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Abstract

Data cleaning is a time-consuming and error-
prone manual process, even with modern work-
flow tools like OpenRefine. Here, we present
AutoDCWorkflow, an LLM-based pipeline for
automatically generating data-cleaning work-
flows. The pipeline takes a raw table coupled
with a data analysis purpose, and generates a
sequence of OpenRefine operations designed
to produce a minimal, clean table sufficient to
address the purpose. Six operations address
common data quality issues, including format
inconsistencies, type errors, and duplicates.

To evaluate AutoDCWorkflow, we create a
benchmark with metrics assessing answers,
data, and workflow quality for 142 purposes
using 96 tables across six topics. The evalu-
ation covers three key dimensions: (1) Pur-
pose Answer: can the cleaned table produce
a correct answer? (2) Column (Value): how
closely does it match the ground truth table? (3)
Workflow (Operations): to what extent does
the generated workflow resemble the human-
curated ground truth? Experiments show that
Llama 3.1, Mistral, and Gemma 2 significantly
enhance data quality, outperforming the base-
line across all metrics. Gemma 2-27B con-
sistently generates high-quality tables and an-
swers, while Gemma 2-9B excels in producing
workflows that resemble human annotations.

1 Introduction

Data curation and cleaning are critical processes
that prepare raw data for analysis, ensuring high
quality and reliability (Chen et al., 2023). Im-
plementing a sequence of data operations in the
form of a data cleaning workflow improves data
quality, enabling downstream analyses and yield-
ing trustworthy results and actionable insights (Li
et al., 2021; Wilkinson et al., 2016; Parulian and
Ludäscher, 2022; McPhillips et al., 2019; Fang
et al., 2025b). To facilitate automation and reuse,
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Figure 1: In a purpose-driven data cleaning model, AutoDC-
Workflow leverages LLM agents to decide each reasoning step
and automatically generate a data cleaning workflow based
on a curator-defined analysis purpose and a provided dirty
dataset.

tools like OpenRefine (Guidry, 2020) and Tri-
facta (Kandel et al., 2011) automatically capture
reusable, executable workflows that ensure consis-
tent results when re-applied to the same raw input.

Data cleaning should ensure data is fit-for-
purpose, with the analysis purpose guiding the
data quality report to identify relevant data qual-
ity issues (Wang and Strong, 1996; Pipino et al.,
2002). These issues determine data cleaning ob-
jectives, which define actionable constraints and
operations necessary to improve data quality. Con-
sequently, data cleaning objectives drive the design
of data cleaning workflows, as illustrated in Fig-
ure 1. Despite advancements, data scientists still
spend over 80% of their time on cleaning tasks due
to diverse domain requirements (Rezig et al., 2019).
Designing effective workflows often involves mul-
tiple rounds of selecting appropriate operations and
arguments to ensure accuracy (Stonebraker et al.,
2018). This process remains time-consuming and
error-prone, as it requires domain expertise and a
deep understanding of the dataset and its schema,
yet it is essential for auditing data analyses and
ensuring the quality of the resulting tables.

Recent advances in large language models
(LLMs) have sparked interest in their application to
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Frameworks Task Workflow Multi-DQ Purpose

NADEEF (Dallachiesa et al., 2013) Rule-based DC ✓ ✓
ActiveClean (Krishnan et al., 2016) DC for ML ✓
Holoclean (Rekatsinas et al., 2017) ML for DC ✓
SAGA (Siddiqi et al., 2023) DC for ML ✓ ✓ ✓*
RetClean (Eltabakh et al., 2024) LLM for DC ✓
LLMClean (Biester et al., 2024) LLM for DC ✓
CleanAgent (Qi and Wang, 2024) LLM for DC ✓
COMET (Mohammed et al., 2025) DC for ML ✓ ✓

AutoDCWorkflow LLM for DC ✓ ✓ ✓

Table 1: Comparison of existing data cleaning (DC) frame-
works and AutoDCWorkflow in terms of whether the frame-
work (1) generates an executable data cleaning workflow
(Workflow), (2) supports multiple data quality issues (Multi-
DQ), and (3) is guided by a specific data analysis purpose
(Purpose). ∗ refers to the purpose being defined by down-
stream machine learning performance, rather than a data anal-
ysis purpose.

data cleaning (Eltabakh et al., 2024; Biester et al.,
2024; Qi and Wang, 2024). However, few existing
approaches effectively automate the design of ex-
ecutable data cleaning workflows that are aligned
with specific analytical purposes and capable of
addressing diverse data quality issues, despite the
availability of modern cleaning tools (see Table 1).
To address this gap, we propose AutoDCWorkflow
pipeline and dataset that jointly fulfill three critical
criteria: (1) is guided by a data analysis purpose,
(2) supports the resolution of multiple data quality
issues, and 3) generates executable and reusable
data cleaning workflows.

Two natural questions arise in the context of
LLM-assisted data cleaning: (1) Can LLMs help
users design efficient, purpose-driven data cleaning
workflows? (2) How can we evaluate LLMs’ abil-
ity to automate these workflows? Therefore, we
propose (1) an LLM-based pipeline, AutoDCWork-
flow, that Automatically generates a Data Cleaning
Workflow given a data analysis purpose, and (2) a
new dataset benchmark for evaluating automated
workflow generation.

AutoDCWorkflow pipeline leverages LLMs as
data cleaning agents to assess data quality and gen-
erate a sequence of operations based on the analysis
purpose and raw table, inspired by the purpose-
driven data cleaning model (Li and Ludäscher,
2023). It features three iterative, prompt-based
components, as shown in Figure 2, and continues
iterating until no data quality issues remain. No-
tably, AutoDCWorkflow is a companion tool built
on OpenRefine. While the pipeline itself is pro-
gramming language-agnostic, we use OpenRefine
operations for demonstration in our experiments.

The benchmark evaluates LLM agents’ ability to
automate data cleaning workflows. AutoDCWork-
flow provides annotated datasets that include pur-

poses, answers, raw tables, manually curated clean
tables, and workflows. The raw tables are sampled
from six real-world datasets in domains like social
science, public health, finance, and transportation.

Summary of Contributions. AutoDCWorkflow
introduces a fully automated LLM-driven frame-
work for data cleaning workflow generation. Our
benchmark and evaluation metrics establish a foun-
dation for future advancements in LLM-powered
data cleaning. Our contributions include:
(1). We design a three-stage LLM-based

pipeline—Select Target Columns, Inspect
Column Quality, and Generate Operations
& Arguments—for automated data cleaning
workflow generation.

(2). We construct a dataset benchmark to evaluate
data cleaning workflows across three dimen-
sions: Purpose Answer, Column Value, and
Workflow (Operations).

(3). We assess the performance of state-of-the-
art models including Llama 3.1–8B, Mis-
tral–7B, Gemma 2–9B and 27B. Gemma
2–9B and 27B stand out, consistently generat-
ing plausible workflows that closely resemble
human-curated ones, resulting in more accu-
rate purpose-driven answers.

2 Related Work

Data Cleaning for Machine Learning. Several
systems have been developed to improve the qual-
ity of training data used in machine learning (ML)
pipelines. NADEEF (Dallachiesa et al., 2013) pro-
vides a rule-based framework for detecting and
repairing data errors using user-defined constraints.
ActiveClean (Krishnan et al., 2016) integrates data
cleaning with model training by prioritizing clean-
ing based on the model’s sensitivity to dirty data.
SAGA (Siddiqi et al., 2023) and COMET (Mo-
hammed et al., 2025) extend this paradigm by gen-
erating executable workflows that address multi-
ple types of data quality issues, optimizing clean-
ing strategies to maximize downstream model per-
formance. In particular, SAGA advances fit-for-
purposes data cleaning by systematically learning
and optimizing cleaning strategies based on down-
stream ML performance. However, these frame-
works are primarily designed to enhance model
accuracy, rather than being tailored to specific user-
defined analytical purposes.
Machine Learning for Data Cleaning. Machine
learning techniques have long been used to sup-
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2252588 GROCERYST. Risk 2 (Mediuum)

2013962 school Risk 1 (High)

1596877 GROCRY STORE Risk 1 [High]

2522507 restraunt Risk 3 (Low)

License # Facility Type Risk
2013962 SCHOOL Risk 1 (High)

1143174 RESTAURANT Risk 1 (High)

2252588 GROCERY STORE Risk 2 (Medium)

2013962 SCHOOL Risk 1 (High)

1596877 GROCERY STORE Risk 1 (High)

2522507 RESTAURANT Risk 3 (Low)

Clean Table (TN)

Raw Table + Data Analysis Purpose

LLM Agent Planning

OpenRefine Execution

Identify the main facility types that have 
been inspected at the highest risk level.

Data Cleaning 
Workflow (WN)

Answer (A) from Dirty Table (T)
SCHOOOL, RESTUARANT, school, GROCRY STORE

Answer (A) from Clean Table (TN)
SCHOOL, RESTAURANT, GROCERY STORE

Figure 2: Architecture of the AutoDCWorkflow framework. Given a data analysis purpose P: Identify the main facility types
that have been inspected at the highest risk level, and a dirty table T, we first run the purpose on T and obtain an incorrect
answer A: “SCHOOOL, RESTUARANT, school, GROCRY STORE”. An iterative data cleaning process is then initiated,
consisting of: (1) Selecting Target Columns, (2) Inspecting Column Quality, (3) Generating Operations & Arguments, and (4)
Executing Operations via the OpenRefine API. In each iteration, the framework predicts and applies the next operation, evaluates
the resulting column quality, and continues until all target columns satisfy the required quality standards (i.e., all dimensions are
marked as True in the Data Quality Report). This process yields a cleaned table TN and a corresponding complete workflow
WN . Running the purpose on TN produces the correct answer A: “SCHOOL, RESTAURANT, GROCERY STORE”.

port data cleaning. Holoclean (Rekatsinas et al.,
2017), for example, leverages probabilistic infer-
ence to repair data by modeling integrity con-
straints and correlations. Pre-trained language mod-
els (PLMs) have been applied to entity matching
(EM) tasks (Kasai et al., 2019; Li et al., 2020;
Suhara et al., 2022; Fang et al., 2023; Wadhwa
et al., 2024), with a primary focus on duplicate
detection and resolution. Recent work has ex-
plored the use of large language models (LLMs)
to automate various data cleaning tasks. Ret-
Clean (Eltabakh et al., 2024) applies retrieval-
augmented generation with LLMs to impute miss-
ing values and correct erroneous entries. LLM-
Clean (Biester et al., 2024) uses LLMs to auto-
matically construct context models—specifically,
Ontological Functional Dependencies (OFDs)—to
detect and repair inconsistencies in relational data.
CleanAgent (Qi and Wang, 2024) combines LLMs
with a declarative API to support standardization
tasks such as date formatting and categorical value
normalization. While these approaches demon-
strate the potential of LLMs in individual cleaning
tasks, they do not generate end-to-end, executable
workflows tailored to specific analytical purposes.

LLMs for Tabular Understanding and Trans-
formation. Large language models (LLMs) have
been applied to various tabular tasks, including fact

verification (Chen et al., 2019; Fang et al., 2025a)
and question answering (Jin et al., 2022; Zou et al.,
2025), and structured reasoning (Cheng et al., 2023;
Fu et al., 2024). CHAIN-OF-TABLE (Wang et al.,
2024b) demonstrated a step-by-step approach in
which LLMs simulate reasoning over table trans-
formations via synthetic operations, highlighting
the potential for structured tabular problem-solving.
Gandhi et al. (Gandhi et al., 2024) further showed
that clear task descriptions can guide one-shot trans-
formation plans, underscoring the role of instruc-
tion design in dataset repurposing.

3 Background

3.1 Purpose-Driven Data Cleaning Workflows

Our approach is motivated by the principle that
“high-quality data is fit-for-purpose", emphasizing
that each data cleaning task should be driven by
a well-defined data analysis purpose (Paul Bédard
and Barnes, 2010; Sidi et al., 2012; Burden and
Stenberg, 2024). Accordingly, different purposes
may produce distinct result tables and necessitate
different data cleaning operations. The data analy-
sis purposes in our benchmark are summarized in
Table 2, categorized and documented as follows:
Descriptive Statistics: This involves general statis-
tics or aggregates about the dataset. For example,
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Category Number of Purposes
Descriptive Statistics 26

Counting and Grouping 27
Category or Type Classification 19

Time-based Analysis 17
Correlations and Relationships 10
Filtering and Specific Queries 43

Table 2: Summary of Data Analysis Purposes Categories.

we might ask, “What’s the highest or lowest loan
amount for each zip code?”
Counting and Grouping: Identifying distinct ele-
ments or counting occurrences within the dataset,
e.g., “Count how many types of risks are recorded
in the dataset.”
Category or Type Classification: Classifying data
based on certain criteria. For instance, “Identify
which sponsors provide breakfast.”
Time-based Analysis: Analyzing trends or pat-
terns over time. For example, “Find dishes that
first appeared before the year 2000.”
Correlations and Relationships: Exploring rela-
tionships between different columns in the dataset.
For instance, “Examine if a correlation exists be-
tween jobs reported and the loan amount received.”
Filtering and Specific Queries: Performing spe-
cific queries or filtering the dataset based on de-
fined conditions, e.g., “Report all NAICS Codes
that indicate job counts greater than 3.0.”

3.2 OpenRefine Workflow for Transparency

OpenRefine (Guidry, 2020) enhances transparency
in data cleaning by documenting operations within
a workflow, enabling traceability of intermediate
tables transformed by each step. The OpenRefine
workflow records how the initial dataset D0 evolves
into the final version Dn through a sequence of
operations O1, . . . , On (Li et al., 2021):

D0
O1
; D1

O2
; D2

O3
; · · · On

; Dn . (1)

A workflow includes (1) data operations Oi ap-
plied to transform the data and (2) intermediate
tables Di updated at each step.

4 Approach Architecture

The complete AutoDCWorkflow pipeline, shown
in Figure 2, consists of two main stages: (1) LLM
agent planning and (2) data cleaning via OpenRe-
fine execution.
Problem Definition. Given a table T and a data
analysis purpose P, AutoDCWorkflow aims to gen-
erate data cleaning workflow WN and the cleaned

table TN . To achieve this, AutoDCWorkflow be-
gins by identifying a list of target columns L. Then
it iteratively selects and cleans columns and re-
moves them from L once successfully cleaned. In
the OpenRefine stage, the generated operations and
arguments O(·) are executed to modify the input
table into an intermediate table Ti. Each operation
Oi(·) is logged in the data cleaning workflow Wi.
The updated table Ti and workflow Wi then serve
as inputs for the next LLM planning iteration. This
process continues until L is empty, indicating that
all target columns have been cleaned in alignment
with P. The final cleaned table TN , produced by
the workflow WN as TN = WN ◦ T, is claimed
to be of high quality and capable of generating the
correct answer A for the purpose P.

4.1 Select Target Columns
Purpose-driven data cleaning emphasizes data qual-
ity fit-for-purpose (Paul Bédard and Barnes, 2010;
Sidi et al., 2012; Burden and Stenberg, 2024). Not
all columns are necessarily relevant to the purpose
of the given analysis. Select Target Columns agent
aims to reduce the complexity of data cleaning
from the entire table to only the columns pertinent
to the given purpose (Gandhi et al., 2024).

We design the prompt template with task in-
structions and few-shot demonstration examples,
inspired by Gandhi et al. (2024). Each example
contains the following content: (1) table informa-
tion, (2) purpose statement, (3) explanation or ra-
tionale for identifying relevant columns based on
the purpose statement, and (4) target columns.

4.2 Inspect Column Quality
Data quality is a multidimensional concept (Wand
and Wang, 1996). Wang et al. (2024a) identify six
key dimensions: completeness, accuracy, timeli-
ness, consistency, relevance, and concise represen-
tation, while emphasizing that the choice of dimen-
sions often depends on the study context. In our
setting, we exclude timeliness, as no timestamps or
external knowledge are available to evaluate data
freshness, and consistency, which is typically de-
fined through rule-based dependencies across mul-
tiple columns, is not feasible in OpenRefine’s oper-
ation model that emphasizes single-column trans-
formations. Accordingly, this paper focuses on four
widely adopted dimensions: accuracy, relevance,
completeness, and conciseness.

The Inspect Column Quality agent produces a
Data Quality Report assessing these four quality
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Operation Description Quality Dimensions

upper Converts text to uppercase for consistent casing. Conciseness
trim Removes leading/trailing spaces. Accuracy, Conciseness
numeric Converts values to numeric format if applicable. Accuracy
date Standardizes date format across entries. Accuracy
mass_edit Merges similar or erroneous values. Accuracy, Conciseness, Relevance, Completeness
regexr_transform Uses regex to match and replace patterns. Accuracy, Conciseness, Relevance

Table 3: Mechanisms and quality dimensions of common data operations.

dimensions, defined as follows: Accuracy evalu-
ates whether the target column is free from obvious
errors, inconsistencies, or biases. Relevance deter-
mines if the target column is essential to addressing
the analysis objectives. Completeness checks if the
target column has an adequate sample size with
minimal missing values. Conciseness assesses if
spellings are standardized and whether there are no
different representations for the same concept.

It is important to note that relevance is implic-
itly assessed by the Select Target Column agent
and explicitly reevaluated by the Inspect Column
Quality agent. This reevaluation ensures that the
values in the selected column remain aligned with
the data analysis purpose, thereby reducing the risk
of misalignment introduced in the earlier stage.

Data cleaning objectives are specific and focused
on addressing errors in the target column. They
are generated based on the Data Quality Report if
any of the four quality dimensions are evaluated
as False. This process guides the prediction of the
next operation and its arguments.

4.3 Generate Operation and Arguments

Instructions and example usages of data clean-
ing operations serve as prompts to guide AutoD-
CWorkflow in generating appropriate operations
and corresponding arguments iteratively. We in-
clude six commonly used OpenRefine operations:
upper, trim, numeric, date, mass_edit, and
regexr_transform. The mechanisms of these op-
erations and their associated data quality dimen-
sions are summarized in Table 3. Crucially, a single
operation can impact multiple data quality dimen-
sions. Despite the limited number of operations,
the vast space of possible arguments and the flexi-
ble combination of operations enable our approach
to handle complex real-world data quality issues.

Operation Generation. We design a structured
prompt template (see Appendix A.7). This tem-
plate incorporates task instructions, operation def-
initions, examples, and explanations. The LLM

agent determines the operation that best fits the
given table contents and data analysis purpose.

Arguments Generation. The mass_edit and
regexr_transform operations require argument
generation to handle various data errors (see Ap-
pendix A.3). We provide few-shot examples
demonstrating arguments usage for specific data
cleaning objectives.

Dataset # Purposes # Answers # Tables # Workflows # Rows # Columns
Menu 30 30 3 30 100 20
Dish 16 16 9 16 50 8
Flights 16 16 16 16 50 7
PPP 22 22 11 22 20 14
Hospital 28 28 28 28 20 12
CFI 30 30 29 30 10 11
Total 142 142 96 142 - -

Table 4: Summary of Benchmark Dataset Statistics. Total
integrates six datasets. Each purpose is assigned to a single
table, and the # Tables represents the number of distinct tables
in each dataset.

5 Benchmark Demonstration

The benchmark includes annotated datasets and
evaluation dimensions to assess workflow quality.
The benchmark dataset comprises data analysis
purposes, answer sets, raw tables1, and manually
curated tables and workflows. The statistic of the
benchmark dataset is provided in Table 4. The
benchmark evaluation enables a robust assessment
of generated workflows in three key dimensions:
[RQ1] Purpose Answer Dimension: Can we re-
trieve approximately or exactly the same correct
answer from the repaired clean table?
[RQ2] Column Value Dimension: How closely
does the repaired table resemble the human-curated
table?
[RQ3] Workflow (Operation) Dimension: To what
extent does AutoDCWorkflow generate the correct
and complete set of operations?

1The number of tables does not match the number of pur-
poses in Menu, Dish, PPP, and CFI because multiple analysis
purposes were performed on the same initial tables.
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5.1 Dataset Construction

5.1.1 Dataset Preparation and Partition

The benchmark spans multiple domains, including
Menu and Dish2 (social science), Chicago Food In-
spection (CFI)3 and Hospital (public health) (Mah-
davi and Abedjan, 2019), Paycheck Protection
Program (PPP)4 (finance), and Flights (transporta-
tion) (Mahdavi and Abedjan, 2019). To evaluate the
LLM’s ability to generate workflows on datasets
with diverse data types and varying levels of data
quality issues, we sample tables from these original
datasets and systematically inject different types of
errors based on their associated analysis purposes.

We implement Python functions to inject com-
mon real-world data quality issues into clean
datasets. These include: (1). Duplicate variants:
Slightly different but semantically equivalent val-
ues (e.g., "McDonalds" vs. "Mc Donald’s"). (2).
Formatting inconsistencies: Extra whitespace and
non-ASCII characters. (3). Case variations: Mixed
use of uppercase and lowercase letters. (4). Type
errors: Inserting strings into numeric fields (e.g.,
"N/A" in a price column). These errors simulate
real-world data quality challenges, allowing us to
assess the model’s robustness in data cleaning. The
error injection rate can be found in Table 5. More-
over, empty columns are removed, as they do not
contribute meaningful information for answering
the given purposes.

5.1.2 Purpose and Answer Annotation

AutoDCWorkflow benchmark defines 142 purposes
based on the sample rows and column schema (see
Table 6). These purposes are constructed using two
methods: referencing columns by exact or para-
phrased names and specifying specific data val-
ues. The first method allows LLMs to recognize
and identify target columns, while the second adds
complexity by requiring inference of relationships
between cell values and the column schema.

To assess the difficulty of each purpose, we con-
sider two factors: (1) the number of target columns
involved and (2) the diversity of their data types.
We hypothesize that purposes requiring more target
columns and diverse data types provide a more chal-
lenging task for LLMs to generate workflows. For
instance, PPP tables primarily contain numerical

2https://menus.nypl.org/
3https://data.cityofchicago.org/

Health-Human-Services/Food-Inspections/
4https://data.sba.gov/dataset/ppp-foia/

data with less variation than other datasets, making
them a relatively simpler task for LLMs.

Dataset # Tables Error Ratio (mean ± std)

Menu 30 0.0636 ± 0.1078
Dish 16 0.1480 ± 0.0745
Flights 16 0.2584 ± 0.0942
PPP 22 0.3451 ± 0.1930
Hospital 28 0.1463 ± 0.0498
CFI 30 0.2307 ± 0.0545

Table 5: Error injection rates across tables.

Answer Annotation. Querying the dataset returns
purpose answers in three forms: a single numeric
value, a string, or a collection of columns and cell
values. This enables us to compare the purpose
answers derived from LLM-generated tables with
those from ground truth tables.

Dataset # Purposes
# Target Columns Target Column Types
1 2 ≥ 3 Numeric Text Date

Menu 30 16 13 1 11 23 2
Dish 16 1 6 9 11 15 5

Flights 16 4 8 4 0 6 13
PPP 22 4 16 2 21 13 0

Hospital 28 3 15 10 6 28 0
CFI 30 10 16 4 4 29 4

Table 6: Summary of Data Analysis Purposes Statistics. Each
row represents the number of target columns and column types
per purpose, providing insights into the complexity of data
analysis purposes across different datasets.

5.1.3 Workflow Annotation
Different human curators may prefer different data
cleaning operations, leading to varied workflows
for the same data cleaning task. As a result, there
is no single gold-standard workflow. In this study,
a data cleaning expert utilized OpenRefine opera-
tions, cleaning the given table for a data analysis
purpose and annotated data cleaning workflows as
a reference, which we regard as silver-standard
ground truth for evaluating LLM-generated work-
flows. We assess recall and accuracy by comparing
the operations predicted by LLMs to those anno-
tated in the silver workflows. This comparison
assesses how closely LLMs approximate the silver-
standard ground truth rather than serve as a strict
indicator of workflow correctness.

Since datasets differ in data types and the distri-
bution of quality issues, each dataset has its own
most frequently used operations. For instance, nu-
meric is the most frequently used operation in PPP,
while date is the most frequently used in Flights,
as shown in Figure 3.
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Figure 3: Frequency distribution of data operation types
across all datasets.

5.2 Evaluation Dimensions and Metrics

We assess the generated workflows across three key
dimensions: (1) Accuracy, by evaluating whether
the cleaned table produces the correct answer for
the given purpose (RQ1 Answer Dimension); (2)
Consistency, by measuring how closely the re-
paired table aligns with the ground truth (RQ2 Col-
umn Value Dimension); and (3) Plausibility, deter-
mining the extent to which the generated workflow
resembles the human-curated ground truth (RQ3
Workflow Dimension).

5.2.1 Purpose Answer Dimension
The purpose answer dimension assesses the accu-
racy of the workflow by measuring how well the
cleaned table produces correct answers aligned
with the ground truth. We evaluate alignment
using Precision, Recall, F1, and Similarity. Ex-
act matches are used for single-valued answers
(e.g., numbers or strings), while complex answers
(e.g., lists or tables in JSON format) are assessed
element-wise with Precision, Recall, and F1 scores.
The Similarity quantifies the proportion of match-
ing characters relative to the total number of charac-
ters across both sequences. This ensures a compre-
hensive evaluation of workflow accuracy across dif-
ferent answer types and complexities. The match-
ing characters are captured by finding the longest
contiguous matching block, recursively applying
the same logic to the unmatched regions to the left
and right of the match, and summing all matching
blocks to compute total matches.

5.2.2 Column Value Dimension
This dimension assesses the consistency of data
cleaning workflows by measuring how closely
cleaned column values align with the ground truth
table. The column cleanness ratio represents the
average proportion of matching values across all
target columns. Equivalence comparison is per-

formed based on data types: numeric, string, and
date. The detailed formula for calculating the col-
umn cleanness ratio is shown in Equation 2.

Ratio = 1
M

M∑

j=1

1
N

N∑

i=1
δ(Ti,j , Gi,j) (2)

where: M : Total number of target columns, N : Total number
of rows, Ti,j : Value in row i and column j of the table, Gi,j :
Value in row i and column j of the ground truth,
δ(Ti,j , Gi,j) :

{
1, if Ti,j is numeric or lower(Ti,j) = lower(Gi,j)
0, otherwise

5.2.3 Workflow (Operation) Dimension
To assess the plausibility of generated workflows,
this dimension evaluates how well LLM-generated
operations align with the correct operations in the
silver workflows. We quantify this alignment using
Precision, Recall, and F1-score, which measure the
degree of overlap between operations in both work-
flows. Discrepancies between LLM-generated and
silver workflows highlight how models differ in
the selection of operations resolving the same data
quality issues. These variations reflect the model’s
ability to apply different yet valid approaches to
achieve the same data cleaning objective, show-
casing a distinct “flavor” of workflows while still
fulfilling the given purpose.

6 Experiments

6.1 Experiment Settings

We use raw table inputs (without any prior data
cleaning) and a direct prompting (DP) approach
as the baseline. In the DP setting, the LLM is in-
structed to generate the entire data cleaning work-
flow in a single step. Unlike the iterative pipeline
in AutoDCWorkflow, DP receives the same con-
text—including the list of available operations and
example workflows—but lacks access to interme-
diate reasoning stages and multi-turn decision-
making. We evaluate AutoDCWorkflow using
three widely adopted, open-access LLMs of com-
parable model sizes: Llama 3.1-8B (Dubey et al.,
2024), Gemma 2-9B (Rivière et al., 2024), and
Mistral-7B (Jiang et al., 2023). To assess the im-
pact of model size, we additionally include Gemma
2-27B (Rivière et al., 2024) in our comparison.
This allows us to investigate how scaling model
size influences workflow generation. For opera-
tion prediction, the models are configured with a
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Answer Dimension Column Dimension Workflow Dimension

Model Precision Recall F1 Similarity Ratio Exact Precision Recall F1

Baseline (Raw Tables) 0.2345 0.2375 0.2201 0.4678 0.4262 – – – –

Llama 3.1–8B (DP) 0.3070 0.2914 0.2811 0.5039 0.5817 0.0493 0.3768 0.1554 0.2053
Llama 3.1–8B (AutoDCWorkflow) 0.5415**++ 0.5185**++ 0.5181**++ 0.6868**++ 0.7475**++ 0.0986 0.9331++ 0.5265 ++ 0.6447++

Mistral–7B (DP) 0.2862 0.2740 0.2612 0.4933 0.4884 0.0000 0.1162 0.0363 0.0536
Mistral-7B (AutoDCWorkflow) 0.3635** 0.3320* 0.3320* 0.5208 0.6004**++ 0.0493++ 0.7656++ 0.4096++ 0.5065++

Gemma2–9B (DP) 0.3368 0.3098 0.3030 0.5109 0.6032 0.0141 0.4131 0.1438 0.2042
Gemma2–9B (AutoDCWorkflow) 0.3841**++ 0.3502**+ 0.3479**++ 0.5543+ 0.6575**++ 0.1056++ 0.8853 ++ 0.5698++ 0.6640++

Gemma2–27B (DP) 0.3298 0.3039 0.2956 0.5073 0.5967 0.0141 0.2887 0.0937 0.1353
Gemma2–27B (AutoDCWorkflow) 0.6590**++ 0.6234**++ 0.6256**++ 0.7567**++ 0.7900**++ 0.0775+ 0.8759++ 0.5514++ 0.6456++

Table 7: Overall performance on the combined dataset, including PPP, CFI, Dish, Menu, Hospital, and Flights. Baseline (Raw
Table) uses raw tables without cleaning. DP refers to directly using a single prompt for LLMs to generate appropriate data
cleaning operations. Bold indicates the highest result in each column. AutoDCWorkflow results are compared with baseline (*)
and DP (+) with statistical paired t-test. **(*) represents a 99% (95%) confidence level compared with baseline (Raw Table).
++(+) represent a 99% (95%) confidence level compared with direct prompting (DP).

default temperature of 0.1, which is increased to
0.3 if no valid operation is returned (see more hy-
perparameter settings in Appendix A.5). The total
number of tokens for all input prompts, excluding
table data, is approximately 4538 tokens. The max-
imum number of output tokens is also set to 2048,
with the stop word defined as [“\n\n\n”]. The
experiment is conducted using four Nvidia A100
GPUs via the NCSA Delta system via ACCESS
program (Boerner et al., 2023). Our implementa-
tion code is available in an anonymous repository5.

6.2 Experiment Results

We compare AutoDCWorkflow against two base-
lines: (1) raw tables, and (2) Direct Prompting (DP).
As shown in Table 7, AutoDCWorkflow outper-
forms both baselines across all evaluation dimen-
sions. A detailed performance table of six datasets
can be found in Appendix A.6.
Comparison with Baseline for Comparable
Models. In the Answer Dimension, AutoDCWork-
flow consistently outperforms both baselines in pre-
cision, recall, and F1. Notably, Llama 3.1–8B and
Gemma 2–9B achieve statistically significant im-
provements in F1 over both baselines at the 99%
confidence level. For instance, Llama 3.1-8B im-
proves from 0.2201 (Raw Table) and 0.2811 (DP)
to 0.5181, and Gemma 2–9B from 0.3030 (DP) to
0.3479.

In the Column Dimension, all models using Au-
toDCWorkflow significantly improve the column
value matching ratio compared to both baselines.
For example, Llama 3.1–8B rises from 0.4262
(raw) and 0.5817 (DP) to 0.7475, while Gemma
2-9B reaches 0.6575. Even Mistral–7B, the small-

5https://github.com/LanLi2017/LLM4DC

est model, shows a strong gain (from 0.4884 to
0.6004), all statistically significant at the 99% level.

In the Workflow Dimension, AutoDCWorkflow
substantially improves precision, recall, and F1
across all models relative to DP, again with 99%
confidence. These results highlight the effective-
ness of our iterative pipeline in producing higher-
quality, purpose-aligned workflows, addressing the
limitations of direct prompting.
Performance of Large-Scale Model (Gemma
2–27B). Among all models, Gemma 2–27B with
AutoDCWorkflow achieves the best performance
across nearly every dimension. It reaches the high-
est F1 score in the Answer Dimension (0.6256), the
best column matching ratio (0.7900), and strong
workflow metrics (precision 0.8759, F1 0.6456), all
statistically significant at the 99% confidence level.
These results suggest that the larger model (27B)
benefits more from the iterative, purpose-driven
cleaning process. This finding indicates exploring
a potential scaling law in data cleaning workflow
generation, whether increasing model size leads to
better reasoning, quality inspection, and workflow
generation. Investigating this relationship would
be a promising direction for future work.

7 Case Study

In this section, we further analyze how different
models generate varying workflows by examining
their outputs. We showcase how Llama 3.1-8B and
Gemma 2-9B construct workflows with different
operations while successfully repairing data to pro-
duce the correct answer. The analysis focuses on
the specific purpose of identifying the facility type
inspected multiple times on the most recent date.
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(a) Ground Truth (b) Llama 3.1-8b

(c) Gemma 2-9b

operationoriginal column format-changed column value-changed column

Figure 4: Three workflow versions generated by (a) Ground
Truth (human curators), (b) Llama 3.1-8B, and (c) Gemma
2-9B.

Figure 4 visualizes the workflows using ORMA6,
where each workflow is modeled as a graph with
data nodes (colorful rounded rectangles represent-
ing columns) and operation nodes (green boxes
representing applied operations) (Li et al., 2021).
The three branches in each diagram correspond to
the target columns—Facility Type, Inspection ID,
and Inspection Date—allowing a direct comparison
of how each model processes them.

Facility Type Column: The ground truth work-
flow applies trim (1x), upper (1x), and mass_edit
(3x). Llama 3.1-8b correctly selects trim (1x) and
mass_edit (2x), while Gemma 2-9b consolidates
all repairs into a single mass_edit operation. In-
spection ID Column: The ground truth workflow
uses regexr_transform and numeric to standardize
non-numeric IDs. Llama 3.1-8B uses mass_edit
to accomplish the same result. Inspection Date
Column: Both models detect date-time inconsis-
tencies and apply the date operation for correction.
Despite using fewer steps and varying approaches,
both Llama 3.1-8B and Gemma 2-9B effectively
clean the table and produce the correct purpose an-
swer: "RESTAURANT". This demonstrates their
ability to generate accurate workflows efficiently.

6Arrows indicate the flow of data cleaning operations
across specific columns.

8 Conclusions

This paper presents AutoDCWorkflow, a frame-
work to automatically generate data cleaning work-
flows using LLMs, supported by a new benchmark
and evaluation metrics. Our experiments across 96
datasets and 142 tasks show that all LLM backbone
models are capable of interpreting the given pur-
pose and reasoning about appropriate data cleaning
operations to resolve data quality issues. Gemma
2-27B yields the most accurate cleaned tables and
downstream answers, while Gemma 2-9B produces
workflows most consistent with human annotations.
These findings underscore that different LLMs cap-
ture complementary aspects of data cleaning, mak-
ing model choice an important consideration for
different objectives. Beyond performance compar-
isons, our iterative design demonstrates that LLMs
can reason about and adapt to diverse data qual-
ity issues, moving beyond one-off cleaning heuris-
tics. Taken together, this work establishes a foun-
dation for reproducible evaluation and highlights
the broader potential of LLM-driven approaches
to generalize across domains, error types, and data
cleaning pipelines. Looking forward, we envision
general-purpose LLM agents that support end-to-
end data cleaning, making structured data more
transparent, reusable, and analysis-ready.

Limitations

While our study reveals several limitations of Au-
toDCWorkflow, we also emphasize its potential to
generalize beyond the current experimental scope
and aim to draw interest in LLMs for data cleaning.

Handling High Data Noise. When the data is
highly noisy, LLMs may struggle to learn from
the provided examples. Beyond simply adding
more in-context examples, incorporating metadata
or domain-specific knowledge could improve re-
pair accuracy. Another direction is self-evolving
prompting, where demonstration examples are re-
fined based on prior outputs to iteratively enhance
cleaning performance.

Single-Column Repairing. AutoDCWorkflow
processes tables column by column independently,
ignoring correlations and functional dependencies
across columns. This limits contextual evidence
for LLMs and can reduce the accuracy of gener-
ated operations. Extending the framework with
multi-column reasoning would enable it to handle
more complex data cleaning issues involving inter-
column relationships, as a future direction.
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Computational Resources. Experiments were
limited to Gemma 2–27B due to computational
resource constraints. Evaluating larger models may
further improve cleaning accuracy and workflow
quality.

Sampling Bias. Sampling a subset of column
values may overlook certain error types, particu-
larly rare ones. To address this, our system applies
iterative sampling for large columns until the LLM-
generated data quality report rates all dimensions as
“good” across multiple rounds, serving as a heuris-
tic for coverage.

Ethics Statement

rAll datasets are publicly available, properly li-
censed, and free of personally identifiable infor-
mation. AutoDCWorkflow employs LLMs to gen-
erate workflows as inference outputs, which are
compared against human-annotated ground truth.
We release benchmark resources openly to promote
reproducibility and responsible research.
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A Appendix

A.1 OpenRefine Workflow Demonstration

Unlike script-based data cleaning, OpenRefine of-
fers a more transparent approach by explicitly doc-
umenting data cleaning operations within a work-
flow, enabling traceability of intermediate tables
transformed by each operation.

OpenRefine records the workflow in a JSON for-
mat file, which includes detailed information about
each operation, such as the operation name, func-
tions, and other relevant parameters (see Figure 5).
This workflow provides a clear and reproducible
record of how the initial dataset is transformed into
its final version through a sequence of data cleaning
operations.

Operation History

Data Cleaning Workflow (JSON)

Figure 5: As users interactively manipulate the dataset, Open-
Refine automatically records each operation into the Operation
History panel (left). These operations can then be exported as
a structured Data Cleaning Workflow in JSON format (right),
enabling reproducibility and reuse across projects.

A.2 Dataset Description

We include six datasets across six topics in our
benchmark: Menu, Dish, Chicago Food Inspection
(CFI) data, Paycheck Protection Program (PPP)
loan data, Hospital and Flights datasets.

Every row of the Menu table represents a menu
record, capturing both “external” and “internal” in-
formation. For instance, the column event records
the “external” information regarding the meal types
associated with the menu, such as dinner, lunch,
breakfast, or other special events. Meanwhile, the
column page_count represents the “internal” in-
formation, documenting the number of pages for
this menu. Records in the Dish table capture de-
tails about dishes featured on menus, including dish
names, frequency of appearance, first and last years
on the menu, and highest and lowest prices. This
information helps analyze trends in dish popularity
over time.

For every row in the CFI dataset sample tables,
the data represents inspection results for restau-
rants and food facilities across Illinois. The col-
umn schema contains both inspection information
and establishment information. Inspection-related
columns include: Inspection ID, Risk, Inspection
Date, Inspection Type and Results. Establishment
details are recorded in columns: DBA Name (the le-
gal name of the establishment), AKA Name (public
alias or commonly known name), License Number,
Facility Type, Street Address, City, State, and Zip
Code of the facility.

Each row in the PPP dataset describes loan in-
formation, with columns detailing the loan amount,
business type, lender names, race and ethnicity,
gender, and location information of the company.

The Hospital and Flights datasets are sourced
from previous work (Mahdavi and Abedjan, 2019).
The Hospital dataset serves as a benchmark dataset
in the data cleaning literature (Chu et al., 2013;
Dallachiesa et al., 2013). It originates from the
Hospital Compare website7, maintained by the U.S.
Department of Health and Human Services. The
website provides data on the quality of care at
over 4,000 Medicare-certified hospitals across the
United States. The dataset includes key attributes
such as provider number, hospital name, address,
city, state, zip code, county name, phone number,
hospital type, hospital ownership, and availability
of emergency services.

The Flights dataset contains information about
airline carriers, including details about their flights,
scheduled departure and arrival times, and actual
departure and arrival times. This dataset provides
insights into flight schedules and potential delays
by comparing planned and actual flight timings.

7http://hospitalcompare.hhs.gov
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Figure 6: Workflow Length Across Six Datasets: Operation List Length refers to the total count of steps in each workflow, while
Operation Set Length denotes the number of distinct operations within the workflow.

A.3 Mass_Edit & Regexr_transform:
Arguments Introduction

For mass_edit, a list of dictionaries must be created,
where each dictionary defines value replacements.
In each dictionary, the key-value pairs represent
groups of similar data instances that need to be
standardized to a single, correctly formatted target
value. Note that in OpenRefine, this operation is
completed in multi-steps: (1). Data curators select
clustering functions and parameters. (2). OpenRe-
fine applies the clustering functions, groups similar
values, and suggests a target value for standard-
ization. (3). Data curators review the clustering
results and confirm the target values. (4). The final
value replacements are then applied. With LLMs,
this operation can leverage the model’s domain
knowledge to recognize similar data instances, en-
abling the completion of mass_edit without manual
verification.

On the other hand, the regexr_transform oper-
ation requires an “ad-hoc" Python-like code im-
plementation as its argument. For example, the
cell values in the target column Year—such as Fey-
erabend,1975, Collins,1985, and Stanford,2006–
must be transformed to address the purpose of list-
ing all published year information for the respective
books. The example function (3) can be explained
as follows: (1). “jython" signals that the following
code is Python code. (2). The “return" statement is
used to end the execution of the function. (3). The
code between "jython:" and “return" parses and

captures patterns in the cell values of the "Year"
column, searching for four digits within these cell
values.(4). The “value" parameter represents a sin-
gle cell in the Year column.

jython: import re

match = re.search(r‘\b\d{4}\b’, value)

if match:

return match.group(0)

(3)

A.4 Predicted Workflows Analysis
Figure 6 illustrates different workflow styles across
models. Compared to ground truth workflows, pre-
dicted workflows are consistently shorter across
all datasets. Similarly, LLM-generated operation
sets are smaller than the ground truth. The shorter
workflows reflect LLMs’ ability to generate more
concise and efficient operations for the same data
quality issues. A smaller operation set size show-
cases the models’ varying ability to learn and prior-
itize different operations, reflecting differences in
how they optimize workflow generation.

A.5 Experiment setting
The model parameters for predicting the next op-
eration are as follows: temperature is set to 0.1,
num_predict is -1, top_k is 60, top_p is 0.95, and
mirostat is set to 1. If the LLMs fail to choose
the operation, the temperature will be adjusted to
0.3, while the other parameters remain unchanged.
The parameters for arguments generation we use in
mass_edit are: temperature is set to 0.2, with the
same stop value.
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A.6 Overall Performance Across Datasets

We summarize the detailed performance of each
model across the six datasets in Table 8. The re-
sults highlight how well different LLMs perform
under varying domain characteristics and data qual-
ity challenges.

A.7 Prompt Templates

Table 9: Generating Data Quality Report.

You are an expert in data cleaning theory and prac-
tices. You can recognize whether the current data
(i.e., column and cell values) is clean enough to fulfill
the objective. The evaluation process for deciding if
the pipeline can end (Flag = True):
(1) Profile the column at both schema and instance
level: Is the column name meaningful? What is the
data distribution? Are values clearly represented?
(2) Assess four quality dimensions:
Accuracy: Are there obvious errors, inconsistencies,
or biases?
Relevance: Is the column needed to address the pur-
pose?
Completeness: Are there enough instances and min-
imal missing values?
Conciseness: Are spellings standardized? No differ-
ent forms for same meaning?
(3) Return True/False for each dimension.
Only when all are True, return Flag as True; other-
wise, return False and continue cleaning.
Example
LoanAmount City State Zip
30333 Honolulu HI 96814
149900 Honolulu HI
148100 Honolulu HI 96814
334444 IL
120 Urbana IL 61802
100000 Chicago IL
1000. Champaign IL 61820

Purpose: Figure out how many cities are in the table.
Flag: True
Target column: City
Explanations: Accuracy: True (correct spellings for
the same city names and same format in column
City) Relevance: True (column City is relevant to
the Purpose) Completeness: NA (with minor number
of missing values in column City but it (1/7) can be
ignored) Conciseness: True (incorrect variations do
not exist in column City) Since there are no concerns
(True or NA) with the quality dimensions, I will re-
turn True.
. . .

Table 10: Prompt introducing data cleaning opera-
tions.

You are an expert in data cleaning and are able to
choose appropriate Operations to prepare the table
in good format before addressing the Purpose. Note
that the operation chosen should aim at making the
data be in a better shape that can be used for the
purpose instead of addressing the purpose directly.
The Operations pool you can choose from contains
upper, trim, mass_edit, regexr_transform, numeric,
and date.
Available example demos to learn the data cleaning
operations are as follows:
1. upper: The upper function is used to convert all
cell values in a column that are strings into uppercase,
fixing formatting errors for strings. . . . For example,
id neighbourhood room type
46154 Ohare Entirehome/apt
6715 OHARE Entirehome/apt
228273 ohare P rivate room

Purpose: Return room types that are located
near OHARE.
Target column: neighbourhood
Selected Operation: upper
Explanation: Improve conciseness: The
format of cell values in column
neighbourhood are inconsistent(mixed with
different formats). Therefore, We use
upper on column "neighbourhood" to make the
format consistent as Uppercase.
Output: OHARE | OHARE | OHARE
. . .

Table 11: Prompt Template: Column Selection
Based on Purpose
Instruction: Select relevant column(s) from a table
given its metadata and a natural language purpose.
Example:
{

"table_caption ": "List of
largest airlines in Central
America & the Caribbean",

"columns ": ["rank", "airline", "
country", "fleet size", "
remarks"],

"table_column_priority ": [
["rank", "1", "2", "3"],
[" airline", "Caribbean

Airlines", "LIAT", "Cubana
de Aviaci\u00e3 n"],

[" country", "Trinidad and
Tobago", "Antigua and
Barbuda", "Cuba"],

[" fleet size", "22", "17",
"14"],

[" remarks", "Largest airline
in the Caribbean", "Second
largest airline", "
Operational since 1929"]

],
}
Purpose: "How many countries are involved?"
Selected columns: “‘[’country’]“‘
Explanations: similar words link to columns : coun-
tries -> country.
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Table 8: Overall Performance Results Across Datasets: {PPP, CFI, Dish, Menu, Hospital, Flights}. The highest results are
bolded.

PPP

Model Answer Dimension Column Dimension Workflow Dimension
Precision Recall F1 Similarity Ratio Exact Match Precision Recall F1

Baseline (Raw Tables) 0.3318 0.3332 0.3309 0.5335 0.5962 - - - -
Llama 3.1-8b (DP) 0.3334 0.3359 0.3329 0.5414 0.6272 0.2273 0.6364 0.3735 0.4364

Llama 3.1-8b (AutoDCWorkflow) 0.5812 0.5332 0.5449 0.7138 0.8178 0.2728 0.9583 0.6652 0.7559
Mistral-7b (DP) 0.3334 0.3359 0.3329 0.5401 0.6178 0 0.3182 0.1136 0.1626

Mistral-7b (AutoDCWorkflow) 0.3182 0.3225 0.3191 0.5387 0.6364 0.1818 0.8470 0.5864 0.6604
Gemma2-9b (DP) 0.3225 0.3287 0.3242 0.5420 0.6375 0.0909 0.3864 0.1826 0.2281

Gemma2-9b (AutoDCWorkflow) 0.4060 0.4133 0.4079 0.6247 0.7098 0.3182 0.9432 0.6818 0.7661
Gemma2-27b (DP) 0.3225 0.3287 0.3242 0.5420 0.6375 0.0455 0.7955 0.3197 0.4318

Gemma2-27b (AutoDCWorkflow) 0.7373 0.7259 0.7273 0.8647 0.9038 0.1818 0.8598 0.6735 0.7285
CFI

Model Answer Dimension Column Dimension Workflow Dimension
Precision Recall F1 Similarity Ratio Exact Match Precision Recall F1

Baseline (Raw Tables) 0.2511 0.2554 0.2318 0.4967 0.3829 - - - -
Llama 3.1-8b (DP) 0.2357 0.2554 0.2248 0.4610 0.5295 0.0323 0.1935 0.0952 0.1184

Llama 3.1-8b (AutoDCWorkflow) 0.6444 0.6680 0.6484 0.7705 0.7238 0.0645 0.9409 0.5124 0.6382
Mistral-7b (DP) 0.2228 0.2366 0.2118 0.4875 0.4157 0 0.1129 0.0290 0.0436

Mistral-7b (AutoDCWorkflow) 0.3884 0.3441 0.3496 0.5720 0.5864 0.0323 0.7957 0.4161 0.5095
Gemma2-9b (DP) 0.2357 0.2554 0.2248 0.4610 0.5420 0 0.1935 0.0452 0.0727

Gemma2-9b (AutoDCWorkflow) 0.3568 0.3387 0.3272 0.5289 0.5743 0.0645 0.8081 0.5452 0.6178
Gemma2-27b (DP) 0.2679 0.2715 0.2463 0.4613 0.5528 0 0.3387 0.0935 0.1436

Gemma2-27b (AutoDCWorkflow) 0.6911 0.7366 0.7026 0.7992 0.7455 0.0968 0.9355 0.4844 0.6120
Dish

Model Answer Dimension Column Dimension Workflow Dimension
Precision Recall F1 Similarity Ratio Exact Match Precision Recall F1

Baseline (Raw Tables) 0.1471 0.1471 0.1471 0.6771 0.4863 - - - -
Llama 3.1-8b (DP) 0.1471 0.1471 0.1471 0.6399 0.5505 0.0588 0.9118 0.2990 0.4294

Llama 3.1-8b (AutoDCWorkflow) 0.3269 0.2992 0.3078 0.6779 0.6684 0.1176 0.8676 0.5147 0.6144
Mistral-7b (DP) 0.2059 0.1711 0.1812 0.7036 0.5224 0 0.0588 0.0147 0.0235

Mistral-7b (AutoDCWorkflow) 0.2059 0.1711 0.1812 0.5482 0.5413 0.0588 0.7598 0.4314 0.5172
Gemma2-9b (DP) 0.2059 0.1711 0.1812 0.6664 0.5899 0.0 0.7941 0.2402 0.3608

Gemma2-9b (AutoDCWorkflow) 0.3235 0.2888 0.2989 0.6884 0.6066 0.0588 0.8088 0.5049 0.5889
Gemma2-27b (DP) 0.2059 0.1711 0.1812 0.6664 0.5899 0.0588 1.0000 0.3725 0.5196

Gemma2-27b (AutoDCWorkflow) 0.6647 0.5977 0.6178 0.7774 0.7922 0 0.6745 0.5833 0.5999
Menu

Model Answer Dimension Column Dimension Workflow Dimension
Precision Recall F1 Similarity Ratio Exact Match Precision Recall F1

Baseline (Raw Tables) 0.4172 0.4353 0.3851 0.4973 0.5104 - - - -
Llama 3.1-8b (DP) 0.4672 0.4676 0.4282 0.5464 0.6124 0.0323 0.1935 0.1048 0.1301

Llama 3.1-8b (AutoDCWorkflow) 0.4688 0.4646 0.4408 0.5622 0.6542 0.1935 0.8710 0.6231 0.7011
Mistral-7b (DP) 0.4591 0.4622 0.4136 0.5165 0.5455 0 0 0 0

Mistral-7b (AutoDCWorkflow) 0.5000 0.4943 0.4632 0.5438 0.5984 0.0645 0.4892 0.2527 0.3154
Gemma2-9b (DP) 0.4661 0.4717 0.4325 0.5246 0.5675 0 0 0 0

Gemma2-9b (AutoDCWorkflow) 0.4685 0.4717 0.4345 0.5497 0.6666 0.0645 0.8226 0.4645 0.5661
Gemma2-27b (DP) 0.4661 0.4717 0.4325 0.5265 0.5675 0 0 0 0

Gemma2-27b (AutoDCWorkflow) 0.6620 0.6213 0.6167 0.6849 0.7042 0.1613 0.8172 0.5866 0.657
Hospital

Model Answer Dimension Column Dimension Workflow Dimension
Precision Recall F1 Similarity Ratio Exact Match Precision Recall F1

Baseline (Raw Tables) 0.1045 0.1142 0.1056 0.3498 0.4533 - - - -
Llama 3.1-8b (DP) 0.2098 0.2120 0.2070 0.4466 0.6979 0 0.1786 0.0518 0.0793

Llama 3.1-8b (AutoDCWorkflow) 0.5759 0.5532 0.5622 0.7849 0.8911 0 1.0000 0.4583 0.6187
Mistral-7b (DP) 0.1045 0.1142 0.1056 0.3498 0.4533 0 0 0 0

Mistral-7b (AutoDCWorkflow) 0.2634 0.2656 0.2606 0.4750 0.6711 0 0.9226 0.4536 0.5914
Gemma2-9b (DP) 0.2098 0.2120 0.2070 0.4466 0.6890 0 0.1071 0.0387 0.0560

Gemma2-9b (AutoDCWorkflow) 0.2446 0.2375 0.2385 0.5084 0.7762 0.1429 0.9881 0.7440 0.8392
Gemma2-27b (DP) 0.2098 0.2120 0.2070 0.4466 0.6979 0 0.0595 0.0351 0.0440

Gemma2-27b (AutoDCWorkflow) 0.5750 0.5723 0.5736 0.8258 0.9393 0.0357 0.9524 0.6113 0.7323
Flights

Model Answer Dimension Column Dimension Workflow Dimension
Precision Recall F1 Similarity Ratio Exact Match Precision Recall F1

Baseline (Raw Tables) 0.0895 0.0557 0.0625 0.2668 0.0586 - - - -
Llama 3.1-8b (DP) 0.4567 0.2823 0.3365 0.4111 0.4238 0 0.5000 0.1392 0.2157

Llama 3.1-8b (AutoDCWorkflow) 0.5487 0.4517 0.4879 0.5169 0.7523 0 0.9706 0.3833 0.5349
Mistral-7b (DP) 0.4947 0.3387 0.3876 0.4525 0.4269 0 0.3529 0.1029 0.1574

Mistral-7b (AutoDCWorkflow) 0.5812 0.4000 0.4593 0.4885 0.5794 0 0.8529 0.3578 0.4927
Gemma2-9b (DP) 0.6635 0.3894 0.4618 0.4779 0.6063 0 0.6471 0.1745 0.2728

Gemma2-9b (AutoDCWorkflow) 0.6047 0.3502 0.4253 0.4660 0.6208 0 0.9412 0.4186 0.5542
Gemma2-27b (DP) 0.6635 0.4090 0.4842 0.5081 0.6260 0 0.7941 0.2206 0.3395

Gemma2-27b (AutoDCWorkflow) 0.6635 0.4090 0.4842 0.6586 0.6194 0 0.9412 0.3431 0.4908
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