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Abstract

In the era of prosperity of large language mod-
els (LLMs), hallucination remains a serious is-
sue hindering LLMs’ expansion and reliability.
Predicting the presence (and absence) of certain
knowledge in LLMs could aid the hallucination
avoidance. However, the token-based genera-
tion mode of LLM is different from the knowl-
edge storage structure in the form of triples,
which makes it difficult to accurately evaluate
the knowledge boundary of LLM. We approach
this problem from a novel perspective and, for
the first time, introduce the concept of foken
knowledge in large language models. Conse-
quently, we propose a token knowledge dataset
construction method and use the intermediate
states during inference to train probes. This
allows us to predict if a specific token will ap-
pear in the LLM’s generated sequence, without
even generating a single token. Our approach
unlocks the model’s latent potential, enhancing
its accuracy in assessing token knowledge from
about 60% to over 90%, with strong out-of-
distribution generalization by training on just a
few dozen prompts. Finally, we apply KEGT to
enhance a state-of-the-art knowledge boundary
detection method, achieving improved perfor-
mance while reducing computational time by
over 90%. Furthermore, KEGT enables preven-
tion of hallucinations in certain cases by lever-
aging its guidance in the token-level knowl-
edge semantic space. Our code is available at
https://github.com/CC-2000/KEGT.

1 Introduction

Assessing the knowledge stored in large language
models (LLMs) remains a significant challenge
(Li et al., 2024). The common method for veri-
fying LLM knowledge involves querying models
with fact-based prompts and many studies have em-
ployed similar approaches, including comparing re-
sponses to gold standard labels (Elazar et al., 2021),
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Figure 1: The difference between abstract knowledge
and token knowledge.

evaluating semantic consistency in paraphrased re-
sponses (Hase et al., 2023; Raj et al., 2022), and
cross-referencing answers with external evidence.
Previous research, regardless of assessing an
LLM’s mastery of a particular subject (Gottesman
and Geva, 2024) or its understanding of various re-
lational templates (Dong et al., 2024), or comparing
the generated objects to gold labels, all evaluates an
LLM'’s higher-level knowledge, which we refer to
as abstract knowledge. As shown in Figure 1, given
that the text generated by LL.Ms is based on tokens
as fundamental units (Yu et al., 2024), higher-level
entity or relation knowledge is more abstract and
harder to obtain compared to token-level knowl-
edge for LLMs. Our main standpoint is that an
LLM'’s token-level knowledge is easier—both more
accurately and more efficiently—to be obtained as
a stepstone for high-level abstract knowledge.
Thus, unlike prior work, this study aims to focus
on token-level knowledge in LLMs, specifically,
predicting whether a model will generate a given
token without actually generating a single token.
We show that our approach enables a more accessi-
ble analysis of abstract knowledge and has potential
applications in probing model knowledge bound-
aries, preventing hallucinations, and mitigating the
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https://github.com/CC-2000/KEGT

generation of biased or harmful contents.

We define this problem as Token Knowledge
Estimation (Section 2). While directly generating
text and verifying the presence of specific tokens in
the output is the most accurate method, the time re-
quired for generating long sequences is a significant
concern. The time complexity of text generation
increases non-linearly with sequence length, due to
the attention mechanisms in Transformers, which
results in O(n?) time complexity (Duman Keles
et al., 2023). Consequently, time efficiency is a cru-
cial factor for token knowledge estimation, and any
approach we consider should at least outperform
the direct generation method in terms of speed.

To address the token knowledge estimation task,
we build on prior work exploring the interpretabil-
ity of internal states in LLMs. Research has shown
that certain internal representations during LLM
inference exhibit interpretable features (Geva et al.,
2023; Meng et al., 2022), which can be captured
using linear probes (Hernandez et al., 2024). Based
on this, we propose KEGT (Knowledge Estimation
of Generated Token), a probing that utilizes these
internal representations to predict the likelihood of
a token appearing in the generated sequence, even
without requiring to generate a single token. As
a result, KEGT provides a significant efficiency
advantage over traditional text generation methods.

To implement KEGT, we refine the KASS
dataset (Dong et al., 2024) by selecting 2,992 dis-
tinct knowledge facts and 48,770 unique prompts
for experiments. We evaluate KEGT in both in-
distribution and out-of-distribution settings, where
it consistently achieves over 0.9 accuracy. Then we
test KEGT with minimal training data and find that
it converges and remains highly accurate with just
one knowledge fact (<30 prompts). This shows
KEGT captures generalizable features for predict-
ing token appearances in future outputs. Evalu-
ations on eight LLLMs and four datasets confirm
these features are consistently present and effec-
tively captured by KEGT. Additionally, we apply
KEGT to explore the knowledge boundaries of
LLMs. Compared to the latest methods for knowl-
edge boundary detection (Dong et al., 2024), our
approach is over ten times faster. Finally, we con-
duct intervention experiments to verify that KEGT
can proactively prevent the hallucination, and per-
form case studies to demonstrate its effectiveness.

Overall, our main contributions are as follows:

1. We introduce a novel perspective for evalu-

ating the knowledge of large language mod-
els: token-level knowledge estimation. We
then propose KEGT, a method that predicts
whether a specific token will appear in the
generated sequence, without generating any
tokens, effectively addressing this task.

2. We leverage LLM internal representations dur-
ing inference and capture generalizable fea-
tures to solve the token-level knowledge es-
timation task. These features demonstrate
strong out-of-distribution generalization and
can be learned with minimal data.

3. Experiments demonstrate that KEGT can ef-
fectively prevent hallucinations in advance
and can be successfully applied to the explo-
ration of knowledge boundaries in LLMs.

2 Token Knowledge Estimation

LLMs generate knowledge based on tokens as fun-
damental units, while higher-level entity and re-
lation knowledge is more abstract to the model.
Aligned with (Li et al., 2024), which highlights
the inadequately defined knowledge boundary of
LLMs, understanding entity knowledge without
exploring token-level mechanisms is challenging.
Thus, this work focuses on measuring token-level
knowledge in LLMs.

Most methods study abstract knowledge by
checking whether model responses consistently in-
clude answer entities. Similarly, our approach in-
vestigates whether a specific token appears in the
model’s response to a given prompt. The formal
definition of this task is as follows:

Given a prompt p and a specific token t,, the
response r = [t1,ta,...,ty] generated by LLM
M consists of m tokens. The goal of token knowl-
edge estimation is to determine whether the token
t, will appear in the token sequence r. Specifically,
the task is to identify whether there exists an ¢ such
that 1 <¢<m,7 € N,and t; = t,.

The most direct and accurate method is to in-
put p into M, control M to generate sequences
of length m, and then traverse each token in the
sequences to check whether ¢, appears. However,
this approach is time-consuming, as the genera-
tion time increases with sequence length, and this
increase is not linear—the time complexity of the
attention mechanism is O (m?) (Duman Keles et al.,
2023). Thus, time effciency is a crucial factor for
token knowledge estimation and an optimal solu-
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tion should take less time than directly generating
a response of length m from M for the prompt p.

3 Methodology

Previous studies have demonstrated that the hidden
states in LLLMs capture rich task-specific informa-
tion (Geva et al., 2023; Meng et al., 2022). How-
ever, none has explored whether this information
also pertains to token knowledge. To address this
gap, we first investigate the potential presence of
such information using a carefully curated dataset.

We create new prompts (Appendix A) by com-
bining a base prompt p with a specific token ¢,
then analyze the LLM’s hidden states during in-
ference to determine if they contain task-related
features. We select 10 factual prompts as inputs
to LLaMA3.1-8B (Dubey et al., 2024), generate
20-token responses and manually review these re-
sponses to identify key words as t,. To facilitate
differentiation, we categorize these tokens as tpos
and yee, Where 7 is a token that appears in the
response and tyeg is one that does not. For exam-
ple, for the prompt “Hepatitis B vaccine is used
to immunize against”, the response is “hepatitis B
virus infection. It is a vaccine that is used to pre-
vent hepatitis B. It is a”. We choose ?pos = “virus”
and specify t,e, = “bacteria”, creating a triplet
(P, tpos tneg)- Similarly, we replace “May” with
“November” and “different” with “same” to create
negative tokens, for example. The complete data is
provided in Appendix B.

For carefully prepared data, as shown in Fig-
ure 2(a), we collect hidden states of M and ap-
ply PCA for dimensionality reduction (Shlens,
2014). The resulting two principal components
(PCs) are then normalized to a vector with a mod-
ulus of 1 (Chen et al., 2024), as shown in Fig-
ure 2(b). A clear linear separation is observed
between positive and negative samples. Upon nor-
malization—focusing on distribution rather than
absolute distance—negative samples tend to cluster
on the right, while positive samples appear on the
left. This suggests that the LLLM contains general
features that effectively capture token knowledge
for the token knowledge estimation task.

3.1 Token Knowledge Data Preparation

To assess the generalizability of these features, we
conduct experiments on large-scale data. Given
that LLMs are known to be sensitive to prompt
variations, we include paraphrasing prompts when-

PC2
PC2

1 0 1 1 0 1
PC1 PCc1

(a) PCA (b) PCA with Normalization

Figure 2: The visualization for carefully prepared data.

ever possible during dataset construction.

We use the KASS dataset (Dong et al., 2024),
where each knowledge triplet k = (s, r, 0) contains
multiple aliases for the subject and object, as well
as various templates for the relation. By combin-
ing each subject alias with each relation template,
we generate a set of prompts. For each prompt
p associated with a knowledge triplet k, we ob-
tain the 20-token response' from the LLM M and
randomly select a meaningful token #,05 to form
a positive sample. A negative sample is created
by pairing p with a random, meaningful token #pes
that does not appear in the response. This approach
ensures that for each prompt and each model, one
positive and one negative sample are constructed,
maintaining a balanced distribution of positive and
negative samples in the dataset. Additionally, to
ensure the generalizability of our method across
different datasets, we construct three additional
datasets: two QA datasets—NQ and WebQ—and
an Amazon review dataset. The detailed construc-
tion and the statistical information of each dataset
are provided in Appendix C.

3.2 KEGT: Knowledge Estimation of
Generated Token

When a prompt p is fed into the LLM M, the i*"
token x; of the prompt is first encoded with word
and position embeddings to obtain the initial state
hl(.o) = emb(x;) + pos(x;). The hidden state of the
I-th layer, h(!) is computed by passing h(?) through
the Transformer decoder blocks sequentially, where
1 <! < L and L is the total number of Transformer
decoder layers. The calculation of h(!) is given by:

hY =Y 4ol (1)
al(»l) = attn(l)(hgl_l), hg_l), ceey h(l_l)) 2)

IThe reason why we choose a 20 token response is shown
in Appendix D .
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m® = w U(W}E?v(a(l) + h(l_l)) 3)

7 proj 7 7
where attn®) is the attention layer of the I-th layer,
(0

and a; ’ is the [-th attention layer’s output, while

WZSQO ; and W}? are the parameters of the two fully
connected layers of the [-th layer (ignoring bias).
Given the success of other probing works and
the distinctly linearly separable features shown in
Figure 2, we use the hidden representations com-
puted by the LLM M during inference as input to

the probing network:

f() = (0 ) o)

Here, h can be any hl(l), but experiments in Sub-

section 5.1 indicate that selecting features from
both the last token and middle layers yields the
best probing results, which is consistent with previ-
ous conclusions. Finally, we optimize the trainable
weight matrix # by minimizing the cross-entropy
loss between the predicted distribution of KEGT
and the true labels y.

L= —(y-log(o(6-h))+(1—-y)-log(1—0o(0-h)))

&)
More detailed training parameters for KEGT can
be found in Appendix E.

3.3 Intervention Token Knowledge for
Hallucination Prevention

Benefiting from the phenomenon observed in Fig-
ure 2 and the experimental results presented in Fig-
ure 4, we attempt to intervene in the LLM’s token
knowledge by leveraging the directional informa-
tion embedded in the hidden representations h.

Specifically, we perform PCA on h, reducing its
dimensionality to K and obtaining a principal com-
ponent matrix P. The low-dimensional projection
matrix is then computed as:

Z=hxP (6)

Each row vector in Z represents the corresponding
sample’s coordinates in the K -dimensional princi-
pal component space.

To intervene token knowledge, we introduce a
small perturbation along the directions of the prin-
cipal components. We define a diagonal matrix
A € REXE where each diagonal entry A; indi-
cates the perturbation strength along the ¢-th princi-
pal direction. Then the perturbed hidden state h;,,;
is given by:

hjy =h+ Z x A x PT (7)

When A; > 0, the hidden state is shifted toward the
positive direction of the ¢-th main component, mak-
ing the LLM more likely to exhibit the target token
knowledge. Conversely, A; < 0 shifts the state
in the opposite direction, effectively removing the
corresponding token knowledge from the model’s
behavior. As demonstrated in the experiments in
Section 5.5, our intervention method can effectively
reduce hallucination in certain scenarios.

4 Experimental Setup

Data We validate token knowledge in LLMs us-
ing KASS with diverse paraphrasing, standard QA
datasets with varying styles (NQ and WebQA),
and human-written review-style data from Ama-
zon. The detailed construction process is provided
in Appendix C.

Models We conduct experiments on eight models
across five different model families. Considering
the shallow layers in LLMs primarily capture token-
level semantic information, while middle layers
encode higher-level features, and deep layers are
closely related to next-token prediction. Therefore,
for each model, we conduct experiments at three
levels—shallow, middle, and last layers—and our
experimental results consistently align with this
theoretical understanding. Details regarding model
specifications and layer selection can be found in
Appendix F.

Baselines To the best of our knowledge, we are
the first to investigate token knowledge in LLMs,
thus no direct baseline methods are available for
comparison. However, given the recent advances
in LLMs’ zero-shot and few-shot learning capabil-
ities (Patel et al., 2023), we use these as baseline
methods. Additionally, we consider CCS, an unsu-
pervised approach that evaluates factual accuracy
through hidden representations of LLMs (Burns
et al., 2023). Although CCS was originally de-
signed for fact verification, its method is general-
izable and can be applied to any probing task on
LLM representations. For a fair comparison, we
train CCS unsupervisedly on the same layers used
in KEGT, referred to as CCS-shallow, CCS-middle,
and CCS-last.

Evaluation For fairness, we use the same prompt
templates for both KEGT and the three baselines.
We use accuracy and F1 score as metrics.
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LLaMA3.1-8B LLaMA2-13B GPT2-MEDIUM GPT2-XL
method

accuracy fl score accuracy fl score accuracy flscore accuracy fl score
zero-shot 0.0069 0.0052 0.5513 0.5780 0.0467 0.0863 0.4629 0.5312
few-shot 0.6380 0.5223 0.7186 0.6589 0.5397 0.4808 0.5997 0.5198
CCS-shallow 0.9643 0.9635 0.2099 0.2070 0.3122 0.3200 0.6730 0.6722
KEGT-shallow  0.9154 0.9081 0.8286 0.8258 0.8893 0.8925 0.8843 0.9101
CCS-middle 0.9830 0.9832 0.9680 0.9687 0.9709 0.9701 0.9795 0.9797
KEGT-middle 0.9793 0.9793 0.9800 0.9802 0.9815 0.9814 0.9856 0.9857
CCS-last 0.3024 0.2900 0.9640 0.9649 0.8396 0.8421 0.8909 0.8927
KEGT-last 0.9885 0.9885 0.9773 0.9776 0.9125 0.9130 0.9397 0.9399

Qwen2.5-1.5B Qwen2.5-7B OPT-1.3B OPT-6.7B
method

accuracy fl score accuracy flscore accuracy flscore accuracy f1 score
zero-shot 0.6577 0.6916 0.6472 0.4984 0.1196 0.2134 0.2597 0.3235
few-shot 0.5885 0.4053 0.6788 0.5376 0.5359 0.3773 0.5900 0.6392
CCS-shallow 0.0727 0.1326 0.5528 0.5048 0.7540 0.7662 0.3364 0.2971
KEGT-shallow  0.9250 0.9192 0.9524 0.9503 0.7824 0.7835 0.8095 0.8089
CCS-middle 0.0446 0.0629 0.0698 0.1298 0.8195 0.8244 0.2814 0.2697
KEGT-middle 0.9812 0.9820 0.9899 0.9900 0.9124 0.9137 0.9588 0.9598
CCS-last 0.8280 0.8310 0.5780 0.5776 0.8498 0.8558 0.0222 0.0115
KEGT-last 0.9778 0.9778 0.9904 0.9904 0.9696 0.9698 0.9839 0.9839

Table 1: The out-of-distribution experimental results, with the best results in bold and the second-best results

underlined.

5 Results and Analysis

In this section, we evaluate the performance of
KEGT and baselines in both in-distribution and out-
of-distribution settings, demonstrating that KEGT’s
extracted features are general and dataset-irrelevant.
We also show that KEGT converges with minimal
training data. In layer-based experiments, our find-
ings align with previous knowledge storage studies,
with explanations for observed differences. Finally,
we validate KEGT’s effectiveness in LLM knowl-
edge boundary detection task and illustrate its ap-
plication through a case study.

5.1 Main Results

We first evaluate the performance of KEGT and
three baselines on the KASS dataset. We randomly
split all knowledge facts into a training set and
a test set with an 8:2 ratio. For each knowledge
fact in training set, we randomly select 80% of the
corresponding paraphrasings for training, reserv-
ing the remaining 20% as an independent, identi-
cally distributed (IID) test set. This results in a
0.64:0.16:0.2 split for the training, IID and out-of-
distribution (OOD) test sets. The IID and OOD
results are shown in Table 5 in Appendix G and
Table 1, respectively. We can draw the following
conclusions.

KEGT outperforms both in-distribution and
out-of-distribution methods. KEGT-middle gen-
erally yields the best results, with KEGT-last occa-
sionally outperforming it. Compared to zero-shot
and few-shot methods, KEGT shows significant

improvement, while the unsupervised CCS is less
stable. When CCS performs well, such as with
LLaMA3.1-8B middle representations, it slightly
surpasses KEGT-middle but falls behind KEGT-
last. In cases where CCS underperforms, KEGT
consistently outperforms CCS, demonstrating its
stable, optimal performance for robustness.
LLMs possess token knowledge but it is hid-
den and unrevealed, which can be captured by
KEGT. Zero-shot and few-shot achieve accura-
cies of 40% to 65%, close to random guessing,
indicating that LLMs do not expose token knowl-
edge. Despite using the same prompt templates,
KEGT shows strong predictive ability for token
knowledge, suggesting that LLM representations
during inference contain features related to token
prediction, which LLMs do not explicitly propa-
gate. KEGT can effectively capture these features.

5.2 The Salient Features of Token Knowledge

LLMs reveal salient token knowledge features, and
KEGT effectively captures these features. While
it may seem that KEGT requires large amounts
of training data to converge, we provide evidence
to the contrary: (1) KEGT requires only a small
amount of training data to identify the learning di-
rection; (2) KEGT learns similar directions across
prompts from different distributions; (3) This direc-
tion can also be identified in less refined datasets,
such as casually written human comment data.
KEGT requires minimal training data. While
KEGT typically performs optimally with larger
datasets, we show that its learning direction can
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Figure 4: The experiment of mutual projection between
the principal components of two knowledge triples.

be effectively determined with minimal data. We
train KEGT using varying amounts of knowledge
(1, 2, 4, 8, 16, 32, 64, 128 facts) and evaluate
its performance on both in-distribution and out-of-
distribution test sets. With just one knowledge fact
(no more than 30 prompts), KEGT-middle achieves
an F1 score of approximately 0.8 for the GPT-2
and Qwen2.5 models, as shown in Figure 3. These
results demonstrate that KEGT can converge with
minimal training data, offering both fast inference
and reduced training time.

number of training knowledge facts.

KEGT learns robust features across different
semantic distributions. A comparison of Tables
5 and Table 1 shows that KEGT’s performance is
consistent regardless of test set distribution, indi-
cating that the features learned during training are
highly relevant to token knowledge estimation. To
further demonstrate the generality of these features,
we conduct an experiment using two knowledge
triplets from the KASS dataset, with g1 and g2
representing paraphrasing prompt sets. We collect
the middle-layer representations of LLaMA3.1-8B
and reduce their dimensionality via PCA (Figure 4).
Both g1 and g2 show linearly separable features.
When projecting the representations of g1 onto the
principal components of g2, and vice versa, the rep-
resentations remain nearly linearly separable. This
suggests that the features captured by KEGT are
both relevant and generalizable to the task.

KEGT can still identify the direction of to-
ken knowledge features even in general datasets
or casually written human comment data. We
test KEGT on NQ, WebQ, and Amazon datasets,
and the results are consistent with those on the re-
fined KASS dataset, as shown in Figure 5. Whether
through PCA visualization or normalization to a
fixed scale, the distribution of features is approxi-
mately linearly separable. This indicates that token
knowledge features are universally present in all
types of text data, and KEGT is highly effective
in capturing these features. Detailed experimental
results can be found in Appendix H.
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Figure 5: PCA (Ist & 2nd components) of LLaMA3.1-
8B middle-layer features on NQ/WebQ/Amazon.

5.3 The Storage Mechanism of Token
Knowledge

In this subsection, we explore the variation of token
knowledge across different layers of LLaMA3.1-
8B during inference. Using representations from
all 32 layers, we train KEGT with just 3 knowledge
samples. The F1 scores for both in-distribution
and out-of-distribution tests are shown in Figure 6.
Due to the limited training data, the in-distribution
test set contains very few samples, resulting in
fixed F1 scores. In out-of-distribution experiments,
KEGT’s performance is lower with shallow-layer
features, improves with middle-layer features, and
declines again with deeper layers. This aligns with
(Meng et al., 2022), which suggests shallow lay-
ers primarily capture semantic features tied to the
prompt, offering limited generalization. As infer-
ence progresses, LLMs incorporate more abstract,
high-level features related to deeper knowledge,
which are not immediately accessible to the model,

iid
0.95 ood

0.90 1

0.85 1

0.80

0.75 1

0.70 1

0 5 10 15 20 25 30
Figure 6: KEGT performance across different layers.
The horizontal axis represents the layer index, from

shallow to deep layers; the vertical axis represents the
F1 score.

while the model focuses on next-token prediction
near completion/final layers. Thus, token knowl-
edge is more likely to reside in the middle layers.

5.4 Exploratory Experiments on Knowledge
Boundaries

Recent studies on the knowledge systems of LLMs
aim to identify accurate versus erroneous knowl-
edge, often referred to as the “knowledge bound-
ary”. A recent approach, proposed by (Dong
et al., 2024), introduces the KaRR score to measure
an LLM’s mastery of specific knowledge—higher
scores indicate stronger knowledge. This method
uses a large set of paraphrasing prompts to compute
the KaRR score for each knowledge fact.

We apply KEGT to enhance this process by
first determining whether the answer entity ap-
pears in the LLM’s generated sequence. If the
entity is absent, it indicates weak knowledge grasp,
which negatively impacts the KaRR score. Con-
sequently, prompts where KEGT predicts the ab-
sence of the entity are excluded from the KaRR
score calculation. Experimental results show that
applying KEGT increased the average KaRR score
by 7.4498, while KEGT’s inference time is just
one-tenth of the KaRR calculation time, demon-
strating KEGT’s efficiency and potential value in
knowledge boundary research. Detailed results can
be found in Appendix 1.

5.5 Intervention Token Knowledge for
Hallucinations Prevention

In this subsection, we show how hidden status di-
rectional signals can be used to intervene in LLMs’
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token-level knowledge. To identify appropriate
hyperparameter values, we conducted preliminary
tuning via a limited grid search, selecting values
that consistently yielded stable and meaningful in-
tervention effects across multiple runs. Finally,
using all positive samples from KASS with K = 2,
we set all components of vector A to —0.3 to
shift the distribution in the negative direction. We
then examine the token sequences generated by the
LLM after the intervention and determine whether
the target token has successfully disappeared from
the sequence to calculate the accuracy. The results
are reported in Table 9 in Appendix J. Compared
to the direction identified by CCS, the direction
identified by KEGT proves to be more accurate
and effective in modifying the token knowledge of
the LLM through intervention.

Intuitively, this method can be used to mitigate
certain types of hallucinations in LLMs. A sig-
nificant portion of hallucinations arises from the
model’s lack of domain-specific knowledge. For
example, when prompted with “This year’s Bei-
jing Olympics attracted”, LLAMA3.1-8B, without
specialized reinforcement tuning, is misled by the
erroneous prefix in the prompt and continues to
generate hallucinated text. So we get the response
“more than 3 billion viewers worldwide. The open-
ing ceremony was watched by more than...”. To
address such issues, we attempt to use KEGT to
teach the model token knowledge indicative of re-
fusal or rejection. Specifically, we record the token
knowledge directions of “error”, “prompt”, and
“<lend_of_textl>", and then guide the hidden sta-
tus of LLAMA3.1-8B toward the average direc-
tion of these three token. As a result, the model’s
output is successfully altered to: “error prompt
<lend_of_textl>". These intervention experiments
suggest that hallucinations caused by misleading
prompts can be effectively mitigated by directing
the model’s hidden status toward some special to-
ken knowledge directions.

This process can be made more robust by in-
corporating KEGT. KEGT can predict whether a
specific token will appear in the future sequence
generated by an LLM. For example, in a Q-A sys-
tem integrating an external knowledge base (e.g.,
Wikipedia), if a user queries “The recent Olympic
Games was held in”, the system retrieves the cor-
rect answer, “Paris”. However, the user may seek
further details. KEGT identifies that the LLM’s
response may not include “Paris” and then inject
token knowledge into the LLLM like the process

above to prevent potential hallucinations, or skips
the inference, suggesting the user consult a more
reliable source. The complete case study process
can be found in Appendix K.

6 Related Work

To the best of our knowledge, we are the first to
investigate token knowledge in LLMs. We present
related work from two perspectives: the knowledge
embedded within LLMs and the probing techniques
employed to explore such knowledge.
Knowledge in LLMs. LLMs possess internal
knowledge that support complex reasoning and
downstream tasks. To identify this knowledge,
Elazar et al. (2021) introduced LAMA dataset
and probing methods, initially applied to simple
masked LMs. Recognizing the variability in LLM
responses, Hase et al. (2023) and Raj et al. (2022)
assessed knowledge reliability using semantic con-
sistency across multiple generations. Dong et al.
(2024) and Elazar et al. (2021) highlighted in-
consistencies due to prompt variations, prompting
greater focus on prompt paraphrasing. Dong et al.
(2024) introduced KASS dataset, with diverse en-
tity aliases and relation templates. However, Yin
et al. (2024) argued that the infinite semantic space
of paraphrasing cannot be fully captured, propos-
ing an algorithm for constructing special prompts.
Wen et al. (2024) used an auxiliary LLM to predict
response probabilities with a scoring mechanism
and Ferrando et al. (2025) guides the chat model
to recall intrinsic knowledge based on the direction
indicated by the sparse autoencoder to accept or
reject the answer. While these studies focus on
abstract, high-level knowledge, our research tar-
gets token-level knowledge within LL.Ms, which is
more finer-grained and intuitive. Notably, Pal et al.
(2023) also investigated the relationship between
LLMs and the generated tokens. However, they di-
rectly predicted the next four specific tokens, which
proved to be a difficult task. In contrast, we shift
the perspective: rather than predicting the exact fu-
ture tokens, we predict whether a certain token will
appear in the future—an approach that has never
been attempted before.

Probing in LLMs. Probing is a key tool in LLM in-
terpretability, revealing that intermediate represen-
tations during inference capture features relevant to
specific tasks, which can be detected by lightweight
probes (Gurnee and Tegmark, 2024). Probes have
been used to assess various LLM capabilities, such
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as content accuracy (Zou et al., 2023; CHEN et al.,
2023), truthfulness (Marks and Tegmark, 2024),
and bias detection (Cao et al., 2023). Further,
probes have traced the propagation of bias (Amini
et al., 2023) and identified falsehood generation
(Azaria and Mitchell, 2023). While these studies
focus on high-level capabilities, our research specif-
ically investigates token-level knowledge within
LLMs, offering insights into their strong generaliz-
ability in probing tasks.

7 Conclusion

In this paper, we present a novel perspective on the
study of knowledge in LLMs: token-level knowl-
edge. We construct a dataset for token knowledge
estimation task and develop KEGT, a probe that
leverages intermediate inference states. KEGT
reveals LLMs’ latent ability to recognize token
knowledge, boosting accuracy from 60% to over
90%. It generalizes well to out-of-distribution data,
requires minimal training data, and offers fast train-
ing and inference. Finally, we apply KEGT to
enhance the latest knowledge boundary detection
method, improving performance while reducing
computation time by over 90% and prevent hal-
lucinations in certain situations in advance based
on the directions indicated by KEGT in the token
knowledge semantic space.

Limitations

Although KEGT can effectively predict whether
a specific token will appear in the generated se-
quence, it still cannot fully evaluate the correctness
of the knowledge, which requires a lot of engineer-
ing to make up for the lack of datasets. Further-
more, although hallucinations can be prevented in
certain scenarios using KEGT, this is strongly re-
lated to token division (which is why we prepare
a unique dataset for each model). This means that
KEGT cannot be directly applied to alleviate hal-
lucination problems in languages such as Chinese
where semantics is weakly related to tokens. How-
ever, KEGT is effective for English or for most
languages which tokens carry semantic meaning.
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A Prompt Template for KEGT and
baselines

Figure 7, Figure 8, and Figure 9 present the prompt
templates used by KEGT, few-shot learning, and
CCS, respectively. The subtle differences between
the templates for each method are designed to bet-
ter align with the respective approach.

Prompt 1 for Token Knowledge Estimation in KEGT

For the prompt [prompt], the token [token] will appear in the generated text
for the prompt above.

Figure 7: The experiment of mutual projection between
the principal components of two knowledge triples.

Prompt 2 for Few-Shot Learning

Q: For the prompt [prompt], will the token [positive token] appear in the generated text for the prompt above?
A:Yes, it will appear in my answer.

Q: For the prompt [prompt], will the token [positive token] appear in the generated text for the prompt above?
A:Yes, it will appear in my answer.

Q: For the prompt [prompt], will the token [negative token] appear in the generated text for the prompt above?
A:No, it will not appear in my answer.

Q: For the prompt [prompt], will the token [positive token] appear in the generated text for the prompt above?
A:Yes, it will appear in my answer.

Q: For the prompt [prompt], will the token [negative token] appear in the generated text for the prompt above?
A:No, it will not appear in my answer.

For the prompt [prompt], will the token [target token] appear in the generated text for the prompt above?

Figure 8: The experiment of mutual projection between
the principal components of two knowledge triples.

Prompt 3 for CCS

The following statement is correct:
For the prompt [prompt], the token [token] will appear in the generated text
for the prompt above.

The following statement is incorrect:
For the prompt [prompt], the token [token] will appear in the generated text
for the prompt above.

Figure 9: The experiment of mutual projection between
the principal components of two knowledge triples.

B Carefully Constructed Dataset

The carefully constructed dataset used in our pre-
liminary experiments is shown in Table 3. Specifi-
cally, the correct_token field contains content gen-
erated using LLaMA 3.1-8B, with a greedy decod-
ing strategy and a random seed of 20001202.

C Detailed construction of dataset

We construct the token knowledge estimation
dataset using KASS, resulting in 2992 knowl-
edge facts, involving 1982 distinct subjects and
435 relations. On average, each subject has 2.59

Dataset Prompt Number Paraphrasing
KASS 48770 Yes
NQ 500 No
WebQ 500 No
Amazon 500 No

Table 2: The in-distribution experimental results, with
the best results in bold and the second-best results un-
derlined.

aliases, and each relation has 6.69 templates, yield-
ing 48,770 prompts. For each knowledge triplet
k = (s,r,0), we perform a Cartesian product be-
tween its subject set and relation template set to
generate a large set of paraphrasing prompts. Sub-
sequently, we filter out the knowledge triplets k that
the Cartesian product result less than 10 paraphras-
ing prompts, in order to fully exploit the feature
information within paraphrasing. For each prompt
p corresponding to the knowledge k, we obtain the
response from the LLM M and randomly select a
meaningful token t,,s from the response to form
a positive sample with p. A random, meaningful
token ¢,eg that is not in the list of response tokens is
selected to form a negative sample with p. In select-
ing meaningful tokens, we use a pre-constructed
list of meaningless stop words, and augment this
list with additional meaningless terms to ensure
the meaningfulness of token selection. Through
this method, we construct a positive and a nega-
tive sample for each knowledge prompt for every
model, ensuring that the distribution of positive and
negative samples in the training data is balanced.

As for other datasets, NQ (Kwiatkowski et al.,
2019) and WebQ (Berant et al., 2013) are question-
answering datasets, from which we randomly se-
lected 500 questions to form the token knowledge
estimation dataset. Amazon?, on the other hand,
we only keep the “Text” field and randomly extract
500 texts from all the Text fields. The statistical
characteristics of the datasets are presented in Ta-
ble 2.

D Exploration of Abstract Knowledge

Before investigating token knowledge in LLMs,
we first examine abstract knowledge. We use the
method described in section 3.1 to construct knowl-
edge prompts from the subject aliases and relation
templates in the KASS dataset, using object aliases

2The Amazon dataset is available at this URL.
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Prompt Token Correct_token
Hepatitis B vaccine is used to immunize against virus virus
Hepatitis B vaccine is used to immunize against bacteria virus
Anne Frank lives in Amsterdam Amsterdam
Anne Frank lives in Rome Amsterdam
The natural reservoir of malaria is human human
The natural reservoir of malaria is monkey human
The Great Raid was shot on location in Philippines Philippines
The Great Raid was shot on location in Italy Philippines
A day celebrated in cze is May May
A day celebrated in cze is November May
The character of Glenn Quagmire is present in Family Family
The character of Glenn Quagmire is present in Street Family
Amelia Jessica "Amy" Pond serves as a companion to Doctor Doctor
Amelia Jessica "Amy" Pond serves as a companion to Master Doctor
The location of Antwerp Giants is Arena Arena
The location of Antwerp Giants is Park Arena
The universe where Topolino takes place is called different different
The universe where Topolino takes place is called same different
Arbor House is the prequel of standalone standalone
Arbor House is the prequel of plagiarized standalone

Table 3: All data in our carefully constructed dataset.

hit_rate@1 hit_rate@5 hit_rate@10 hit_rate@15 hit_rate@20

GPT2-XL 0.0223 0.0885
OPT-6.7B 0.0328 0.1363
LLaMA3.1-8B 0.0346 0.1904
GPT2-XL-semantic 0.1407 0.3777
OPT-6.7B-semantic 0.1721 0.4287
LLaMA3.1-8B-semantic  0.1940 0.5052

0.1105 0.1225 0.1316
0.1658 0.1748 0.1842
0.2421 0.2632 0.2659
0.4006 0.3907 0.3819
0.4588 0.4571 0.4552
0.5373 0.5350 0.5298

Table 4: Exploring abstract knowledge through string matching and semantic matching.

as the corresponding answers. The prompts are
then used as inputs to the LLM, and we investigate
the frequency of correct answers appearing in the
LLM’s response using string matching or semantic
matching?. The results are shown in Table 4. The
metric hit_rate@k represents the frequency with
which the correct answer appears within the first
k tokens generated by the LLM using greedy de-
coding. Although it is not possible to definitively
determine the knowledge in LLMs based solely on

3The sentence embedding is obtained through all-MILM-
L6-v2.

its responses to a limited number of prompts, the
results in Table 4 indicate that the correct answer
is highly likely to appear within the first 10 tokens
of the response. When the number of tokens gener-
ated increases to 10-20, the hit rate stabilizes. This
explains why we choose to use a response length of
20 tokens in our investigation of token knowledge.

E Training Details

KEGT is a probe consisting of a single linear layer
followed by a Sigmoid activation function. The
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LLaMA3.1-8B LLaMA2-13B GPT2-MEDIUM GPT2-XL
method

accuracy fl score accuracy fl score accuracy flscore accuracy fl score
zero-shot 0.0069 0.0052 0.5513 0.5780 0.0467 0.0863 0.4629 0.5312
few-shot 0.6380 0.5223 0.7186 0.6589 0.5397 0.4808 0.5997 0.5198
CCS-shallow 0.9446 0.9432 0.2770 0.2900 0.3703 0.3895 0.6095 0.5997
KEGT-shallow  0.9135 0.9071 0.8130 0.8095 0.8864 0.8888 0.9027 0.9057
CCS-middle 0.9769 0.9774 0.9548 0.9559 0.9596 0.9581 0.9675 0.9678
KEGT-middle 0.9794 0.9798 0.9792 0.9794 0.9786 0.9783 0.9862 0.9863
CCS-last 0.3425 0.3318 0.9640 0.9649 0.7640 0.7632 0.8120 0.8137
KEGT-last 0.9876 0.9878 0.9758 0.9761 09111 0.9110 0.9415 0.9416

Qwen2.5-1.5B Qwen2.5-7B OPT-1.3B OPT-6.7B
method

accuracy fl score accuracy flscore accuracy flscore accuracy f1 score
zero-shot 0.6577 0.6916 0.6472 0.4984 0.1196 0.2134 0.2597 0.3235
few-shot 0.5885 0.4053 0.6788 0.5376 0.5359 0.3773 0.5900 0.6392
CCS-shallow 0.0776 0.1387 0.9800 0.9791 0.7285 0.7434 0.3247 0.2978
KEGT-shallow  0.9255 0.9192 0.9545 0.9526 0.7778 0.7797 0.8051 0.8029
CCS-middle 0.0555 0.0746 0.0710 0.1325 0.7358 0.7354 0.3411 0.3460
KEGT-middle 0.9820 0.9819 0.9901 0.9901 0.9075 0.9091 0.9542 0.9550
CCS-last 0.7550 0.7481 0.5622 0.5631 0.7527 0.7595 0.0337 0.0249
KEGT-last 0.9782 0.9781 0.9887 0.9887 0.9678 0.9680 0.9841 0.9840

Table 5: The in-distribution experimental results, with the best results in bold and the second-best results underlined.

linear layer omits the bias term, and the model is
trained using the AdamW optimizer with a learn-
ing rate of 0.001 and a weight decay of 0.1 for 300
epochs. Prior to training, feature normalization is
performed: KEGT records the mean and standard
deviation of the entire training set, and during test-
ing or inference, the mean value from the training
set is used to normalize new samples.

F Intermediate States Selection

KEGT selects intermediate representations at dif-
ferent depths to train the probes. Due to variations
in model architectures, the specific layers chosen
for probing differ across models. Table 6 provides
the index (starting from zero) of the layers selected
for each model.

Model Shallow Middle Last
LLaMA3.1-8B 5 14 31
LLaMAZ2-13B 3 27 39
Qwen2.5-1.5B 3 13 27
Qwen2.5-7B 3 13 27
OPT-1.3B 3 11 23
OPT-6.7B 5 14 31
GPT2-MEDIUM 3 11 23
GPT2-XL 5 32 47

Table 6: The selection of layers for different models.

G IID Experiments

Table 5 presents the experimental results under the
IID setting.

H Experimental Results on Other
Datasets

The results presented in Subsection 5.2 and Fig-
ure 5 demonstrate that KEGT can still identify the
direction of token knowledge features, even in gen-
eral datasets or casually written human comment
data. The specific experimental results are shown
in Table 7.

Dataset ood accuracy ood f1 score
NQ 0.9800 0.9800
WebQ 0.9750 0.9754
Amazon 0.9850 0.9852

Table 7: Statistical information of the dataset.

I KaRR with KEGT

KaRR (Dong et al., 2024) is a method for inves-
tigating the knowledge boundaries of LLMs. It
assigns a KaRR score to each knowledge triplet
(s,r,0), where s represents a set of subject aliases,
o represents a set of object aliases, and r repre-
sents a set of relation templates. A higher KaRR
score indicates that the LLLM has a stronger grasp
of the knowledge triplet (s, 7, 0). The KaRR score
is computed as follows:
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Seed KARR Score KaRR with KEGT Score Improv. KaRR Time(s) KEGT Time(s)
0 26.3230 32.7745 6.4515 41.3924 4.2014
42 31.2800 38.5973 7.3172 45.2901 4.6634
123 23.2749 31.8557 8.5808 41.5030 4.3553
Average. 26.9594 34.4092 7.4498 42.7285 4.4067
Table 8: Results of Knowledge Boundary Experiment
LLaMA3.1-8B LLaMA2-13B GPT2-MEDIUM GPT2-XL
method

accuracy fl score accuracy fl score accuracy flscore accuracy fl score

CCS-shallow 0.9341 0.9362 0.3125 0.2984 0.4678 0.4521 0.7054 0.7012
KEGT-shallow  0.9210 0.9155 0.8444 0.8403 0.8675 0.8702 0.8819 0.8934
CCS-middle 0.9764 0.9772 0.9631 0.9610 0.9723 0.9737 0.9778 0.9766
KEGT-middle 0.9812 0.9810 0.9825 0.9822 0.9791 0.9803 0.984 0.9844
CCS-last 0.2985 0.2814 0.9587 0.9574 0.8354 0.8403 0.8810 0.8859
KEGT-last 0.9901 0.9903 0.9799 0.9802 0.9245 0.9260 0.9471 0.9468

Qwen2.5-1.5B Qwen2.5-7B OPT-1.3B OPT-6.7B
method

accuracy fl score accuracy fl score accuracy flscore accuracy fl score

CCS-shallow 0.1235 0.1187 0.5987 0.6003 0.7910 0.8025 0.3482 0.3304
KEGT-shallow  0.9267 0.9255 0.9492 0.9506 0.8012 0.8021 0.8348 0.8299
CCS-middle 0.0543 0.0765 0.0921 0.1034 0.8451 0.8468 0.2553 0.2489
KEGT-middle 0.9821 0.9830 0.9902 0.9901 0.9184 0.9203 0.9652 0.9645
CCS-last 0.7992 0.8050 0.5698 0.5723 0.8320 0.8386 0.0354 0.0202
KEGT-last 0.9764 0.9776 0.9915 0.991 0.9722 0.9733 0.9856 0.9851

Table 9: The intervention experimental results, with the best results in bold and the second-best results underlined.

Case Index Prompt Response

1 The recent Olympic Games was held in Rio de Janeiro, Brazil. The opening ceremony was held on August 5, 2016.
2 The latest iPhone model, the iPhone 15, was released in

3 What is the latest version of the LLaMA model?

September 2023. It is the first iPhone to feature a USB-C port, which is a significant change
How can I download it? The latest version of the LLaMA model is LLaMA-7B

Table 10: For the specified prompt, the text generated by the model.

Case Index Token KEGT_probe Response
1 Paris 0 Sorry, there may be errors in my internal knowledge. I suggest you search for more accurate platforms such as Wikipedia.
2 2023 1 September 2023. It is the first iPhone to feature a USB-C port, which is a significant change
3 3.1 0 Sorry, there may be errors in my internal knowledge. I suggest you search for more accurate platforms such as Wikipedia.

Table 11: The generated text of the model after applying KEGT.

Since the computation of KaRR involves pro-

P(o| s,r) cessing a large number of paraphrasing prompts,
KaRR;(s,r,0) = Er[P(o|s,R)] (8)  we propose an improved approach using KEGT
R ’ to refine the KaRR calculation process. Specifi-
P(o|s,r) cally, for each paraphrasing prompt, we first ap-
KaRR(s,7,0) = Es[P(o]S,7)] ©) ply KEGT to determine whether the correct object
’ alias is likely to appear in the LLM’s response. If
KEGT provides a positive prediction, it indicates
KaRR(s,r,0) = VKaRR, -KaRR,  (10)

that the LLM’s response to this prompt is likely
to contribute positively to the KaRR score. Con-
versely, for prompts where KEGT gives a negative
prediction, we exclude them from the KaRR score
computation. Theoretically, this filtering process
should lead to a higher KaRR score, as it removes
misleading prompts that could introduce noise into

For a given subject s, KaRR examines the
LLM’s responses when the relation template 7 is
paraphrased in different ways, yielding the score
KaRR,.. Similarly, for a given relation template r,
it evaluates the LLM’s responses when the subject
s is expressed using different aliases, producing the

score KaRR;. The final KaRR score is computed
as the geometric mean of these two scores.

the evaluation. The experimental results, as shown
in Table 8, confirm this hypothesis, demonstrating
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a significant improvement in the KaRR score af-
ter applying KEGT. This conclusion reflects the
effectiveness of KEGT in predicting whether the
answer entity will appear in the future generated
text—without the need to generate a single token.

J Intervention Experiment Results

Table 9 shows detailed intervention experiment re-
sults.

K Case Study

Table 10 illustrates the responses generated by
LLaMA 3.1-8B for a given prompt, while Table
11 presents the judgment results from KEGT. For
the query requests under the “Prompt” field, KEGT
checks whether the tokens or entities listed under
the “Token” field will appear in the LLM’s future
generated sequence, providing the prediction in the
“KEGT_probe” field. When KEGT determines that
the correct answer is unlikely to appear, the sys-
tem responds with, “Sorry, there may be errors in
my internal knowledge...”; otherwise, it returns the
LLM’s response. In Case 1 and Case 3, KEGT
successfully predicts that the specified token will
not appear in the LLM’s response. This enables
us to guide the LLLM to direct users toward more
trustworthy platforms for information retrieval. In
Case 2, KEGT correctly predicts the presence of
the specified token in the LLM’s output, suggest-
ing a low likelihood of hallucination. Therefore,
the LLM is permitted to continue generating the
subsequent token sequence.
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