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Abstract

Optimizing data utilization remains a central
challenge in applying Reinforcement Learn-
ing (RL) to Large Language Models (LLMs),
directly impacting sample efficiency, training
stability, and final model performance. Cur-
rent approaches often rely on massive static
datasets, leading to computational inefficiency
and redundant gradient updates. In this pa-
per, we propose ScalingRL, a data-centric RL
framework that dynamically selects the most
informative training samples to optimize RL
for mathematical reasoning. Specifically, Scal-
ingRL introduces the Data Effectiveness Score
(DES) that quantitatively ranks prompts accord-
ing to three complementary factors: problem
difficulty, Chain-of-Thought complexity, and
reward adaptability. Then, ScalingRL employs
an adaptive curriculum scheduler that progres-
sively adjusts the overall scale and specific mix
of training prompts—balancing exploration of
new, challenging data with exploitation of pre-
viously learned concepts—thereby tailoring the
data distribution to the model’s current learn-
ing trajectory and performance. Experimental
results demonstrate that ScalingRL achieves
comparable performance to full-data training
methods while requiring only 1.5K samples in-
stead of 220K, reducing training time from 13
days to just 4 hours on 8 x A800 GPUs.

1 Introduction

Recently, R1-like reasoning models (Guo et al.,
2025; Team et al., 2025) have attracted signif-
icant attention for their unprecedented perfor-
mance in mathematical reasoning, demonstrating
spontaneous emergence of long Chain-of-Thought
(CoT) (Wei et al., 2022; Chen et al., 2025a; Liu
et al., 2025a) and self-reflection behaviors (He
et al., 2024b; Zhang et al., 2024). The central
technique driving this revolution is large-scale
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Reinforcement Learning (RL) (Kaelbling et al.,
1996), such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017) and Group Relative Policy
Optimization (GRPO) (Shao et al., 2024), which
enable models to develop sophisticated reasoning
capabilities through dynamic reward-based train-
ing. However, existing RL training paradigms re-
main highly sensitive to sample quality and distri-
bution (Liu et al., 2025b; Li et al., 2025), leading to
gradient instability issues that fundamentally limit
the effectiveness of simply scaling up training data
volume.

As shown in Figure 1la, the characteristics of
training samples significantly influence RL-based
reasoning optimization. In particular, the difficulty
level of the training dataset plays a crucial role in
shaping the model’s learning trajectory. excessively
difficult examples often lead to uniformly incorrect
outputs, providing little informative signal for ef-
fective policy updates. Conversely, as model capa-
bilities improve, excessively simple problems di-
lute the informative gradient needed for meaningful
policy improvements, thereby reducing sample ef-
ficiency (Zhang and Zuo, 2025; Xiong et al., 2025;
Liu et al., 2024a). Additionally, due to the surro-
gate loss function employed in current RL algo-
rithms, the length of responses inevitably affects
policy gradient updates. In Figure 1b, we iden-
tify the optimization bias in current RL algorithms
that may lead to progressively longer incorrect re-
sponses. Motivated by these considerations, we
aim to explore a data-centric approach to dynam-
ically schedule RL training samples, substantially
enhancing sample efficiency and achieving compa-
rable or superior performance with fewer training
samples.

Most existing research efforts focus on enhanc-
ing RL training performance through algorith-
mic innovations (Hu, 2025; Zhang et al., 2025a)
or more sophisticated reward models (Liu et al.,
2025c¢), while the data-centric dimension of RL
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(a) Training reward curves across difficulty levels. Easy prob-
lems achieve higher rewards and converge faster,
problems show moderate performance, while hard problems
demonstrate lower rewards.
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(b) Response length evolution during training. Hard problems
require longer responses compared to and easy prob-
lems.

Figure 1: Training dynamics across problem difficulties
showing reward performance (a) and response length
(b). Results indicate performance decreases as problem
complexity increases.

remains notably underexplored. LIMR (Li et al.,
2025) introduces the "less is more" concept, demon-
strating that RL training on a small but informative
subset can match the performance of full-dataset
training, highlighting the potential of data-centric
perspectives. However, LIMR is fundamentally
resource-intensive: it requires complete RL train-
ing on the entire dataset before evaluating the effec-
tiveness of individual samples, which undermines
its efficiency gains by incurring substantial compu-
tational cost and time upfront. Additionally, LIMR
exclusively considers reward signals while neglect-
ing critical factors such as difficulty and length
of responses, resulting in suboptimal training data
selection.

To address these issues, we propose ScalingRL,
an efficient data-centric framework, which com-
bines progressive data scaling with dynamic sample

effectiveness scoring to optimize LLM reinforce-
ment learning. Specifically, we introduce Data Ef-
fectiveness Score (DES), an automated quantitative
method for evaluating the potential value of RL
training samples. DES is a composite function that
integrates three key components: difficulty coef-
ficient, CoT complexity, and reward adaptability.
This multifaceted approach ensures a comprehen-
sive evaluation of each data sample’s utility in the
training process. Based on the DES score, Scalin-
gRL implements an adaptive training scheduling
strategy that dynamically selects the most infor-
mative samples according to the model’s evolving
capabilities across different training stages. This
automatic curriculum adaptation ensures that the
training process always prioritizes samples that
will contribute most significantly to model im-
provement, effectively creating a self-optimizing
learning schedule that maximizes information gain
throughout the entire RL process. Our main contri-
butions can be summarized as follows:

* We introduce an effective data evaluation
mechanism that systematically assesses and
curates training samples based on their intrin-
sic properties, particularly difficulty and re-
sponse length characteristics.

* We develop an adaptive training scheduler
that leverages our data evaluation mechanism
to dynamically optimize sample selection
throughout the training process. This train-
ing strategy automatically adjusts the compo-
sition of training batches based on the model’s
evolving capabilities, ensuring that each train-
ing phase utilizes the informative samples for
continued improvement.

* Experimental results demonstrate that Scalin-
gRL achieves comparable performance on au-
tomatically selected 1.5K samples to full-data
(220K samples) RL training methods across
multiple mathematical reasoning benchmarks.
This significant data reduction enables Scal-
ingRL to reduce training time from 13 days
to just 4 hours on 8xNVIDIA A800 GPUs
without compromising effectiveness.

2 Related work

2.1 Reinforcement Learning for LLMs

Reinforcement Learning (RL) has been increas-
ingly integrated into the training of large language
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models for enhancing mathematical reasoning ca-
pabilities. Starting with PPO (Schulman et al.,
2017), which provided a stable optimization frame-
work, the field rapidly evolved with specialized al-
gorithms like GRPO (Shao et al., 2024) that simpli-
fied implementation by eliminating separate critic
networks while maintaining performance.

Subsequent refinements addressed specific chal-
lenges in language model optimization: Dr.GRPO
(Liu et al., 2025b) incorporated explicit length con-
siderations to balance thoroughness with concise-
ness, while DAPO (Yu et al., 2025) introduced dy-
namic sampling techniques. Recent advancements
include value function optimizations (VinePPO
(Kazemnejad et al., 2024), VCPPO (Yuan et al.,
2025b), VAPO (Yuan et al., 2025a)), stabilization
techniques (SRPO (Zhang et al., 2025b), CPG (Chu
et al., 2025)), and integrated approaches like REIN-
FORCE++ (Hu, 2025) that combine multiple com-
ponents. These developments collectively demon-
strate both the potential and ongoing challenges of
applying reinforcement learning to mathematical
reasoning tasks.

2.2 Data Selection for LLM Post-Training

The quality and relevance of training data are cru-
cial determinants of large language models’ per-
formance. Data selection for LLM post-training
has been extensively studied in prior work (Ku-
mar et al., 2025), with most efforts focusing on
supervised fine-tuning. These approaches include
LLM-based quality assessment (Ivison et al., 2025),
leveraging features from model computation (Chen
et al., 2023), gradient-based selection (Ivison et al.,
2022), and other methodologies (Xia et al., 2024).
A parallel line of research (Das et al., 2024; Mul-
drew et al., 2024; Liu et al., 2024b) explores data
selection for human preference data in Reinforce-
ment Learning from Human Feedback (RLHF).
Traditional approaches often emphasize the quan-
tity of data, operating under the assumption that
more data leads to better model performance. How-
ever, recent studies (Ye et al., 2025; Li et al., 2025;
Muennighoff et al., 2025) advocate for the princi-
ple of "less is more," highlighting that carefully
curated and high-quality data can achieve superior
results with fewer samples.

Notably, LIMR (Li et al., 2025) proposes select-
ing training samples aligned with the model’s learn-
ing trajectory, demonstrating that a subset of 1,389
samples can surpass the performance of the full
8,523-sample dataset. However, LIMR requires

first completing RL training on the entire dataset
to assess individual sample utility—an approach
that incurs significant upfront computational cost
and limits scalability for large-scale settings. More-
over, LIMR focuses solely on reward-based met-
rics, overlooking other informative factors such as
problem difficulty and response length. In con-
trast, our approach integrates these additional di-
mensions into an efficient, adaptive sample selec-
tion framework, enabling substantial reductions in
computational resources while preserving training
effectiveness.

3 Methodology

In this section, we introduce our proposed Scalin-
gRL framework. As illustrated in Figure 2, Scal-
ingRL consists of four key components: (1) Ini-
tial Candidate Construction, which refines a di-
verse 220K mathematics dataset to a curated 8K
candidate set through quality, diversity, and dif-
ficulty filtering; (2) Dynamic Data Effectiveness
Scoring, a novel metric combining difficulty coef-
ficient, Chain-of-Thought complexity, and reward
adaptability to evaluate sample utility; (3) Dynamic
Sampling Strategy that implements temperature-
controlled sample selection to balance exploration
and exploitation; and (4) Reinforcement Learning
with PPO algorithm and structured reward func-
tions for model optimization. Through this progres-
sive refinement strategy, we significantly reduce
training time from 13 days to 4 hours while main-
taining model performance with 8 xNVIDIA A800
GPUs.

3.1 Initial Candidate Construction

We begin with an extensive initial dataset com-
prising 220K' mathematics-specific problem-
answer pairs collected from AIME (1984-2023),
AMC (prior to 2023), Mathematical Olympiads,
and Art of Problem Solving (AoPS) forum. While
this substantial dataset could be directly used for
training, we hypothesize that a carefully selected
subset of high-quality examples might achieve com-
parable or even superior results. Thus, we finally
select 8K samples focusing on three critical dimen-
sions:

* Quality: To maintain the highest data quality
standards, we conduct a comprehensive data
cleaning and validation process. First, we

"https://huggingface.co/datasets/open-r1/OpenR 1-Math-
220k
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Figure 2: Overview of our data sampling and training pipeline. The process starts with a diverse 220K math
dataset from multiple sources (MATH, Olympiads, AIME). This is filtered to an 8K candidate set based on diversity
and quality metrics. The training then proceeds through multiple epochs, where each epoch contains the same
distribution of 8.4K samples (4.9K easy, 1.4K medium, 2.1K hard) but with dynamic sampling within each difficulty
level based on our effectiveness scoring mechanism. This maintains consistent difficulty ratios while optimizing

sample selection across epochs.

eliminate samples containing errors or miss-
ing fields in their reasoning traces. Then, we
remove questions with ambiguous problem
statements or incorrect mathematical expres-
sions. Finally, we retain only those examples
that demonstrate clear problem formulation,
rigorous mathematical notation, and complete
solution procedures, thereby establishing a
clean and reliable training dataset.

* Diversity: We categorize problems into dis-
tinct mathematical domains (such as geometry,
algebra, number theory, etc.), allowing us to
maintain a balanced distribution across differ-
ent problem types and ensure comprehensive
coverage of mathematical concepts.

 Difficulty: We assess problem difficulty
through an inference-based approach, adapt-
ing the s1K (Muennighoff et al., 2025)
methodology to better suit our computational
constraints. Unlike s1K, while employs large-
scale models for difficulty evaluation, we use
Owen2.5-Math-1.5B as our assessment base-
line. Problems correctly solved by this base-
line are deemed trivial and excluded from the
candidate set. In addition, we filter out prob-
lems whose reasoning traces exceed 8,192 to-
kens, as such excessively long solutions are
computationally impractical for our targeted
efficient training regime.
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Figure 3: Overview of our three-stage data scaling
methodology. Stage 1 processes the initial massive
dataset (220K samples) characterized by uneven distri-
bution, duplicate topics, and predominantly easy ques-
tions. Stage 2 refines this to a medium-sized dataset (8K
samples) with more balanced distribution and moderate
difficulty. Stage 3 implements dynamic sampling with a
small, highly effective dataset (1.5K samples). The time
cost per training epoch decreases significantly from 13
days to 4 hours through this progressive scaling.

The outcome of the data filtering process is illus-
trated in Figure 3 (from stage 1 to stage 2), which
elucidates our progressive data refinement strategy.
This multi-stage filtering approach encompasses
three key criteria: quality, difficulty, and diversity.
We distill the initial dataset into a carefully curated
set of 8K samples, which forms the basis for our
subsequent dynamic training process.
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3.2 Dynamic Data Effectiveness Scoring

During training process, not all data samples con-
tribute equally to model updating. Some problems
may be too simple to provide meaningful learning
signals, while others might be so complex that they
hinder efficient training. Moreover, the effective-
ness of a training sample may vary during different
stages of the learning process.

To effectively manage and utilize training
dataset, we introduce a novel metric called Data
Effectiveness Score (DES). DES synthesizes three
complementary components: difficulty coefficient
D(z), Chain-of-Thought (CoT) complexity C(x),
and reward adaptability R(x). Formally, DES is
defined as a weighted combination of these compo-
nents:

DES(z) = A\g D(z) + A\ C(x) + A\r R(z), (1)

where the weighting coefficients { Ay, A¢, A} con-
trol the relative importance of each component.
These coefficients are dynamically adjusted dur-
ing training to optimize the overall learning effec-
tiveness. To maintain valid probability distribution
properties (Zi Ai = 1, Ay > 0), we parameterize
the weights via a softmax transformation:

et

A = -, 1€{d,e,r}  (2)

(0%
2 jefder) €

where (o, a, o) are learnable real-valued param-
eter.

3.2.1 Difficulty Coefficient D(x)

The Difficulty Coefficient D(z) quantitatively mea-
sures the complexity of a math problem relative to
the dataset’s overall difficulty, and adaptively shifts
the target difficulty level throughout training. It is
defined as:

D(z) = exp (— [de — davg (11 (1 =~ wi)) ) NG

2
20

where d, represents the difficulty score of cur-
rent problem (we utilize DeepSeek-R1 (Guo et al.,
2025) to answer the question multiple times and de-
fine the difficulty score based on the accuracy rate.
For a detailed explanation of the scoring mecha-
nism, please refer to Appendix A), d,ye denotes the
average difficulty score across the dataset, o4 rep-
resents the standard deviation and w; € [0,1] is a
time-dependent weight that evolves during training
process. The weight wy is linearly decayed from 1
to 0 as training progresses. At the start of training,

wy is set to 1, favoring scores where the value of d,;
is closer to dg,y. Over time, we aim to select ques-
tions that are slightly more challenging than dgg,
in alignment with normal cognitive patterns, where
learning begins with simpler problems and gradu-
ally progresses towards overcoming more difficult
ones. The coefficient o > 0 controls the adaptive
difficulty adjustment rate, determining how much
the target difficulty can deviate from the average
difficulty level during training.

3.2.2 Chain-of-Thought Complexity C'(x)

Instead of relying solely on problem difficulty,
we evaluate the complexity of solution reasoning
paths through multiple sampling iterations from
DeepSeek-R1 (Guo et al., 2025). The Chain-of-
Thought Complexity C(x) measures the intricacy
of the reasoning process through a Gaussian-based
formulation:

2
(@) = exp (_ [le — lave <1;§(1 —w))] ) W
where [, and [, respectively represents the cur-
rent and average solution length, and o2 controls
the sensitivity to length deviations. Similar to
D(z), C(x) adapts during training through the
time-dependent weight w; and the adaptation rate
B, progressively favoring more sophisticated rea-
soning chains. Gaussian-based formulation ensures
that problems with appropriate reasoning complex-

ity receive higher scores.

3.2.3 Reward Adaptability R(x)

The Reward Adaptability R(z) captures how well
the rewards associated with a data sample have
adapted over training epochs. Inspired by the
gradient-decreasing problem observed in existing
RL algorithms (as noted in DAPO (Yu et al., 2025)),
we specifically design our reward mechanism to
maintain effective learning signals. When samples
consistently achieve perfect accuracy (reward = 1)
or complete failure (reward = -1), they provide min-
imal gradient information for model improvement.
Therefore, we modify our reward formulation as:

O7 Fz € {_17 1}7
R(z) = exp (_ (o —rue (149 (1 —w0) ]

2
202%

) , otherwise,
&)
where 7, represents the average reward over re-
cent training epochs for x, r,y, denotes the mean
reward across all samples, and ~y controls the adap-
tive rate of target reward. By explicitly filtering out
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samples with extreme rewards (—1 or 1), we en-
sure that training focuses on problems that provide
meaningful gradient signals, thereby promoting
more efficient and stable learning dynamics.

3.3 Dynamic Sampling Strategy with
Temperature Scheduling
Based on the DES scores, we implement imple-
ment a hybrid sampling strategy that combines
temperature scheduling with threshold-based fil-
tering. For each training epoch, we first compute
the temperature-controlled probability distribution:
DES(2)/T(t)

S o OBS@)/T(D

Py(x) = (6)

where the temperature follows a decay schedule:

t

T(t)=To-(1--—) )

max
Here, Ty denotes the initial temperature and ¢,
represents the maximum number of training epochs.
The final training samples are selected based on a
probability threshold 7:

S={zxeB:P((x)>71} (8)

where B denotes the batch size. This hybrid ap-
proach enables broad exploration in early stages
(high 7T'(t)) and gradually shifts towards selecting
high-DES samples (through threshold 7), provid-
ing flexible control over both sample quality and
quantity throughout the training process.

3.4 Reinforcement Learning Algorithm

To train our model efficiently, we adopt the Prox-
imal Policy Optimization (PPO) (Schulman et al.,
2017) algorithm. For each problem ¢, PPO sam-
ples |o| responses from the old policy my,, and
optimizes the trained policy 7y by maximizing the
following objective:

Irpo(0) = Ejgup(@) 0, , (0l0)]

1 . 7o (0t|q, 0<t)
Hme (714& (9)

T 001 (0t|Q7 0<t)

clip( 7T6(0t|q70<t)

,1—6,1+€)At)
7T901d(0t|q’ 0<t)

For the reward function design, we follow a sim-
ilar approach to DeepSeek-R1 (Guo et al., 2025),
implementing a rule-based reward system that eval-
uates both answer correctness and format compli-
ance. Let a denote the model’s output answer for a

given mathematical problem, the reward function
is defined as:

1 if a is correct,
—0.5 if a is incorrect but well-formatted,
-1 if a has formatting errors.

R(a) =

(10)
To ensure consistent evaluation and facilitate au-
tomated assessment, we require the model’s output
to follow a structured format. Specifically, the final
answer must be enclosed within ‘boxed{}’ nota-
tion, and the complete reasoning process should
be wrapped in appropriate tags. This structured ap-
proach not only enables precise reward calculation
but also promotes clear and systematic problem-
solving strategies.

4 Experiments

4.1 Experimental Setup

We conducted reinforcement learning train-
ing using the Proximal Policy Optimization
(PPO) (Schulman et al., 2017) algorithm within
the OpenRLHF (Hu et al., 2024) framework. Our
experiments employed the Qwen2.5-MATH-7B-
Instruct (Yang et al., 2024) model as the initial
base model. During the exploration phase, a roll-
out batch size of 128 was configured, and 8 samples
per prompt were generated with a temperature set-
ting of 1.2. The training process utilized a batch
size of 64, with learning rates set to 5 x 10~ for
the actor model and 9 x 10~ for the critic model.
Additionally, a KL coefficient of 0.01 was applied
to regulate policy updates. Further experimental
details and hyperparameters are provided in Ap-
pendix B.

Notably, all experiments are conducted on a sin-
gle machine equipped with 8 x A800 GPUs, aim-
ing to address the requirements of low-resource
scenarios. Our approach does not utilize a system-
wide prompt. Instead, we append the instruction
“Please reason step by step, and put your final an-
swer within boxed{ }.” at the end of each problem
to guide the model’s reasoning process.

4.2 Benchmarks

To comprehensively evaluate the performance of
the trained models, we conduct experiments on
5 diverse mathematical benchmarks, as detailed
in Table 2. These benchmarks include MATH
500 (Hendrycks et al., 2021), a comprehensive col-
lection of 500 problems, AIME (2024, 2025) featur-
ing challenging competition problems, AMC 2023
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Table 1: PASS@1 Performance of Baseline Models on Various Mathematical Benchmarks ( best and second-best

results highlighted)

Model MATH 500 1 AIME 2024 1 AMC 2023 1 avg. T Labeled Data |
Qwen2.5-MATH-7B-Instruct 72.4 16.7 56.4 48.5 /
DeepSeek-R1-Distill-7B @3k 60.1 10.0 26.2 32.1 800K
SimpleRL-Zero-7B 78.2 26.7 60.2 55.0 8.9K
PRIME-Zero-7B 83.8 16.7 62.7 54.4 230K
OpenReasoner-Zero-7B @3k 79.2 13.3 47.0 46.5 129K
Qwen2.5-MATH-7B-LIMR 78.0 22.5 63.8 52.8 1.4K
Qwen2.5-MATH-7B-MATHSK 81.4 22.5 63.3 55.7 8K
Qwen2.5-MATH-7B-Random 81.4 20.3 58.6 53.4 1.5K
ScalingRL 84.2 225 67.5 58.1 1.5K

representing standard high school mathematics,
and OlympiadBench (He et al., 2024a) containing
complex Olympic-level questions. For AIME2025
and OlympiadBench, we analyze the response evo-
lution trends as shown in Figure 4.

4.3 Baselines

We compare our approach with several state-of-the-
art 7B-parameter mathematical reasoning models,
to fairly validate whether ScalingRL can achieve ef-
fective improvements through self-evolution. Our
primary comparison is with Qwen2.5-MATH-7B-
Instruct, which undergoes large-scale instruction-
following training based on Qwen2.5-MATH-7B
architecture. Additionally, we include several
leading "R1-Zero-Like" models that employ rein-
forcement learning with similar backbone architec-
tures: DeepSeek-R1-Distill-7B (Guo et al., 2025),
SimpleRL-Zero-7B (Zeng et al., 2025), PRIME-
Zero-7B (Cui et al., 2025), OpenReasoner-Zero-
7B (Liu et al., 2025b), and LIMR (Li et al., 2025).
For controlled comparison, we also implement two
variants: Qwen2.5-MATH-7B-MATHS8K using the
filtered 8K dataset without dynamic sampling, and
Qwen2.5-MATH-7B-Random using random sam-
pling from 1.5K examples.

4.4 Evaluation Metrics

We limit the models to generate a maximum of
8,192 tokens and adopt PASS@1 as our primary
evaluation metric. Specifically, we set the sampling
temperature to 0.6 to produce k responses for each
question, where k is typically 16. The PASS@1
metric is subsequently calculated as:

k

1
PASS@1 = =S p;,
s

(1)

Table 2: Evaluation Benchmarks Overview: Sample
Size, Average and Maximum Token Lengths, and Diffi-
culty Levels

Benchmark | #Size Avg. L Max. L Difficulty
MATH 500 500 312 1730 Medium
AIME 2024 30 356 938 Hard
AIME 2025 30 418 986 Hard
AMC 2023 50 286 688 Medium
OlympiadBench | 675 486 4420 Hard

where p; represents the accuracy of the i-th re-
sponse.

4.5 Main Results

We evaluate our ScalingRL framework from perfor-
mance, data efficiency, and model scalability, with
results presented in Table 1.

Performance Analysis On MATH 500, Scalin-
gRL achieves the best performance (84.2%), out-
performing the strong baseline PRIME-Zero-7B
(83.8%) while using only 1.5K labeled samples
compared to PRIME’s 230K samples. For AMC
2023, our method reaches 67.5%, establishing a
new state-of-the-art result with a significant margin
over the second-best performer Qwen2.5-MATH-
7B-LIMR (63.8%). In terms of average perfor-
mance across benchmarks, ScalingRL achieves
58.1%, surpassing all baseline models while main-
taining data efficiency.

Data Efficiency Notably, ScalingRL achieves
these results with only 1.5K labeled samples, which
is substantially less than most baselines (e.g.,
Qwen2.5-MATH-7B-Instruct uses 3.1M samples,
DeepSeek uses 800K samples). While Qwen?2.5-
MATH-7B-LIMR demonstrates competitive perfor-
mance with 1.4K samples, our experiments reveal
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Response Length Comparison
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Figure 4: Comparison of response lengths across dif-
ferent models on AIME 2025 and OlympiadBench
datasets.
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Figure 5: Training dynamics comparison between two
different data selection strategies. The green solid
line represents ScalingRL with dynamic data selection,
while the orange dashed line shows the static dataset
approach where training data remains fixed throughout
the training process.

that its reported performance on challenging bench-
marks like AIME 2024 (claimed >30%) could only
reach 22.5% in our reproduction. Additionally,
LIMR’s data selection strategy requires multiple
complete training epochs to obtain reward signals
for filtering, significantly increasing computational
overhead. In contrast, our method maintains re-
liable performance across all benchmarks while
enabling more efficient training through dynamic
data selection.

Training Dynamics and Generalization As il-
lustrated in Figure 5, models trained on static
datasets demonstrate faster convergence in both re-
ward metrics and response lengths. However, this
rapid convergence may indicate overfitting rather
than genuine learning progress. Our analysis re-
veals that while static training quickly achieves
high performance on its fixed dataset, it fails to
generalize well to challenging evaluation tasks like
AIME. In contrast, ScalingRL’s dynamic data selec-
tion strategy shows a more gradual learning curve.
The strategy resembles a curriculum learning pro-

Table 3: Ablation study on DES components. Check
marks indicate which components are included in each
variant configuration, with performance metrics show-
ing the impact of different combinations.

Configuration | Comp"nems | pass@1
| D(z) C(x) z) |
Single-D v - - 80.7
Single-C - v - 79.8
Single-R - - v 81.6
Dual-DC v v - 83.3
Dual-DR v - v 82.9
Dual-CR - v v 82.4
ScalingRL | v v v | 842

cess where the model progressively builds up its
mathematical reasoning capabilities. This explains
why, despite showing slower training metrics, our
method achieves superior performance on complex
mathematical problems during evaluation.

4.6 Ablation Study

To evaluate the effectiveness of each component
in our Dynamic Effectiveness Score (DES), we
conduct comprehensive ablation studies. Table 3
presents the performance comparison of different
DES component combinations.

Using single components (D(x), C'(x), or R(x)
alone) shows limited effectiveness, indicating that
each aspect captures different but essential charac-
teristics of training samples. Pairs of components
(D(z) + C(x), D(x) + R(x), or C(z) + R(x))
demonstrate improved performance, suggesting
synergistic effects between different aspects. The
full DES combining all three components achieves
the best performance, validating our design choice
of integrating difficulty, reasoning complexity, and
reward adaptability.

5 Conclusion

In this paper, we present an efficient reinforce-
ment learning framework for mathematical reason-
ing that focuses on maximizing training efficiency
through dynamic data selection which contains a
three-dimensional filtering process based on qual-
ity, diversity, and difficulty. We first refine initial
dataset from 220K to 1.5K samples. Then, we
introduce a novel Dynamic Effectiveness Score
(DES) for intelligent sample evaluation and selec-
tion during training. At last, we achieve substan-
tial improvement in training efficiency. We expect
our approach will benefit researchers in scenarios
where computational resources are limited.
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Limitations

While ScalingRL demonstrates significant improve-
ments in data-efficient RL for LLMs, our frame-
work has two limitations that warrant further inves-
tigation. First, the initial data curation phase relies
on heuristic-based filtering to reduce the prompt
pool from 220K to 8K examples. This process,
while effective in establishing a robust starting
point, lacks full automation and depends on man-
ually defined criteria (e.g., clustering thresholds
or diversity metrics). Such heuristic choices may
introduce bias or inefficiency, potentially limiting
the framework’s adaptability to diverse datasets or
tasks. Future work could explore integrating model-
driven scoring mechanisms (e.g., uncertainty es-
timation or reward prediction) into this stage to
enable fully automated, dynamic data pruning.
Second, the current evaluation of ScalingRL is
confined to mathematical reasoning tasks, such
as theorem proving or problem-solving. While
this domain provides a structured environment
for rigorous testing, it limits the generalizability
of the framework to other applications, such as
natural language understanding, code generation,
or multimodal tasks. Validating ScalingRL on
broader datasets (e.g., dialogue systems, scientific
text generation, or cross-modal reasoning) would
strengthen its practical relevance and uncover po-
tential domain-specific challenges.

Ethics Statement
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A Difficulty Level Classification

The difficulty levels are classified based on
DeepSeek-R1’s performance over n sampling it-

erations:

Level 1: 100% correct answers

e Level 2: Accuracy rate € (50%, 100%)

e Level 3: Accuracy rate € (0%, 50%)

rect format

Level 4: 0% accuracy but all answers in cor-

Level 5: 0% accuracy with format errors

B More Experimental Setup

Table 4: Detailed experimental configuration for Scalin-

gRL training.

Model Configuration

Base Model
Training Strategy

Training Device
Precision

Qwen2.5-Math-7B-Instruct
PPO with Rule-based Reward
Model

8xH100 GPUs with VLLM
BF16 mixed precision

PPO Hyperparameters

Learning Rate
Batch Size
Sequence Length

Episodes

KL Coefficient
Epsilon/Value Clip
GAE Lambda
Discount Factor
Temperature

5e-7 (actor), 9e-6 (critic)

64 (train), 128 (rollout)

1024 (prompt), 3072 (genera-
tion)

20

0.01

0.2/0.2

0.95

1.0

1.2 (train), 0.7 (eval)

Training Infrastructure

Distributed Setup

Ray framework

Model Parallelism VLLM with 4 engines
Tensor Parallel Size 2

GPU Memory Usage 50%

DeepSpeed Zero Stage 3

Optimization Details

Gradient Checkpointing | Enabled

Flash Attention Enabled

Optimizer Adam with Offloading
KL Estimator K3

Advantage Estimation GAE

C Additional Experimental Results and
Clarifications

This section consolidates the additional experi-
ments, clarifications, and implementation details
that were provided during the rebuttal process in
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response to reviewers’ comments. We include new
baseline comparisons, hyperparameter sensitivity
studies, reproducibility details, cost analysis, and
dataset filtering pipelines.

C.1 Comparison with Data Selection and
Curriculum Learning Methods

To contextualize our contributions, we evaluated
ScalingRL against state-of-the-art data selection
methods (s1 (Muennighoff et al., 2025), LIMO (Ye
etal., 2025), and LIMR (Li et al., 2025)) and the re-
cent curriculum learning method SEC (Chen et al.,
2025b). Results for Qwen2.5-MATH-7B are shown
in Table 5 and Table 6.

Table 5: Comparison with data selection methods
(Qwen2.5-MATH-7B). Labeled Data = math reason-
ing samples used in RL stage.

Method | MATH500 AIME24 AMC23 | Avg.
Random 81.4 20.3 58.6 53.4
LIMR 78.0 22.5 63.8 52.8
sl 55.8 15.8 425 38.0
LIMO 65.0 15.8 56.3 45.7
ScalingRL 84.2 22.5 67.5 58.1

Table 6: Comparison with curriculum learning method
SEC.

Method | MATH500 AIME24  AMC22-23
SEC-3B 67.2 10.0 35.1
SEC-7B 76.1 17.5 51.1
ScalingRL-7B 84.2 22.5 65.4

C.2 Hyperparameter Sensitivity Analysis

We performed sensitivity analysis for the DES
weighting coefficients (\g, A¢, A;) and the temper-
ature threshold 7. Results are provided in Table 7
and Table 8.

Table 7: Performance vs. selection threshold 7.

7 | Labeled Data | MATH500 AMC23

0.50 4382 84.2 66.8
0.55 2459 83.4 67.2
0.60 1537 84.2 67.5
0.70 815 81.2 63.4

C.3 Sampling Strategy Ablation

We examined the effect of different sampling strate-
gies: random selection, fixed Gaussian, and our
dynamic adaptive Gaussian. See Table 9.

Table 8: Performance vs. DES weights.

Ad Ae  Ar | MATH500 AMC23
04 03 03 84.2 67.5
04 04 02 84.0 67.9

Table 9: Sampling strategy comparison.

Strategy | MATH500 AIME24
Random 72.5 16.3
Fixed Gaussian 78.9 18.8
Dynamic Gaussian 84.2 22.5

C.4 Cost of Initial Candidate Construction

The “Initial Candidate Construction” stage reduced
220K raw problems to 8K curated candidates
through automated filtering:

* Structural/mathematical syntax checks: negli-
gible wall time.

* Clarity check via LLM judge: ~4h.

* Easy problem removal (Qwen-1.5B infer-
ence): ~2h.

e Hard problem reasoning (Qwen-7B/32B):
~3h.

* Validation by Claude 3.5 Sonnet API: ~4h.

Total one-time cost: ~ 14 — 15 hours.

C.5 Automated Filtering Implementation

The filtering pipeline (fully automated) is as fol-
lows:

1. Quality: structural field check (Python), math
expression parsing (Sympy), LLM-based clar-
ity checking.

2. Diversity: stratified

problem_type.

sampling  over

3. Difficulty: removal of trivial problems solved
by Qwen-1.5B, validation of upper-bound dif-
ficulty with Qwen-7B/32B + Claude API, en-
force 4K token solution limit.

C.6 ScalingRL on Different Models and
Datasets

We verified ScalingRL’s generality on:

* DeepSeek-R1-Distill-1.5B: consistent im-
provements over static selection.

* DeepScaleR-Preview dataset (4K samples):
ScalingRL outperforms RL with static data.
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