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Abstract

Knowledge editing aims to update Large Lan-
guage Models (LLMs) with new information
without costly retraining. However, consis-
tently reflecting these updates in complex multi-
hop Question Answering (QA), which demands
reasoning over interconnected facts, is challeng-
ing. Many existing methods overlook the in-
terplay with pre-existing knowledge, leading
to inconsistent edit propagation. To overcome
this, we introduce StepKE (Stepwise Knowl-
edge Editing for Multi-hop QA), a novel frame-
work for robustly integrating edited and ex-
isting knowledge for coherent multi-hop rea-
soning. StepKE uniquely decomposes multi-
hop questions into sequential single-hop sub-
questions, retrieving relevant facts (both edited
and pre-existing) from an external knowledge
graph for each step. It employs context-aware
prompting with prior reasoning history and fine-
tuning for precise edit propagation. This sys-
tematic integration enables effective stepwise
reasoning. Experiments show StepKE gener-
ates significantly more accurate and consistent
responses than baselines, showcasing strong
knowledge editing and integration in multi-hop

QA.

1 Introduction

Large Language Models (LLMs) often struggle
with outdated or new knowledge despite their ad-
vanced language capabilities. Knowledge editing,
updating LLMs without costly retraining, is thus a
critical research area (Yao et al., 2023; Wang et al.,
2024a,b; Zhang et al., 2024b). While progress has
been made, effectively ensuring modified knowl-
edge is consistently reflected in complex, multi-hop
Question Answering (QA) remains challenging.
Multi-hop QA requires reasoning over intercon-
nected knowledge, making seamless integration
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[Question]:
What is the capital city of the country where Southern hip hop originated?
[Updated Information]:

1. The capital city of United States is New York.
2. The capital city of France is Marseille.

The capital of U.S. is Washington D.C..

I )

Southern hip hop is originated in France.
The capital of France is Marseille.

480uthem hip hop is originated in United States.
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N
iSouthcm hip hop is originated in United States.

The capital of U.S. is New York.
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Figure 1: Examples of knowledge editing for multi-hop
QA. (a) An example of edit failure. (b) An example of
alignment failure caused by an error in answering about
unedited knowledge. (c) An example of a successful
alignment of edited knowledge with existing knowledge.

of new edits with pre-existing knowledge essen-
tial (Zheng et al., 2023; Meng et al., 2023b; Li
et al., 2024a; Fang et al., 2024).

Existing research on knowledge editing for
multi-hop QA often assumes that only edited
knowledge is used in responses. This overlooks
interactions with the model’s vast inherent back-
ground knowledge, potentially leading to incon-
sistent application of learned modifications during
multi-step reasoning and resulting in incomplete or
contradictory answers (Chen et al., 2019; Lan et al.,
2021; Mavi et al., 2022; Yang et al., 2024). Figure 1
shows errors in multi-hop QA when edited knowl-
edge is not reflected or when necessary existing
knowledge is not adequately incorporated. For in-
stance, methods like RAE (Shi et al., 2024), despite
considering both knowledge types, can struggle
to simultaneously retrieve and integrate multiple
items for complex multi-hop questions, limiting ac-
curate and consistent reasoning chains. Others like
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PokeMQA (Gu et al., 2024) and MeLLo (Zhong
et al., 2024) have explored question decomposition
or external knowledge graphs, but robustly connect-
ing edited with existing knowledge in the multi-hop
reasoning flow remains a challenge, risking infor-
mation distortion or omission during propagation.

To address these limitations, we propose
StepKE (Stepwise Knowledge Editing for Multi-
hop QA), a novel framework enhancing the integra-
tion and consistent application of edited knowledge
in multi-hop reasoning. StepKE’s contribution lies
in its unique, systematic approach synergistically
combining key components. Our framework metic-
ulously decomposes complex multi-hop questions
into simpler, single-hop sub-questions. For each,
StepKE retrieves relevant knowledge—both pre-
existing and newly edited facts—from an external
knowledge graph, ensuring access to current and
pertinent information at each step.

A key aspect of StepKE is its context-aware
prompting and an LTE-based fine-tuning ap-
proach (Zhang et al., 2025). Context-aware prompt-
ing ensures coherent reasoning by integrating prior
knowledge and reasoning outcomes into subse-
quent steps. LTE-based fine-tuning then enables ac-
curate reflection of edits while preserving existing
knowledge, ensuring precise edit propagation. This
synergy of decomposition, knowledge graph aug-
mentation, context-aware prompting, and targeted
fine-tuning allows StepKE to sequentially apply
linked knowledge, maximizing reasoning consis-
tency and accuracy after edits.

Our experiments show StepKE significantly sur-
passes existing baselines in accuracy and efficiency.
Ablation studies confirm each component’s mean-
ingful contribution, underscoring our structured,
stepwise approach for reliable multi-hop QA in dy-
namic knowledge settings. Our main contributions
are:

* A novel framework, StepKE, for consis-
tent multi-hop QA that effectively integrates
edited and pre-existing knowledge by sequen-
tially applying retrieved, relevant knowledge
to decomposed sub-questions.

* A context-aware prompting strategy incorpo-
rating reasoning history and retrieved knowl-
edge at each step to enhance multi-hop rea-
soning coherence and accuracy.

* Demonstration through multi-hop QA bench-
marks that StepKE achieves superior editing

accuracy by effectively managing knowledge
interconnectivity.

2 Related Work

Our work on StepKE builds upon research in
knowledge editing for LLMs and multi-hop QA.

2.1 Knowledge Editing in LLMs

Efficiently updating LLM knowledge without full
retraining is crucial. Approaches range from di-
rect weight modification (e.g., MEND (Mitchell
et al., 2022), ROME (Meng et al., 2023a)) to meth-
ods employing compensatory layers or external
memory. LTE (Jiang et al., 2024), for instance, fine-
tunes a hypernetwork for single-hop factual edits.
While promising for atomic edits, ensuring con-
sistent propagation in multi-step reasoning is chal-
lenging. StepKE uses an LTE-based fine-tuning
for precise edits within a broader multi-hop consis-
tency framework.

2.2  Multi-hop Question Answering

Multi-hop QA requires reasoning over multiple
pieces of evidence. Traditional methods involve
passage retrieval for a reader model. Recent ap-
proaches leverage LL.Ms’ reasoning via techniques
like Chain-of-Thought (CoT) (Wei et al., 2022) or
question decomposition. KELDar (Li et al., 2024b),
for example, decomposes questions and retrieves
facts from knowledge graphs. While sharing ques-
tion decomposition, StepKE distinctively focuses
on integrating and propagating edited knowledge
cohesively with existing facts at each step.

2.3 Knowledge Editing for Multi-hop QA

This intersection presents challenges in harmo-
nizing updates with existing knowledge through-
out long reasoning chains. RAE (Shi et al., 2024)
retrieves a relevant subgraph and seeks a fact
chain maximizing mutual information. However,
its beam search can find local optima, and subgraph
extraction may struggle with precise sequential in-
tegration for complex queries, potentially includ-
ing irrelevant or omitting essential facts. StepKE
employs a structured, sequential approach, decom-
posing questions into single-hop queries and re-
trieving targeted knowledge, mitigating subgraph
search complexities. PokeMQA (Gu et al., 2024)
and MeLLo (Zhong et al., 2024) (provider of the
MQuAKE benchmark) also address this. While de-
composing questions or using external knowledge,
these methods can be limited in robustly connecting
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new edits with existing knowledge during sequen-
tial multi-hop reasoning. StepKE retrieves relevant
edited and existing facts and explicitly incorporates
reasoning history and retrieved knowledge into
subsequent prompts via its context-aware mecha-
nism, enabling controlled information propagation.
GMeLLo (Chen et al., 2024) relies on SPARQL
for knowledge graph access, which can be limiting.
StepKE’s semantic similarity-based retrieval offers
more flexibility.

A key characteristic of StepKE is the systematic
integration of knowledge editing with the demands
of multi-hop reasoning. Unlike prior works focus-
ing on isolated aspects or struggling with edited
information flow, StepKE orchestrates decompo-
sition, retrieval of existing/edited facts, context-
aware prompting, and LTE-based editing. This en-
sures edited knowledge is actively and accurately
used throughout the reasoning chain. Ablation stud-
ies and baseline comparisons confirm this inte-
grated strategy’s crucial role in robust multi-hop
knowledge editing.

3 Preliminary

In this section, we formalize knowledge editing for
multi-hop QA, emphasizing a realistic setting that
accounts for the alignment between existing and
edited knowledge using a knowledge graph.

3.1 Knowledge Representation and Editing

We define factual knowledge as a triple (s,r,0),
where s is the subject, 7 is the relation, and o is
the object, forming a structured representation of
information (Meng et al., 2023a,b). Knowledge
editing aims to update a model M’s knowledge.
Specifically, it often involves modifying an existing
knowledge triple k£ = (s, 7, 0) into an edited triple
k* = (s,r,0%), where the object o is updated to
o*, while s and r remain unchanged. Let KCo4 de-
note the original knowledge graph representing pre-
existing facts, and Koq;x = {k7,k3,...,k},} bea
set of M new factual edits. We define an external
knowledge graph KT = Kopig @ Kegit, Where &
indicates that K4 is integrated into KCop¢, poten-
tially overriding conflicting facts. Our framework
aims to retrieve necessary knowledge for answering
questions from this .

3.2 Multi-hop Question Answering

Multi-hop QA is the task of answering a question
(@ that requires reasoning over a chain of multiple

factual triples C' = {(s;, 7, 0;)}I"_; (Zhang et al.,
2024a; Wu et al., 2024; Gu et al., 2024). Given
@, the model must sequentially reason over these
interconnected facts to generate a final answer A.
In the context of KE for multi-hop QA, if a fact
(84,7i,0;) within the required reasoning chain is
edited to (s;, 7;, 0 ), the subsequent reasoning steps
must consistently reflect this change to derive the
correct answer. For instance, the next fact in the
chain might need to be identified as (0}, 741, 0i4+1)
or similar, ensuring the edited knowledge propa-
gates correctly.

3.3 Problem Statement

The problem we address is knowledge editing for
multi-hop QA within an integrated knowledge en-
vironment. Given an LL.M, a multi-hop question
(@, an original knowledge graph KC,;¢, and a set of
edits K4 (collectively forming an external knowl-
edge base K1), the primary goal is to generate an
answer A that accurately and consistently reflects
the updated knowledge throughout the entire multi-
hop reasoning process. This formulation extends
beyond constrained settings that typically consider
only isolated edited facts, moving towards a more
realistic scenario where edited and pre-existing
knowledge are interconnected and must be navi-
gated coherently.

Achieving effective knowledge editing in this
complex multi-hop setting necessitates satisfying
two key requirements. First, Local Consistency
ensures that the edited model accurately incorpo-
rates any modified knowledge k* € K, 4;; when
directly queried. Second, Global Consistency de-
mands that the edited knowledge K.g4;; is seam-
lessly integrated with the original knowledge KCoy-ig
without introducing logical contradictions. This
preserves coherence throughout complex multi-hop
reasoning that leverages facts from both K.4; and
’Corig-

4 Stepwise Knowledge Editing

As illustrated in Figure 2, we propose StepKE,
a framework designed to effectively incorporate
edited knowledge into multi-hop QA while main-
taining alignment with existing knowledge. StepKE
is not merely a linear sequence of steps, but rather
a synergistic integration of four key components:
1) Question Decomposition for structuring the rea-
soning process, 2) Knowledge Augmented Gener-
ation for grounding each reasoning step with rel-
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Figure 2: Overview of the StepKE framework. StepKE processes a multi-hop question with an external knowledge
graph (containing original K,,;, and edited K.q;; knowledge) by first decomposing it into sub-questions and

extracting the initial subject s;. The core Reasoning hop (Iteration Loop) then handles each sub-question ¢;

sub
i

through: (1) Knowledge Augmented Generation, retrieving relevant edited/pre-existing facts I; from the knowledge
graph. (2) Context-aware Prompting, constructing prompt P; using ¢{*?, s;, I;, and crucially, accumulated history
from prior hops. (3) A Fine-tuned LLM generating sub-answer a; from FP;. This iterative process, where a; informs
si;+1 and enriches subsequent context, repeats to derive the final answer, ensuring consistent and accurate edit

propagation via synergistic component interaction.

evant facts, 3) Fine-tuning for Knowledge Edit-
ing to ensure accurate application of edits, and 4)
Context-aware Prompting to maintain coherence
across multiple reasoning hops. The first two com-
ponents define the primary inference pipeline for
each hop, while the latter two are crucial strategies
for enabling reliable knowledge editing within this
pipeline.

4.1 Question Decomposition

Given a complex multi-hop question @,
StepKE first decomposes it into an ordered
sequence of simpler, single-hop sub-questions
(g5, g5%2, . . ., q3¥P). Simultaneously, the subject
s1 of the first sub-question ¢;“* is extracted.
This decomposition refines the reasoning chain
step-by-step, providing a well-defined structure
for subsequent processes and improving overall
reasoning accuracy by minimizing the propagation
of entity identification errors (Gu et al., 2024).
StepKE is trained to jointly generate these multiple
sub-questions and s; using a prompt template P
based on (). The objective function is the language

modeling loss:

sub

> AN 751|7D7 Qt)7

ey
where 6 represents the model parameters, and 7'
is the number of training instances. In the gener-
ated sub-questions qf“b for 7 > 1, the subject entity

(which is the answer to qS“ll’) is replaced with a spe-

i
cial placeholder token ‘[ENT]’. This guides the QA
model to focus on simplified single-hop reasoning

for each sub-question.

T
Laec(0) = =Y logpo(gi™, ...
t=1

4.2 Knowledge Augmented Generation

For each decomposed sub-question qf“b (where the
‘[ENTY’ token is resolved to the answer a;_1 from
the previous step, and s; = a;—; for ¢ > 1, while
s1 is directly extracted), StepKE retrieves relevant
factual knowledge from the external knowledge
graph K (which integrates both Korig and Kg;t).
Specifically, for qf“b with its identified subject s;,
we extract candidate triples from KT where s; is
the head entity. These triples may include both
facts directly relevant to answering qf“b and irrel-
evant ones, encompassing both pre-existing and
potentially edited knowledge. To select the most

pertinent facts I; for ¢7°, we employ a sentence-

)
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transformer model (Reimers, 2019) to compute the
cosine similarity between the sentence embeddings
of each candidate fact and qf“b , selecting the top-k
most similar facts.

The iterative answering process is as follows: For
the first sub-question ¢§“® with subject s1 and its re-
trieved relevant facts I;, an answer a; is generated
using the fine-tuned LLM described in Section 4.3
via the Context-aware Prompt in Section 4.4. This
answer a; then becomes the subject s by replacing
‘[ENTY]’ in the next sub-question qS“b. The process
of retrieving facts I; for qf“b with subject s; = a;_1
and generating answer a; is repeated until the final
sub-question qjs\}‘b is answered, yielding the final

answer A = ay to the original multi-hop question

Q.
4.3 Fine-tuning for Knowledge Editing

To ensure that the LLM accurately reflects the
edited knowledge from K.4;; (retrieved as part of
I;) when answering each sub-question qf“b, we
fine-tune the base LLM using an approach based by
LTE (Jiang et al., 2024). The primary objective is to
enable the model to seamlessly integrate edited in-
formation with pre-existing knowledge from KCo;;4
(also potentially in I;), ensuring that edited con-
tent is appropriately reflected in the response to
qf“b without negatively impacting unrelated knowl-
edge or reasoning abilities. The fine-tuning process
focuses on achieving:

¢ Reliability: The model consistently generates
responses reflecting the updated information
when queried about edited facts.

* Locality: Changes are localized to relevant
queries, leaving responses to unedited or un-
related queries intact.

* Fluency: Responses maintain natural lan-
guage structure and coherence while integrat-
ing both edited and existing knowledge.

This targeted fine-tuning allows the model to effec-
tively utilize the potentially edited facts I; provided
through the Context-aware Prompt for each step of
the multi-hop reasoning.

4.4 Context-aware Prompting

To further enhance the model’s reasoning capability
across the sequence of interconnected single-hop
sub-questions, particularly in the context of knowl-
edge editing, we employ a Context-aware Prompt-
ing strategy. As depicted in Figure 3, this strategy

Please acknowledge the updated information provided below and
respond to the subsequent query.

+ 4 shot example for formatting

[Updated Information]
(a) i 1. Tesla chief executive officer? Elon Musk

[Question]
i Who is the chief executive officer of Tesla, Inc.?

Please acknowledge the updated information provided below and
respond to the subsequent query.

i [Information and QA pairs from the beginning to the previous step] ==

(b) [Updated Information]
1. Elon Musk native language? English

[Question]
‘What is Elon Musk’s native language?

Figure 3: An example of Context-aware Prompting. (a)
An example prompt for the first sub-question, including
a 4-shot example. (b) An example of the prompt for
the second sub-question, where the information and
QA pairs from the previous step are accumulated and
utilized.

accumulates the generated question-answer pairs
(qj-“b, a;) and the retrieved supporting facts /; from
all previous hops j < ¢ when constructing the
prompt for the current sub-question qf“b. For the
first sub-question ¢§“*, the prompt includes ¢,
its subject s, the retrieved facts I, and a few-
shot example for formatting (Figure 3a). From the
second sub-question q§“b onward (Figure 3b), the
prompt explicitly includes this accumulated history
of previous reasoning steps (e.g., "Given that q‘f“b
was answered by a; using facts I, and q§“b was
answered by a9 using facts I, now answer q§“b
based on facts Is...") before presenting qf“b and I;.

This explicit contextualization allows the model to:

1. Understand the current sub-question ¢%“®

7
within the broader reasoning chain.

2. Leverage previously inferred information and
the specific (edited or pre-existing) facts that
supported those inferences.

3. Maintain consistency, ensuring that the appli-
cation of an edit in an earlier step is correctly
propagated to subsequent steps.

This structured prompting guides the model to per-
form consistent and context-aware multi-hop rea-
soning, akin to fostering a more grounded CoT
process (Wei et al., 2022) that is explicitly aware
of the knowledge editing context.
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Method LLaMA-3.1-8B Qwen-2.5-7B
MQuAKE-3k MQuAKE-2002 MQuAKE-hard MQuAKE-3k MQuUAKE-2002 MQuAKE-hard

Single-hop Editing Methods

FT 0.0150 0.0180 0.0047 0.0240 0.0150 0.0023

MEMIT 0.0003 0.0015 0.0047 0.0000 0.0005 0.0000

LTE 0.0527 0.0569 0.0186 0.1260 0.1314 0.0816
Multi-hop Editing Methods

PokeMQA 0.0443 0.1049 0.0443 0.1220 0.1444 0.1492

DeepEdit 0.1167 0.1548 0.0117 0.0660 0.0779 0.0210

RAE 0.6880 0.7707 0.6713 0.6240 0.7133 0.6107

StepKE 0.8200 0.8287 0.7389 0.8493 0.8676 0.7365

Table 1: Experimental results on MQuAKE-3k, MQuAKE-2002, and MQuAKE-hard. We compare StepKE against
single-hop and multi-hop baseline methods on the LLaMA-3.1 and Qwen-2.5 models.

5 Experiments

In this section, we present comprehensive exper-
iments to evaluate our proposed methodology,
StepKE. We aim to demonstrate its effectiveness in
answering multi-hop QA in scenarios where both
existing and edited knowledge are provided, a set-
ting that reflects more realistic knowledge editing
challenges.

5.1 Experimental Setup

Datasets and Evaluation Metrics. We evaluate
our proposed method on three benchmark datasets:
MQuAKE-3k (Zhong et al., 2024), MQuAKE-
2002 (Wang et al., 2024c), and MQuAKE-
hard (Wang et al., 2024c). MQuAKE-3k is de-
signed to assess whether a model with edited knowl-
edge can generate correct answers to multi-hop
questions involving both edited and unedited facts.
MQuAKE-2002 is a refined version of MQuAKE-
3k, where conflicts between new and pre-existing
knowledge have been resolved, focusing on the
model’s ability to use edited facts in new contexts.
MQuAKE-hard is a more challenging dataset re-
quiring reasoning over non-overlapping 4-hop facts,
testing deeper reasoning capabilities post-editing.
Statistical details of each dataset are provided in
Table 4. To evaluate whether the model success-
fully integrates edited facts into its responses and
answers the multi-hop questions correctly, we use
accuracy as the primary evaluation metric.

Baselines. We compare StepKE against represen-
tative single-hop-based knowledge editing meth-
ods (FT (Zhu et al., 2020), MEMIT (Meng et al.,
2023b), LTE (Jiang et al., 2024)) and state-of-the-
art multi-hop-based methods (PokeMQA (Gu et al.,
2024), DeepEdit (Wang et al., 2024c), RAE (Shi
et al., 2024)). For detailed descriptions of baselines,

please refer to their respective papers.
Implementation Details. We conduct experiments
using LLaMA-3.1 8B (Llama Team, 2024) and
Qwen-2.5 7B (Qwen et al., 2025). Model check-
points are ‘meta-llama/Llama-3.1-8B-Instruct’ and
‘Qwen/Qwen?2.5-7B-Instruct’ from HuggingFace.
All experiments are performed using two NVIDIA
A100-80GB GPUs. For FT and our LTE-based fine-
tuning in StepKE, following Jiang et al. (2024), we
set epochs to 3, learning rate to 2 x 107, and
use AdamW. For MEMIT, following Wang et al.
(2024a), we update layers {4, 5, 6,7, 8}. We sample
10K times from WikiText for covariance matrix C
estimation and set A = 15000. We use official code-
bases for PokeMQA, DeepEdit, and RAE where
available. Further details are in Appendix B.

5.2 Main Results

Table 1 presents the primary experimental re-
sults on the MQuAKE-3k, MQuAKE-2002, and
MQuAKE-hard benchmarks. StepKE consistently
outperforms other knowledge editing approaches
across all datasets and base models, particu-
larly in effectively handling scenarios that re-
quire integration of both edited and pre-existing
knowledge. Compared to RAE, a strong baseline
that incorporates retrieval-based pruning, StepKE
demonstrates superior editing capabilities. For in-
stance, on MQuAKE-3k with LLaMA-3.1, RAE
achieves 0.688, while StepKE reaches 0.82. Simi-
larly, with Qwen-2.5, RAE scores 0.624, whereas
StepKE achieves 0.8493. These results underscore
StepKE’s effectiveness in integrating new knowl-
edge for accurate multi-hop responses by effec-
tively capturing knowledge interconnectivity.
Furthermore, when compared to single-hop edit-
ing methods like FT, MEMIT, and LTE, StepKE
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Figure 4: Accuracy on 2, 3, and 4-hop questions in MQUAKE-3k, MQuUAKE-2002 and MQuAKE-hard.

achieves significantly higher performance. No-
tably, while LTE is a strong single-hop editing
approach, its direct application to multi-hop sce-
narios is limited (e.g., 0.0527 on MQuAKE-3k
with LLaMA-3.1). StepKE, which incorporates an
LTE-based fine-tuning strategy within its structured
multi-hop framework, achieves 0.82 on the same
setup. This substantial improvement highlights that
StepKE’s comprehensive approach—combining
question decomposition, knowledge augmentation,
and context-aware prompting with targeted fine-
tuning—is far more effective than applying single-
hop editing techniques in isolation to complex
multi-hop tasks. This demonstrates that StepKE’s
design successfully addresses the unique chal-
lenges of propagating edits through multi-step rea-
soning chains. Multi-hop specific methods like
PokeMQA and DeepEdit also show limitations
in these complex, large-scale knowledge environ-
ments compared to StepKE.

5.3 Analysis by Number of Hops

Figure 4 illustrates the performance breakdown
for 2-hop, 3-hop, and 4-hop questions on the
MQUuAKE datasets. StepKE consistently achieves
the highest performance across all hop counts and
datasets. Even when compared to RAE, which
is relatively robust for questions with 3 or more

Method MQUAKE-3k MQuAKE-2002 MQuAKE-hard

StepKE 0.8200 0.8287 0.7389
w/o QD 0.0527 0.0569 0.0186
w/o KG 0.4693 0.6433 0.9347
w/o CP 0.7313 0.7253 0.6084
w/o LTE 0.7340 0.8052 0.7203

Table 2: Ablation study on StepKE. QD is Question De-
composition, KG is Knowledge Graph, CP is Context-
aware Prompting, and LTE is Fine-tuning for Knowl-
edge Editing.

hops, StepKE maintains superior editing perfor-
mance, particularly excelling on the more complex
MQuAKE-hard dataset, which consists exclusively
of 4-hop queries, when compared to other method-
ologies. In contrast, DeepEdit exhibits a sharp de-
cline in performance as the reasoning complexity
increases with the number of hops, and RAE strug-
gles even with 2-hop questions. StepKE, however,
maintains consistently high and stable performance
across varying hop counts. This stability suggests
that StepKE’s methodology of decomposing ques-
tions and sequentially retrieving and integrating
both edited and existing knowledge is effective
even as the reasoning chain lengthens and editing
propagation becomes more critical.
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Retriever top-k MQuUAKE-3k MQuUAKE-2002 MQuAKE-hard

1 0.8200 0.8287 0.7389
StepKE 3 0.7903 0.8062 0.4312

5 0.7173 0.8082 0.4359

1 0.5610 0.5614 0.3800
StepKE

3 0.6813 0.6778 0.3473
w/ BM25

5 0.7290 0.7343 0.4592

Table 3: Performance comparison of different retrievers
on MQuAKE datasets.

5.4 Ablation Study

To evaluate the contribution of each key compo-
nent in StepKE, we conducted an ablation study,
presented in Table 2, using LLaMA-3.1 on the
MQUuAKE datasets.

¢ w/o Question Decomposition (QD): Remov-
ing the QD module, which structures the
multi-hop task into manageable single-hop
questions, causes a substantial performance
drop. This underscores that QD is critical for
StepKE to effectively stage the reasoning pro-
cess and integrate edited knowledge in a con-
trolled, stepwise manner. The generalizability
of our QD module has also been explored
with few-shot learning and on other datasets
like 2WikiMultihopQA (Ho et al., 2020) (see
Appendix D for details). Furthermore, an anal-
ysis aimed at mitigating errors that can arise
during the QD process is presented in Ap-
pendix E.

* w/o Knowledge Graph (KG): Omitting the
KG retrieval step, which provides relevant
edited and pre-existing facts, significantly de-
grades performance. This highlights the im-
portance of grounding each reasoning step
with explicit knowledge from K. The impact
on MQuAKE-hard is less pronounced as all
necessary facts are often directly provided as
edits, as shown in Table 4.

* w/o Context-aware Prompting (CP): Re-
moving CP, which provides historical reason-
ing context to subsequent steps, also leads to
a noticeable performance decline, especially
for more complex multi-hop questions. This
confirms CP’s role in maintaining reasoning
consistency and facilitating the propagation
of edited information.

* w/o LTE-based Fine-tuning (LTE): Exclud-
ing the LTE-based fine-tuning phase, designed

to make the model adept at reflecting provided
facts, results in a performance drop. This indi-
cates that this targeted training is crucial for
ensuring facts from I; are accurately incorpo-
rated into responses at each hop.

These results collectively demonstrate that each
component of StepKE plays a vital role, and their
synergistic integration is key to the framework’s
overall effectiveness in multi-hop knowledge edit-
ing. The careful orchestration of these compo-
nents addresses the core challenge of reliably using
edited knowledge in extended reasoning.

5.5 Performance by Retrieval Methods

Table 3 compares the impact of different retrieval
strategies for selecting facts I; for each sub-
question qf"b. We compare our semantic similarity-
based approach with BM25, varying the number of
retrieved facts (top-k). Our dense embedding-based
semantic similarity approach generally performs
better, especially with smaller k, indicating that
high semantic relevance between the sub-question
and the retrieved facts is crucial. BM25, relying
on lexical matching, shows improved performance
with larger £ but can be limited by synonyms or
paraphrasing. These findings suggest that effec-
tive semantic retrieval is beneficial, and further
improvements might be gained by incorporating
re-ranking mechanisms, such as cross-encoders,
which showed promise in preliminary experiments
for mitigating error propagation (see Appendix C).

6 Conclusion

In this paper, we introduce StepKE, a framework
that enhances multi-hop knowledge editing by inte-
grating both existing and updated facts. StepKE en-
sures stepwise reasoning consistency through ques-
tion decomposition and context-aware prompting,
leading to more accurate updates. On MQuAKE
benchmarks, StepKE outperforms prior methods,
effectively addressing knowledge misalignment
and reasoning inconsistencies. Moreover, StepKE
achieves higher accuracy with a lower average exe-
cution time, making it both efficient and scalable.
Overall, StepKE provides a robust foundation for
multi-hop knowledge editing, offering a more struc-
tured and computationally efficient way to integrate
new knowledge into large language models.
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Limitations

While StepKE has been extensively evaluated
across multiple benchmark datasets and knowl-
edge editing scenarios, several limitations remain.
First, StepKE primarily targets multi-hop reason-
ing where single-hop inferences are sequentially
connected. However, real-world multi-hop ques-
tions often involve parallel reasoning or conditional
dependencies, which require further generaliza-
tion of the Question Decomposition and Align-
ment techniques. Second, StepKE’s stepwise in-
ference method introduces efficiency trade-offs.
While it enhances reasoning consistency, it may
also increase inference latency compared to end-
to-end methods. Optimizing the decoding strategy
or incorporating beam search techniques may im-
prove efficiency. Finally, StepKE’s adaptability to
domain-specific knowledge remains limited. Do-
mains like law or medicine require precise fact ver-
ification and terminology handling, which StepKE
does not explicitly incorporate. Domain-specific
extensions and fact-checking mechanisms could
further enhance its applicability. Despite these lim-
itations, StepKE presents a strong foundation for
multi-hop knowledge editing and can be further
extended to handle more complex reasoning sce-
narios.

Ethical Statement

The ability to selectively modify specific knowl-
edge within a model carries the risk of mali-
cious use, such as inserting incorrect informa-
tion or overemphasizing certain perspectives. In
this research, we employ datasets (including the
MQuAKE series) constructed from a publicly ac-
cessible knowledge graph (Wikidata) and ques-
tion—answer pairs from relevant benchmarks. Our
proposed StepKE framework decomposes the rea-
soning process step by step, incorporating edited
knowledge directly into the generated answers.
In pursuit of reproducibility, we plan to release
detailed implementation components—such as
prompt templates, hyperparameters, and algorith-
mic structures—and to make our code openly avail-
able in the future.
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A Multi-hop QA Dataset Statistics

Table 4 contains the statistics for the MQuUAKE
benchmark datasets used in our experiments.

B Training Details

Question Decomposition and Subject Extraction
Model Figure 5 illustrates the prompt used for
training the question decomposition and subject
extraction model. This model is designed to decom-
pose a given multi-hop question into sequential
sub-questions while extracting the subject from the
first sub-question. We employ ‘meta-llama/Llama-
3.1-8B-Instruct’ as the backbone model and train
it on the MQuUAKE-CF. The training is conducted
with the following hyperparameters: the number of
epochs is set to 1, the batch size is 32, and the learn-
ing rate is 5 x 107°. During training, the model re-
ceives a structured prompt where the input consists
of a multi-hop question. The expected output in-
cludes the first sub-question derived from the orig-
inal query, followed by subsequent sub-questions
where the main subject is replaced with [ENT] to
maintain coherence. Additionally, the model ex-
tracts the subject from the first sub-question. This
decomposition approach enables the model to per-
form stepwise reasoning, improving knowledge re-
trieval and facilitating accurate multi-hop QA.

Fine-tuning for Knowledge Editing We fine-
tune the base model following LTE (Jiang et al.,
2024). Specifically, we use the AdamW optimizer
with a learning rate of 2 x 10~ and train for 3
epochs. During inference, we set the temperature
to 1.0, the number of beams to 5, and the number of
facts retrieved based on semantic similarity (top-k)
to 1.

C Error Analysis

Figure 6 shows the analysis of error types that oc-
curred when StepKE generated incorrect answers
on the MQUAKE dataset. The analysis reveals that
errors can be classified into four types (E1, E2,
E3, and E4), with similar trends observed across
the three datasets (MQuAKE-2002, MQuAKE-3k,
and MQuAKE-hard). E1 refers to cases where the
subject of the first sub-question was incorrectly ex-
tracted. This type of error occurred relatively infre-
quently. E2 occurs when a fact related to a previous
answer could not be found in the external knowl-
edge graph, which is one of the primary reasons for
the model’s failure to retrieve the correct answer

You need to divide the given multi-hop question into several
sub-questions and extract the subject of the first sub-question.
Present the divided sub-questions on every line, and starting
with the second sub-question, write the main subject as '[ENTT]".

Question: What is the capital city of the country where
Southern hip hop originated?

Subquestion:

Where did Southern hip-hop originate?
What is the capital city of [ENT]?
Subject of 1st Subquestion:

Southern hip hop

Figure 5: An example prompt used for training the ques-
tion decomposition and subject extraction model. The
white background represents the input provided to the
model, while the green background indicates the ex-
pected model output. The model is trained to decom-
pose a multi-hop question into sequential sub-questions
and extract the subject from the first sub-question.

due to a lack of information. E3 represents cases
where the target entity’s Wikidata ID is missing
from the knowledge graph, resulting from database
incompleteness. E4 is the most frequent error type,
where mistakes in intermediate steps propagate to
later sub-questions, ultimately leading to an incor-
rect final answer.

The dominance of E4 errors suggests that error
propagation in multi-hop reasoning significantly
affects performance. This indicates that mistakes in
earlier reasoning stages can accumulate, severely
impacting the final answer. Based on these find-
ings, introducing strategies to minimize errors in
question decomposition and intermediate reasoning
steps is crucial for enhancing model performance.

D Evaluation on General Multi-hop QA

To assess StepKE’s generalizability beyond
MQuAKE and its effectiveness in general multi-
hop QA, we experimented on the 2WikiMulti-
hopQA (Ho et al., 2020) dataset, which requires
reasoning over multiple documents. We evaluated
our LLaMA-3.1-8B StepKE model, focusing on
its multi-hop reasoning capabilities. For compari-
son, we used: (1) the base LLaMA-3.1-8B model
without specific retrieval for 2WikiMultihopQA,
and (2) the same LL.M with context retrieved by
a pre-trained cross-encoder based on the multi-
hop question. StepKE utilized its MQuAKE-CF-
trained Question Decomposition module, semantic
retrieval for sub-questions from provided evidence,
and Context-aware Prompting. Accuracy (exact
match) was the evaluation metric. The results are
presented in Table 5. StepKE, with an accuracy of
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Benchmark # Instances # Edited Facts per Instance # Hops per Instance # 2-hop # 3-hop # 4-hop
MQUAKE-3k 3,000 2.0 3.0 1,000 1,000 1,000
MQUAKE-2002 2,002 2.2 2.7 966 625 411
MQUAKE-hard 429 4.0 4.0 0 0 429

Table 4: Statistics of MQuAKE datasets.

Error Type
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MQUAKE-2002 MQUAKE-3k MQUAKE-hard

Figure 6: Error analysis on MQuAKE datasets. El
means that the subject of the first sub-question was
incorrectly extracted. E2 means that no facts subject to
the previous answer were found in the external graph.
E3 means that the target entity’s wikidata ID does not
exist in the graph. E4 means that the error propagated
due to an incorrect answer on the way to the last sub-
question (simple incorrect answer).

Method Accuracy
Base Model (LLaMA-3.1-8B) 0.136
Cross-Encoder Retrieval 0.456
StepKE 0.598

Table 5: Performance comparison on the general multi-
hop QA dataset 2WikiMultihopQA using LLaMA-3.1-
8B.

0.598, significantly outperformed the base model
(0.136) and the strong Cross-Encoder retrieval base-
line (0.456). This suggests that StepKE’s approach
of decomposing questions and retrieving targeted
evidence for each sub-question is also effective
for general multi-hop QA tasks, even with a QD
module trained on a different dataset structure. The
stepwise reasoning facilitated by StepKE proved
more beneficial than providing a larger, less struc-
tured context based on the entire multi-hop query.
These findings help alleviate concerns about over-
fitting StepKE’s mechanisms to the MQuAKE for-
mat and demonstrate its broader applicability and a

good level of generalization for multi-hop reason-
ing challenges.

E Analysis of Error Propagation in
Sequential Reasoning

In multi-hop reasoning, a common strategy is to
decompose a complex question into a sequence
of simpler sub-questions. A key vulnerability of
this approach is error propagation, where an error
generated in an early reasoning step can compro-
mise the entire process, leading to an incorrect final
answer. To investigate and mitigate this issue, we
conducted an experiment where we applied a cross-
encoder for re-ranking in the facts retrieval stage.
In this process, we extract the top-1 fact from the
top-5 retrieved facts using a simple error-correction
mechanism, which is then used for answering each
sub-question. The results of this experiment are de-
tailed in Table 6. Based on the Llama-3.1 8B model,
the accuracy on the MQuAKE-CF-3k dataset im-
proved by 5.1 percentage points, on the MQuAKE-
2002 dataset by 5.84 percentage points, and on the
MQuAKE-hard dataset by 1.86 percentage points.
This indicates that StepKE can further reduce er-
rors in each reasoning step by employing a more
rigorous retrieval or re-ranking policy.

F Case Study

Table 7 presents a case study comparing StepKE
and RAE in answering a complex question requir-
ing multi-hop reasoning. The question asks for the
birthplace of the founder of the religion associated
with ‘Saint Engelbert’. Since answering this
question involves multiple inference steps, the ef-
fectiveness of knowledge retrieval and reasoning is
critical.

RAE directly retrieves a set of knowledge triples
and attempts to infer the answer without explicit
intermediate reasoning. As shown in the retrieved
knowledge, RAE fails to directly retrieve the cor-
rect knowledge required to answer the question and
instead constructs an erroneous reasoning chain.
This leads to the incorrect fact that Christianity was
founded by Adolfo Sudrez, ultimately resulting in
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the wrong birthplace, Cebreros.

In contrast, StepKE decomposes the reasoning
process into step-by-step sub-questions. Each sub-
question is answered using retrieved knowledge,
ensuring accuracy before proceeding to the next
step. This stepwise approach not only directly in-
corporates the edited knowledge into the answer
but also provides a reasoning process based on
the connections between knowledge facts, ensuring
robustness against incorrect or misleading informa-
tion. As a result, StepKE successfully derives the
correct answer, whereas RAE fails due to incorrect
knowledge.
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Method

MQUAKE-CF-3k MQUAKE-2002 MQUAKE-hard

StepKE

0.8200 0.8287 0.7389

StepKE+CE  0.8710 (+0.0510)  0.8871 (+0.0584) 0.7575 (+0.0186)

Table 6: Performance comparison with a cross-encoder re-ranking policy applied for fact retrieval.

QUESTION

What is the birthplace of the founder of the religion associated with Saint Engelbert?

RAE

Retrieved knowledge

Saint Engelbert position held archbishop.
archbishop subclass of bishop.

bishop has the religion of Christianity.
Christianity was founded by Adolfo Suérez.

Adolfo Sudrez was born in the city of Cebreros.

Final answer

Cebreros X

StepKE

iteration 1
Sub-question

Retrieved knowledge

Sub-answer

Which religion is Saint Engelbert affiliated with?

Saint Engelbert has the religion of? Methodism (edited knowledge)
Methodism

iteration 2
Sub-question

Retrieved knowledge

Sub-answer

Who founded Methodism?

Methodism was founded by? John Wesley
John Wesley

iteration 3

Sub-question

Which city was John Wesley born in?

Retrieved knowledge John Wesley was born in the city of? Epworth
Sub-answer Epworth
Final answer Epworth

Table 7: Case study comparing StepKE with RAE.
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