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Abstract

Representation learning in knowledge graphs
(KGs) has predominantly focused on static data,
yet many real-world knowledge graphs are in-
herently dynamic. For instance, the fact (The
CEO of Apple, holds position, Steve Jobs) was
valid until 2011, after which it changed, em-
phasizing the need to incorporate temporal in-
formation into knowledge representation. In
this paper, we propose 3DG-TE, a novel tem-
poral KG embedding method inspired by 3D
Gaussian Splatting, where entities, relations,
and timestamps are modeled as 3D Gaussian
distributions with learnable structured covari-
ance. This approach optimizes the Gaussian
distributions of entities, relations, and times-
tamps to improve the overall KG representation.
To effectively capture temporal-relational inter-
actions, we design structured covariances that
form composite transformation operators: rela-
tions induce rotational transformations, while
timestamps regulate adaptive scaling. We also
design a compound scoring function that in-
tegrates mean positions and structured covari-
ance, preserving geometric interpretability. Ex-
perimental results on three benchmark TKG
datasets demonstrate that 3DG-TE outperforms
state-of-the-art baselines in temporal link pre-
diction tasks. Theoretical analysis further con-
firms our model’s ability to capture key relation
patterns.

1 Introduction

Knowledge graphs (KGs) are extensively employed
as structured frameworks for modeling and orga-
nizing complex relationships among entities, and
they have become foundational tools in domains
such as semantic search (Sun et al., 2023), recom-
mendation systems (Gao et al., 2023), and ques-
tion answering (Wang et al., 2024). While tradi-
tional KGs are effective in many contexts, they fall
short in capturing the temporal dimension of knowl-
edge, which is essential for representing real-world
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Figure 1: An illustration of temporal evolution patterns.
The top section shows the temporal evolution of events
between Barack Obama and Angela Dorothea Merkel.
The bottom section shows how our method encodes
entities, relations, and time as 3D Gaussian distributions
to model temporal interactions in TKGs.

data where facts are time-dependent. For instance,
the statement "Barack Obama is the president of
the United States" is only valid between 2009 and
2017. To address this limitation, temporal knowl-
edge graph embedding (TKGE) models have been
developed. These models extend traditional KGs
by incorporating temporal information to indicate
when a fact is valid.

Early TKGE methods built upon translation-
based KGE method TransE (Bordes et al., 2013)
by encoding time as translations same as rela-
tions (Leblay and Chekol, 2018; Garcia-Duran
et al., 2018). Recent works have pointed out that
TKGs inherently exhibit uncertainties and random-
ness. ATiSE (Xu et al., 2020b) employs an ad-
ditive time series decomposition approach that
models temporal uncertainty using Gaussian noise.
TKGC-AGP (Zhang and Zhou, 2022) uses multi-
variate Gaussian processes to model temporal de-
pendencies and uncertainties. In addition, tensor
decomposition-based TKGE models (Lacroix et al.,
2020; Xu et al., 2021; Li et al., 2023) have been
developed. The latest research introduces mod-
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els that encode TKGs using composite structures.
HGE (Pan et al., 2024) employs a hybrid space to
enhance the representation of temporal dynamics,
while TCompoundE (Ying et al., 2024) leverages
relation-specific and time-specific compound geo-
metric operations to model both temporal evolution
and relational structures more effectively. TKGE
has become a key research area for modeling the
temporal KGs.

In this paper, we propose 3DG-TE, a novel
TKGE approach inspired by the principles of 3D
Gaussian Splatting (Kerbl et al., 2023). In com-
puter graphics, 3D Gaussian Splatting is widely
used for scene representation and rendering, where
each Gaussian models a local point distribution to
efficiently reconstruct complex surfaces. Inspired
by 3D Gaussian Splatting, 3DG-TE encodes each
quadruple (s, 7, 0,t) as a structured representation
of a fact, where entities, relations, and timestamps
are modeled as 3D Gaussian ellipsoid, as shown in
Figure 1. 3DG-TE optimizes 3D Gaussian ellipsoid
of entities, relations, and timestamps to more accu-
rately represent quadruple facts, thereby enhancing
link prediction performance. To more accurately
model relation and timestamp interactions, we fur-
ther design structured covariance representations
in which relations induce rotational transforma-
tions, while timestamps regulate adaptive scaling,
forming composite transformation operators. 3DG-
TE focuses on 3D Gaussian space modeling over
conventional probabilistic KGE modeling, such as
ATiSE (Xu et al., 2020b) and TKGC-AGP (Zhang
and Zhou, 2022). This enables our model to capture
rich temporal interactions among entities, relations,
and timestamps in TKGs, thereby facilitating more
effective TKG modeling.

Specifically, ATiSE captures temporal evolution
through additive time series decomposition. How-
ever, it primarily assumes independent Gaussian
noise to model temporal uncertainty, which may
limit its ability to capture complex interactions
among time, entities, and relations. In contrast, our
model is designed with a full 3D Gaussian struc-
tured covariance, but rather Gaussian noise, thus en-
abling accurate learning of the dynamics of relation
and timestamp interactions in the TKG. TKGC-
AGP models temporal evolution using multivariate
Gaussian processes, leveraging kernel functions to
ensure smooth temporal transitions. Howerer, its
reliance on Gaussian process regression may limit
scalability when applied to large-scale knowledge
graphs. Instead, our approach replaces Gaussian

process regression with a learnable 3D Gaussian
that designs relation- and time-structured covari-
ances to capture TKG interactions. This design
enables our model to achieve superior performance
on large-scale datasets GDELT. In addition, experi-
mental results on other benchmark TKG datasets
confirm that our approach surpasses state-of-the-art
TKGE models!.

Due to space constraints, the content of the Re-
lated Work section can be found in Appendix A.

2 Background and Notation

2.1 Problem Formulation

For a temporal knowledge graph G, let £, R, and
T denote the sets of entities, relations, and times-
tamps, respectively. Each fact within the TKG
is represented as a quadruple (s,r,0,t), where
s,0 € & correspond to the subject and object enti-
ties, 7 € R denotes the relation linking the entities,
and t € T specifies the temporal information of the
fact. The objective of temporal knowledge graph
embedding is to infer missing components in in-
complete quadruples. Given a query in the form
of (s,r,7,t) (where the object entity is missing) or
(7,7, 0,t) (Where the subject entity is missing), the
model aims to predict the most plausible missing
entity or timestamp by leveraging observed facts
in the TKG. To achieve this, the score function
o(s,r,0,t) is used to evaluate the plausibility of
a given quadruple. The model is trained by op-
timizing this function over observed facts in the
dataset. During inference, missing components are
predicted by ranking candidate entities or times-
tamps based on their scores.

2.2 3D Gaussian Splatting

3D Gaussian splatting (Kerbl et al., 2023) is a volu-
metric representation technique that models spatial
distributions using anisotropic Gaussian functions.
Unlike traditional explicit representations such as
meshes or implicit neural fields like Neural Radi-
ance Fields (NeRF) (Mildenhall et al., 2021), which
rely on discrete geometry or continuous function
approximation, 3D Gaussian splatting represents a
scene as a collection of learnable Gaussian kernels.
Each kernel encodes geometric and appearance
properties, making it highly effective for model-
ing complex spatial structures.

LCode is available on https://github.com/dellixx/
3DG-TE
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A 3D Gaussian is parameterized by a mean vec-
tor ;o € R3 representing its spatial position and a
covariance matrix X € R3*3 that defines its shape
and orientation. A straightforward approach to op-
timizing the covariance matrix 3 would involve
directly updating its elements. However, this can
introduce numerical instability, as covariance matri-
ces must remain positive semi-definite to be phys-
ically meaningful. Gradient-based optimization
often struggles to enforce this constraint, leading to
invalid covariance matrices. To mitigate this issue,
we adopt an alternative parameterization based on
structured decomposition, ensuring the validity and
stability of the covariance representations. Follow-
ing (Kerbl et al., 2023), we express it as:

> =RSS'R', (1)

where R € R3*3 is a rotation matrix that encodes
orientation, and § € R3*3 is a diagonal scaling
matrix that determines anisotropic spread. This
parameterization ensures that 3 remains positive
semi-definite while providing an intuitive way to
control the shape and orientation of the Gaussian
ellipsoids.

While 3D Gaussian splatting is primarily used in
computer graphics for rendering, we adopt its core
principles to construct a novel temporal knowledge
graph embedding framework. Unlike rendering-
based applications that focus on synthesizing pho-
torealistic images, our approach encodes each fact
(s,7,0,t) in a temporal knowledge graph as a struc-
tured 3D Gaussian ellipsoid. Here, the head entity,
relation, and timestamp are represented as learn-
able Gaussian, parameterized by their respective
means and covariance matrices. Instead of gen-
erating visual representations, we optimize these
Gaussian to construct a scoring function that mea-
sures the plausibility of a fact. This formulation
enables our model to dynamically capture the tem-
poral evolution of knowledge while preserving geo-
metric interpretability. By leveraging relation- and
time-structured covariances, we facilitate efficient
representation learning.

3 Methodology

3.1 3DG-TE Model

In this section, we propose 3DG-TE, a novel TKGE
method inspired by 3D Gaussian Splatting (Kerbl
et al., 2023). First, we construct a structured co-
variance that incorporates both relations and time.

Then, we formulate the score function based on the
fused covariance and means.

Constructing Structured Covariance. For a
quadruple (s,7,0,t) in a TKG, each entity, rela-
tion, and timestamp is modeled as a learnable 3D
Gaussian NV (u, 3) parameterized by a mean vec-
tor p and a structured covariance matrix 3. The
optimization objective is to refine these Gaussian
distribution to best capture the factual knowledge
encoded in the quadruples. In a 3D Gaussian dis-
tribution, the mean determines the center of the
ellipsoid, while the covariance matrix defines its
shape.

Furthermore, previous studies (Li et al., 2023;
Ying et al., 2024) have shown that the relationship
between the head and tail entities is dynamically
influenced by both the relation and time. Therefore,
we treat relation and time as a unified structured
covariances and optimize their combined structured
covariance in the 3DG-TE model. Specifically, we
represent the relation as the rotation matrix R,
of the overall X(r,t) covariance, while time is
modeled as the scaling matrix St within the same
structure. Hence, we can get

Sy = RrStS{ R, )

Following Kerbl et al. (2023), rotation matrix
R, is derived from a quaternion representation
dimx4 — (w, x,v, z), where the quaternion is nor-
malized to ensure valid rotations. The quaternion is
then converted into a (dim X 3 x 3) rotation matrix

as follows:

1—-2(y* +27)
2(zy + wz)
2(xz — wy)

2(zy — wz)
1—2(2? +22)
2(yz + wax)

2(zz + wy)
2(yz —wzx) |,
1—2(z* + 3%
(3)
where (w, x, y, z) are the components of the quater-

nion. The time vector sfzmxg = (s1, S2, $3) is nor-

malized and then converted into its diagonal form:

R, =

Sy = diag(sy). )

The scaling matrix Sy has the size dim x 3 x 3
because it is a diagonal matrix with the scaling
factors placed along the diagonal.

Our approach integrates the covariance struc-
ture of both relation and time, allowing them to
jointly capture entity interactions. The relation
between entities is modeled as a rotation, preserv-
ing their geometric structure while enabling trans-
formations in a multidimensional space, similar

7854



to static KGE models such as RotatE (Sun et al.,
2019) and PairRE (Chao et al., 2021). Time in-
fluences the magnitude of entity representations,
reflecting changes in their significance or impact
over time. The scaling matrix captures these tempo-
ral variations by adjusting the magnitude of entity
embeddings, effectively modeling temporal dynam-
ics.

After that, we can obtain the relational Gaussian
and temporal Gaussian distributions represented as

Nr(uﬁ 2(r,t))v -/\/t(p’ta 2](1',15))7 (5)

where g, and py represent the mean vectors cor-
responding to the relation 7 and the time ¢, respec-
tively, reflecting the central positions of their em-
beddings in the latent space.

The Score Function. Since 3D Gaussian Splat-
ting renders scenes based on the mean and covari-
ance, we design a scoring function that leverages
these parameters to fit the quadruple of represented
facts.

First, for the 3D Gaussian information of rela-
tions and time, we adopt an information aggre-
gation approach to fuse the mean and covariance
information. Specifically, we use the strategy of
adding the mean and covariance to effectively com-
bine both aspects, capturing the dynamic transla-
tion characteristics of relations and time. Through
this approach, the model can simultaneously learn
spatial positions and transformation properties, en-
hancing its ability to model TKGs.

ZA, = abs(pr) + X(rt)

. (6)
TA; = Sln(ut) + E(r,t)-

The absolute function is applied to the relational
mean to ensure non-negative transformations, as
relations often encode directed mappings. To en-
code temporal information, a sinusoidal function is
used to capture its periodic characteristics, thereby
enabling the model to effectively learn cyclical pat-
terns over time.

After aggregating the information, we employ
information distribution to ensure the geometric
significance of the mean and covariance of the
Gaussian ellipsoid is preserved.

ph, 3! = TA,[:,_half_dim|,ZA,[:, _half_dim :]
wh, B = TA[:, _half_dim], ZA[:, _half_dim :],
(7N

where the term ‘_half_dim’ splits the dimensional
space of the Gaussian distribution into two equal
parts, one for the mean and the other for the covari-
ance.

In addition, we adopt an additive fusion strategy
for the means, as mean vectors represent the central
positions of entities, relations, and time in the em-
bedding space. Adding these means preserves their
relative spatial positions, enabling the model to ef-
fectively capture their interactions. In geometric
space, addition corresponds to translation, allowing
us to determine the positions of their 3D Gaussian
ellipsoids. By adding these components, we obtain
their spatial locations, which are then combined
to represent the factual knowledge encoded in the
quadruple. On the other hand, covariance matrices
describe the shape of 3D Gaussian distributions,
are typically decomposed into rotation and scaling
operations. Therefore, we adopt a multiplicative
fusion strategy to effectively model the interactions
among these components. Hence, we can get

W(s,mt) = Hs + My + g, g
S =S S5 ®

As previously described, previous studies have
demonstrated that entity interactions are jointly in-
fluenced by both relations and time (Li et al., 2023;
Ying et al., 2024). In our model, the representation
of entities does not involve covariance because we
consider the position of entities in the knowledge
graph to be relatively fixed. That is, their spatial
shape can be represented by the mean, without the
need for complex rotation or scaling transforma-
tions.

In our method, we enforce this operation by set-
ting the covariance matrix of entities to an iden-
tity matrix 35 = I. This is because the physical
location of an entity typically reflects its static at-
tributes, such as name or identifier, which are inde-
pendent of the dynamic changes driven by relations
and time. Therefore, the representation of entities
is optimized through their mean, while covariance
is primarily used to capture the dynamic nature of
relations and time, which differs from the fixed
positions of entities themselves.

To compute the plausibility of a quadruple
(s,r,0,t), we integrate three key components: the
fused mean representation “2 syrit)? the structured
covariance 22 t) and the object entity embed-
ding e,. The mean representation captures the
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spatial positioning of the subject entity, relation,
and timestamp, while the covariance matrix en-
codes the interaction dynamics between relations
and time. We compute the semantic similarity be-
tween these three components, ensuring a mean-
ingful alignment between the fused representation
and the target entity. The final score function is
formulated as follows:

¢(Sa r,o, t) = <l-‘l‘23’1-’t)a er’t)v 60>, (9)

where e, denotes the mean embedding of the object
entity.

3.2 Loss Function

Following TeLM (Xu et al., 2021) and TeAST (Li
et al., 2023), we utilize reciprocal learning to train
our model. The loss function is formulated as fol-
lows:

L, = —log <Z exp (o(s, 0,t))>

oef

_ log (Z exp (gb(o, 7“_17 3/7 t)))

s'e€

k
a3 (18s,r I} + 1=y I+ lleal?)
=1

(10)

Here, )\, denotes the regularization coefficient for
the N3 regularization weight, r~! represents the
inverse of the relation, and s’ is the subject of the
negative samples. The smoothing temporal regu-
larizer from TNTComplEx (Lacroix et al., 2020)
is employed to enforce similar representations for
consecutive time points. This regularizer is ex-
pressed as:

1 N¢e—1
= 3
Le= N, — 1 ; [ttty — Begoylls- (D

Finally, the complete loss function for 3DG-TE
is defined as:

L=Ly+ ML, (12)

where )\; represents the temporal regularization
weight.

3.3 Modeling Key Relation Patterns

3DG-TE can model important relation patterns, in-
cluding symmetric, asymmetric, inverse and tem-
poral evolution patterns. A comprehensive list of
these properties is presented below, with detailed
proofs provided in the Appendix B.

Proposition 1. 3DG-TE can model the symmetric
relation pattern.

Proposition 2. 3DG-TE can model the asymmetric
relation pattern.

Proposition 3. 3DG-TE can model the inverse re-
lation pattern.

Proposition 4. 3DG-TE can model the temporal
evolution pattern.

4 Experiments

4.1 Benchmark Datasets

We evaluate 3DG-TE on Temporal Knowledge
Graph Embedding benchmark datasets: ICEWS14
and ICEWS05-15 (Garcia-Duran et al., 2018) and
GDELT (Leetaru and Schrodt, 2013). The details
and statistics of the datasets are provided in Ap-
pendix C.

4.2 Baselines

We perform a comprehensive comparison with
the state-of-the-art TKGE models, including
TTransE (Leblay and Chekol, 2018), DE-
SimplE (Goel et al., 2020), TA-DistMult (Garcia-
Durén et al., 2018), ChronoR (Sadeghian et al.,
2021), TComplEx (Lacroix et al., 2020), TNT-
ComplEx (Lacroix et al.,, 2020), ATiSE (Xu
et al., 2020b), TeLM (Xu et al., 2021), TKGC-
AGP (Zhang and Zhou, 2022) BoxTE (Messner
et al., 2022), RotateQVS (Chen et al., 2022), TLT-
KGE (Zhang et al., 2022) TeAST (Li et al., 2023),
HGE (Pan et al., 2024) and TCompoundE (Ying
et al., 2024).

Among the existing TKGE methods, TCom-
poundE (Ying et al., 2024) obtains SOTA results
on ICEWS14, ICEWSO05-15 and GDELT dataset.
Furthermore, while both ATiSE (Xu et al., 2020b)
and TKGC-AGP (Zhang and Zhou, 2022) incor-
porate Gaussian-based representations, Our model
fundamentally differs from both in its theoretical
foundation and methodological approach. Our fo-
cus is on 3D Gaussian space modeling, rather than
probabilistic modeling. In this paper, we consider
TCompoundE, ATiSE and TKGC-AGP as the pri-
mary baselines.

7856



Models (Reference) ICEWS14 ICEWS05-15 GDELT

MRR H@! H@3 H@I0 | MRR H@l H@3 H@I0 | MRR H@l H@3 H@I0
TTransE (WWW (2018)) 0.255 0.074 - 0.601 | 0.271 0.084 - 0.616 | 0.115 0.000 0.160 0.318
TA-DisMult (EMNLP (2018)) | 0.477 0.363 - 0.686 | 0.474 0.346 - 0.728 | 0.206 0.124 0219 0.365
DE-SimplE (AAAI (2020)) 0.526 0418 0.592 0725 | 0.513 0.392 0.578 0.748 | 0.230 0.141 0.248 0.403
TComplEx (ICLR (2020)) 0.610 0.530 0.660 0.770 | 0.660 0.590 0.710 0.800 | 0.340 0.294 0.361 0.498
TNTComplEx (ICLR (2020)) | 0.620 0.520 0.660 0.760 | 0.670 0.590 0.710 0.810 | 0.349 0.258 0.373 0.502
ATISE (ISWC (2020b)) 0.550 0436 0.629 0.750 | 0.519 0.378 0.606 0.794 - - - -
ChronoR (4447 (2021)) 0.625 0.547 0.669 0.773 | 0.675 0.596 0.723 0.820 - - - -
TeLM (NAACL (2021)) 0.625 0.545 0.673 0.774 | 0.678 0.599 0.728 0.823 | 0.350 0.261 0.375 0.504
TKGC-AGP (COLING (2022)) | 0.561 0.458 0.631 0.738 | 0.532 0.398 0.621 0.797 - - - -
BoxTE (AAAI (2022)) 0.613 0.528 0.664 0.763 | 0.667 0.582 0.719 0.820 | 0.352 0.269 0.377 0.511
RotateQVS (ACL (2022)) 0.591 0.507 0.642 0.754 | 0.633 0.529 0.709 0.813 | 0.270 0.175 0.293 0.458
TLT-KGE (CIKM (2022)) 0.630 0.549 0.678 0.777 | 0.686 0.607 0.735 0.831 | 0.356 0.267 0.385 0.532
TeAST (ACL (2023)) 0.637 0.560 0.682 0.782 | 0.683 0.604 0.732 0.829 | 0.371 0.283 0.401 0.544
HGE (AAAI (2024)) 0.634 0.550 0.685 0.788 | 0.688 0.608 0.740 0.835 | 0.371 0.277 0.402 0.556
TCompoundE (ACL (2024)) 0.644 0.561 0.694 0.795 | 0.692 0.612 0.743 0.837 | 0.433 0.347 0469 0.595
3DG-TE (ours) 0.646 0.564 0.695 0.796 | 0.694 0.614 0.747 0.841 | 0.452 0.367 0.488 0.612

Table 1: Link prediction results on [CEWS14, ICEWS05-15 and GDELT. Dashes means results are not reported in

the responding literature. The best score is in bold.

4.3 Evaluation Protocol

Following the prior works (Lacroix et al., 2020;
Chen et al., 2022; Li et al., 2023), we assess the
ranking performance of the predicted quadruples
by considering all possible substitutions of the sub-
ject and object entities, denoted as (s', 7, 0,t) and
(s,r,0',t), where s" and o’ belong to the set of enti-
ties, £. The candidate quadruples are subsequently
ranked based on their scores, with time-based fil-
tering applied to ensure the temporal consistency
of the predictions (Xu et al., 2021; Li et al., 2023).
The model’s performance is quantified using stan-
dard evaluation metrics, including Mean Recipro-
cal Rank (MRR) and Hits@n. Hits@n measures
the fraction of correct entities appearing in the top
n predictions. Higher values of MRR and Hits@n
indicate superior model performance. For simplic-
ity, we refer to Hits@n as H@n, where n takes
values of 1, 3, and 10.

For more information about other experimental
setups, please see Appendix D.

5 Results and Analysis

5.1 Main Results

Table 1 presents the link prediction performance of
3DG-TE on three benchmark datasets: ICEWS14,
ICEWSO05-15, and GDELT, covering diverse tem-
poral knowledge graph scenarios. Our model

consistently outperforms all baselines in MRR,
Hits@1, Hits@3, and Hits@10, demonstrating
its effectiveness in modeling temporal knowledge
graphs. Notably, 3DG-TE surpasses state-of-the-
art models, including TCompoundE, ATiSE, and
TKGC-AGP, highlighting its ability to jointly cap-
ture relational and temporal dependencies.

Moreover, BoxTE (Messner et al., 2022) empha-
sizes that GDELT requires a high degree of tempo-
ral inductive capacity for efficient encoding. This is
attributed to the significant temporal variability in
GDELT, where some facts persist over several con-
secutive timestamps, whereas others are brief and
infrequent. As shown in Table 1, 3DG-TE achieves
strong results on the GDELT dataset, outperform-
ing many baseline models. A key strength of 3DG-
TE is its 3D Gaussian-based representation, where
entities, relations, and timestamps are parameter-
ized as Gaussian distributions. The relation- and
time-structured covariances enables the model to
handle the diverse temporal nature of GDELT ef-
fectively. The structured covariance approach in
our model makes it effective in capturing complex
temporal dynamics and thus better modeling the
complex GDELT. This highlights the effectiveness
of our model in modeling complex TKGs.
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ICEWS14 ICEWS05-15
MRR H@l H@3 H@l0 | MRR H@l H@3 H@I10
Variant of Formula Formula ‘ Ablation 1 ‘
S = R,.S:S R} Eq.2 ‘ 0.646 0.564 0.695 0.796 ‘ 0.694 0.614 0.747 0.841
By = RS, S RJ Eq. 13 ‘ 0.635 0.553 0.683 0.787 ‘ 0.687 0.610 0.739 0.836
abs(-) sin(-) ‘ Ablation 2 ‘
v v 0.646 0.564 0.695 0.796 | 0.694 0.614 0.747 0.841
v X 0.012 0.004 0.011 0.025 | 0.008 0.002 0.006 0.015
X v 0.638 0.560 0.681 0.784 | 0.683 0.605 0.736 0.832
Variant of Formula Formula | Ablation 3 |
Wiaray = Mo+ 15 + 14, T, ) =Bs 305 Eq.8 | 0.646 0564 0.695 0.79 | 0.694 0.614 0747 0.841
Wiamty = Mo 15 1, Xy = Ze + 30+ 3] Eq. 14 | 0010 0004 0010 0019 | 0007 0002 0005 0.013

Table 2: Ablation study on the impact of different covariance modeling strategies, the application of the absolute

value and sine function, and fusion strategies for mean and covariance.

5.2 Ablation Studies

In this section, we perform a series of ablation ex-
periments to analyze the contributions of different
components of the 3DG-TE model. As shown in
Table 2, Ablation study contains (Ablation 1) the
impact of different covariance modeling strategies,
(Ablation 2) the application of the absolute value
and sine function, and (Ablation 3) fusion strate-
gies for mean and covariance.

Ablation 1. We first investigate the impact of the
structured covariance between relations and time
in our 3DG-TE model as in Eq. 2. Specifically, we
compare the performance of the model when the
relation covariance is modeled as a rotation matrix
and the time covariance is represented as a scaling
matrix. To better understand the significance of
this structure, we perform a comparative analysis
where we reverse the roles of relation and time
covariances. In this modified setup, we model the
relation covariance as a scaling matrix and the time
covariance as a rotation matrix. The new combined
structured covariance is represented as:

S = RS S, R/ . (13)

As shown in Table 2, when we reverse the roles
of relation and time covariances, the model’s per-
formance drops slightly on both ICEWS14 and
ICEWS05-15 datasets across all evaluation metrics.
This suggests that the original design, where re-
lation covariance is modeled as a rotation matrix
and time covariance as a scaling matrix, provides a
better alignment of the model’s ability to capture
dynamic temporal relations and entity interactions.

The results further validate our approach, showing
that integrating the structured covariance of both
relations and time enables the model to effectively
capture entity interactions. By using a rotation ma-
trix for relations, the model preserves the geometric
structure of entities while allowing transformations
in a multidimensional space. The scaling matrix,
which models time, adjusts the magnitude of entity
representations, reflecting how the significance of
entities evolves over time.

Ablation 2. Next, we explore the impact of dif-
ferent functions on the representation of relations
and time in the 3DG-TE model. Specifically, we
investigate the role of the absolute value function
(abs) and the sine function (sin) applied to the rela-
tional and temporal mean vectors. In the original
formulation of the model, the absolute value is ap-
plied to the relational mean to ensure non-negative
transformations, as relations typically represent di-
rected mappings. We use the sine function to effec-
tively capture the inherent periodicity in temporal
information.

As shown in Table 2, when the absolute value
and sine functions are removed from the model (us-
ing a direct addition of relational and time means),
the performance of the model declines significantly
across all metrics. This demonstrates that these
functions play a crucial role in ensuring that the
model captures the correct directional and periodic
nature of the relations and time.

Ablation 3. Finally, we examine the impact

of different fusion strategies for the mean and co-
variance in the 3DG-TE model. Specifically, we

7858



investigate the effect of using multiplication for the
mean and addition for the covariance. Compare
to Eq. 8, the mean vectors are fused multiplica-
tively, and the covariance matrices are combined
additively. The new formulation of the model in
this configuration is represented as:

uzs,r,t) = Hs- u',r' ’ “27

(14)
Sy = Za + X5+ B

The results from Table 2 show that using mul-
tiplication for the mean and addition for the co-
variance results in a significant decrease in per-
formance across all evaluation metrics on both
ICEWS14 and ICEWSO05-15 datasets. This sug-
gests that the original fusion strategy, where the
mean is added and the covariance is multiplied,
is more effective in modeling the interactions be-
tween entities, relations, and time. Geometrically,
the mean represents the center of the Gaussian dis-
tribution, while the covariance controls its shape
and orientation. By adding the means, we pre-
serve the relative positions of entities and relations,
ensuring that their spatial representation remains
consistent. However, multiplying the covariances
allows for proper transformations and interactions
between the components, modeling how relations
and time influence the spatial distribution of enti-
ties. Adding the covariances, on the other hand,
distorts the shape and spread of the ellipsoids, lead-
ing to less accurate representation. Therefore, the
original approach of adding the means and multi-
plying the covariances better preserves the geomet-
ric structure of the graph and captures the dynamic
interactions among entities, relations, and time.

5.3 SHAP Analysis of Feature Contributions

To further investigate the contributions of differ-
ent components in our score function, we conduct
SHAP (Lundberg and Lee, 2017) analysis on two
benchmark datasets: ICEWS14 and ICEWS05-15.
As shown in Figure 2, the SHAP values indicate
that both relational and temporal transformations
play a crucial role for the score function of 3DG-
TE. Notably, relation rotation R, has a stronger
impact in ICEWS14, while time scaling S; domi-
nates in [ICEWSO05-15, highlighting dataset-specific
variations in temporal evolution patterns. Addi-
tionally, entity embeddings significantly influence
predictions, demonstrating the necessity of pre-
serving entity-specific representations, while times-
tamp embeddings contribute more in [ICEWS05-15,

High
Relation Rotate R, oo -—~-+- cene
Time Scale S; . .« e ......*... mee o e g
S
Relation . -—+. cen o
2
Timestamp .. ---*--. . E
Entity v ...+.. .

% 5 % 1 o 1 5 3
SHAP value (impact on model output)

(a) ICEWS14

High

Time Scale S¢
Relation Rotate R, ..
Entity . -*—.- .

Timestamp

Feature value

Relation

Low

SHAP value (impact on model output)

(b) ICEWS05-15

Figure 2: The SHAP values indicate the impact of differ-
ent components, including entity, relation, timestamp,
relation rotation R,., and time scaling St, on the model’s
score function on ICEWS14 and ICEWSO05-15. Higher
absolute SHAP values represent greater influence on the

score function.

where event prediction requires stronger temporal
modeling. The comparative importance of relations
versus timestamps further varies, with ICEWS14
relying more on relational structure and ICEWS05-
15 showing greater dependence on temporal in-
formation. These observations align with previous
findings (Li et al., 2023; Ying et al., 2024), confirm-
ing that entity interactions are jointly determined
by relations and time, and demonstrates the validity
of constructing structured covariances in terms of
relations and time in TKGs.

Additional experiments on relation and times-
tamp visualization and analysis are provided in
Appendix E.

6 Conclusion

We presented 3DG-TE, a novel temporal knowl-
edge graph embedding framework that leverages
3D Gaussian representations to model temporal-
relational interactions. By decomposing covari-
ance matrices into relation-driven rotations and
time-specific scaling operations, our approach ef-
fectively encodes TKGs and achieves the excel-
lent performance. Furthermore, our experiments
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confirm the critical roles of relations and time in
modeling temporal knowledge graphs, providing
quantitative evidence to support this claim. Finally,
theoretical proofs demonstrate 3DG-TE can encode
important relational patterns.

Limitations

While 3DG-TE introduces a novel perspective on
temporal knowledge graph embedding by leverag-
ing 3D Gaussian distributions, similar to the major-
ity of TKGE models (Lacroix et al., 2020; Li et al.,
2023; Pan et al., 2024), etc., 3DG-TE is unable
to process new entities that are not present in the
training data.
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A Related Work

A.1 Temporal Knowledge Graph Embedding

Temporal knowledge graphs (TKGs) extend con-
ventional knowledge graphs by incorporating time
as a dimension in entity and relation representa-
tions. A TKG consists of multiple quadruples,
each representing a unique fact in the form of
(s,r,0,t), where s is the subject entity, r is the re-
lation, o is the object entity, and ¢ is the timestamp.
Many TKGE models build on existing static KGE
frameworks to capture the temporal dynamics of
evolving data. For example, TTransE (Leblay and
Chekol, 2018) is extensions of the TransE (Bor-
des et al., 2013) model that introduce a tempo-
ral aspect to both entity and relation embeddings.
The score function of TransE and TransE are
|s + 7 — oll, 1, and [[s + 7+t — ol|;, 1, Dist-
Mult (Garcia-Durdn et al., 2018) adapts the Dist-
Mult model by integrating temporal information, al-
lowing for more accurate temporal representations.
DE-Simple (Goel et al., 2020) extends the SimplE
model by adding diachronic entity embeddings to
capture temporal shifts in the entity representations.
ChronoR (Sadeghian et al., 2021) and TeRo (Xu
et al., 2020a) introduce rotational operations, sim-
ilar to RotatE, for subject and object entities to
evaluate the semantic validity of temporal facts.
Additionally, TINT)ComplEx (Lacroix et al., 2020)
and TeLM (Xu et al., 2021) utilize fourth-order ten-
sor decomposition to extend ComplEx for model-
ing TKGs, providing a more comprehensive frame-
work for temporal relations. RotateQVS (Chen
et al., 2022) and TLT-KGE (Zhang et al., 2022),
inspired by QuatE, represent temporal knowledge
in quaternion space, improving the representation
of complex relations. BoxTE (Messner et al., 2022)
employs box embeddings to model TKGs, extend-
ing the BoxE (Abboud et al., 2020) model for static
KGs. Recently, TeAST (Li et al., 2023) proposed
mapping relations onto an Archimedean spiral to
model time evolution. HGE (Pan et al., 2024) em-
beds temporal facts into a product space of het-
erogeneous geometric subspaces and employs a
temporal geometric attention mechanism. TCom-
poundE (Ying et al., 2024) employs both time-

specific and relation-specific geometric operations
to capture the intricate temporal dynamics of tem-
poral knowledge graphs.

A.2 3D Gaussian Splatting

3D Gaussian Splatting (Kerbl et al., 2023) is an
innovative technique in computer graphics and vi-
sion that represents scenes using Gaussian distribu-
tions. This method models objects as a collection
of Gaussian kernels, each defined by its mean, co-
variance matrix, transparency, and color, and then
projects them onto 2D images using volume ren-
dering techniques. It offers an efficient and high-
quality approach to scene reconstruction, surpass-
ing traditional grid-based or implicit neural repre-
sentations such as NeRF (Mildenhall et al., 2021).
Unlike conventional methods, 3D Gaussian Splat-
ting utilizes multiple Gaussian kernels to represent
a scene, enabling it to capture complex shapes and
blurred boundaries more naturally. This results in
improved computational efficiency compared to
grid-based models. Recent studies have demon-
strated that 3D Gaussian Splatting excels in scene
reconstruction and image synthesis, particularly in
capturing objects with intricate geometry.

Inspired by 3D Gaussian Splatting, we model
entities, relations, and timestamps as 3D Gaussian
distributions. This approach optimizes both the
mean and covariance of these distributions, effec-
tively capturing temporal changes and representing
real-world facts. By integrating time into the Gaus-
sian representation, the model enhances its ability
to capture dynamic relationships within TKGs, of-
fering a novel framework for processing temporal
data.

B The Proofs of 3DG-TE for Relation
Patterns

To prove that the 3DG-TE model can capture impor-
tant relation patterns, including symmetric, asym-
metric, inverse, and temporal evolution patterns,
we will analyze the score function mathematically
and show how it models each of these relations.
The scoring function of 3DG-TE is defined as:

G(5,7,t,0) = (pstpptpy)-(27-31)-€o. (15)

We follow the method section: all fused terms
are vectors in R? and the score uses an element-
wise tri-linear form. Let (-) denote the Hadamard
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product and define

Zazb Ci.

(a,b,c) (16)

Recall that the score is
¢(S7 Tv t7 0) =

where (from Eq. (8)) u, () = Ms + wl + p) and
3 (rt) = 3! - X after the information aggrega-
tion/distribution step. We also use the mean embed-
ding for entities, i.e., e, = .. For convenience,
write

/

<p’/(s,r,t)7 E(nt)v eo>7 17

i 2l vy,  dyE2XT-X (18)
Then
¢(87 T, t, 0) = <lj's + Crt, dr,ta u/o>- (19)

B.1 Symmetric Relation Pattern

Definition. A relation 7 is symmetric if Vs, o, 7,
(s,r,0,7) €G = (0o,7,8,7) €G.
Sufficient condition and proof. If

¢t =0 (e, p, + p; = 0), (20

then

¢(Sv r,t, 0) = <IJ‘S7 dT’,t7 Il'o>
= </’l’07 dT,t7 /’l’S> = ¢(Oa T, t? 8)'

Hence, 3DG-TE can model symmetric relation pat-
tern.

@2y

B.2 Asymmetric Relation Pattern

Definition. A relation r is asymmetric if Vs, o, 7,
(s,r,0,7) € Gand (o,7,5,7) ¢ G.

Sufficient condition and proof. Consider the
difference

Ap 2 ¢(s,r,t,0) — ¢(o,1,t,5).

Expanding both terms and using (ps, d, po) =
(1o, d, ps), we obtain

(22)

A¢ = <cr,t7 d?",tv Mo — Ns>~ (23)

Thus, whenever ¢,; # 0 and for some (s, 0) one
has

<cr7t7 dr,t) Ho — lJJS> # Oa

the two directions receive different scores, so anti-
symmetric is representable (existence statement).
Hence, 3DG-TE can model antisymmetric relation
pattern.

(24)

B.3 Inverse Relation Pattern

Definition. Relations rq, 9 are inverse if, for rele-
vant (s, 0,7),

(b(S,?"l,t,O) = ¢(0a r9,t, S)' (25)

Sufficient tying and proof. Tie the elementwise
interaction vectors and negate the mean offsets:

dr, = dy, s = dy, Crot = —Cprt = —cy.
(26)
Then
A(rb é ¢(5,7’1,t70) - ¢(O, ’I"Q,t, S)
= <Hs + ¢4, dtvﬂ’o> - <uo - ¢, dt7Hs>

= <N57 dy, “0> - <“0a dy, N5> +<ctv dy, po + Ns>
=0

= <Ct7 di, po + /LS>.

27)
Hence the inverse constraint holds on any set of
pairs where

<Ctadtauo+ﬂs> =0. (28)

A global sufficient condition is ¢; - d; = 0, which
makes A¢ = 0 for all (s, 0). Hence, 3DG-TE can
model inverse relation pattern.

B.4 Temporal Evolution Pattern

Definition. Relation r; and ro are evolving
over time from timestamp 7; to timestamp 7o, if
Vs, o0, (s, (r1,m)) A (s, (re,m2)) € G.

Sufficient condition and proof. Because the
score depends on (r,t) only through (c,+,d,+),
the equality holds whenever

Crit1 = Crojty and drl,tl = rg to- (29)
Indeed,
qb(s,rl, t1, 0) = <Hs + Crit1s drl,tp Illo>

- <Il/s + CTQ,tQa d?”Q,t27 l"l'0> (30)
= ¢(s,12,12,0).

Thus, when the above conditions are satisfied, 3DG-
TE can model temporal evolution pattern.

C Benchmark Datasets

ICEWS14 and ICEWS05-15 are both extracted
from the Integrated Crisis Early Warning Sys-
tem (ICEWS) dataset (Lautenschlager et al., 2015),
which consists of temporal sociopolitical facts start-
ing from 1995. ICEWS 14 consists of sociopolitical
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events in 2014, while ICEWS05-15 involves events
occurring from 2005 to 2015.

GDELT is a subset of the larger Global
Database of Events, Language, and Tone
(GDELT) (Leetaru and Schrodt, 2013) TKG dataset.
GDELT contains facts with daily timestamps be-
tween April 1, 2015, and March 31, 2016, focusing
on the 500 most common entities and 20 most fre-
quent relations. Notably, GDELT holds a large
number of quadruples (approximately 2 million)
but describes a limited number of entities (500),
requiring a strong temporal inductive capacity. Fur-
ther details about the datasets are provided in Ta-
ble 3.

ICEWS14 | ICEWSO05-15 | GDELT
#E 7,128 10,488 500
#R 230 251 20
#T 365 4,017 366
#Train 72,826 386,962 2,735,685
#Dev 8,963 46,092 31,961
#Test 8,941 46,275 31,961

Table 3: Statistics of the TKGE datasets used in the
experiment. #&, #R, and #7 represent the number of

entities, relations, and timestamps, respectively.

D Experimental Setup

We implement our proposed model 3DG-TE based
on the TeAST (Li et al., 2023) training framework.
All experiments are conducted on a single NVIDIA
Tesla A100 GPU with 80GB of memory. The
model is optimized using the Adagrad (Duchi et al.,
2011) optimizer, and hyperparameters are tuned
via grid search based on validation set performance.
The learning rate is set to 0.1. The batch size b is
fixed as 2000. The maximum embedding size k
no more than 1600. Early stopping is applied to
prevent overfitting, with a maximum of 200 train-
ing epochs. The reported results correspond to the
average performance across fives runs. The opti-
mal hyperparameter configurations for 3DG-TE on
each dataset are provided in Table 4.

E Visualization of Temporal Evolution
Patterns

We visualize the temporal evolution patterns by
randomly selecting four facts from the dataset, in-

Dataset Au At k

ICEWS14 0.0045 0.001 1500
ICEWS05-15 | 0.002 0.1 1600
GDELT 0.001 0.001 1500

Table 4: Optimal hyperparameter configurations for
3DG-TE on different datasets.

cluding the following quadruples: (Nuri al-Maliki,
Make a visit, Iraq, 2014-06-13), (Nuri al-Maliki,
Consult, Iraq, 2014-06-23), (Nuri al-Maliki, Make
statement, Iraq, 2014-06-29), and (Nuri al-Maliki,
Mobilize or increase police power, Iraq, 2014-08-
11). As shown in Figure 3, the red ellipsoids
represent the relation 3D Gaussian distributions,
while the blue ellipsoids correspond to the time
3D Gaussian distributions. These four facts, visu-
alized in 3D, exemplify how the positions of the
ellipsoids formed by relations and time influence
the representation of the facts. In each plot, the
relation ellipsoid (red) and time ellipsoid (blue)
evolve spatially, reflecting the changing temporal
dynamics between the entities involved. As the
relation and time evolve, the relative positions of
the ellipsoids shift, highlighting the distinctive role
played by both relational and temporal transforma-
tions in modeling dynamic knowledge over time.
This again supports our experimental conclusion
that relationships and time play an important role
in TKG evolution.
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Figure 3: Visualization of Temporal Evolution Patterns in 3D-GTE. The four selected quadruples illustrate the
dynamics of relations and timestamps in a temporal knowledge graph. The red ellipsoids represent the relation
distributions, while the blue ellipsoids correspond to the time distributions. Four existing facts (a), (b) (c) and (d)
are (Nuri al-Maliki, Make a visit, Iraq, 2014-06-13), (Nuri al-Maliki, Consult, Iraq, 2014-06-23), (Nuri al-Maliki,
Make statement, Iraq, 2014-06-29), and (Nuri al-Maliki, Mobilize or increase police power, Iraq, 2014-08-11),

respectively.
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