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Abstract

We study Attributed Question Answering
(abbr., AQA), a newly-released long-form an-
swer generation task. The tailored and effi-
cient training programmes haven’t yet been
leveraged to strengthen AQA models. This
hinders the simultaneous enhancement of their
essential capabilities, including evidence iden-
tification, cross-source relation recognition and
anti-distraction reasoning. To address the issue,
we propose a tailored progressive curriculum
learning approach, and use it to optimize both
encoder-decoder and decoder-only AQA mod-
els. Experiments on the benchmark QuoteSum
show that our approach yields substantial im-
provements and enables the AQA performance
to reach 73.9% Sem-F1 score. 1

1 Introduction

For a question, AQA aims to generate a long-form
answer that consists of source-dependent evidence
and free-style contexts (Bohnet et al., 2022). The
evidence is forcibly taken from the given passage-
level sources, while free-style contexts can be pro-
duced at will for linguistic coherence during gener-
ation. Figure 1 shows an example, where evidence
is labeled in red font, while contexts the blue.

Recent progress (Gao et al., 2023; Schuster et al.,
2024) has been made through end-to-end gener-
ation frameworks, which have significantly im-
proved the overall quality of AQA. However, these
approaches still face critical limitations as follows:

• The AQA model is required to simultaneously
possess the capabilities of 1) evidence identi-
fication, 2) cross-source relation recognition,
and 3) anti-distraction reasoning.

• Current training strategies typically apply
a uniform learning process across these
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com/cyh0208/TPCL

Figure 1: An example of AQA, where the sources la-
beled with “✓” are reliable cases that comprise certain
evidence, while “×” denotes distracting sources.

tasks, which lacks dedicated mechanisms to
strengthen individual capabilities. Such uni-
formity hampers the effectiveness of Super-
vised Fine-Tuning (SFT), particularly when
different capabilities demand distinct learning
dynamics and granular focus.

To address these challenges, we propose a Tai-
lored Progressive Curriculum Learning (TPCL) ap-
proach, which introduces a modular and dynamic
training strategy. TPCL constructs complexity-
controllable training curricula by decomposing
AQA into specialized sub-skills and progressively
training the model on samples aligned to those sub-
skills. Such samples are curated through different
tailored training programmes, each focusing on a
distinct reasoning or generation aspect. Inspired by
curriculum learning theory, TPCL orders the train-
ing trajectory from simpler and focused tasks to
more complex and integrative ones. This progres-
sion not only stabilizes learning but also encour-
ages the model to incrementally acquire and retain
AQA capabilities, rather than monolithic SFT.
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Figure 2: An overview of our proposed method is presented in the figure, where yellow/green circles denote
relevant/irrelevant sources, and red/blue squares denote evidence/contexts. The symbol “U” denotes a curriculum.

2 Approach

The TPCL architecture is shown in Figure 2. It
comprises three components, including 1) tailored
programme construction, 2) complexity based cur-
riculum development, and 3) curriculum learn-
ing. Progressive and one-off curriculum learning
approaches are respectively proposed to enhance
encoder-decoder and decoder-only AQA models.

2.1 Tailored Programme Construction
We construct three tailored training programmes
({PM1, PM2, PM3} for short) towards the enhance-
ment of different capabilities:

• In PM1, an AQA model is fed with the reliable
sources S, and it is merely required to predict
all the evidence E in S given the question
Q. Accordingly, PM1 is used to enhance the
capability of evidence identification.

• In PM2, the model is required to analyze the
source-wise relationships, and generate the
long-form answer A accordingly. PM2 is used
to enhance the capability of grasping the mu-
tually related evidence.

• In PM3, the model is additionally fed with
the distracting sources S̄ that do not hold any
evidence E of A, while it is required to gener-
ate A precisely. PM3 is used to enhance the
capability of anti-distraction AQA.

QuoteSum provides explicit labels upon evidence.
The labels enable the verification of distracting
sources. This allows PM3 to be conducted.

2.2 Curriculum Development
In each n epochs of training (i.e., a learning stage),
we intend to provide a curriculum that is not only

tailored but controllable in complexity. To meet
this requirement, we conduct a curriculum devel-
opment process as follows:

• We firstly build a hybrid training set which
contains the instances derived from different
tailored programmes (i.e., PM1-3). Note that
each PM1 instance is obtained by filtering ev-
idence out of the long-form answers A, while
each PM2 instance is obtained by freezing the
distracting sources S̄. Each PM3 instance is
consistent with the original AQA sample.

• Secondly, we compute the complexity score
Ci for each instance in the hybrid training set.
We rank all instances accordingly, forming a
complexity-aware instance list.

• We divide the above instance list into N parti-
tions, equally and sequentially. The instances
in each partition are used as a curriculum for
SFT. Thus, we obtain a series of complexity-
controllable curricula, each of which, ideally,
contains multi-programme instances.

The complexity score Ci is computed in terms
of the length li of answer, number n̈i of sources
and distribution density di of entities:

Ci = αf(li) + βf(n̈i) + λf(di) (1)

where, f is a normalization function that acts based
on the maximum l, n̈ and d occurred in the hybrid
training set. The detailed explanations of complex-
ity measurement are presented in Appendix A.

2.3 Conventional Curriculum Learning
Given a curriculum, we divide the instances in it
into different batches. Over each batch of data, we
conduct SFT by back-propagation. Cross-entropy
is used to compute the loss.
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On this basis, we use all the N curricula for
SFT in the manner of curriculum learning. At each
learning stage t (t ∈ N ), we follow the common
practice (Auer et al., 2002; Matiisen et al., 2019;
Bejan et al., 2023) to conduct dynamic curriculum
selection, i.e., selecting the most proper curriculum
that adapts to the current ability level of the AQA
model. It is implemented by EXP3 (Auer et al.,
2002) algorithm, where the probability pi(t) of
selecting a proper curriculum is calculated as:

pi(t) = (1− γ)
wi(t)∑N
j=1 wj(t)

+
γ

N
,

wi(t) =wi(t− 1) · exp(γ · ri(t− 1)

pi(t− 1) ·N ),

ri(t) =V (t) + (1− Loss(t)

MaxLoss
) +D(t)

(2)

where, wi(t) serves as the adaptation coefficient
imposed upon the i-th curriculum, which is deter-
mined by ri(t− 1). ri(t− 1) is a reward given to
the model in terms of its performance on the valida-
tion set, as well as the complexity of the preceding
curriculum. In ri(t), V (t) denotes the ROUGE-L
score, Loss(t) is the cross-entropy loss at stage t,
and D(t) is the average difficulty of the training
samples in the current curriculum. γ is a smoothing
factor. MaxLoss is the cross-entropy loss at the
first training stage.

2.4 Progressive Curriculum Learning
We strengthen curriculum learning to avoid 1) un-
stable transition and 2) catastrophic forgetting.

To ensure a stable transition from easy learning
stages to complex ones, we slightly revise EXP3
algorithm. Specifically, we update equation (2)
using a dynamic smoothing factor γ(t):

γ(t) = γ + η
T − t

T
(3)

where, η is an attention factor, while T is the
ultimate learning stage (equaling the number of
epochs). Accordingly, γ(t) pays higher attention to
the smoothing factor γ at the earlier learning stage
(viz., smaller t). As a result, by equation (2), γ(t)
helps to randomize the initial curriculum selection
process, and thus enables a larger number of easier
curricula to be selected for learning.

To alleviate the forgetting of experiences learned
from preceding curricula, we conduct a jogging-
like curriculum updating. It runs as follows:

• We use EXP3 to select K curricula to initialize
a thematic course O for SFT.

Backbone Model R-L F1 Rec Avg
Encoder-decoder framework

BART-base +SEMQA 52.7 58.4 77.9 55.5
+TPCL (Full) 56.4 63.3 78.5 59.7

BART-large +SEMQA 61.3 69.7 87.1 65.4
+ICL-SC 60.0 67.9 85.6 63.9
+TPCL (Full) 62.2 71.5 87.3 66.7

T5-small +SEMQA 54.3 57.7 68.3 56.0
+TPCL (Full) 56.9 59.9 77.0 58.4

T5-base +SEMQA 60.4 67.7 78.0 63.9
+TPCL (Full) 63.7 71.6 88.1 67.6

T5-large +ALCE 62.6 71.6 84.4 67.0
+SEMQA 63.9 71.6 83.7 67.6
+ICL-SC 59.9 69.2 84.5 64.4
+TPCL (Full) 65.7 73.9 90.0 69.2

Decoder-only framework
LLaMA-3.1+SEMQA 42.2 45.1 55.4 43.6

+TPCL (One-off) 49.0 48.9 56.5 49.0
+TPCL (Full) 70.1 81.3 93.4 75.5

Gemma-3.0 +ALCE 54.1 61.3 79.1 57.6
+SEMQA 55.9 66.0 79.4 60.7
+TPCL (One-off) 58.7 67.4 80.5 62.9

GPT-4 +COTAR 68.8 70.5 - -

Table 1: Performance (%) comparison on Quotesum.

• We update O at every subsequent learning
stage, where k (k<K) newly-selected curric-
ula by EXP3 is used to incrementally replace
k existing curricula in O. Progressive learning
is always conducted on the updated O.

2.5 One-off Curriculum Learning

We simplify TPCL to a one-off version, so as to
compatibly couple it with the decoder-only Large
Language Models (LLMs). Specifically, given the
complexity-aware instance list (mentioned in Sec-
tion 2.2), we randomly adopt m instances from
the list to form the sole curriculum in order. On
this basis, we use this curriculum to initiate the
demonstration learning within an In-Context Learn-
ing (ICL) framework (Dong et al., 2024). Conse-
quently, we prompt LLMs to perform AQA based
on the demonstrations. We detail the prompts in
Appendix B.

3 Experimentation

3.1 Datasets, Evaluation and Settings

We experiment on QuoteSum (Schuster et al.,
2024), which contains 3,131 instances. We divide
QutoteSum into training, validation and testing sets
in the proportion of 8:1:1, which is the same as the
criterion of Schuster et al. (2024). We also follow
Schuster et al. (2024) to evaluate all AQA models
using the metrics of ROUGE-L (R-L), Sem-F1 (F1)
and Sem-Rec (Rec), as well as the geometric mean
(Avg) between R-L and F1. We explain the metrics
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Figure 3: Impact of jogging-like curriculum updating.

in Appendix C. The hyperparameters we use com-
prise those of complexity ranker and curriculum
learning, which are presented in Appendix D.

3.2 Main Results and Analysis

Table 1 shows the main results obtained on the test
set, where the compared baselines comprise differ-
ent versions of SEMQA (Schuster et al., 2024) that
use a variety of backbones, including BART (Lewis
et al., 2020), T5 (Raffel et al., 2020), LLaMA3.1-
8B (Grattafiori et al., 2024) and Gemma3-12B
(Team et al., 2025). In addition, we compare with
CoTAR (Berchansky et al., 2024) and ALCE (Gao
et al., 2023), where CoTAR had shown competitive
performance for AQA, and ALCE is the essential
baseline of SEMQA. We further include ICL-SC
(Jia et al., 2022) as the curriculum learning baseline.
We overview these models and other related work
in Appendix E. Note ALCE and ICL-SC were not
evaluated upon QuoteSum for AQA and, therefore,
we reproduce them in our experiments.

The test results show that both the full version
of TPCL (Section 2.4) and the one-off version
(Section 2.5) yield more substantial improvements
than the baseline SEMQA, regardless of whether
encoder-decoder models or decoder-only LLMs
are used as backbones. TPCL consistently outper-
forms another curriculum learning method, ICL-
SC, across all metrics using both BART-large and
T5-large backbones. More importantly, the combi-
nation of T5-large and TPCL results in a higher F1-
score than the strong GPT-4 based CoTAR (73.9%
versus 70.5%). This implies that the tailored pro-
grammes contribute more to enhancing the abilities
of evidence exploration. In addition, the optimized
LLaMA-3.1 by TPCL (full) achieves the best per-
formance, though it is more time-consuming than
the one-off version.

Figure 4: Impact of dynamic smoothing factor γ(t).

Backbone Model R-L F1 Rec Avg
Encoder-decoder framework

BART-large +SEMQA -8.8 ↓ -5.4 ↓ -13.8 ↓ -7.3 ↓
+TPCL (Full) -8.5 ↓ -4.8 ↓ -10.9 ↓ -6.9 ↓

T5-large +SEMQA -10.8 ↓ -6.5 ↓ -13.9 ↓ -8.8 ↓
+TPCL (Full) -10.4 ↓ -8.1 ↓ -13.3 ↓ -8.9 ↓

Decoder-only framework
LLaMA-3.1+SEMQA -3.8 -1.2 ↓ -1.2 ↓ -2.5 ↓

+TPCL (One-off) -3.8 +1.7 ↑ +0.9 ↑ -1.2 ↓
Gemma-3.0 +SEMQA -6.5 ↓ -2.3 ↓ -2.1 ↓ -4.6 ↓

+TPCL (One-off) -6.3 ↓ +1.7 ↑ -2.5 ↓ -2.7 ↓

Table 2: Performance degradation (%) on challenge set.

3.3 Ablation Study

We verify the impacts of dynamic smoothing factor
γ(t) and jogging-like curriculum updating, which
are two methods used to consolidate the conven-
tional curriculum learning approach (Section 2.4).

We show the impacts in Figures 3 and 4, where
the symbol “w/” denotes the engagement of the two
methods, while “w/o” refers to ablation. Different
versions of T5 are considered in the ablation study,
and TPCL (full) is used as the unabridged frame-
work. The test results show that the two methods
have positive impacts all along for all metrics.

3.4 Anti-distraction Verification

To better verify anti-distraction abilities of TPCL
and SEMQA, we construct a challenge set. Each
instance contains a larger number of paragraph-
level sources. GPT-4o (Hurst et al., 2024) is used
to produce distracting sources given a deliberately-
designed prompt within a self-inspection frame-
work.

We propose a challenging test set by address-
ing the limitation that most samples in QuoteSum
contain only two or three sources (Schuster et al.,
2024). To increase the complexity of this test set,
we ensure that each sample includes at least one
distracting source that is highly relevant but lacks
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answer-specific details. Specifically, we construct
the challenging test set through the following steps:

• Generation of distracting source: We employ
GPT-4o (Hurst et al., 2024) to generate noisy
sources that are highly relevant to the topic
but lack answer-specific details.

• Verification of generated source: We prompt
the model to answer the question using ci-
tations from the generated source. If the
model can successfully identify the answer
within the distracting source, we regenerate
the source until no explicit answer can be
found. The details of the construction prompts
are presented in Appendix F.

• Reordering of sources: Since original sources
are typically ordered based on relevance, po-
tentially simplifying the task of answer gen-
eration, we randomly reorder the sources pro-
vided as input to further increase the difficulty
of the test.

Table 2 shows the performance variation com-
pared to that in Table 1, where the mark “-” implies
performance degradation occurred on the challenge
set, while “+” reflects improvement. Green arrow
denotes the less degradation when comparison is
made between TPCL and SEMQA, while red the
substantial. It can be observed that TPCL yields
performance degradation less frequently, exhibiting
better anti-distraction capability.

For the challenging test set, performance degra-
dation occurs in almost all models compared to
performance on QuoteSum, which indicates that
the addition of distracting passages significantly in-
creases the difficulty of question answering. Never-
theless, our method continues to outperform others
in most models, demonstrating that our framework
enhances the models’ anti-interference capability.
However, the impact of distractions differs between
encoder-decoder models and decoder-only models.
Although encoder-decoder models exhibit a clear
decline across all metrics, decoder-only models
show improvement on certain metrics under simi-
lar conditions. This discrepancy can be attributed
to the capability of decoder-only LLMs to leverage
highly topic-relevant sources, which, despite not
directly containing explicit answers, stimulate the
retrieval of the models’ inherent knowledge to a
certain extent.

4 Conclusion

We propose a novel curriculum learning approach
(TPCL) for AQA, which provides tailored and
complexity-aware curricula for SFT, and avoids
unstable transition and catastrophic forgetting dur-
ing learning. Experiments show that TPCL obtains
substantial improvements, and outperforms the pre-
vious arts when both encoder-decoder and decoder-
only backbones are used. In the future, we will
explore a GPT4-oriented ICL method using TPCL.

Limitations

A limitation of our work lies in single-round
demonstration ordering within the in-context learn-
ing framework. Despite significant performance
improvements across various models, TPCL does
not specifically explore its potential on larger-sized
models (e.g., GPT-4). To solve the limitation,
we will develop an iterative curriculum refine-
ment framework where the model autonomously
diagnoses curricula through self-improving mech-
anisms in future research. This enhanced TPCL
aims to create a feedback loop between curriculum
design and problem-solving states.
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Question: When was the first women’s world cup held?
Answer: [ The inaugural tournament was held at a variety
of venues across England in June and July 1973 ] .
Question: Which are the major imports of India?
Answer: Major items of Indian imports [ are gold, di-
amonds, timber, metal scrap ] , [ crude oil and related
products, machinery, electronic goods, gold ] , [ silver ] , [
gems, fertiliser, and chemicals. ]

Table 3: Two AQA answers of different lengths.

Question: John Simpson is a member of which organiza-
tion?
Source 1: John Simpson studied architecture at University
College London ... He is a member of Royal Institute of
British Architects. Simpson is well known for being one
of the few modern-day ...
Source 2: He is a founder member of the European Feder-
ation of National Institutions for Language and has been a
member of its Executive Committee since 2003 ...
Question: When did Romeo and Juliet take place?
Source 1: ... Legend of Miljenko and Dobrila is a tragic
story about two lovers who are often described as the
Croatian Romeo and Juliet. The legend was used as a
basis for a number of novels, operas and plays. The story
dates from the second half of the 17th century, when ...
Source 2: Romeo and Juliet (Pastor) Romeo and Juliet is
a 2008 ballet choreographed by Krzysztof Pastor based on
William Shakespeare’s play "Romeo and Juliet" ...
Source 3: Romeo and Juliet (1968 film) reportedly dubbed
the voice of the Italian actor playing Lord Montague, but
was not credited in the film. The most financially success-
ful film ...
Source 4: Richard Burbage was probably the first Romeo,
being the company’s actor, and Master Robert Goffe (a
boy) the first Juliet ...

Table 4: Two AQA examples with different numbers of
sources. Evidence is labeled in red font.

A Complexity Measurement

To enable curriculum construction, we define a
composite complexity score for each training sam-
ple, which is computed as the weighted average of
three metrics.

Length of Answer. Longer answers typically
require more elaborate reasoning. As shown in
Table 3, the long answer needs to identify and ana-
lyze the relation between evidence spans, while the
short answer only identifies.

Number of Sources. More passages increase
the complexity of integrating relevant evidence. As
shown in Table 4, for the question When did Romeo
and Juliet take place, the answer synthesizes in-
formation from multiple sources: identifying the
temporal setting from historical references (e.g.,
second half of the 17th century) and incorporating

Task instruction:
Answer the QUESTION using the information in the
SOURCES. Rules for writing the answer:
1. Copy for every fact.
a. For each factual statement, copy the exact words from
the passage. b. Place the copied span in square brackets,
immediately followed by its source number, e.g. [exact
words][2]. c. If a fact appears in several passages, you
may cite multiple source numbers: [exact words][2][5].
2. Maximise explicit copying
a. Use copied spans for all facts whenever possible. b.
Add your own words only to link copied pieces together
into a fluent sentence.
3. Use all relevant information
a. Include every passage that helps answer the question.
b. Do not introduce information that is absent from the
passages.
4. Output format
a. Write a single coherent paragraph (or list, if the question
requires multiple items). b. Do not repeat the question
or list the passages. c. Provide nothing except the final
answer.
Shots:
Question: Who sings the song i’m just a love machine?
Source 1: The success prompted her album "Ride to
the Rainbow" to be reissued as "Love Machine" for the
Japanese release. ...
Source 2: "Love Machine" is a 1975 single recorded by
Motown group The Miracles, taken from their album "City
of Angels". The song was a 1 Pop smash on the "Bill-
board" Hot 100, and the biggest-selling hit single of The
Miracles’ career. ...
Source 3: Girls Aloud performed "Love Machine" on all
of their tours and on several live appearances, including
at Disney Channel Kids Awards, TMF Awards 2005, and
at "The Girls Aloud Party" TV special in 2008. English
indie rock band Arctic Monkeys covered the song ...
Answer: [ 2 "Love Machine" is a 1975 single recorded
by Motown group The Miracles, taken from their album
"City of Angels". ] [ 3 "Love Machine" ] is also the title
of a song [ 3 performed ] by the band [ 3 Girls Aloud ] .
... (Other examples)

Table 5: Prompt used for In-context learning with shots.

related content from media adaptations (e.g., the
1968 film and the 2008 ballet). It illustrates the
dual challenge of attributing facts accurately and
distinguishing the distracting source.

Distribution density di of entities. We intro-
duce a novel metric to quantify semantic noise
based on entity density:

di =
Ne

WP
, (4)

where Ne denotes the number of named entities
and WP is the total word count across passages.
For entity recognition, we train a RoBERTa-large
model (Liu et al., 2019) on ACE05 (Doddington
et al., 2004), achieving a 0.94 F1 score.
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Parameter Value Definition
Complexity score

α 0.3 weight of answer length
β 0.3 weight of source number
λ 0.3 weight of entities density

Dynamic smoothing factor γ(t)
γ 0.1 smoothing factor
η 0.4 attention factor

Encoder-decoder models
n 3 learning stage
N 6 curriculum number
T 30 ultimate learning stage
K 3 selected curriculums
lr 5e-5 learning rate

Decoder-only models
m 5 demonstration number

Table 6: The parameters used in our experiment.

B Prompt for In-context Learning

We use prompts to guide LLMs in performing AQA
based on demonstrations. Table 5 shows the de-
tailed prompts and shots.

C Metrics

We evaluate all the models with Sem-F1, Sem-Rec
and SEMQA metrics proposed by Schuster et al.
(2024), which respectively reflect the preciseness
of evidence, evidence coverage and overall answer
quality. Specifically, Sem-F1 is computed by calcu-
lating the normalized token-level F1 between the
generated answer and human-written reference an-
swers, with the highest obtained score as the final
Sem-F1. Similarly, Sem-Rec is determined by com-
puting the token-level recall between the evidence
provided in human-written references and the gen-
erated answer, selecting the maximum as the final
score. In addition, Rouge-L (Lin, 2004) score is
used to compare generated long-form answers with
reference answers (Stelmakh et al., 2022; Schuster
et al., 2024).

D Hyperparameters

When fine-tuning the encoder-decoder models, we
adopt the following hyperparameters. The maxi-
mum input length is set to 512 and the batch size
to 32. The learning rate is set to 5e-5. For final
testing, we select the checkpoint with the highest
ROUGE-L on the validation set. Within in-context
learning, decoder-only LLMs are given 5 shots as
examples. The input length is set to 1024. The
details are presented in Table 6. All of our experi-
ments were run on an A100 machine with 2 40GB
GPUs.

E Related Work

We briefly overview the previous work of AQA, as
well as curriculum learning. The latter is used as
the baseline training approach in our study.

E.1 Attributed Question Answering

The recent studies of AQA concentrate on the ex-
ploration and application of reliable evidence from
multiple sources.

ALCE (Gao et al., 2023) retrieves question-
related text spans from sources. On this basis, it
prompts LLMs to generate the synthetic evidence
conditioned on these spans. To ensure the qual-
ity of such evidence, Gao et al. (2023) construct
a benchmark dataset for fine-tuning and evaluat-
ing LLMs. Berchansky et al. (2024) propose a
tailored CoT reasoning approach to assist LLMs in
producing reliable evidence given miscellaneous
clues. To fine-tune LLMs well within the CoT
framework, Berchansky et al. (2024) introduce hy-
brid data into the training process, including the
evidence that couples with the qualified, human-
written and semi-extractive answers. All the data
can be assessed from Schuster et al. (2024) ’s vali-
dation set. Slobodkin et al. (2024) propose a local
RAG approach to enhance AQA. This RAG method
retrieves possible evidence from the sources, and
uses it as constraints to the vocabulary-based an-
swer generation.

E.2 Curriculum Learning

Curriculum Learning (CL) is an easy-to-hard train-
ing strategy in machine learning, which is moti-
vated by human behavior (Bengio et al., 2009).
Two fundamental components of CL are difficulty
metrics and course selection strategy (Yuan et al.,
2023).

Lao et al. (2021) incorporate the degree of vi-
sual modality dependence into the difficulty metric
to mitigate training data bias. CLIMB (Martinez
et al., 2023) utilizes the confusion of the current
model as a dynamic difficulty score, emulating the
order in which children learn languages. LLMCL-
GEC (Fang et al., 2025) categorizes data into easy,
medium, and difficult score bands based on LLM-
assigned scores. Xu et al. (2020) also defines the
difficulty through the synthesized loss of LLMs
rather than relying on human intuitions. In the as-
pect of course selection, many approaches adopt
the EXP3 algorithm (Bejan et al., 2023; Matiisen
et al., 2019). To ensure a steadier transition, a
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Task instruction:
You are an expert text generator required to process doc-
uments for question-answering difficulty enhancement.
Given a question, useful passages, and corresponding short
answers. The goal is to generate a noisy passage that dis-
tracts the model. Follow these strict guidelines:
- Generate a source that is highly topical in relevance but
lacks answer-specific information.
- Ensure the generated passage cannot be used to truly
answer the question.
- Output the new passage without any explanations. Don’t
extend 100 words!
Input:
QUESTION: When does the new army uniform come out?
SOURCE 1: First unveiled in June 2004, it is the suc-
cessor to the Battle Dress Uniform (BDU) and Desert
Camouflage Uniform (DCU) worn from the 1980s and
1990s through to the mid-2000s, respectively. It is also
the successor to the Airman Battle Uniform for the U.S.
Air Force. In early 2004, some U.S. Army soldiers in Iraq
were issued the "Close Combat Uniform" a variant of the
Desert Camouflage Uniform (DCU) that featured new fea-
tures such as shoulder pockets affixed with hook-and-loop
"Velcro" fasteners, chest-worn rank insignia, and a new
collar.
SOURCE 2: After a 60-year hiatus, on November 11,
2018, the U.S. Army announced it would adopt a new
uniform patterned on the "pinks and greens" effective
2020, with phase-in to be complete by 2028. The decision
to adopt the new uniform was done to fill the gap between
the formal blue Army Service Uniform and the Army
Combat Uniform created by the deauthorization of the
Green Service Uniform used between 1954 and 2015.
With the change, the blue Army Service Uniform will
again be restricted to ceremonial wear.
SHORT ANSWERS: June 2004; 2020
Output:
The U.S. Army has been continually updating its uniform
standards to reflect modern needs and operational envi-
ronments. These changes often involve integrating new
fabrics and designs for improved comfort and functional-
ity. For instance, the Army has also considered various
environmental factors such as the effects of different cli-
mates on soldiers’ performance and well-being, influenc-
ing uniform choices in the past few years. Moreover, the
integration of more adaptive camouflage patterns contin-
ues to evolve as part of ongoing trials and testing, aimed
at enhancing field effectiveness.

Table 7: An example illustrating the prompt used for
constructing distracting sources. The table presents
the original question, sources, and short answer as in-
puts, along with the corresponding generated distracting
source as the output.

Task instruction:
Given a question and a relevant passage, determine if the
passage contains the correct answer. If it contains, extract
the answer span. Otherwise, output “no answer”.

Table 8: Prompt used for validating generated sources.

Backbone Model R-L F1 Rec Avg
Encoder-decoder framework

BART-large +SEMQA 52.5 64.3 73.3 58.1
+TPCL (Full) 53.7 66.7 76.4 59.8

T5-large +SEMQA 53.1 65.1 69.8 58.8
+TPCL (Full) 55.3 65.8 76.7 60.3

Decoder-only framework
LLaMA-3.1+SEMQA 38.4 43.9 54.2 41.1

+TPCL (One-off) 45.2 50.6 57.4 47.8
Gemma-3.0 +SEMQA 49.4 63.7 77.3 56.1

+TPCL (One-off) 52.4 69.1 78.0 60.2

Table 9: Performance (%) on the challenge test set.

linear decay formula to update the threshold over
the course of training is introduced (Nguyen et al.,
2025; Vakil and Amiri, 2023). CLFFRD (Xu et al.,
2024) designs tri-level difficulty metrics and em-
ploys a linear pacing schedule that gradually ex-
pands the training subset. Motivated by these ap-
proaches, we propose a hybrid strategy that com-
bines EXP3 with linear decay to achieve progres-
sive sample selection.

F Challenge Test Set

Table 7 and Table 8 present the detailed prompts
used to construct and verify the distracting sources,
respectively. Table 9 shows the results obtained on
the challenge test set.
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