st) denotes the
estimated state value. Return estimate 12, is com-
puted by A, and Vg (s¢). € is the clipping factor.
The joint RL loss combines these components:

LrL(0, d) = Lpolicy(0) + a - Lyawe (@)  (9)

where the scaling factor « is set to 0.1, following
prior work (Dai et al., 2023; Trung et al., 2024).

3 Experimentation

3.1 Experimental Setup

We evaluate our approach on the ACE-E, ACE-
E* (Doddington et al., 2004) and ERE (Song
et al., 2015). Following prior works (Lin et al.,
2020; Yang et al., 2024), we preprocess ERE and
construct two standard variants ACE-E and ACE-
E* from the ACE2005 corpus (Doddington et al.,
2004). We report argument classification F1 score,
where arguments must be correctly classified with
accurately predicted roles. Additional experimen-
tal setup details, including detailed dataset descrip-
tions, introductions of the LLMs and hyperparame-
ters are provided in Appendix B.

3.2 Main Results and Analysis

Table 1 presents the overall performance of our
REAR framework on three benchmark datasets.
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| ACE-E | ACE-E" | ERE

Optimization Stages
| EAE RE | EAE RE | EAE RE

Original Model 423 50.8 | 41.0 584|559 718
Supervised Warm-up 614 758 | 62.0 762 | 59.8 74.0
Reinforced Optimization | 63.3 76.9 | 64.1 77.4 | 622 76.1

Table 1: Main results on ACE-E, ACE-E*1 and ERE
datasets. We report F1-score (%) for EAE and accuracy
(%) for RE. We highlight the best result.

Method Model ACE-E ACE-E* ERE
ChatGPT-14 (Li et al., 2023) GPT-3.5 289 30.9
ChatIE (Wei et al., 2023) GPT-3.5 29.5 - -
G-PTLM (Lin et al., 2023) GPT-J-6B - 31.2 29.6
ChatGPT-IE (Han et al., 2023) GPT-4 344 36.3 -
. LLaMA-2-13B 41.5 -
RLQG (Hong and Liu, 2024) Qwen-7B 32

Text-Davinci-002 57.0
LLaMA-3-8B + GPT-3.5 | 56.0
Gemini-Pro + GPT-3.5 59.5

Code4UIE (Guo et al., 2024)
Debate-EE (Wang and Huang, 2024)

Code4Struct (Wang et al., 2023b) Text-Davinci-003 60.4 - -
Scented-EAE (Yang et al., 2024) LLaMA3-8B 62.4 61.9 60.6
REAR (Ours) LLaMA3-8B 63.3 641 622

Table 2: Comparison of REAR with recent baselines.
All numbers represent F1-score (%) for EAE.

Compared with the original model (DeepSeek-R1-
Distill-LLaMA-3B #), both the supervised warm-
up and the reinforced optimization stages yield
substantial improvements. Taking ACE-E™ as an
example, the supervised warm-up already brings re-
markable gains, with EAE improving by +21.0 F1-
score and RE by +17.8 accuracy points. The sub-
sequent reinforced optimization further contributes
+2.1 Fl-score and +1.2 accuracy points, showing
that RL continues to refine the model beyond the
benefits of supervised learning.

A similar pattern is consistently observed on
ACE-E and ERE, which confirms that the two-stage
optimization strategy is effective across different
datasets. The supervised warm-up already yields
strong gains, confirming the benefit of integrat-
ing reasoning-enhanced supervision across EAE
and RE. Further applying reinforced optimization
leads to consistent performance boosts on all bench-
marks, achieving the best F1-scores in both tasks.
This indicates that reinforcement learning enables
the LLM to explore diverse reasoning trajectories.
In addition, it refines the decision-making process,
allowing the LLM to leverage relation-aware sig-
nals for argument role disambiguation. Notably,
RE benefits as an auxiliary task, with accuracy
consistently boosted. Overall, the two-stage opti-
mization demonstrates clear effectiveness.

Training Data  Optimization Stages ‘ EAE RE

- Original Model | 41.0 584
EAEONlY  pinforeed pimiaton | 291 52,11
REONY e Opimisaion | 3311 762 1
MisedDas G opimiaton | 6441 7741

Table 3: Ablation results with task-specific training
data. The table demonstrates how different training data
compositions (EAE-only, RE-only, and Mixed Data)
affect model performance across two tasks.

3.3 Comparison with Recent Work

Table 2 presents the overall comparison of REAR
against several recent baselines. Baseline meth-
ods based on decoder-only LLMs are described in
Appendix C. REAR consistently achieves higher
performance compared with existing baseline meth-
ods. Our approach achieves Fl-score of 63.3%,
64.1% and 62.2% on the ACE-E, ACE-E* and
ERE datasets, respectively. These results outper-
form prior methods based on decoder-only LL.Ms
on the EAE task. We attribute these improve-
ments to the joint optimization paradigm adopted
by REAR. Our approach simultaneously optimizes
EAE and RE tasks, capturing inter-task correla-
tions. The integration of reasoning-enhanced ex-
planations further enriches supervision, promoting
deeper semantic understanding. Additionally, RL
with carefully designed sparse terminal rewards
guides the LLM towards accurate predictions.

3.4 Ablation Study
3.4.1 Task-specific Analysis

Table 3 shows ablation results with task-specific
training data. We compare the original model,
EAE-only training, RE-only training, and mixed-
task training under two optimization stages. Re-
sults are reported as Fl-score (%) for EAE and
accuracy (%) for RE on the ACE-E™ dataset. The
arrows (1 / ]) denote performance changes rela-
tive to the original model. From the table, we ob-
serve that EAE-only training improves EAE but
reduces RE, while RE-only training improves RE
but reduces EAE. Mixed-task training improves
both tasks, and reinforced optimization achieves
the best overall performance.

We compare the performance of the original

4https://huggingface.co/deepseek—ai/
DeepSeek-R1-Distill-L1lama-8B
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Reward Variant Precision Recall F1-score

Original (ours) 61.4 67.1 64.1

w/o Verbosity Penalty 60.8 | 6721 6384
Strict Partial Reward 60.7 | 643] 624
Fully Sparse Reward 60.8 | 594 | 60.1 |

Table 4: Ablation results of different reward variants.

model, single-task training (EAE-only or RE-only),
and mixed-task training under different optimiza-
tion stages. Results are reported as F1-score (%)
for EAE and accuracy (%) for RE on the ACE-E*
dataset. As shown in Table 3, single-task training
fails to learn either task, while mixed-task training
yields strong performance. The arrows (1 / ] ) indi-
cate whether the performance improves or declines
compared with the original model baseline.

3.4.2 Reward Function Components Analysis

We conduct ablation experiments on the reward
components in Section 2.3, specifically testing four
variants:

* Original (ours): retains proportional reward, ver-
bosity penalty and minimum reward threshold.

* w/o Verbosity Penalty: removes the penalty
term that discourages overly verbose predictions.

* Strict Partial Reward: grants full reward only
when the predicted argument set is identical to
the ground-truth set, any partial overlap receives
only a minimal reward (0.1).

* Fully Sparse Reward: grants reward only when
the entire prediction is completely correct. Any
partially correct prediction receives zero reward
for both EAE and RE.

From Table 4, removing the verbosity penalty
(w/o Verbosity Penalty) slightly increases recall
but decreases precision, as the LLM produces more
arguments without penalty, introducing additional
false positives. Conversely, stricter reward criteria
(Strict Partial Reward and Fully Sparse Reward)
reduce recall. This occurs because stricter rewards
encourage conservative predictions, restricting the
model to fewer high-confidence extractions and
thus harming generalization.

3.5 Impact of Reward Scaling Factor

As defined in Section 2.3, the EAE reward intro-
duces a scaling factor « to balance EAE and RE
signals. We evaluate x € {0.5,1,2,4,8} on the
development sets of ACE-E, ACE-E™ and ERE

64.0
ACE*
63.6 ACE
ERE
56321
v 62.81
S
9
8 62.41
~—
L 62.0 1
61.6
61.2 L7 ; - ; T T T T
0.5 1.0 2.0 4.0 8.0

Scaling Factor «

Figure 3: Effect of varying reward scaling factor .

(Figure 3). Results show a bell-shaped trend: per-
formance peaks at k = 2 on ACE-E (62.9%) and
ACE-E™ (63.9%), while ERE achieves its best F1-
score at kK = 4 (62.4%). Too small x weakens EAE,
whereas excessively large « reduces cross-task syn-
ergy. Therefore, we adopt x = 2 for ACE-E/ACE-
E* and k = 4 for ERE in our final experiments.

4 Conclusion

In this paper, we propose a reinforced optimiza-
tion framework designed to exploit semantic in-
teractions between EAE and RE. Our approach
enhances semantic reasoning through initial joint
supervised training with reasoning explanations,
followed by joint reinforced optimization to dy-
namically explore richer reasoning trajectories. In
the future, we plan to explore the effectiveness with
alternative model architectures, such as encoder-
decoder and encoder-only models. Additionally,
we aim to investigate RL methods that do not re-
quire large-scale reasoning annotated data, further
enhancing the practical applicability of our REAR.

Limitations

Despite promising results, our approach exhibits
several limitations. Firstly, our reinforced optimiza-
tion framework requires careful tuning of hyper-
parameters, such as reward scaling factors and KL
divergence constraints, which may limit general-
ization to new tasks. Moreover, the computational
overhead introduced by RL exceeds traditional su-
pervised optimization, potentially hindering scal-
ability. Another limitation is that our approach
currently considers pairwise relationships within in-
dividual sentences, neglecting more complex cross-
sentence or document-level semantic interactions,
leaving room for further exploration.
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A Derivation of RL Objectives

This section provides a detailed mathematical
derivation of the reinforcement learning objectives
employed in Section 2.3, specifically focusing on
the Proximal Policy Optimization (PPO) frame-
work (Schulman et al., 2017).

A.1 KL Divergence Regularization

To further stabilize training and prevent exces-
sive divergence from the initial policy wéo), we
introduce a KL-divergence penalty (Ziegler et al.,

2019b) into the reward formulation:
Reap(y,y') + Rre(y,y) (10,
g (fse)

where [ is dynamically adjusted by an adaptive KL
controller (Ziegler et al., 2019a).

Rtotal(yay/) =
—B- KL (mo(-[st),

A.2 Optimization Objective

Given the total reward R, the reinforcement
learning objective aims to maximize the expected
cumulative discounted reward:

J( = TNﬂ'e 27

where the 7 = (sg,a0,81,01,---,8n,dy) CON-
sists of state-action pairs sampled from policy mg.
The trajectory length n equals the length of each
generated output sequence. To improve the sta-
bility and accuracy of policy updates, we adopt
the Generalized Advantage Estimation (GAE) ap-
proach (Schulman et al., 2018), which provides a
balanced trade-off between bias and variance in
estimating the advantage function.

1D

Rtotal St; at)

A.3 Generalized Advantage Estimation

Following Schulman et al. (2018), the GAE advan-
tage function A; is computed as:

|
-

n
~
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N
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where v = 1 and A = 0.95 are hyperparameters.
Each temporal difference term &y is:
6t =Ruiotal (817, Ay Spr41)+
7 Velse1) = Vo(se)

with terminal state value Vi (sp41) = 0. Specifi-
cally, the value network Vj; is constructed by ap-
pending a linear value head to the last hidden states

(13)

of the policy model obtained after the warm-up
phase (Ziegler et al., 2019b; Trung et al., 2024).

The return estimate R, is obtained by combining
the advantage estimate and value predictions:

Ry = Ay 4 Vg(st) (14)

A.4 PPO Surrogate Objective

To ensure stable policy updates, PPO employs the
clipped surrogate objective:

Tero(8) = Errury [min(rt(e) A,

) (15)
clip(ri(6), 1— ¢, 1 +¢) - At)}

where the probability ratio (@) is defined as:

™ e(at ’51&)
Trgold (at ’St)

r(0) = (16)

We set the clipping parameter € = (.2, following
established practices (Schulman et al., 2017; Dai
et al., 2023; Trung et al., 2024).

A.5 Value Function Approximation

We approximate expected returns using a value net-
work Vy, parameterized by ¢ and optimize it with
a clipped Mean Squared Error (MSE) objective:

va]ue(¢) 7'~7rg old [max((V¢(st) ) )
chp<v¢<st> ~ Vs (51), —€,)%)]

where clipping ensures stable updates.

(17)

A.6 Combined RL Objectives

The full reinforcement learning objective combines
both policy and value function objectives:

['RL(Oa ¢) = ﬁpolicy(g) + - Evalue((p) (18)

where the policy loss is defined as Lyoiicy(€) =
—Jppo(0) and the balancing hyperparameter is set
to o = 0.1, consistent with prior research (Dai
et al., 2023; Trung et al., 2024).

B Experimental Setup Details

Table 5 details the hyperparameters employed dur-
ing our two-stage optimization framework (Joint
Supervised Warm-up and Joint Reinforced Opti-
mization), as well as those for evaluation.

We conduct experiments on three dataset vari-
ants derived from the widely-used ACE2005 cor-
pus (Doddington et al., 2004) and ERE (Song et al.,
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Parameter Value Definition
Joint Supervised Warm-up
lora_r 32 Rank of the LoRA adapters during SFT
lora_a 64 Scaling factor controlling LoRA update magnitude in SFT
lora_target all Modules targeted by LoRA adapters in SFT
Ir 1.0e-5 Initial learning rate for SFT training
batch_size 1 Number of examples per gradient update step in SFT
gradient_accum 2 Steps of gradients accumulated before parameter updates in SFT
Joint Reinforced Optimization
0% 1 Discount factor for future rewards in RL
A 0.95  GAE parameter balancing bias and variance in RL advantage estimation
€ 0.2 PPO clipping parameter for policy update stability
@ 0.1 Scaling factor balancing policy and value losses in RL
K 2 Scaling factor for balancing EAE and RE task rewards
o 0.4 Base reward used in EAE sparsity penalty calculation
I 0.1 Penalty coefficient for overly verbose predictions in EAE
lora_r 32 Rank of the LoRA adapters during RL optimization
lora_a 64 Scaling factor for LoRA updates in RL optimization
lora_target all Modules targeted by LoRA adapters in RL optimization
Ir 1.0e-5 Learning rate for RL optimization
batch_size 25 Batch size for policy gradient updates during RL
init_kl_coef 1 Initial KL penalty coefficient in RL
target 1 Target KL divergence value for adaptive KL control in RL
horizon 1000  Horizon length for adaptive KL controller in RL
do_sample True  Enable stochastic decoding during RL
temperature 0.6 Sampling temperature set during RL
top_p 0.95  Nucleus sampling threshold during RL
Model Evaluation
do_sample False  Deterministic decoding for evaluation
temperature 0 Temperature set for greedy inference
Table 5: The hyperparameters used in our experiment.
Dataset  Split #Sents #Entities #Arguments ¢ GPT-3.5 refers to ChatGPT, GPT-3.5-Turbo and
Train 17,172 20,006 4,895 GPT-3.5-Turbo-Instruct models (Ouyang et al.,
ACE-E Dev 923 2,451 605 2022) .
Test 832 3,017 576
Train 19216  47.554 6.607 ¢ GPT-4 denotes the GPT-4 model introduced by
ACE-ET  Dev 901 3,423 759 OpenAl (Achiam et al., 2023).
Test 676 3,673 689 ' ' -
Tran | 8.886  22.831 2372 * GPT-J-6B is the GPT-J model with 6 billion
ERE  Dev 720 1,946 378 parameters (Wang, 2021).
Test 604 1,621 257

Table 6: Statistics of datasets

2015). ACE2005 contains 33 event types and 22
argument roles and ERE includes 38 event types
and 21 argument roles. ACE2005 corpus and ERE
contain comprehensive annotations for events, en-
tities and relations, making it particularly suitable
for sentence-level evaluations of both the EAE and
RE tasks. Specifically, we follow the preprocessing
procedures (Lin et al., 2020; Yang et al., 2024) from
ACE2005 corpus to construct the two dataset vari-
ants: ACE-E and ACE-E*. The detailed statistics
for each dataset split are presented in Table 6.

Due to space constraints in Table 2, abbreviated
model names were used. Here we provide the full
model names and corresponding references:

* Text-Davinci-002 and Text-Davinci-003 are
GPT-3 series instruct models optimized for
instruction-following tasks (Brown et al., 2020).

* Gemini-Pro represents Google’s Gemini-Pro
model (Team et al., 2024).

e LLaMA-2-13B denotes Meta’s LLaMA-2 model
with 13 billion parameters (Touvron et al., 2023).

* LLaMA-3-8B primarily refers to the LLaMA-3-
8B-Instruct model (Grattafiori et al., 2024) and
DeepSeek-R1-Distill-Llama-8B model®. Addi-
tionally, in our experiments, we specifically use
the DeepSeek-R1-Distill-Llama-8B as baseline.

C Related Work

Recent works explored leveraging LLMs for EAE.

5https: //huggingface.co/deepseek-ai/

DeepSeek-R1-Distill-L1lama-8B
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Li et al. (2023) evaluated ChatGPT in OpenlE,
highlighting plausible yet poorly calibrated out-
puts under standard IE scenarios. Wei et al. (2023)
proposed ChatlE, transforming zero-shot IE into
multi-turn QA. To enhance zero-shot performance,
Lin et al. (2023) introduced G-PTLM, employing
global constraints and prompting strategies with-
out annotated training data. Meanwhile, Han et al.
(2023) systematically analyzed GPT-4 under var-
ious prompting settings, uncovering performance
gaps with supervised methods.

Reinforcement learning based and retrieval-
augmented methods have further advanced perfor-
mance. Hong and Liu (2024) proposed RLQG,
improving QA-based extraction via inverse prompt-
ing and question-quality rewards. Guo et al. (2024)
introduced Code4UIE, formulating IE as code gen-
eration with Python-defined event schemas and
retrieval-enhanced prompting.

Multi-agent systems like Debate-EE (Wang and
Huang, 2024) optimized extraction via diverse-
RAG and adaptive conformal prediction, sur-
passing single-agent methods. Similarly, Wang
et al. (2023b) leveraged structured python outputs
from code-capable LLMs, integrating external con-
straints for enhanced performance.

Recently, Yang et al. (2024) proposed Scented-
EAE, explicitly modeling entity-type semantics via
stage-customized embeddings. It strengthens se-
mantic association at the input stage by augment-
ing entity-role correspondence, preserves semantic
integrity using a BIO-aware joint learning mecha-
nism at the intermediate stage.

D Detailed Illustration of Prompts

The prompt for the EAE task is illustrated in Figure
4. The structures for “argument_roles” and “tem-
plate” associated with specific events are derived
from the work of (Yang et al., 2024). Each event
type is associated with distinct “argument_roles”
and a unique “template”. To construct the com-
plete EAE prompt, we need to follow the input
structure shown in the “Examples” section of this
EAE prompt and replace “[Insert Input Here]” with
the integrated input information. An example of
the input and corresponding output of the EAE task
is presented in Appendix E.

Figure 5 presents the prompt designed for the
RE task. The “Relation Type Definitions” section
pre-defines 6 distinct types of relations, from which
the LLM is expected to select the most appropriate

one as the answer. To construct the complete RE
prompt, we should follow the input format demon-
strated in the “Examples” section of the prompt
and replace “[Insert Input JSON Here]” and “[In-
sert Input TEXT Here]” with the corresponding
integrated input data.

Figure 6 displays the prompt design for the Auto-
Reasoning-EAE setting. In this framework, both
the input and the corresponding output of the EAE
task are provided to the LLLM, which is then in-
structed to generate a reasoning style reasoning
process that bridges the input and output. The
prompt guides the model to follow a structured rea-
soning path by analyzing the event type, contextual
clues, entity-role compatibility.

The Auto-Reasoning prompt designed for the
RE task is shown as Figure 7. Both the input text
and the corresponding relational output are given to
the LLM, which is prompted to generate a concise
reasoning that explains the reasoning process.

E EAE Input and Output Example

Figure 8 provides the complete prompt input to
the LLM for the EAE task. Figure 9 presents the
corresponding output produced by the LLM based
on the input shown in Figure 8.
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# Task Description

Task: Event Argument Extraction

Objective: Identify and fill event argument roles based on the given sentence, entity
mentions, event trigger, and argument schema.

Output: A JSON array of objects with keys ‘role’ and ‘entity’ . Omit roles with no matching
entities.

## Input Specifications

1. Sentence: A sentence containing an event.

2. Entity Mentions: Pre-annotated entities with types (e.g., ‘Person’, ‘Geo-Political
Entity’).
3. Event Trigger:

- ‘word': The trigger word (e.g., "wounded").

- ‘event type : Event type (e.g., "Life.Injure").
4. Argument Schema:

- “argument roles : Definitions for each role (e.g., ""Victim": "People or
Organization"')

- “template’: Event structure template (e.g., “"Agent injured Victim with Instrument at
Place." ).

## Output Requirements

1. Strict Matching: Use only entities from ‘entity mentions’.

2. Multi-Argument Roles: A role may have multiple arguments (e.g., two "Attacker"
entries) .

3. Output Format:

*'Json

[{"role": "[Role_name]", "entity": "[Entity]"}, ...]

## Examples
### Example 1:

#### Input:
json
"sentence": "Sergeant Chuck Hagel was seriously wounded twice in Vietnam.",
"entity mentions": [
{"entity": "Sergeant", "entity type": "Person"},
{"entity": "Chuck Hagel", "entity type": "Person"},
{"entity": "Vietnam", "entity_typE": "Geo-Political Entity"}
1,
"trigger": {"word": "wounded", "event type": "Life.Injure"},
"argument roles": { -
"Victim™: "People or Organization",
"Agent": "People or Organization",
"Place": "Location",
"Instrument": "Vehicle or Facility"
},
"template": "Agent injured Victim with Instrument at Place."

#### Output:

json
[{"role": "Victim", "entity": "Chuck Hagel"}, {"role": "Place", "entity": "Vietnam"}]
### Example 2:
#### Input:
" Json
"sentence": "But , for Israeli , Palestinian conflict there 's a lot of decisions that has
to be -- applied but until now -- she didn't put any pressure , toward and I believe this
policy has been this kind of policy, became more and more during Bush -- President Bush time
-y
"entity mentions": [
{"entity": "Israeli", "entity type": "Geo-Political Entity"},
{"entity": "Palestinian", "enEity_type": "Geo-Political Entity"},
{"entity": "President", "entity type": "Person"},
{"entity": "Bush", "entity type": "Person"}
1
"érigger": {"word": "conflict", "event type": "Conflict.Attack"},
"argument_roles": {
"Attacker": "People or Organization",
"Place": "Location",
"Target": "People or Organization",
"Instrument": "Vehicle or Facility",
"Victim": "People or Organization"
}l
"template": "Attacker attacked Target hurting Victim using Instrument at Place."

}

#### Output:

son
[{"role": "Attacker", "entity": "Israeli"}, {"role": "Attacker", "entity": "Palestinian"}]
## Your Task
### Analyze the following input and generate the output JSON:
#### Input:

json
[Insert Input Here]

#### Output:

Figure 4: Illustration of the prompt for EAE task.
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# Task Description
Task: Relation Extraction
Objective: Determine the relationship type between two given arguments with entity type in a
sentence, based on predefined relation categories.
Output: A JSON object with the key ‘relation type’ indicating the relationship (use exactly one of
the 6 predefined types).
## Relation Type Definitions
1. Agent-Artifact: A living entity (agent) creates, uses, or interacts with an inanimate object or
artifact. For example, a person operating a vehicle or using a tool.
2. General-Affiliation: A broad association between entities that are not specifically
organizational, such as membership in a social club, informal network, or participation in a
community group.
3. Organization-Affiliation: A formal membership or employment relationship between a person/group
and an organization, such as being an employee of a company, a student at a university, or a member
of a government body.
4. Part-Whole: One entity is a component or subset of another. This includes relationships like a
"wheel" being part of a "car", or a "department" being a part of a "company".
5. Person-Social: Interpersonal relationships, including family ties, friendships, professional
collaborations, or other social connections between individuals.
6. Physical: Spatial or locational relationships, such as "located in," "found at," or "operates
within". For instance, a company being located in a specific city, or an event taking place at a
particular venue.
## Constraints
- Prioritize specific relationships (e.g., ‘Organization-Affiliation® over ‘General-
Affiliation’).
- Avoid inferring implicit relationships not explicitly supported by the sentence.
## Input Specifications
1. Sentence: A sentence containing both arguments.
2. Argument-1: The first argument and its entity type to analyze.
3. Argument-2: The second argument and its entity_ type to analyze.
## Output Requirements
1. Strict Matching: Use only the 6 predefined relation types.
2. Single Output: Must return exactly one ‘relation_type'.
3. Format:

‘json
{"relation_type": "TYPE NAME"}

## Example
### Input:
*“Jjson

"sentence": "Sergeant Chuck Hagel was seriously wounded twice in Vietnam.",
"Argument-1": {"text": "Chuck Hagel", "entity type": "Person"},
"Argument-2": {"text": "Vietnam", "entity type": "Geo-Political Entity"}

Answer the relation between "Chuck Hagel" and "Vietnam" in the sentence. Only return the relation
type in JSON format.
### Output:
*“Json
{"relation_type": "Physical"}

## Your Task
Analyze the following input and generate the output JSON:
### Input:
*“Jjson
[Insert Input JSON Here]

[Insert Input TEXT Here]
### Output:

Figure 5: Illustration of the prompt for RE task.
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# Task Description

Task: Reasoning Prompt Design:

Objective: Generate a unique thinking process for the given input, starting
with 'Alright, let’s break down this specific case.' Follow these principles:
1. Adapt to Input Nuances:

- Begin by addressing the exact ‘event type  (e.g., "Conflict.Attack") and
‘template® (e.g., "Attacker attacked Target...").

- Highlight how the sentence context shapes role assignments (e.g., "The
phrase ‘Israeli, Palestinian conflict’ implies mutual aggression").

2. Dynamic Entity-Role Alignment:

- Explicitly reference entity names, their types/subtypes (e.g., "Israeli
(Geo-Political/Nation)"), and compare them to role definitions (e.g., "Attacker
requires People/Organization—matches Israeli’s subtype").

- Reject mismatched entities with clear reasoning (e.g., "President is a
Person but not linked to the trigger’s context").

3. Trigger-Driven Logic:

- Explain how the trigger’s position and modifiers (e.g., "‘conflict’ acts
as the central action") influence role extraction.
4. Output-Specific Justification:

- Explicitly tie conclusions to the input’s unique data (e.g., "Only
Israeli/Palestinian fit Attacker roles here; Bush is unrelated to the event").
## Requirements:

- Start with a natural intro (e.g., "Alright, let’s break down...")
- Use bold/italics to emphasize key entities/roles.
- Avoid generic phrases—every step must reference the input’s specifics.
- Keep the chain between 150-300 words.
## Example Output Format:
Alright, let's tackle this problem step-by-step.
1. [Analysis step 1]
2. [Analysis step 2]
2. [Analysis step 3]
3. [Conclusion]
## Analyze the following input and the corresponding output to generate a
concise reasoning process.
### Input:
‘“json
[Insert Input Here]
### Corresponding Output:
" “json
[Insert Output Here]

### Thought process:

Figure 6: Illustration of the Auto-reasoning prompt for EAE task, which guides the LLM to generate intermediate
reasoning steps that explains how the output is derived from the input.
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# Task Description

Task: Reasoning Prompt Design

Objective: Generate a task-specific reasoning chain that explains how to derive the output
from the input, not just the final relations.

## Relation Type Definitions

1. Agent-Artifact: A living entity (agent) creates, uses, or interacts with an inanimate
object or artifact. For example, a person operating a vehicle or using a tool.

2. General-Affiliation: A broad association between entities that are not specifically
organizational, such as membership in a social club, informal network, or participation in
a community group.

3. Organization-Affiliation: A formal membership or employment relationship between a
person/group and an organization, such as being an employee of a company, a student at a
university, or a member of a government body.

4. Part-Whole: One entity is a component or subset of another. This includes relationships
like a "wheel" being part of a "car", or a "department" being a part of a "company".

5. Person-Social: Interpersonal relationships, including family ties, friendships,
professional collaborations, or other social connections between individuals.

6. Physical: Spatial or locational relationships, such as "located in," "found at," or
"operates within". For instance, a company being located in a specific city, or an event
taking place at a particular venue.

## Follow these guidelines:

1. Context Anchoring:

- Focus on the sentence structure (e.g., prepositions like "in," "at," or verbs like
"created," "joined").
- Highlight contextual clues linking the two arguments (e.g., " ‘wounded in Vietnam’

implies a location-based connection").
2. Relation-Type Prioritization:
- Cross-check entity types (e.g., "Chuck Hagel (Person)" vs. "Vietnam (Geo-Political)")
against the 6 predefined relations.
- Eliminate mismatches first (e.g., "Agent-Artifact requires an artifact; Vietnam is a
location, not an artifact").
3. Semantic Role Inference:
- Analyze how the arguments interact:
- Physical: Spatial prepositions ("in," "at"), locational verbs ("stationed,"
"operates") .
- Part-Whole: Terms like "part of," "belongs to," or structural hierarchies.
- Organization-Affiliation: Job titles ("Sergeant"), employment verbs ("employed
by") .
Requirements:
- Start with "Alright, let’s analyze..." and use bullet points.
- Keep the chain within 150-200 words.
## Analyze the following input and the corresponding output to generate a concise reasoning
process.
### Input:
**’json
[Insert Input JSON Here]

### Corresponding Output:
" 'json
[Insert Output Here]

### Plese Generate the Thought process:

Figure 7: Illustration of the Auto-Reasoning prompt for RE task, which instructs the LLM to generate task-specific
reasoning chains that explain how the output relation is derived from the input.
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# Task Description

Task: Event Argument Extraction

Objective: Identify and fill event argument roles based on the given sentence, entity mentions, event
trigger, and argument schema.

Output: A JSON array of objects with keys ‘role’ and “entity’. Omit roles with no matching entities.
## Input Specifications

1. Sentence: A sentence containing an event.

2. Entity Mentions: Pre-annotated entities with types (e.g., ‘Person’, ‘Geo-Political Entity') and
sub_types (e.g., ‘Individual®, ‘Nation’).

3. Event Trigger:

- ‘word': The trigger word (e.g., "wounded").

- “event type': Event type (e.g., "Life.Injure").

4. Argument Schema:

- ‘argument roles’: Definitions for each role (e.g., ""Victim": "People or Organization"').

- ‘template’: Event structure template (e.g., “"Agent injured Victim with Instrument at Place."’).

## Output Requirements

1. Strict Matching: Use only entities from ‘entity mentions’.

2. Multi-Argument Roles: A role may have multiple arguments (e.g., two "Attacker" entries).
3. Output Format:

**Json

[{"role": "[Role name]", "entity": "[Entityl"}, ...]

## Examples
### Example 1:
#### Input:

" 'json

{"sentence": "Sergeant Chuck Hagel was seriously wounded twice in Vietnam.", "entity mentions":
[{"entity": "Sergeant", "entity type": "Person", "entity subtype": "Individual"},{"entity": "Chuck Hagel",
"entity type": "Person", "entity subtype": "Individual"},{"entity": "Vietnam", "entity type": "Geo-
Political Entity", "entity_ subtype": "Nation"}],"trigger": {"word": "wounded", "event type":
"Life.Injure"},"argument_roles": {"Victim": "People or Organization", "Agent": "People or
Organization","Place": "Location","Instrument": "Vehicle or Facility"},"template": "Agent injured Victim
with Instrument at Place."}

#### Output:
"' 'json
[{"role": "Victim", "entity": "Chuck Hagel"}, {"role": "Place", "entity": "Vietnam"}]

### Example 2:

#### Input:

““json

{"sentence": "But , for Israeli , Palestinian conflict there 's a lot of decisions that has to be --
applied but until now -- she didn't put any pressure , toward and I believe this policy has been this kind
of policy, became more and more during Bush -- President Bush time .","entity mentions": [{"entity":
"Israeli", "entity type": "Geo-Political Entity", "entity subtype": "Nation"},{"entity": "Palestinian",
"entity_ type": "Geo-Political Entity", "entity subtype": "Nation"},{"entity": "President", "entity type":
"Person", "entity subtype": "Individual"},{"entity": "Bush", "entity type": "Person", "entity_ subtype":
"Individual"}],"trigger": {"word": "conflict", "event type": "Conflict.Attack"},"argument roles":
{"Attacker": "People or Organization", "Place": "Location",6 "Target": "People or Organization","Instrument":
"Vehicle or Facility",'"Victim": "People or Organization"},"template": "Attacker attacked Target hurting

Victim using Instrument at Place."}
#### Output:

" ’json

[{"role": "Attacker", "entity": "Israeli"}, {"role": "Attacker", "entity": "Palestinian"}]

## Your Task
### Analyze the following input and generate the output JSON:

#### Input:
"' 'json
{

"sentence": "this is one technique, one possible way u.s. forces might seize a bridge, a bridge that
might be defended by iraqis.",

"entity mentions": [{"entity":"u.s",6 "entity type": "Geo-Political Entity", "entity subtype": "Nation"},
{"entity": "forces","entity type": "Person", '"entity_ subtype": "Group"},{"entity": "bridge""entity type":

"Facility","entity subtype": "Path"},{"entity": "bridge", "entity type": "Facility",b "entity_ subtype":
"Path"}, {"entity": "that","entity type": "Facility","entity subtype": "Path"},{"entity":
"iraqgis","entity_ type": "Person",6 "entity_ subtype": "Group"}],

"trigger": {"word": "seize",6 "event type": "Transaction.Transfer-Ownership"},

"argument roles": {"Artifact": "Vehicle or Facility", "Seller": "People or Organization", "Beneficiary":
"People or Organization","Buyer": "People or Organization","Place": "Location"},

"template": "Seller gave Buyer to Beneficiary for the benefit of Artifact at Place."
}

#### Output:

Figure 8: Illustration of the complete prompt input to the LLM for the EAE task.
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Alright, let's tackle this problem step-by-step.

1. Event Type & Template Alignment: The event is Transaction.Transfer-
Ownership with the template "Seller gave Buyer to Beneficiary...". The
trigger "seize" implies forceful acquisition, shaping roles around ownership
transfer.

2. Artifact Identification: The phrase "seize a bridge" directly links
bridge (Facility/Path) to the Artifact role (requires Vehicle/Facility). The
duplicate "bridge" and "that" entries are redundant - only the first bridge
is wvalid.

3. Seller/Buyer Dynamics:

- "u.s. forces" combines u.s (Geo-Political/Nation) and forces
(Person/Group) . While "u.s" is a Nation, forces as a Group fits the Buyer
role (People/Organization) since they're seizing.

- "defended by Iraqgis" assigns iraqis (Person/Group) as the Seller - they
currently "own" the bridge through defense, matching the role’s
People/Organization requirement.

4. Excluding Irrelevant Roles:

- Beneficiary and Place are omitted. No entity indicates a recipient
(Beneficiary) or specific location beyond the bridge itself.

- The second "bridge" and "that" (Facility/Path) lack contextual ties to
the trigger’s action.

Conclusion: Only bridge (Artifact), forces (Buyer), and iraqis (Seller)
align with the template’s roles based on the trigger’s context and entity
subtypes. The U.S. as a Nation isn’t directly tied to the seizure action -
the focus is on the executing group (forces).

Therefore, the output should be [{"role": "Artifact","entity":
"bridge"},{"role": "Seller","entity": "iraqis"},{"role": "Buyer","entity":
"forces"}].

</think>
*“json
[{"role": "Artifact","entity": "bridge"},{"role": "Seller","entity":

"iraqgis"},{"role": "Buyer","entity": "forces"}]

Figure 9: The LLM’s output corresponding to the input in Figure 8. The content before the </think> tag represents
the model’s reasoning reasoning process, while the content after the tag presents the extracted event arguments.
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