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Abstract

Recent efforts in LLM alignment have focused
on constructing large-scale preference datasets
via human or Artificial Intelligence(Al) an-
notators. However, such approaches rely on
instance-wise supervision, incurring substan-
tial annotation cost and limited interpretability.
In this paper, we propose ZEBRA—a model
behavior-wise zero-annotation framework that
constructs preference data by leveraging model
behavior knowledge derived from benchmark
performances.

ZEBRA binarizes response pairs by evaluat-
ing the quality and similarity of their origin
models, entirely bypassing instance-level an-
notation. This allows scalable, controllable,
and cost-effective alignment data generation.
Empirical results show that ZEBRA achieves
alignment performance comparable to instance-
supervised methods, despite requiring no man-
ual or model-based labeling.

1 Introduction

Aligning large language models (LLMs) with hu-
man preferences is an essential step toward mak-
ing them both useful and safe. A common way
to achieve this is through instance-wise labeling,
where pairs of model responses are compared one
by one to see which is better. Well-known methods
like Reinforcement Learning from Human Feed-
back (RLHFOuyang et al. (2022a)) and Artificial
Inteligence(Al)-based labeling(RLAIFLee et al.)
often use this strategy.

However, instance-wise labeling faces two ma-
jor challenges. First, it is very costly, whether it
involves human annotators or additional compu-
tational resources for LLM-based labeling(Zhang
et al., 2024; Zheng et al., 2023). Second, it lacks a
global view of the model’s behavior(Ji et al., 2023).
Since each response pair is judged in isolation, it
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Figure 1: Human annotation(Ouyang et al., 2022a) and
Al labeler-based RLAIF(Cui et al., 2023) use instance-
wise annotations, while ZEro-annotation Behavior-
based Response Alignment(ZEBRA) applies model
behavior-wise annotation based on model behavioral
knowledge, which captures proficiency and similarity
across models. M is the model, R; is the generated re-
sponse from M; about Instruction ). N is the number
of preference dataset and K is the number of models

is difficult to consider broader factors. For exam-
ple, whether fluency should outweigh factual accu-
racy. Or whether a model’s outputs are consistently
aligned with certain policies(Wang et al., 2025).
This can lead to labeling noise, mistakes, and lim-
ited interpretability.

To address these limitations, we propose a new
preference binarization approach called ZEro-
annotation Behavior-based Response Alignment
(ZEBRA) (Figure 1). The main idea is: (1) extract
each model’s behavioral patterns from its past per-
formance trajectories, (2) measure and compare
these behaviors in terms of model strength or simi-
larity, and (3) assign preferences at the model level
rather than for each individual response pair.

We implement this idea through three key com-
ponents. First, we define Model Behavior Knowl-
edge (MBK) for LLMs (discuss in Section 4.1).
Second, we propose a way to quantify and collect
MBK from objective data sources such as bench-
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mark performance. Third, we introduce three strate-
gies—based on superiority, similarity, and a hy-
brid—to construct a binarization dataset in a zero-
annotation, cost-free manner.

A major advantage of our approach is that it
creates response pairs based on model superior-
ity without any additional human or LLM label-
ing. By classifying models with higher benchmark
scores as “positive” and those with lower scores as
“negative,” we can systematically label preferences
throughout the dataset. This significantly reduces
the cost of annotation and, because MBK visual-
izes each model’s behavior pattern, increases the
interpretability of the preference decisions.

Through extensive experiments, we show that
ZEBRA achieves performance comparable to ex-
isting instance-wise labeling methods in the Ultra-
feedback(Cui et al., 2023) dataset—without any
extra labeling cost.

In summary, our contributions are as follows:

e We introduce ZEBRA, a zero-annotation
alignment framework that determines prefer-
ences from quantified model-level behavior,
bypassing instance-level supervision.

* We demonstrate that the Model Behavior
Knowledge (MBK) from benchmark perfor-
mance offers alignment signals comparable to
instance-wise labeling.

* We empirically show that ZEBRA matches the
performance of established methods such as
RLHF and RLAIF, yet requires no additional
labeling cost.

2 Preliminaries

2.1 Instance-Level Preference Construction

Most existing preference learning frameworks for
LLM alignment—such as Reinforcement Learn-
ing from Human Feedback(RLHF, Ouyang et al.
(2022a)) and Al-generated preference methods
(RLALIF, Lee et al.)—rely on instance-level pair-
wise supervision. Given an instruction x, multiple
candidate responses {71, 72, ..., 7} are scored or
ranked by either human annotators or automated
scoring models. This generates preference tuples
(x,7; > rj), where r; is preferred over r; under
some evaluation criteria (e.g., helpfulness, truthful-
ness, coherence).
The preference construction typically involves:

* Generating multiple responses per instruction
using different models or decoding strategies.

* Computing preference labels via either human
judgment or model-based scoring (e.g., GPT-
4(OpenAl, 2023)).

* Aggregating these labels into a pairwise
dataset for alignment tuning.

2.2 Challenges of Instance-Level Supervision

While instance-level supervision has proven effec-
tive in aligning LLMs, it remains costly, noisy, and
difficult to scale. Despite its popularity, instance-
level supervision suffers from three core limita-
tions:
1. Costly evaluation: Annotating or scoring
each response pair requires substantial human
or computational effort.

2. Preference triviality: When candidate re-
sponses differ significantly in quality, the pref-
erence label becomes trivial, contributing little
to alignment learning.

3. Instruction-level variance: Difficulty and
ambiguity in the instruction x can introduce
noise into the preference signal, especially for
automated labelers.

These limitations underscore the need for alter-
native approaches that construct preference signals
without relying on per-instance scoring.

2.3 Motivation for Model Behavior-Level
Preference

We propose that instead of relying on per-instance
evaluation, one can leverage the intrinsic capa-
bilities of the response-generating models them-
selves. As models exhibit differences in core com-
petencies measurable via standardized benchmarks,
we hypothesize this can replace instance-level an-
notations.

3 ZEro-annotation Behavior-based
Response Alignment Framework

3.1 Instance-level Annotation vs.
Model behavior-level Annotation

Traditional instance-level binarization relies heav-
ily on detailed, provided by human or Al annota-
tors(Zhang et al., 2024; Sharma et al., 2024). Each
pairwise comparison demands significant effort and
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summarizes the model’s benchmarks ability

resources to maintain consistency and interpretabil-
ity. Such an approach often results in annotation
noise, limited scalability, and considerable expense.

In contrast, our proposed ZEBRA framework
leverages intrinsic behavioral knowledge derived
from model performance across various bench-
marks, ZEBRA systematically matches and pairs
responses. Responses from models with proven
higher competencies form positive labels, while
those from models with lower competencies be-
come negative labels. This innovative model-level
approach drastically reduces annotation costs, mini-
mizes noise, and enhances scalability. Additionally,
the behavior similarity-based matching provides ex-
plicit control over the difficulty and nuance of pref-
erence comparisons, leading to clearer and more
meaningful alignment outcomes.

3.2 Model Behavior Knowledge

While most preference-learning pipelines focus
on differences between individual responses,
our approach highlights Model Behavior Knowl-
edge (MBK)—the comprehensive record of each
model’s past behaviors and capabilities. We define
MBK using two sets of metrics:

* Superiority: How much better (or worse) a
model is compared to others, based on overall
or task-specific proficiency.

* Similarity: How likely a model is to behave
similarly to other models.

These metrics provide a principled basis for

quantifying both a model’s general strength and
its behavioral proximity to its peers. Within a
preference-learning pipeline, superiority functions
as a global preference signal: when one model con-
sistently outperforms another across standardized
benchmarks, its responses are considered prefer-
able overall.

Conversely, behavioral similarity facilitates the
systematic construction of challenging compari-
son sets. When two models are behaviorally simi-
lar—for example, they exhibit comparable reason-
ing performance—their responses become difficult
to distinguish. Training on such hard-to-distinguish
pairs guides the preference learner to focus on sub-
tle qualitative differences, resulting in more nu-
anced and robust alignment.

3.3 Model Behavior Evaluation using
Benchmark Performances

To capture MBK in a practical, objective way, we
rely on external benchmark performance data for
each LLM. Many models are already evaluated
across diverse, standardized tasks (e.g., reasoning,
factual accuracy, instruction-following). We aggre-
gate these benchmark scores to form each model’s
MBK profile.

Benchmark performance offers several advan-
tages for extracting MBK:

* It provides reliable metrics for the core com-
petencies of large language models.

* It enables straightforward comparison and
aggregation across multiple models.
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The list of benchmarks used in our analysis is
provided in Figure 3.

Figure 4 illustrates how the behavioral similar-
ities inferred from benchmark performance can
reflect actual model similarities. For example, the
LLaMA-2-13b model exhibits a pattern closely re-
sembling that of its 7b counterpart. In contrast,
WizardLM-7b demonstrates a markedly different
behavioral trajectory.

We define a model’s ability vector v; € R™
across m benchmark tasks:

()

where s, is the normalized score of model M;
on benchmark b, reflecting its relative capability in
a specific behavioral dimension (e.g., knowledge,
reasoning, instruction-following). These standard-
ized behavior vectors serve as the foundation for
both quality-based and similarity-based anchoring,
enabling zero-annotation binarization of prefer-
ence pairs without per-instance supervision.

3.4 Benchmark-based Model Behavior
Quantification

To effectively binarize preference data, it is es-
sential to quantify model behavior from two com-
plementary perspectives: behavior quality and be-
havior similarity. ZEBRA leverages benchmark-
derived measures of these aspects to systemati-
cally pair positive responses with suitable nega-
tive counterparts. By quantifying both the absolute
competency of individual models and the relative
similarity between models, ZEBRA ensures that
each positive-negative pair captures meaningful
contrasts in model capabilities, thus maximizing
alignment informativeness.

Model Behavior Superiority (MB-SUP) quan-
tifies the overall behavioral competency of model
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Figure 4: Hexagonal radar plots visualizing model abil-
ity profiles. Models judged as similar exhibit compara-
ble benchmark performance trajectories, while different
models show clearly divergent patterns.

M; as the aggregate of its normalized benchmark
scores:

1 m
MB-SUP(M;) = — S, (1)
k=1

This scalar value serves as the ranking basis for
constructing Behavioral Superiority Anchors.

Model Behavior Similarity (MB-SIM) be-
tween models M; and M is defined as the sim-
ilarity between their behavior vectors:

MB-SIM(M;, M;) = similarity(v;, v;).

Higher values indicate stronger alignment in
general-purpose capabilities, and MB-SIM serves
as the criterion for selecting comparable model
pairs in Behavioral Similarity Anchoring.

3.5 Strategy of Preference Binarization

ZEBRA introduces multiple strategies to systemat-
ically convert benchmark-derived model behaviors
into binary preference pairs. Based on how MB-
SUP and MB-SIM are utilized, our strategies can
be clearly categorized as follows on Figure 5.

We detail each strategy below:

Strategy 1: Superiority-first Anchoring (SUP)

In this strategy, we explicitly select the top-two
models based on their MB-SUP scores: the highest-
scoring model (top-1) and the second-highest-
scoring model (top-2). Responses from the top-1
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and labeled preference.

model serve as positive anchors, while responses
from the top-2 model become negative counter-
parts. This approach emphasizes explicit quality
distinctions, clearly defining superior responses
and ensuring meaningful, informative alignment
contrasts.

Strategy 2: Similarity-first Anchoring (SIM)
Responses from models sharing similar behavioral
patterns (high MB-SIM) are paired first. Within
these pairs, the response from the model with
higher MB-SUP is selected as the anchor (posi-
tive response). This strategy emphasizes behavioral
similarity, enhancing nuanced alignment compar-
isons.

Strategy 3: Hybrid Anchoring (SUP+SIM)
Model pairs are selected by simultaneously con-
sidering both MB-SUP and MB-SIM criteria. This
balanced approach ensures each response pair re-
flects meaningful contrasts in model quality, while
maintaining behavioral similarity for refined gran-
ularity.

These strategies enable ZEBRA to flexibly and
effectively tailor preference construction according
to the desired granularity, alignment objectives, and
computational resources. Figure 5 represent the
example of each strategy.

3.6 Zero-Annotation Preference Construction

Given a set of instructions X and a pool of
response-generating models M, the construction
proceeds as follows:

1. Model Behavior Evaluation: Each model

M; € M is benchmarked across m tasks to
obtain model’s ability vector v;.

2. Pair Selection: Using a chosen strategy, a set
of model pairs P = {(M;, M;)} is selected
where MB-SIM(M;, M;) > 7. Our goal is to
exclude model pairs that are clearly dissim-
ilar, rather than to finely rank models. As a
commonly accepted cutoff for non-similarity,
we set 7 = 0.1, since cosine similarity values
below this threshold indicate a lack of mean-
ingful similarity between models(Zhang et al.,
2008).

3. Response Mapping: For each instruction x €
X, the corresponding responses {r;, 7} from
(M;, M;) are retrieved.

4. Preference Assignment: A binary label is
assigned via:

Pref(r;,r;) = {1 ! Sprengi) > Sorer(My),
0 otherwise.

This pipeline constructs a binarized preference
dataset at scale without any manual or per-instance
scoring. Figure 2 shows the total process of the
pipeline.

4 Experimental Setup

In this paper, we propose the ZEBRA framework.
To validate the functionality of this framework and
the characteristics of Alignment Tuning, we con-
ducted experiments to address the following Re-
search Questions (RQs):
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* RQ1: Does MB-SIM represent the models’
similarity?

* RQ2: Does strategies affect the binarization
process?

¢ RQ3: Does ZEBRA reduce annotation cost
and computational overhead compared to
instance-level methods?

4.1 Alignment Dataset

For preference binarization, we utilized the Ultra-
Feedback dataset (Cui et al., 2023), which includes
diverse responses generated by both commercial
and open-source language models. It provides mul-
tiple model responses, making it suitable for con-
structing a strong RLAIF baseline, for which we
adopted the original score aggregation method. In
contrast, ZEBRA uses only the response pool with-
out referencing any scores, ensuring a clean com-
parison focused on the binarization strategy.
Model coverage. UltraFeedback contains out-
puts from 17 LLMs: GPT-4(OpenAl, 2023),
GPT-3.5 Turbo(Ouyang et al., 2022b), and
Bard(Waisberg et al., 2024). Additionally, sev-
eral models from the Llama family were included,
such as Llama-2 (7B, 13B, and 70B)-chat(Touvron
et al., 2023), UltraLM-13B(Cui et al., 2024), Wiz-
ardLM (7B, 13B, and 70B)(Xu et al., 2023),
Vicuna-33B(Zheng et al., 2024), and Alpaca-
7B(Taori et al., 2023). Beyond the Llama-based
architectures, the dataset also features responses
from other notable models, including Falcon-
40B-instruct(Almazrouei et al., 2023), MPT-30B-
chat(Team, 2023), StarChat-Beta(Tunstall et al.,
2023), and Pythia-12B(Biderman et al., 2023).
Although the Ultrafeedback dataset contains re-
sults from UltraLM-65B(Cui et al., 2024), its per-
formance could not be accurately assessed. To
maintain the reliability of our evaluation, we ex-
cluded these results from the dataset composition.

4.2 Models

We fine-tuned and evaluated Llama-3.1-(3B, 8B)-
Instruct(Dubey et al., 2024) and Qwen2.5-(3B,
8B)-Instruct(Yang et al., 2024) on the ZEBRA-
binarized dataset. This setup enables cross-family
comparison and quantifies the alignment gains
from behavior-aware preference construction.
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Figure 6: PCA-based visualization of relationships
among models(Mackiewicz and Ratajczak, 1993). The
axes reflect similarity-based variance. Similar models
are positioned closer to each other. Circle colors indicate
clusters identified by hierarchical clustering.

ZEBRA-Human Inter-Annotator

Strategy Agreement Agreement
SUP 78.6% 0.65
SIM 76.7% 0.586
SUP+SIM 78.0% 0.68

Table 1: Human evaluation results comparing ZEBRA
and human agreement rates.

4.3 Training Algorithm for Alignment Tuning

We tested two different learning method for align-
ment tuning using the ZEBRA Framework:

* Supervised Fine-Tuning (SFT)

* Direct Preference Optimization (DPO)
(Rafailov et al., 2024)

The implementation details are provided in Ap-
pendix A. The full source code, benchmark results,
and preference binarization scripts are released via
our project repository under the MIT License.! The
snapshot corresponding to this paper is version-
tagged.

5 Experimental Results

5.1 RQ1: Dataset Reconstruction using
ZEBRA

The proposed ZEBRA framework enables the appli-
cation of a unified Total Ranking map across the en-
tire dataset, facilitating a structured and consistent
preference mapping process. Utilizing this recon-
structed preference dataset, we conducted model
training while ensuring that each critic’s binarized
response was systematically incorporated. The ef-
fectiveness of this reconstructed dataset was as-
sessed by evaluating the trained models on stan-

"https://github.com/Jeesu-Jung/ZEBRA
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Knowledge Reasoning Instruction-Following
Category Strategy Average | MMLU MMLU-Pro | ARC-Easy ARC-Challenge IFeval
Baseline RLAIF 0.31 0.36 0.15 0.40 0.40 0.28
SUP 0.31(-0.00) 0.33 0.15 0.40 0.37 0.30
ZEBRA(Ours) SIM 0.29(-0.02) 0.34 0.15 0.36 0.33 0.29
SUP+SIM | 0.29(-0.02) 0.30 0.14 0.41 0.39 0.23

Table 2: Performance Comparison Between Instance-wise Binarized Data (Baseline) and Model Behavior-wise
Binarized Data (Ours). The baseline corresponds to instance-wise scored RLAIF (Cui et al., 2023). The highlighted
cells indicate performance that is equal to or higher than the baseline. Bold text shows the best performance on the

benchmarks.

dardized benchmarks. The detailed results of these
evaluations are presented in Appendix C.

For evaluation, we employed prediction-based
assessment methodologies across all benchmark
tasks. Specifically, for ARC, MMLU, and MMLU-
Pro, we adapted the MMLU-Pro evaluation frame-
work, modifying only the multiple-choice options
to align with our dataset. For [Feval, we leveraged
its native evaluation framework to ensure consis-
tency in assessment.

To analyze the relationships between models,
we computed SUP and SIM by normalizing eval-
uation results across six benchmark tasks. Fig-
ure 6 presents a Principal Component Analysis
(PCA)(Mackiewicz and Ratajczak, 1993) visualiza-
tion of these relationships, illustrating distinct clus-
tering patterns among models. Generally, smaller-
scale models tend to cluster in the first quadrant,
models with closer Model Behavior relationships
in the second quadrant, while Llama-based models
and models exceeding 10B parameters are predom-
inantly distributed in the third and fourth quad-
rants. This distribution underscores the critical role
of model training data, training algorithms, and
scale in determining Model Behavior relationships
among models.

We further verify that anchor pairs selected by
SIM indeed yield semantically closer responses.
Using a TF-IDF(Ramos, 2003), we obtain an aver-
age response-pair similarity of 0.4623 for the most
similar model pair (MB-SIM 1) versus 0.4129 for
the least similar model pair (MB-SIM ). This
12% relative gap confirms that high-MB-SIM an-
choring indeed surfaces finer-grained yet coherent
preference signals.

These findings highlight the effectiveness of the
ZEBRA framework in reconstructing preference
datasets, providing a more structured and informa-
tive approach to model alignment.

5.2 RQ2: Performance of ZEBRA
Binarization

5.2.1 Effectiveness of Data Construction

We conducted a human evaluation to assess
whether ZEBRA Binarization exhibits trends sim-
ilar to human preferences. Specifically, we mea-
sured the agreement between ZEBRA decisions
and human annotators across 150 pairs per strat-
egy with three annotators. The evaluation design
follows prior preference-based alignment studies,
aiming to quantify the consistency of binarization
with human judgment. Results are presented in Ta-
ble 1.

ZEBRA-Human agreement rates are compa-
rable to human-human agreement reported in
previous studies on label variability (e.g., In-
structGPT (Ouyang et al., 2022b): 72.6%, HH-
RLHF (Bai et al., 2022): 75%), indicating that
ZEBRA-generated labels serve as credible proxies
for preference learning. Furthermore, lower agree-
ment on SIM pairs supports the hypothesis that
these pairs are harder to distinguish, thereby pro-
viding richer alignment signals. This suggests that
ZEBRA’s binarization is not only aligned with hu-
man preferences but also introduces challenging
cases that may enhance model robustness.

An illustrative example of response pairs under
different strategies is provided in Appendix E.

5.2.2 Model Performance

To assess the effectiveness of ZEBRA binariza-
tion, we examined whether model performance can
serve as an indicator of data quality. The results of
this comparison are presented in table 2. Across all
benchmark tasks, the Model Behavior-based scor-
ing metric, SUP, demonstrates performance lev-
els nearly equivalent to the instance-wise RLAIF
method, with a minimal deviation of only 0.008.
Notably, for MMLU-Pro and IFeval, ZEBRA-
based binarization even surpasses the RLAIF base-
line by approximately 0.01, indicating that struc-
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Category Method Pairs / Units  Unit Cost (USD) Total Cost (USD)
Inst . UltraFeedback(Cui et al., 2023) 64,000 0.252 16,128
B RTAIE S Safer-Instruct(Shi et al., 2024) 10,254 0.063 646
OpenHermesPreferences(Huang et al., 2024) 989,000 0.126 124,614
Model behavior-wise ZEBRA (ours) 64,000 0 0

Table 3: Labeling-cost comparison between LLM-labeled RLAIF datasets, and our benchmark-table approach. cost

is estimated assuming equivalent labor per rating.

tured preference mapping via Model Behavior can
yield competitive or superior alignment outcomes.
Table 2 shows the results of the average scores for
each methodology. The detailed results, including
average scores for each methodology, are summa-
rized in Appendix F.

Statistical ~ significance. We applied a
Bland—Altman analysis(Bland and Altman,
1986) to assess agreement between ZEBRA
(SUP) and baseline RLAIF performance across
benchmarks. The results show a mean difference
of —0.0188, with narrow limits of agreement from
—0.2434 to +0.2058. Most differences fall well
within this range, indicating high consistency and
negligible deviation between the two methods.

5.3 RQ3: Cost & Efficiency Analysis

5.3.1 Labeling Cost

Table 3 contrasts the labeling cost of ZEBRA with
canonical RLHF and RLAIF pipelines. The stand-
ing out points is below: Absolute cost gap. LLM-
annotated RLAIF corpora lower this to $0.6-$4 K
by outsourcing each pairwise judgment to GPT-
4, yet they still purchase every label. ZEBRA, by
reusing benchmark leaderboards, pays no marginal
cost ($0) for preference construction. Relative ef-
ficiency. Normalised per comparison, GPT-4 la-
bels (~$0.063) are ~ x 10 cheaper than human la-
bels (=$0.67), but ZEBRA is orders of magnitude
cheaper than both because it dispenses with pair-
wise annotation altogether.

Cost matters only if quality survives. Despite a
zero-dollar label budget, ZEBRA matches or sur-
passes RLAIF baseline (Table 2); the mean perfor-
mance difference across six benchmarks is < 0.02.

Consequently, ZEBRA offers a cost-minimal,
scalable, and annotation-free route to high-
quality preference data. Because the price of hu-
man labor or GPT-4 tokens scales linearly with
data volume, traditional pipelines become progres-
sively more expensive as models, tasks, and safety
domains proliferate. ZEBRA decouples alignment
from annotation cost: adding a new model needs

Benchmark Inference (USD) Evaluation (USD)
IFeval 0.0606 16.23 (GPT-4 eval)
MMLU-STEM 0.3528 0
MMLU-pro 1.3440 0
Hellaswag 1.1250 0
arc-challenge 0.1312 0
arc-easy 0.2661 0
Total 3.28 16.23

Table 4: Inference and evaluation cost estimation for 6
benchmarks using Llama-7B and GPT-4.

no further labels, and incorporating an extra bench-
mark simply augments the behavior matrix.

5.3.2 Benchmark Inference and Evaluation
Cost

We acknowledge that ZEBRA shifts the burden
from human annotation to inference and bench-
marking infrastructure. However, in practice:

* Many models already publish benchmark
scores, which ZEBRA can directly utilize.

* When benchmarking is necessary, the cost is
orders of magnitude lower than human an-
notation.

Based on Llama-7B (Llama 2 Chat-7B), we esti-
mated the benchmark inference and evaluation cost
using the pricing provided by Together/Airtrain
(input + output = $0.56 per 1M tokens) airtrain.ai
Inference pricing.

0.56

20 56107 7USD
1,000,000 _ -0 x 107 US

Cost per token =

So, the inference cost per example, assuming an
average of 200 tokens, is:
Cost per example = 200 x 5.6 x 1077
=1.12 x 107*USD
~ 0.000112 USD

Table 4 shows the price of each benchmark.

For example, benchmarking 6 models over 6
benchmarks (totaling 29,281 samples) costs only
$3.28 on Llama-7B (Airtrain pricing). Evaluation
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using GPT-4 adds $16.23 in total. This cost is neg-
ligible compared to human preference collection
($5-20 per 100 samples) or LLM instance-wise
annotation (~$16,128 for Ultrafeeedback).

6 Practical Insights and
Recommendations

A key motivation for ZEBRA is its practical us-
ability when researchers or practitioners wish to
expand their alignment datasets without additional
annotation cost. Conventional RLHF or RLAIF
pipelines require costly human or LLM-based su-
pervision, but ZEBRA enables an alternative: lever-
aging existing benchmark performance tables to
generate preference signals at zero cost.

Practical Use Case. The procedure for applying
ZEBRA in practice can be summarized as follows:

1. Inspect the benchmark performance table for
the models of interest.

2. Select two models that exhibit the highest be-
havioral similarity (MB-SIM) or fall under a
chosen binarization strategy (SUP, SIM, or
SUP+SIM).

3. Generate responses from each model on the
desired instruction set.

4. Use the resulting preference pairs directly for
fine-tuning (e.g., SFT or DPO).

7 Conclusion

We introduced ZEBRA, a zero-annotation frame-
work that replaces costly instance-level preference
labeling with model-behavior knowledge from
benchmark tables. By leveraging superiority, simi-
larity, or hybrid strategies, ZEBRA constructs large-
scale preference datasets entirely without annota-
tion cost.

Experiments across six standardized benchmarks
show that ZEBRA achieves performance compara-
ble to, and in some cases exceeding, RLAIF base-
lines, confirming benchmark-derived behavior as
an effective proxy for preference supervision. Fu-
ture work will extend ZEBRA to additional behav-
ioral axes (e.g., safety, toxicity, multilingual ability)
and further examine its correlation with explicit hu-
man judgments.

Future work will expand to additional behavioral
axes (e.g., safety, toxicity, multilinguality), explore
adaptive pairing schedules, and assess correlation
with human judgments.

8 Related Work and Background

8.1 Alignment Tuning

Alignment tuning has become a central focus in
enhancing LLMs to meet user expectations and
ethical standards(Kumar et al., 2024). Various
preference-based learning techniques, particularly
reinforcement learning methods(Schulman et al.,
2017; Rafailov et al., 2024; Hong et al., 2024), have
been developed to facilitate this tuning process.

These methods rely on preference datasets,
which typically contain pairs of responses gener-
ated by models based on given instructions, with
each pair ranked according to human or model-
based evaluations. Prominent alignment datasets
like Ultrafeedback(Cui et al., 2023), which gathers
human feedback, and HH-RLHF(Bai et al., 2022),
which uses human-annotated preferences, provide
foundational resources for alignment. To reduce
costly data curation, recent automated approaches
filter or regenerate preference data based on spe-
cific criteria, improving consistency and scalability.
However, such methods often lack fine-grained con-
trol over data quality, as they overlook the origin
model’s capabilities in shaping alignment effective-
ness (Shi et al., 2024).

8.2 Limitations in Existing Preference Data
Approaches

Effective preference data construction requires
a clear, rigorous set of criteria to ensure align-
ment quality across generated response pairs. Com-
mon criteria, including Reasoning, Truthfulness,
and Instruction-Following, guide the selection
of data that aligns with key ethical and func-
tional standards(Cui et al., 2023; Bai et al., 2022).
High-performing models, capable of producing re-
sponses that meet these standards, are often eval-
uated using benchmarks like ARC(Clark et al.,
2018), MMLU(Hendrycks et al., 2020), and the
Instruction-Following eval(Zhou et al., 2023) suite,
which assess a model’s factual accuracy, reasoning
ability, and compliance with instructions.

The ZEBRA Framework addresses this limita-
tion by introducing a model behavior-level ap-
proach that emphasizes model compatibility in pref-
erence data selection. By curating preference pairs
based on model behavior knowledge with similar
core competencies in knowledge, reasoning, and
instruction-following—the ZEBRA Framework en-
hances alignment coherence and ensures stable,
high-quality data.

7903



Limitation

In this paper, we demonstrated that ZEBRA
can achieve performance comparable to existing
RLAIF without requiring annotations for SFT and
DPO. However, due to resource and time con-
straints, we were unable to validate our approach
across a broader range of alignment tuning tech-
niques. Further evaluation is needed for methods.

Additionally, our evaluation primarily focused
on fundamental abilities such as Reasoning, Knowl-
edge, and Instruction-Following. However, we did
not assess ZEBRA’s performance on other impor-
tant values, including factuality and ethical stan-
dard. Future work should incorporate evaluations
reflecting these aspects.
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Prompt for Benchmark Evaluation

Q: {Question}
Options:

(A) {Option 1}
(B) {Option 2}
(C) {Option 3}
(D) {Option 4}
Output:

G J

Figure 7: Evaluation template for multiple-choice bench-
mark evaluation. The descriptive benchmark (e.g., IFe-
val) was evaluated using the same template, excluding
the option part.

A Implementation Details for Model
Training

The model was trained for a single epoch us-
ing bfloat16 (bf16) quantization, which optimizes
memory efficiency while preserving numerical pre-
cision. The training configuration incorporated the
following hyperparameters: a per-device batch size
of 6, gradient accumulation steps set to 4, and a
learning rate of 5 x 1072, with 500 warm-up steps
to facilitate stable convergence.

Training was conducted on an 140 4-GPU setup,
leveraging an optimized deep learning framework
to enhance computational efficiency. The train-
ing pipeline focused on performance optimization
through checkpointing and logging, without inter-
mediate model evaluation during training.

B Prompt template for Evaluation
Benchmarks

To determine behavior knowledge between models,
this paper evaluates benchmark performance and
compares the similarity of these numerical results.
The benchmark performance of all 17 models con-
sidered in this study is presented in Table 7. For the
start and end tokens, the template recommended in
the paper was used.

C Evaluation Model Benchmark
Performance

To determine behavior knowledge relationships be-
tween models, this paper evaluates benchmark per-
formance and compares the similarity of these nu-
merical results. The benchmark performance of all
17 models considered in this study is presented
in Table 5. The actual calculation example for

MB — SUP and M B — SIM can be found in
Figure 10.
Due to the unavailability of Bard, its perfor-

mance metrics have been substituted with those
of Gemini-1.5-Flash.

D Benchmark Performance
Representation

What benchmark represent the model capability:
knowledge, instruction-following, and reasoning?
Models exhibit distinct similarity patterns based
on their capabilities, with these patterns varying
across different evaluation metrics. Notably, model
behavior knowledge is influenced by factors such
as model scale and training methodology, leading
to variations in clustering behavior across different
capability dimensions.

Analysis Framework To systematically investi-
gate these relationships, we analyzed model simi-
larities across three key capability dimensions:

* Knowledge-Based Tasks: Unlike reasoning
capability, clustering in instruction-following
tasks is more strongly aligned with model fam-
ilies rather than size. This indicates that train-
ing methodology and architectural choices ex-
ert a greater influence on instruction adher-
ence.

» Reasoning Capability: Models tend to cluster
primarily based on parameter count, suggest-
ing that model size plays a dominant role in
shaping reasoning performance.

¢ Instruction-Following (IF) Tasks: A hierar-
chical influence pattern emerges, where:

— At the initial hierarchy, the model family
is the primary determinant.

— At the higher hierarchy, the model size
becomes a stronger predictor of perfor-
mance.

Figure 11 visualizes these relationships through
dendrograms, illustrating the hierarchical cluster-
ing patterns that emerge across different capability
dimensions.

Figure 8 shows the frequency of each model
being selected as the positive or negative under
each strategy. Overall, larger and more familiar
models tend to be chosen more frequently.
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Figure 9: Visualization of performance across different models. This represents the performance when using the
DPO training method. For smaller models, using SUP results in better performance, whereas for larger models, SIM

yields better performance

E Example of ZEBRA Binarization

To provide further insight into how ZEBRA Bi-
narization operates under different strategies, we
present an illustrative example in Table 6. This
example highlights the SUP and SIM strategies,
showing both the chosen and rejected responses. As
demonstrated, SUP captures straightforward prefer-
ence alignment, while SIM introduces more subtle
semantic overlaps, which tend to be harder to dis-
tinguish.

F Total Performance

Table 7 provides an aggregated view of the overall
performance of each model across all benchmark
datasets. The total performance scores were com-
puted by averaging the normalized scores across
the selected evaluation metrics, offering a holistic
comparison of model capabilities.

G Model Size and ZEBRA Strategies

The impact of different Strategies varies signifi-
cantly with model size, influencing how models
learn from preference data. To investigate this rela-
tionship, we conducted experiments using models
from the same family but with different parameter

counts, specifically comparing small models (3B
parameters) and larger models (7-8B parameters).
Our analysis reveals a clear pattern in how model
size determines the optimal strategy.

Smaller models (3B) exhibit superior perfor-
mance when trained using the SUP algorithm,
which prioritizes learning from response quality
within the binarized dataset. In contrast, larger mod-
els (7-8B) achieve better results with the SIM algo-
rithm, suggesting that response similarity becomes
increasingly important as model size grows.

This trend indicates that model size fundamen-
tally influences how different models leverage pref-
erence data. While smaller models benefit more
from explicit learning based on absolute quality
differences, larger models demonstrate greater sen-
sitivity to the nuanced relationships between simi-
lar responses in the training data. This relationship
is visualized in Figure 9, illustrating the distinct
learning behaviors observed across different model
scales.
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Benchmark Performances

@ Normalize(min-max)

Model IFeval l_\;l_}g";/lj M-Il\)/[rEU Hellaswag -?Zl:s(; . Cf l},c
GPT-4 0.939 1.000 1.000 1.000 1.000 1.000
GPT-3.5-turbo 0.743 0.724 0.498 0.856 0.952 0.847
Bard 1.000 0.754 0.912 0.852 0.847 0.779

Llama-2-7Th-chat | 0.017 0.439 0.164 0.612 0.693 0.521
Llama-2-13b-chat | 0.011 0.519 0.261 0.664 0.691 0.561
Llama-2-70b-chat |  (.000 0.705 0.496 0.760 0.819 0.67] |me—— VB —SUP
UltraLM-13b 0.473 0.380 0.146 0.424 0.510 0.446
WizardLM-7b 0.333 0.261 0.128 0.755 0.283 0.296
WizardLM-13b 0.151 0.426 0.098 0.801 0.703 0.530
WizardLM-70b 0.390 0.433 0.296 0.833 0.800 0.720
Vicuna-33b 0.440 0.623 0.217 0.717 0.811 0.635
Alpaca-Tb 0.100 0.184 0.055 0.000 0.331 0.283
Falcon-40b-instruct | 0.007 0.682 0.043 0.787 0.749 0.545
MPT-30b-chat 0.102 0.394 0.165 0.013 0.881 0.706
Starchat 0.065 0.221 0.000 0.025 0.000 0.000 MB — SIM
Pythia-12b 0.010 0.000 0.006 0.028 0.095 0.260

@ Calculate MB — SIM

GPT4 [GPT35| oo Llai‘r;:)a-Z Ll_i?;l;-z Ll_a;(r)n;-l Ul;\r/‘laL Wizard | Wizard | Wizard | Vicuna | Alpaca F_a41(c)(l;n gl‘;: Starchatl PYthia
-turbo LM-7b |LM-13b|LM-70b| -33b -7b . -12b
-chat | -chat | -chat -13b -instruct| -chat

GPT-4 | 1.000|0.983|0.994|0.869(0.890|0.911]0.956|0.869 [ 0.872|0.942|0.949 | 0.803 | 0.832|0.767 | 0.546 | 0.589
(iler's(;s 0.98311.000|0.9730.915{0.922|0.919 0.990 | 0.899 | 0.928 | 0.979|0.987 | 0.846 | 0.886 | 0.813 | 0.517 | 0.645
Bard | 0.994|0.973|1.000|0.822|0.843|0.864 |0.951 | 0.864|0.836|0.921|0.926 |0.769 | 0.779|0.726 | 0.518 | 0.548
I}l;“cl::ﬁ 0.86910.915|0.822|1.000 | 0.996 | 0.978 | 0.888 | 0.851 | 0.985|0.962|0.957 | 0.830 | 0.984 | 0.845 | 0.422 | 0.679
Lama2 || ) g9 0.922 | 0.843 | 0.996 | 1.000 | 0.992 [ 0.885 | 0.855 | 0.977|0.960 | 0.956 [ 0.818 | 0.979 | 0.831 | 0.455 | 0.663

0.911]0.919{0.864|0.978 | 0.992 | 1.000 | 0.871|0.829 [ 0.947 | 0.942 | 0.941 | 0.813 | 0.954 | 0.827 | 0.483 | 0.634

-13b-chat
0.956 10.990|0.951 [ 0.888 | 0.885]0.871|1.000 | 0.890 [ 0.913|0.963 | 0.981 | 0.852 | 0.868 | 0.807 | 0.533 | 0.643

Llama-2
-70b-chat
T
Wil M 0,869 0.899 [ 0.864 | 0.851 [ 0.855 | 0.829 [ 0.890 | 1.000 | 0.920 [ 0.925 | 0.903 | 0.566 | 0.856 | 0.535 | 0.439 | 0.479
Wittt M1 0,872 0.928 | 0.836 | 0.985 | 0.977|0.947 | 0.913 | 0.920 | 1.000 | 0.977| 0.968 | 0.776 | 0.978 | 0.778 |0.419 | 0.643
WiatM0.942{0.979 [0.9210.962 | 0.960 | 0.942 | 0.963 | 0.925 [0.977 | 1.000 | 0.985 | 0.8220.930 | 0.811 | 0.406 | 0.694
Vieuna-33b| 0.949 | 0.987 | 0.926 | 0.957 | 0.956 | 0.941 | 0.981 | 0.903 | 0.968 | 0.985 | 1.000 | 0.857 | 0.945 | 0.833 | 0.536 | 0.647
Alpaca-7h | 0.803 | 0.846 | 0.769 | 0.830 | 0.818 | 0.813 | 0.852 | 0.566 | 0.776 | 0.822 | 0.857 | 1.000 | 0.783 [ 0.990 | 0.418 | 0.785
Faleon-4910.832 | 0.886 | 0.779 | 0.984 |0.979 | 0.954 | 0.868 | 0.856 |0.978 |0.930 | 0.945 | 0.783 | 1.000 | 0.788 | 0.529 | 0.605
Mo |0.767 | 0.813 |0.726 | 0.845 | 0.831 | 0.827 0.807 | 0.535 |0.778 | 0.811 | 0.833 |0.990 | 0.788 | 1.000 | 0.335 | 0.798
Starchat |0.546(0.517 |0.518 |0.422 | 0.455| 0.483 [ 0.533 | 0.439 | 0.419 [ 0.406 | 0.536 | 0.418 | 0.529 | 0.335| 1.000 | 0.021
Pythia-12b | 0.589 | 0.645 | 0.548 | 0.679 | 0.663 | 0.634 | 0.643 | 0.479 | 0.643 | 0.694 | 0.647 | 0.785| 0.605 | 0.798 | 0.021 | 1.000

Figure 10: The process of calculating M B — SUP and M BgI M. Benchmark performance is normalized using
min-max normalization, and the overall SIM is performed using cosine similarity.
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Model [Feval MMLU-STEM MMLU-pro Hellaswag ARC-easy ARC-Challenge | Average Score
GPT-4 85.37 86.40 0.64 95.30 96.63 96.40 0.99
GPT-3.5-turbo 72.54 70.00 0.38 85.00 92.80 83.02 0.77
bard 89.33 71.80 0.59 84.70 84.43 77.13 0.86
Llama-2-7b-chat | 25.19 53.10 0.20 67.50 72.14 54.61 0.41
Llama-2-13b-chat | 24.82 57.80 0.25 71.20 72.05 58.02 0.45
Llama-2-70b-chat | 24.07 68.90 0.38 78.10 82.20 67.66 0.58
UltraLM-13b 54.92 49.58 0.19 54.00 57.58 48.04 0.40
WizardLM-7b 45.83 42.50 0.18 77.70 39.48 34.90 0.34
WizardLM-13b 33.92 52.30 0.17 81.00 72.94 55.38 0.45
WizardLM-70b 49.51 52.70 0.27 83.30 80.68 71.93 0.58
Vicuna-33b 52.76 64.00 0.23 75.00 81.57 64.51 0.57
Alpaca-7b 30.58 37.92 0.15 23.60 43.31 33.79 0.16
Falcon-40b-instruct | 24.54 67.50 0.14 80.00 76.60 56.70 0.47
MPT-30b-chat 30.70 50.40 0.20 24.53 87.12 70.73 0.38
Starchat 28.30 40.12 0.12 25.40 16.96 9.07 0.05
Pythia-12b 24.71 27.00 0.12 25.60 24.49 31.80 0.07

Table 5: Benchmark Scores for Trained Models. Multiple-choice benchmarks (MMLU-STEM, HellaSwag, ARC-
Easy, and ARC-Challenge) are evaluated based on accuracy. IFeval and MMLU-Pro are assessed using its own
metric. The average score is computed after min-max normalization.

Input Strategy Chosen Rejected
Teacher: In this task you are =~ SUP Solution: True This statement is false and hence cannot be la-
given a statement and an expla- Reason: The explanation confirms that White peo- ~ beled “True.” The reason for this is that not
nation giving you further knowl- ple are Caucasians, which supports the statement  all Whites are Caucasians. There are many non-
edge about an entity in the state- that Caucasians are often described as White. White people living in the Caucasus, a region
ment. You must judge whether which extends from the Black Sea to the Caspian
the statement is true or false Sea. Therefore, the explanation provided does not
based on the explanation. Label support the statement.
an instance as “True” if the ex-
planation confirms the statement
or does not disprove it. Label an
instance as “False” if the expla-
nation disproves the statement.

SIM Solution: True False

Reason: The explanation confirms that White peo-

ple are Caucasians, which supports the statement
that Caucasians are often described as White.

Reason: The explanation disproves the statement.
“White people” is a broader term that includes
people of different ethnic backgrounds who have
light skin, while “Caucasians” specifically refers
to people of European descent. Therefore, not all
“White people” are Caucasians.

Table 6: Illustrative examples of response pairs under SUP and SIM strategies.
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Benchmark Model Baseline SUP SIM SUP+SIM
Llamas 135 | SFT | 02331 | 02679 [ 0.2434 | 0.2200

DPO | 0.3130 | 0.4868 | 0.2528 | 0.3940

a3, Lgp | SFT | 02800 | 0.2460 | 0.2660 | 0.2240
MMLU-STEM DPO | 0.4902 | 0.4349 | 0.4867 | 0.2880
Owen2.5.35 | _SFT_| 02760 | 02200 | 02460 | 02500

DPO | 0.4706 | 0.4212 | 0.4400 | 0.4580

Owen2.5.75 |_SFT_| 0.2800 | 02280 | 0.2620 | 0.2780

DPO | 0.5120 | 0.3620 | 0.4860 | 0.2800

SET | 0.1189 | 0.1230 | 0.1045 | 0.1332

Lama-3.1-38 5557455 10,2193 [0.1270 | 0.1516

SET | 0.1004 | 0.1148 | 0.1045 | 0.1311

MMLU-pro Lama-3.1-88 |"556 10,1168 | 0.1025 | 0.1168 | 0.1107
Qwen2.5.35 |_SFT | 0.1025 [ 0.0840 | 0.1230 | 0.0820

DPO | 02275 | 0.2254 | 02020 | 02111

OQwen2.5.75 |_SFT | O086L | 01762 | 0.2275 | 0.1352

DPO | 0.2377 | 0.1721 | 02254 | 0.1700

Llamas 13 |_SFL | 02494 | 0.2410 | 02490 | 02206

DPO | 0.3765 | 0.4940 | 0.4796 | 0.3033

Ulamas Lgp |_SFL | 02494 | 0.4210 [ 02470 | 02218

Feval DPO | 0.2421 | 0.1882 | 0.2292 | 0.249%4
OQwen2.5.35 |_SFT | 02190 | 02134 02122 | 02030

DPO | 0.3633 | 0.3058 | 0.3094 | 0.1715

SET | 0.2290 | 02134 | 02122 | 0.2083

Qwen2.5-7B 56 03321 [ 03177 | 0.3657 | 0.2407

Llamas 135 | SFT_| 02660 | 0.2460 | 0.2000 | 0.2340

DPO | 06111 | 0.5547 | 02618 | 0.6679

a3, Lgp | SFT | 02180 | 0.2330 | 0.2400 | 0.2360

ARC-casy DPO | 02176 | 0.1540 | 0.4720 | 0.0680
Qwen2.5.35 | _SFL_| 02410 | 02560 | 0.2480 | 0.2560

DPO | 0.8497 | 0.8754 | 05295 | 0.8157

Owen2.5.75 | SFT | 02550 | 02260 | 0.2280 | 0.2900

DPO | 0.5700 | 0.6359 | 0.6738 | 0.7134

Ulamas 13p |_SFT | 02556 | 0249202266 | 02019

DPO | 05122 | 0.4551 | 02466 | 0.5712

Ulamas. Lgp |_SFL | 02320 | 02297 | 02761 | 02268
ARC-challenge DPO | 0.5463 | 0.1763 | 0.3596 | 0.2946
Owen2.5.35 | _SFT | 02645 | 02483 [ 02207 | 02343

DPO | 0.7398 | 0.8241 | 0.4470 | 0.7078

Owen2.5.75 | _SFT | 02343 [ 02552 [ 02483 | 0.2390

DPO | 04432 | 0.5358 | 0.5847 | 0.3870

Table 7: Model Performance Comparisons on Knowledge, Instruction-Following, and Reasoning-Related Tasks.
The baseline is Instance-wise RLAIF (Cui et al., 2023). "Llama 3.1" refers to the Llama-3.1-Instruct series, and
"Qwen-2.5" refers to the Qwen2.5-Instruct series. The training methods include Supervised Fine-Tuning (SFT) and
Direct Preference Optimization (DPO). The bold text indicates the best performance for each model and training

method.
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Figure 11: Dendrogram for Evaluation Categories:
Knowledge, Reasoning, and Instruction-Following.
Clusters exceeding a specific distance threshold (0.4)
are highlighted in different colors. Models deemed sim-
ilar share the same color line. The red dotted line shows
the major groups of models in the dendrogram.
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