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Abstract

Drafting patent claims is time-intensive, costly,
and requires professional skill. Therefore,
researchers have investigated large language
models (LLMs) to assist inventors in writing
claims. However, existing work has largely re-
lied on datasets from the United States Patent
and Trademark Office (USPTO). To enlarge
research scope regarding various jurisdictions,
drafting conventions, and legal standards, we
introduce EPD, a European patent dataset. EPD
presents rich textual data and structured meta-
data to support multiple patent-related tasks, in-
cluding claim generation. This dataset enriches
the field in three critical aspects: (1) Jurisdic-
tional diversity: Patents from different offices
vary in legal and drafting conventions. EPD
fills a critical gap by providing a benchmark
of European patents to enable more compre-
hensive evaluation. (2) Quality improvement:
EPD offers high-quality granted patents with
finalized and legally approved texts, whereas
others consist of patent applications that are
unexamined or provisional. Experiments show
that LLMs fine-tuned on EPD significantly out-
perform those trained on previous datasets and
even GPT-40 in claim quality and cross-domain
generalization. (3) Real-world simulation:
We propose a difficult subset of EPD to bet-
ter reflect real-world challenges. Results re-
veal that all tested LLMs perform substantially
worse on challenging samples, which high-
lights the need for future research. '

1 Introduction

Patents grant inventors temporary exclusive rights
to prevent competitors from using the invention in
return for innovation and its detailed public dis-
closure (Frumkin, 1947). Patent claims define the
legal boundaries of an invention, which renders
them one of the most critical components of patent

"https://github.com/scylj1/EPD

documents (European Patent Office, 2000). High-
quality claims must balance comprehensiveness
and enforceability to ensure robust protection while
adhering to legal and regulatory standards. The
complexity of drafting and revising patent claims
makes the process both time-consuming and costly
(Jiang et al., 2025c). We include more detailed
background information on patents in Appendix A.

Recent advances in natural language processing
(NLP) and large language models (LLMs) have
shown promise in general text generation (Zhao
et al., 2023; Li et al., 2025) and patent-related tasks
(Jiang and Goetz, 2025). Researchers have ex-
plored LLMs to assist inventors and patent profes-
sionals in automatically generating well-structured
claims. Early approaches primarily focused on
fine-tuning neural models to generate claims from
abstracts (Lee and Hsiang, 2020; Lee, 2020). How-
ever, Jiang et al. (2025¢) found that abstract-based
claim generation often leads to suboptimal results
due to the generic nature of abstracts. Conse-
quently, recent work and the increase of context
length in LLMs have enabled description-based
claim generation, which can leverage the detailed
technical content in patent descriptions to enhance
claim completeness and quality (Jiang et al., 2025c;
Wang et al., 2024; Jiang et al., 2025b).

Although prior studies have made significant
progress, they are only based on patents from
the United States Patent and Trademark Office
(USPTO). However, patents from different juris-
dictions can vary significantly in linguistic style
and legal drafting conventions because of distinct
examination practices and legal frameworks. For
example, USPTO claims emphasize broad cover-
age, while European claims tend to be more concise
and precise, with stricter requirements on clarity
and support in the description. These differences
not only impact how claims are written and inter-
preted but also pose challenges for training lan-
guage models. Thus, datasets from different patent
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Dataset | Size | Title Abst Claim Des Cit PC | Years | Source | Version | Primary Purpose
WIPO-alpha | 75K v v v v v' | 1998-2002 | WIPO Appl Classification
USPTO-2M M v v v v' | 2006-2015 | USPTO Gra Classification
PatentMatch | 6.3M v v <2020 EPO Appl & Gra Retrieval
BigPatent 1.3M v v v 1971-2018 | Google Gra Summarization
HUPD-DCG | 9.5K v v v v v 2017 USPTO Appl Claim generation
Patent-CR 22.6K v 2024 EPO Appl & Gra Claim revision
HUPD 4.5M v v v v v’ | 2004-2018 | USPTO Appl Multi-purpose
EPD 107K v v v v v v 2024 EPO Appl & Gra Multi-purpose

Table 1: Comparison of related patent datasets. Abbreviations: Abst — Abstract, Dsc — Description, Cit — Citation,
PC — IPC/CPC codes, Appl — Application, and Gra — Granted version.

offices are essential to comprehensively evaluate
LLMs’ performance and robustness across diverse
legal and linguistic contexts.

This paper introduces EPD, a dataset of English-
language patents granted by the European Patent
Office (EPO) in 2024. Compared to existing
datasets for patent claim generation, EPD offers
three major advantages:

Higher Quality: EPD contains granted patents di-
rectly sourced from the EPO to ensure high-quality
and legally validated claims. In contrast, as shown
in Table 1, prior datasets that support claim gen-
eration only include the (accepted, not redacted)
application versions, which may compromise data
quality. For example, they may still include can-
celed claims and be different from granted versions.
Closer to Real-World Scenarios: EPD includes a
difficult subset designed to simulate real-world situ-
ations of claim drafting. This subset enables a more
rigorous evaluation of LLMs’ ability to generate
high-quality claims under practical conditions.
Lower Risk of Data Leakage: EPD consists of
patents granted in 2024, while existing datasets
that support claim generation are before 2018 (see
Table 1). This temporal gap reduces the likelihood
that the data overlaps with the pre-training corpora
of current LLMs.

Our main contributions are detailed as follows:
1. We present the EPD dataset, a collection of 107K
European patents with rich textual data and struc-
tured metadata to support various patent-related
tasks. EPD addresses a key gap in the field by
enabling cross-jurisdiction evaluation of LLMs.
While our primary focus is on claim generation,
we also highlight other potential applications in
Appendix C.

2. We conduct a comprehensive evaluation of sev-
eral LLMs on both the HUPD-DCG dataset (from
USPTO) (Jiang et al., 2025c) and our EPD dataset
(from EPO). Results show that LLLMs fine-tuned
on EPD significantly outperform those trained on

HUPD-DCG and even GPT-40 across both test sets.
It indicates EPD’s effectiveness in claim generation
and cross-domain generalization.

3. We introduce a difficult subset of EPD to mimic
real-world challenges in claim generation. Experi-
mental results reveal a marked performance drop
across all tested LLMs on difficult samples, which
highlights the need for future research.

2 Related Work

2.1 Patent Claim Generation

Claim generation is a crucial aspect of patent draft-
ing as it defines the boundaries of the patent’s pro-
tection. The task of claim generation involves for-
mulating precise, comprehensive claims that cap-
ture the essence of the invention while ensuring
enforceability. Early studies fine-tuned models to
generate claims based on patent abstracts (Lee and
Hsiang, 2020; Lee, 2020). However, Jiang et al.
(2025c¢) revealed that abstract-based claim genera-
tion may not be a well-conditioned task, because
abstracts are usually generic and imprecise. Hence,
they proposed the description-based claim genera-
tion task and evaluated the performance of different
LLMs with patents from USPTO. This paper con-
ducted a more comprehensive and deeper analysis
for patent claim generation, which offers valuable
insights for future research.

2.2 Patent Datasets

Curated patent datasets are important for re-
searchers to develop LLMs and NLP tools to ex-
plore this specific field. As shown in Table 1, pre-
vious studies have created some patent datasets, in-
cluding WIPO-alpha (Fall et al., 2003) and USPTO-
2M (Li et al., 2018) for patent classification, Patent-
Match (Risch et al., 2020) for retrieval, BigPatent
(Sharma et al., 2019) for summarization, HUPD-
DCG (Jiang et al., 2025c¢) for claim generation, and
Patent-CR (Jiang et al., 2025a) for claim revision.
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| Application | Granted

# Patents

# Patents (all) 73,980

# Patents (incl. both version) 32,988

# Documents | 32,988 | 73,980
Average # Tokens

Title 15.8 15.5
Abstract 165.1 -
Claim 1372.1 1271.2
Description 15280.5 14320.5

Table 2: Dataset statistics. The granted patents from
EPO in this dataset do not include the abstract section.

In addition, HUPD (Suzgun et al., 2024) is a recent
large-scale dataset supporting multiple tasks, such
as the classification of patent decisions and patent
summarization. Our EPD is the first large-scale
multi-purpose dataset based on European patents.

3 Dataset

3.1 Construction

The EPO offers Open Patent Services (OPS), which
provides public access to their data.> The EPO pub-
lishes different versions of a patent, where the A
code represents the published patent application,
and the B code indicates the granted patent.> We
retrieve English-based European patents granted
between January 2024 and August 2024 by EPO.
Both the application and granted versions of patents
are retrieved through the OPS API. We kept the
granted version if no related applications were pro-
vided. The retrieved data was in XML format. We
removed patent files if some of the required fields
were missing. We processed and organized the data
into a structured and easily readable JSON format.
An example data file is shown in Figure 5.

3.2 Statistics

Table 2 presents the dataset statistics of EPD. It
includes 73,980 patents in total, of which 32,988
have both the application and granted versions. The
granted versions contain fewer tokens than the ap-
plication version in corresponding sections on aver-
age, suggesting that the granted versions are usually
more concise. Notably, the patent descriptions of-
ten exceed 10,000 tokens, which poses a challenge
for the context length limitations of some LL.Ms.

2https ://www.epo.org/en/searching-for-patents/
data/web-services/ops

3https ://se.espacenet.com/help?locale=en_SE&
method=handleHelpTopic&topic=kindcodes

4 Experiments

4.1 Datasets for Claim Generation

Fine-Tuning and Test Datasets This study mainly
focuses on the patent claim generation task. We
use two datasets for comparison, HUPD-DCG
(Jiang et al., 2025c) and our proposed EPD dataset.
HUPD-DCG consists of patent documents filed in
2017 and granted by the USPTO. To accommodate
the context length of some LLMs and reduce com-
putational costs, HUPD-DCG only includes patents
with description lengths under 8,000 tokens. To en-
sure a fair comparison, we apply the same filtering
criterion to EPD and obtain 8,007 samples, which
contain only granted patents from EPO. We allo-
cate 1,035 samples (approximately 13%) for test-
ing, while the remaining 6,972 samples form the
training set. To maintain dataset consistency, we
randomly select examples from the original HUPD-
DCQG dataset. Both training sets (HUPD-DCG and
EPD) contain 6,972 examples, and both test sets
include 1,035 examples.

Additionally, to explore the effectiveness of
mixed fine-tuning, we construct a mixed dataset
that comprises 3,486 randomly selected training
samples from HUPD-DCG and 3,486 from EPD.
Comparison between EPD and HUPD-DCG
Patents from different jurisdictions vary in their
drafting convention and legal standards. To ana-
lyze the detailed differences, we calculate the claim
statistics of two datasets in Table 3, including basis
statistics, structural & syntactic complexity, and
linguistic & stylistic features. While the average
number of claims per patent is slightly lower in
EPD (11.5 vs. 13.6), the average length per claim
is higher (84.5 vs. 81.1 tokens). This indicates
that EPO claims tend to be more elaborate, with
a greater focus on comprehensive coverage within
fewer claims. EPD also contains fewer independent
and dependent claims on average, which reflects ju-
risdictional differences in claim structuring. Struc-
turally, EPD exhibits deeper syntactic trees (47.0
vs. 38.2), but lower structural complexity (2.35 vs.
2.77) and better readability (26.8 vs. 30.1), which
suggests that EPO claims are more syntactically
nested yet structurally clearer and more readable.
Linguistically, EPD shows higher lexical diversity
(30.6 vs. 28.2) and term density (0.20 vs. 0.10),
which reflects denser and more varied technical
language. The variations in structure and linguis-
tic patterns can influence how models process and
generate claims, which can lead to different perfor-
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mance of the same model on two datasets.
Difficult Subset Creation Jiang et al. (2025c)
found that LLMs can generate high-quality first
independent claims primarily because these claims
often appear verbatim in the description so that
models can identify and extract rather than gener-
ate them. In real-world scenarios, patent attorneys
usually need to identify key technical features of
the invention—which should be described in detail
in the description—and reconstruct them into well-
structured claims. Therefore, to assess LLMs’ true
claim generation capabilities beyond simple extrac-
tion, we classify samples into easy and difficult
categories and evaluate them separately.

A patent is classified as easy if at least one sen-
tence in the description has an ROUGE-L (Lin,
2004) score above 0.6 with the first claim. We set
this threshold because LLMs generally struggle to
achieve an ROUGE-L above 0.6, as reported in
previous studies (Jiang et al., 2025¢) and shown
in Table 4. If no sentence meets this criterion, the
patent is classified as difficult because there is no
significant overlap for models to do simple extrac-
tion. Based on this classification, we identify 693
difficult and 342 easy samples in EPD’s test set.

4.2 Models

We select Llama-3.1-8B* (Dubey et al., 2024)
as the base model because of its proven capabili-
ties and publicly availability for fine-tuning. We
also explore the few-shot alternatives, where the
model is given a single illustrative example. In
addition, we test with GPT-40° and DeepSeek-V3
(DeepSeek-Al, 2024) as strong baselines. We eval-
uate their zero-shot performance on the claim gen-
eration task. We do not test patent-related LLMs
because current models are either not publicly avail-
able (Bai et al., 2024) or have demonstrated subop-
timal performance on claim generation tasks (Lee,
2023; Jiang et al., 2025c¢). In addition, we evaluate
the legal-domain LLM SaulLM-7B¢ (Colombo
et al., 2024) for comparison with prior studies
(Jiang et al., 2025¢).

We further fine-tune the Llama-3.1-8B model
with LoRA (Hu et al., 2021) on the HUPD-DCG,
EPD, and mixed datasets, which produce three fine-
tuned models: Llama-3.1-8B-FT (HUPD-DCG),

*https://huggingface.co/meta-1lama/Llama-3.
1-8B-Instruct

5GPT—40-2024-08-06:https://platform.openai.com/
docs/models/gpt-4o0

6https://huggingface.co/Equall/
Saul-7B-Instruct-vi

Statistics | HUPD-DCG | EPD
Basic Statistics

# Tokens 926 + 495 929 £ 381
# Claims 13.6 £69 11.5£39
# Independent Claims 1.9+09 14+0.6
# Dependent Claims 11.7£6.5 10.1 £3.8
Per Claim Length 81.1 £52.5 84.5 £31.6
Structural & Syntactic Complexity

Structure Complexity 277 £2.69 235+ 1.44
Syntactic Tree Depth 38.2 £ 19.7 47.0 £+ 20.8
Readability () 30.1 £18.8 26.8 £9.4
Linguistic & Stylistic Features

Lexical Diversity 282 +55 306 £6.2
Term Density 0.10 £ 0.06 0.20 £+ 0.08

Table 3: Comparison of claim statistics with standard
deviations between HUPD-DCG and EPD. The methods
to calculate these statistics are introduced in Appendix F.
A smaller readability score indicates higher readability.

Llama-3.1-8B-FT (EPD), and Llama-3.1-8B-FT
(Mixed). Appendix E reports experimental details.

4.3 Evaluation Metrics

We adopt traditional standard evaluation metrics
for text generation, including BLEU (Papineni
et al., 2002), ROUGE-1 (R-1), ROUGE-L (R-L)
(Lin, 2004), and BERTScore (Zhang et al., 2019).
BLEU, R-1, and R-L assess surface-level text simi-
larity by measuring word or sequence overlap be-
tween generated outputs and reference texts, while
BERTScore captures semantic similarity.
Moreover, studies have shown that LL.M-as-a-
judge evaluators can achieve better human align-
ment (Liu et al., 2023) and also in patent claim eval-
uation (Jiang et al., 2025a). Thus, we use Deepseek-
V3 (Liu et al., 2024) with Chain-of-Thought (CoT)
(Wei et al., 2022) prompting to evaluate generated
patent claims. We do not evaluate the generation
of itself to ensure fairness. The evaluation dimen-
sions include: feature coverage, technical precision,
specificity, clarity, dependency structure, legal ter-
minology, and scope of protection. Detailed set-
tings and prompts are introduced in Appendix G.

5 Results

5.1 Performance on European and US Patent
Datasets

Table 4 and Figure 1 respectively present the tra-
ditional and LL.M-as-a-judge evaluation results of
different LLMs on two datasets, EPD (patents from
EPO) and HUPD-DCG (patents from USPTO).
Previous research has shown that fine-tuning
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EPD HUPD-DCG
Model BLEU R-1 R-L  BERTScore BLEU R-1 R-L BERTScore
Law-specific LLMs
SaulLM-7B 13.53  39.95 26.46 83.19 12.68*  36.63*  25.10%* 83.13*
Base LLMs
Llama-3.1-8B (Zero-shot) 28.52  60.76  39.58 86.32 34.30 59.79 4091 87.64
Llama-3.1-8B (Few-shot of HUPD)  25.69  65.16 41.73 86.43 28.61 63.46 41.73 86.43
Llama-3.1-8B (Few-shot of EPD) 33.12 6275 43.92 87.78 34.96 62.16 43.92 87.78
GPT-40 (Zero-shot) 2126  60.21 40.17 85.95 26.57 58.21 40.21 87.25
DeepSeek-V3 (Zero-shot) 36.53 6570 45.60 86.43 39.66 62.63 44.66 87.06
Fine-tuned LLMs
Llama-3.1-8B-FT (HUPD-DCG) 36.02 63.02 47.76 88.30 40.54 61.89 48.70 89.89
Llama-3.1-8B-FT (EPD) 4722 6794 51.52 90.40 34.05 58.95 45.16 87.99
Llama-3.1-8B-FT (Mixed) 47.04 67.11 50.87 90.31 41.50 61.61 47.94 89.92

Table 4: Claim generation results on EPD (from EPO) and HUPD-DCG (from USPTO) datasets. The best scores
for each metric are marked in bold. Scores of * are from Jiang et al. (2025c).
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Figure 1: LLM-as-a-judge evaluation results on EPD and HUPD-DCG.

LLMs on a specific dataset significantly improves
claim generation quality, including the complete-
ness of invention features, conceptual clarity, and
feature linkage (Jiang et al., 2025c). Therefore,
our study primarily focuses on model performance
across different datasets, model generalization abil-
ity, and linguistic differences between datasets. Ad-
ditionally, Jiang et al. (2025c) reported the poor
performance of legal-specific LLM SaulLM-7B on
claim generation with detailed explanations. Our
results in Table 4 further confirm its ineffective-
ness on the EPD dataset, where it significantly lags
behind other models. For example, SaulLM-7B
achieves an R-L score of 26.46 on EPD, more than
13% lower than Llama-3.1-8B. Since our exper-
iments on EPD revealed similar findings, we ex-

clude further discussions of SaulLM-7B.

The EPD-trained model significantly improves
claim generation quality. Table 4 shows that fine-
tuning on the EPD dataset leads to substantial im-
provements across both traditional metrics (BLEU,
ROUGE, BERTScore) and LL.M-as-a-judge eval-
uations (e.g., clarity, dependency, terminology)
on the EPD test set. Compared to other mod-
els, Llama-3.1-8B-FT (EPD) achieves the high-
est BLEU (47.22), R-1 (67.94), R-L (51.52),
and BERTScore (90.40). Similarly, as shown in
Figure 1, Llama-3.1-8B-FT (EPD) demonstrates
stronger LLM-based scores across all dimensions,
with the highest scores in content (7.9), precision
(8.2), specificity (7.7), dependency (8.0), termi-
nology (8.7), and scope (7.8). Notably, GPT-40
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Figure 2: LLM-as-a-judge performance difference be-
tween EPD and HUPD-DCG (EPD minus HUPD-DCG)

achieves the highest clarity score of 8.3. In ad-
dition, while fine-tuning on HUPD-DCG also im-
proves over the base model, the gains are more
modest. Under few-shot settings, we observe simi-
lar patterns to those seen in the fine-tuning setup:
one-shot prompts drawn from EPD lead to better
performance than those from HUPD, on both the
EPD and HUPD test sets.

Base LLMs perform worse on EPD. Figure 2
highlights the performance gap between EPD and
HUPD-DCG. Base models (LLlama-3.1-8B and
GPT-40) generally perform better on HUPD-DCG,
with performance dropping by up to 0.2 points
on most evaluation dimensions, except for con-
tent coverage. This may be due to: (1) extensive
pre-training on US patent data, leading to a pref-
erence for US-style claims; and (2) the greater
precision and structural rigor of granted claims in
EPD, which pose challenges for zero-shot genera-
tion. Overall, these findings underscore the distinc-
tiveness of EPD and its value in advancing claim
generation research.

The EPD-trained model exhibits cross-domain
generalization ability. As shown in Figure 2, mod-
els fine-tuned on one dataset experience a drop
when tested on the other dataset. For example, the
performance of Llama-3.1-8B-FT (EPD) degrades
in all aspects when evaluated on HUPD-DCQG, es-
pecially in content coverage and dependency (more
than 0.2). The performance drops across datasets
suggest the generalization challenge, as patents
from the USPTO and EPO have different draft-
ing conventions and standards. However, Llama-
3.1-8B-FT (EPD) still exceeds Llama-3.1-8B-FT
(HUPD-DCG) on LLM-based evaluation on the
HUPD-DCG dataset, as shown in Figure 3. Llama-
3.1-8B-FT (EPD) achieves higher scores in content
(7.7 vs. 7.3), precision (8.1 vs. 7.6), specificity (7.7

vs. 7.0), clarity (8.1 vs 7.8), dependency (7.7 vs.
7.2), terminology (8.6 vs. 8.3), and scope (7.7 vs.
7.3). This result implies that higher-quality training
data can potentially enable stronger generalization
across patent jurisdictions.

On the other hand, in Table 4, Llama-3.1-8B-FT
(HUPD-DCG) demonstrates slightly higher tradi-
tional evaluation scores on the HUPD-DCG test
set. Specifically, Llama-3.1-8B-FT (HUPD-DCG)
achieves higher R-1 (61.89 vs. 58.95), R-L (48.70
vs. 45.16), and BERTScore (89.89 vs. 87.99). This
is possibly because the fine-tuned model mimics
the verbose US-style ground truth more closely.
Nonetheless, LLM-based judgments highlight that
Llama-3.1-8B-FT (EPD) generates claims that are
more faithful to the legal and structural norms of
gold claims.

Mixed-domain training does not bring extra
benefits. The model fine-tuned on the mixed
dataset (EPD + HUPD-DCG) achieves compara-
ble performance to Llama-3.1-8B-FT (EPD) on
the EPD test set and to Llama-3.1-8B-FT (HUPD-
DCG) on the HUPD-DCG test set, across both tra-
ditional metrics and LLLM-as-a-judge evaluations.
For instance, BLEU, ROUGE, and BERTScore
variations are within 1% compared to the models
fine-tuned on individual datasets. As shown in
Figure 1, the performance profiles of Llama-3.1-
8B-FT (Mixed) nearly overlap with those of the
corresponding fine-tuned models on their respec-
tive test sets. However, its LLM-as-a-judge scores
remain slightly lower than those of Llama-3.1-8B-
FT (EPD) on both datasets, with a marginal drop
(less than 0.1) on EPD, but a more noticeable de-
crease (up to 0.5) on HUPD-DCG. Moreover, Fig-
ure 2 reveals that mixed training results in larger
cross-domain performance drops, exceeding 0.3 in
all evaluation dimensions. These findings suggest
that mixed training does not help the model acquire
additional structural or linguistic knowledge to im-
prove claim generation quality or cross-domain
generalization.

High-quality training data are essential for im-
proving both generation quality and general-
ization. Although HUPD-DCG originates from
USPTO, it consists of application-stage claims,
which are generally longer and structurally more
complex, as shown in Table 3. As demonstrated in
Table 4 and Figure 1, fine-tuning on such data leads
to limited performance improvements and fails to
generalize to other datasets. In contrast, EPD con-
tains granted claims from EPO, which are more
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Difficult Samples Easy Samples
Model BLEU R-1 R-L  BERTScore BLEU R-1 R-L  BERTScore
Base LLMs
Llama-3.1-8B (Zero-shot) 2441 5854 3590 85.46 37.14  65.21 47.04 88.04
Llama-3.1-8B (one-shot of HUPD)  21.77  56.75 37.31 85.54 3418 64.13  50.77 88.22
Llama-3.1-8B (one-shot of EPD) 28.85 60.24 38.98 86.77 4224 6785 53.96 89.81
GPT-40 (Zero-shot) 1799 5772 36.42 85.20 28.43  65.19 47.72 87.48
DeepSeek-V3 (Zero-shot) 32.14  63.35 40.90 85.55 4479 7043 55.01 88.21
Fine-tuned LLMs
Llama-3.1-8B-FT (HUPD-DCG) 3145  59.61 42.29 87.13 4577 6991 58.90 90.69
Llama-3.1-8B-FT (EPD) 4262 6493 4583 89.09 57.01 74.10 63.08 93.05
Llama-3.1-8B-FT (Mixed) 42.66 64.26 45.68 89.04 56.45 7297 61.50 92.86

Table 5: Claim generation results on difficult and easy examples of the EPD dataset. The best scores for each metric

are marked in bold.
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Figure 3: LLM-as-a-judge performance on difficult and easy subsets of EPD.

compact, terminology-rich, and legally polished.
The polished granted claims allow models to learn
more stable linguistic and logical patterns, which
results in better claim generation performance in
both in-domain and cross-domain settings, even
surpassing GPT-40. These findings highlight the
critical role of high-quality data in enabling robust
and precise legal text generation.

5.2 Performance on Difficult and Easy
Samples of EPD

Table 5 and Figure 3 respectively present the tradi-
tional and LLM-as-a-judge results for difficult and
easy subsets of EPD.

The EPD-trained model consistently outper-
forms others on both easy and difficult subsets.
Consistent with earlier findings, Llama-3.1-8B fine-
tuned on EPD achieves the best results across both

subsets and nearly all metrics. As shown in Table
5, on difficult samples, it achieves the highest R-L
(45.83) and BERTScore (89.09). On the easy sub-
set, it maintains a clear lead with BLEU 57.01, R-L
63.08, and BERTScore 93.05. Similarly, Figure 3
shows that the performance profile of Llama-3.1-
8B-FT (EPD) surpasses other fine-tuned models
across both subsets. These results confirm the ro-
bustness of Llama-3.1-8B-FT (EPD), which excels
not only on easier cases but also in structurally
challenging scenarios. This trend also holds for
few-shot settings, where the model with one-shot
example from EPO outperforms its counterparts on
both difficult and easy samples.

All models degrade significantly on difficult sam-
ples. As expected, all models exhibit a marked
performance drop on the difficult subset of EPD.
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Figure 4: LLM-as-a-judge performance difference be-
tween difficult and easy subsets (difficult minus easy).

For example, as shown in Table 5, Llama-3.1-8B’s
BLEU score drops from 37.14 on easy samples
to 24.41 on difficult ones, with similar trends ob-
served across other metrics and models.

Figure 4 further illustrates the degradation across
various LLLM-as-a-judge dimensions. Llama-3.1-
8B-FT (HUPD-DCG) is most affected, with de-
clines exceeding 1.0 in specificity and precision.
Even strong models like GPT-40 and Llama-3.1-
8B-FT (EPD) show consistent drops of 0.4-0.8
across most dimensions.

These results highlight the intrinsic difficulty of
these samples and the limitations of current models
in handling them. While easy samples often allow
for near-verbatim extraction from the description,
difficult cases require the model to extract key de-
tails, rephrase, and reconstruct them into coherent
and legally sound claims. The construction of the
difficult subset within EPD thus provides a valuable
benchmark for future research on model robustness,
handling of complex dependencies, and generaliza-
tion to low-frequency structures in legal text.

5.3 Human Evaluation and Qualitative
Analysis

We provide example claims generated by different
models on EPD in Appendix Table 12. We com-
pare model outputs with gold claims and conduct a
qualitative assessment to ensure the result analysis
is self-contained.

Llama-3.1-8B omits key technical details present
in the gold claim, such as the cartridge can be
recharged and manually activate. Additionally,
some claims exhibit redundancy, for example, both
claims 2 and 7 mention detecting the user’s phys-
ical condition. The model also introduces extra
features not included in the gold claim, such as a
depth sensor and emergency services.

Fine-tuned models demonstrate improvements
in multiple aspects, such as feature completeness,
structural coherence, and language precision. They
successfully retain key features like rechargeable
and manually activate, while reducing redundancy.
Compared to Llama-3.1-8B-FT (EPD), Llama-
3.1-8B-FT (HUPD-DCQG) introduces an additional
claim (claim 7) that describes alternative gas gen-
eration methods (compressed gas), which is not
in the gold claim. This example reflects draft-
ing convention differences between USPTO and
EPO, where USPTO favors broader claim coverage
through added variations, while EPO emphasizes
precision and clarity.

The mixed model further illustrates these con-
trasts across jurisdictions. It uses the more generic
term cartridge of compressed gas rather than the
more specific cartridge filled with CO2 used in the
gold and other fine-tuned models. It also simplifies
some phrasing, such as replacing said inflatable
collar with said collar. Moreover, claims 4, 5, and
6 generated by Llama-3.1-8B-FT (EPD) directly
reference claim 1, whereas the mixed model uses
according to any of the previous claims. These pat-
terns suggest the mixed model tends to prioritize
more general combinations of claims, which, as
multiple dependent claims, could incur additional
fees at the EPO.

GPT-40 produces well-structured and fluent
claims but omits key elements such as emission/re-
ception means and predetermined values included
in the gold claim and fine-tuned models. It also
adds extra features that expand beyond the core
inventive concept, such as alternative gas genera-
tion methods, suitability for various user groups,
and external alert systems. This suggests GPT-40
is pre-trained toward the US drafting style, likely
influenced by its extensive training on USPTO data.

Overall, the model fine-tuned on EPD aligns
most closely with the gold claim in terms of techni-
cal features, structure, and scope. It demonstrates
the effectiveness of the EPD dataset in guiding
high-quality claim generation.

6 Conclusion

We present the EPD dataset, a collection of Eu-
ropean patents to support various patent-related
tasks. Compared to existing datasets for patent
claim generation, EPD offers three major advan-
tages: higher quality, closer to real-world situations,
and lower risk of data leakage. EPD fills a key gap
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for cross-jurisdiction evaluation of LLMs on patent
tasks. We conduct extensive experiments on both
the HUPD-DCG dataset (from USPTO) and our
EPD. Results demonstrate that models fine-tuned
on EPD consistently outperform those trained on
HUPD-DCG and even GPT-40 across both test sets,
which highlights EPD’s effectiveness in enhancing
claim generation quality and cross-domain gener-
alization. Additionally, we introduce a difficult
subset of EPD to simulate real-world claim draft-
ing challenges. Our analysis shows that all tested
models experience a substantial performance drop
on these samples. Overall, our findings provide
valuable insights into the limitations and opportuni-
ties in automated patent claim generation. We hope
EPD will serve as a foundation for future research
toward stronger claim-generation systems.

Limitations

The EPD dataset only includes patents published
by the European Patent Office and documented
in English. For claim generation, we use patent
descriptions constrained to fewer than 8,000 tokens
to ensure a fair comparison with previous research.
Additionally, we do not perform hyperparameter
tuning during fine-tuning or inference.

Ethics Statement

Llama-3 is under META LLAMA 3 COMMUNITY
LICENSE AGREEMENT. GPT-40 is under a com-
mercial license provided by OpenAl, and we ac-
cess it through its API. Our dataset is collected
from EPO’s Open Patent Services (OPS). Accord-
ing to the rule of Terms and Conditions for use
of the EPO’s OPS, we will provide a list of pub-
lication numbers and code to enable users to eas-
ily obtain structured data directly from OPS. Our
proposed dataset is organized for multiple patent-
related tasks and is compatible with the original
access and use conditions. We plan to use the CC-
BY-NC-4.0 license. Although the dataset contains
the inventors’ information on each patent, these de-
tails are already in the public domain and available
for retrieval on EPO systems. The use of existing
artifacts is consistent with their intended use.
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Structure | Label |

Description

Section F

Class F02
Sub-class F02D
Group F02D 41
Sub-group | FO2D 41/02

Mechanical engineering ; Lighting; Heating; Weapons; Blasting
Combustion engines; hot-gas or combustion-product engine plants
Controlling combustion engines

Electrical control of supply of combustible mixture of its constituents
Circuit arrangements for generating control signals

Table 6: Example of International Patent Classification (IPC) scheme from Jiang and Goetz (2025)

Section | Description | Single | Both
A Human necessities 11,152 | 6,223
B Performing operations; transporting 9,754 | 7,003
C Chemistry; metallurgy 3,308 | 2,249
D Textiles; paper 393 326

E Fixed constructions 1,683 753

F Mechanical engineering; lighting; heating; weapons; blasting | 3,260 | 2,973
G Physics 6,897 | 6,963
H Electricity 5,414 6,713

Table 7: Number of documents in different IPC sections

A Patent Background

Patent documents are essential for protecting intel-
lectual property (IP) and documenting inventions.
They provide a detailed description of new inven-
tions and define the scope of patent rights granted to
the holder. As integral components of the patenting
process, these documents become publicly acces-
sible once a patent is issued. Although the format
and content may vary by jurisdiction, they typically
include the following elements: title, bibliometric
information, patent classification code, citations,
abstract, drawings, detailed description, and claims.
Jiang and Goetz (2025) identified three key chal-
lenges for LLMs in patent-related tasks: handling
the long context length, processing technical lan-
guage, and satisfying precision requirements.

Patents are organized into hierarchical categories
to facilitate efficient searching and management.
The International Patent Classification (IPC) and
Cooperative Patent Classification (CPC) systems
are two of the most popular classification schemes.
For example, the IPC system classifies patents into
six levels: section, class, subclass, group, and sub-
group. Table 6 lists the breakdown of the FO2D
41/02 label using the IPC scheme.

B Dataset Details

Data Structure and Format Each patent docu-
ment is saved to a structured JSON file, named
by its publication number and version, such as
EP1234567B1. The data fields include publica-
tion numbers, title, kind code, publication dates,

primary and secondary classification codes, patent
family, application reference, applicants, inventors,
citations, abstract, claims, and descriptions.

More Statistics Table 7 illustrates the number of
documents across different IPC sections in this
dataset.

C More Tasks

Our EPD dataset supports multiple patent-related
tasks. We highlight some other possible uses in this
section. All tasks use patents from August 2024
as the test set, while the remaining patents serve
as the training set. We select the Llama-3.1-8B-
Instruct’ as the base model for all tasks because
of its strong performance and a suitable size for
fine-tuning. Details of experimental settings are
provided in Appendix E.

C.1 Patent Subject Classification

Task definition This task involves classifying
patents into predefined categories based on their
subjects. Automating this classification process
is crucial given the large number of patents being
filed and the complexity of manual classification.
Since there are significant overlaps between IPC
and CPC, we use IPC codes as labels for consis-
tency with prior work (Suzgun et al., 2024). We fo-
cus on three levels of prediction: section, class, and
subclass. We explore the model performance under
two different settings similar to previous work (Suz-
gun et al., 2024): fine-tuning based on abstracts.

7https://huggingface.co/meta—llama/Llama—3.
1-8B-Instruct
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2 "publication_number”: "...",
"title": "...",
4 "kind_code”: "...",
5 "date_published”: "...",
6 "main_cpci_label”: "...",
7 "cpci_labels”: ["...", "...", "..."1,
8 "main_ipcr_label”: "...",
9 "ipcr_labels”: ["...", "...", "..."1,
10 "family_id”: "...",
) "application_reference”: "...",
12 "applicants”: ["...", "...", "..."1,
13 "inventors": ["...", "...", "..."1,
14 "citations": [
15 {
16 "cited_phase”: "...",
17 "cited_by": "...",
18 "source": "...",
19 "text": "...",
20 "document_number”: "...",
21 "category": "...",
22 "related_claims”: " ",
23 "related_passages”: ["...", " R "]
1‘ }!
25 {...3},
26
27 ]
28 "abstract”: "...",
29 "claims": "...",
30 "description”: "..."
31}
Figure 5: An example of an organized data file in EPD
\ HUPD \ EPD
Model | Section | Class |  Subclass | Section | Class |  Subclass
| Acc. F1 | Acc F1 | Acc F1 | Acc F1 | Acc F1 | Acc F1
Llama-3.1-8B 56.37 36.03 | 32.64 17.11 | 2548 12.11 | 51.59 41.02 | 31.21 17.59 | 21.64 10.37
Llama-3.1-8B-FT (HUPD) | 81.69 74.23 | 72.84 5098 | 63.54 36.27 | 76.13 7142 | 61.74 4296 | 47.34 27.36
Llama-3.1-8B-FT (EPD) 7841 71.73 | 67.12 4594 | 5522 30.51 | 80.77 7477 | 67.63 4844 | 5478 33.41

Table 8: Patent classification results on HUPD and EPD datasets (Accuracy and F1).

Results Table 8 shows the results of this multi-
class subject classification task based on the IPC
labels at section, class, and subclass levels. We
observe that models fine-tuned on one jurisdiction
(e.g., USPTO vs. EPO) perform slightly worse
on the other. This drop is due to differences in
examiner practices, technical focus, and the inter-
pretation of “technical contribution”, which leads
to divergent labeling standards and thus different
learning objectives during fine-tuning.

C.2 Summarization

Task definition Patent summarization aims to gen-
erate concise yet informative abstracts from patent
claims or descriptions. It uses more accessible
language to briefly introduce the complex and tech-
nical patent to wider audiences. This process in-

volves identifying and condensing the key aspects
of a patent, such as claims and detailed descriptions
of the invention.

Previous research showed that claim-based ab-
stract generation outperformed description-based
summarization (Suzgun et al., 2024). Hence, we
focus on generating patent abstracts based on the
claims.

Results Table 9 provides results of patent summa-
rization as measured by ROUGE score (Lin, 2004).
We find that the performance of fine-tuned models
remains relatively consistent across jurisdictions.
This is likely because both USPTO and EPO ad-
here to similar standards for abstract writing, which
makes the task more domain-invariant.
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\ HUPD \ EPD
Model

\ R-1 R-2 R-L \ R-1 R-2 R-L
Llama-3.1-8B 5349 31.65 39.06 | 56.14 36.08 42.96
Llama-3.1-8B-FT (HUPD) | 60.88 44.43 50.56 | 69.66 56.28 62.08
Llama-3.1-8B-FT (EPD) 59.71 43.70 50.10 | 69.48 56.77 62.60

Table 9: Results of patent summarization as measured by ROUGE score.

C.3 Language Modeling

This dataset provides approximately 0.12 billion
tokens of patent texts in 2024, which is not likely
to appear in the pre-training dataset of some cur-
rent LLMs. Therefore, this dataset supports two
language modeling tasks. First, researchers can do
domain-specific training to adapt general LLMs to
the patent or legal domain (Colombo et al., 2024).
Since patent tasks are particularly challenging due
to the complex terminology, extensive length, and
technical contents, patent-specific LLMs are very
promising to improve performance. Second, re-
searchers can do continual pre-training (Sun et al.,
2020) to keep current patent-specific models up-
to-date. Such models will be more adaptive for
analyzing or managing recently published patents.
Extensive high-quality and recent data is helpful to
both tasks.

C.4 Patent Retrieval

Patent retrieval aims to retrieve patent documents
related to a given patent (Shalaby and Zadrozny,
2019). This process is crucial for patent examiners
to assess the patentability of a new patent appli-
cation. Since the dataset includes patent citations,
researchers could easily formulate pairs of patents
relevant to each other.

D More Results

D.1 Dataset

The EPD dataset contains two versions of each
patent: the application version, initially rejected by
the examiner, and the granted version, which is the
final version that passes the examination. These
two versions naturally provide human-annotated
quality labels, which can serve to enhance LLM
alignment in patent claim generation, particularly
through reinforcement learning with human feed-
back (RLHF) (Ouyang et al., 2022). We obtain
10,087 pairs of claims by filtering 32,988 patents
from EPD that contain both versions and have
description lengths under 8,000 tokens. Notably,

there is no overlap between the preference dataset
and the fine-tuning dataset.

D.2 Models

For the RLHF process, we use Direct Preference
Optimization (DPO) (Rafailov et al., 2024) based
on the preference dataset. Traditional RLHF meth-
ods, such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017), have been widely used in
instruction tuning (Ouyang et al., 2022). However,
PPO-based approaches require explicit reward mod-
eling, are computationally expensive, and often
lead to instability. DPO provides a more efficient al-
ternative by directly optimizing model preferences
without explicit reward modeling. Given these ad-
vantages, we apply DPO for the RLHF process in
patent claim generation. We train Llama-3.1-8B-
FT (DPO) starting from the base Llama-3.1-8B
model, while the Llama-3.1-8B-FT (Mixed-DPO)
is trained from Llama-3.1-8B-FT (Mixed). We in-
troduce experimental details in Appendix E.

D.3 Results

Table 10 shows the performance of fine-tuned mod-
els with RLHF using DPO on both HUPD-DCG
and EPD datasets. The results indicate that while
fine-tuning significantly enhances claim generation
performance over base models, DPO-based RLHF
does not lead to improvements across all evaluation
metrics. For example, on the HUPD-DCG dataset,
the Llama-3.1-8B-FT (DPO) model achieves lower
scores (BLEU: 20.85, R-L: 31.45, BERTScore:
84.10) compared to its purely fine-tuned coun-
terpart (BLEU: 40.54, R-L: 48.70, BERTScore:
89.89). Interestingly, the DPO model even un-
derperforms the original base model without fine-
tuning (BLEU: 34.30, R-L: 40.91, BERTScore:
87.64). A similar trend is observed on the EPD
dataset, which further confirms that DPO-based
RLHF does not enhance claim generation quality.
We also find that applying DPO on a fine-tuned
model leads to better results than applying DPO
directly on a base model. However, its perfor-
mance remains significantly below that of the fine-
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HUPD-DCG EPD
Model BLEU R-1 R-LL. BERTScore BLEU R-1 R-L.  BERTScore
Fine-tuned LLMs with RLHF
Llama-3.1-8B-FT (DPO) 20.85 51.88 31.45 84.10 33.05 57.69 34.14 86.13
Llama-3.1-8B-FT (Mixed-DPO) 2596 53.69 36.14 85.83 3841 59.89 38.44 87.45

Table 10: Claim generation results on HUPD-DCG (from USPTO) and EPD (from EPO) datasets.

Difficult Samples Easy Samples
Model BLEU R-1 R-L  BERTScore BLEU R-1 R-L  BERTScore
Fine-tuned LLMs with RLHF
Llama-3.1-8B-FT (DPO) 31.51  56.99 3243 85.83 36.10 59.03 37.61 86.73
Llama-3.1-8B-FT (Mixed-DPO)  35.74  58.39 35.72 86.81 4371  62.64 43.77 88.74

Table 11: Claim generation results on difficult and easy examples of the EPD dataset.

tuned model. This suggests that fine-tuned mod-
els already establish a well-formed distribution,
and DPO optimization is not well-aligned with the
claim generation objective.

These findings suggest that while the application-
to-granted claim transformations provide a natural
source of preference data, their direct application in
DPO-based RLHF does not necessarily contribute
to meaningful improvements in claim generation.
Additional refinements or processing steps are re-
quired to construct an effective preference dataset
for RLHF.

A similar trend is observed when evaluating
both difficult and easy samples, as shown in Ta-
ble 11. In both datasets, LLMs trained with DPO
perform even worse than the base model without
fine-tuning.

D.4 Analysis and Future Work

A key observation from our experiments is that the
rewarding accuracy achieves exceptionally high
scores of over 98% during the DPO process. Given
that assessing the quality of patent claims is highly
complex, even for experienced patent professionals,
this accuracy level seems implausible. The high
score suggests that the model may be over-fitting to
strongly correlated superficial patterns rather than
learning meaningful quality distinctions.

One possible issue is that the model learns to dif-
ferentiate claims based on simple heuristics, such
as claim length or the presence of certain legal
terms (e.g., ‘wherein’), rather than deeper techni-
cal and legal aspects. Additionally, it may priori-
tize format consistency over actual content quality,
which is problematic for real-world claim genera-
tion, where the differences between high- and low-

quality claims are often subtle. If the model over-
fits these simplistic patterns, DPO optimization
may not effectively guide claim generation toward
higher-quality outputs, which ultimately leads to
degraded performance.

Future research can explore alternative formula-
tions of preference datasets. Potential directions in-
clude incorporating further human-annotated pref-
erences or refining models to capture more mean-
ingful quality differences. More complicated
RLHF techniques may be investigated to better
align the optimization process with the complexi-
ties of patent claim writing.

D.5 Qualitative Analysis

As shown in Table 12, for the DPO model, claim
1 is excessively long with overloaded details, and
Claims 2-5 also exhibit significant redundancy. Ad-
ditionally, the model frequently uses terms such
as wherein and configured to. These tendencies
align with previous analysis and suggest that the
model may over-fit to simplistic patterns to assess
claim quality. It may incorrectly associate longer
first claims with higher quality and result in an
overly lengthy claim 1. Moreover, DPO appears
to prioritize certain terminological patterns, likely
influenced by preferences in the training dataset.

E Experimental Details

All fine-tuning and inference processes are con-
ducted on NVIDIA A100 GPUs. We use the
LLaMA-Factory framework (Zheng et al., 2024)
for model fine-tuning and inference. We opt LoORA
(Hu et al., 2021) for fine-tuning to reduce computa-
tional costs while maintaining comparable perfor-
mance. The total running time is about 630 hours.
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We do not explore the effects of few-shot prompting
because we have fine-tuned models for all tasks,
which perform stronger and more robustly. For
classification evaluation, we use the sklearn Python
library to calculate accuracy, precision, recall, and
F1 score. We use the Huggingface evaluate library
to measure the BLEU, ROUGE, and BERTScore
for text generation tasks.

Claim Generation The following hyper-
parameters are used during fine-tuning: LoRA
rank: 8, LoRA alpha: 16, learning rate: Se-5,
batch size: 2, number of epochs: 3, validation
ratio: 10%, cut-off length: 10,240. The following
hyper-parameters are used during DPO: beta:
0.1, learning rate: Se-5, batch size: 1, number of
epochs: 2, validation ratio: 10%. For inference, we
use the following prompt: You are a patent expert.
Given the following patent description, generate
patent claims. We set the maximum new tokens to
1024, temperature to 0.1, and top_p to 0.95.
Patent Subject Classification The following
hyper-parameters are used during training: LoRA
rank: 8, LoRA alpha: 16, learning rate: 5e-5, batch
size: 8, number of epochs: 3, validation ratio: 10%.
The max input length is set to 256 for abstracts
and 2,048 for claims. We use the following prompt
instruction: You are a patent expert. You will be
given abstracts/claims of a patent. Your task is to
determine the patent’s International Patent Classi-
fication code at the subclass level.

Patent Summarization The following hyper-
parameters are used during training: LoRA rank:
8, LoRA alpha: 16, learning rate: Se-5, batch size:
4, number of epochs: 3, validation ratio: 10%, max
input length: 2,048, max output length: 256. We
use the following prompt instruction: You are a
patent expert. You will be given claims of a patent.
Your task is to generate the patent abstract.

F Statistics Calculation Method

We use the tiktoken Python library with the GPT-
40 tokenizer to count the number of tokens. The
claim length is computed as the total token count
divided by the number of claims. We use the spaCy
Python library to obtain structural complexity, de-
termined by the ratio of subordinate clauses to the
total number of sentences. Syntactic tree depth
is computed using a constituency parser and mea-
sures the depth of the syntactic parse tree of the
main independent claim. Higher values indicate
more deeply nested grammatical structures. Read-

ability is evaluated using the Flesch-Kincaid Grade
Level formula (Kincaid et al., 1975), where a lower
score indicates greater readability. The calculation
is performed using the textstat Python library. Lex-
ical diversity, is calculated by MTLD (Measure of
Textual Lexical Diversity), where higher values in-
dicate that the vocabulary is more varied and less
repetitive. Term density, calculated as the propor-
tion of proper nouns and named entities, reflects
the concentration of technical terminology.

G LLM-as-a-judge Settings

We use the prompt in Table 13 to obtain LLM-as-a-
judge evaluation scores. During inference, we set
the temperature to 0.1 and top_p to 0.95.
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Gold claims 1. Collar life preserver for water sports that includes a compressed inflatable life preserver (1), a cartridge (2)
that is filled with CO2, a solenoid valve (3) in connection with the cartridge (2), a discharge valve (4), a sensor (5) associated
with a microprocessor (6) programmed with an algorithm and emission/reception means between the valve (3) and the
microprocessor (6), where the cartridge (2) can be recharged after each use, the algorithm constantly receives information of
the user’s body functions and by means of predetermined values knows when the user is unconscious, the microprocessor
(6) sends a signal to the solenoid valve (3) of the CO2 cartridge (2) for its automatic filling and there is a cord to manually
activate the CO2 cartridge; wherein the sensor (5) includes a cardiac sensor that detects an altered heart rate, characterized in
that the sensor (5) further includesa pulse oximeter that detects a low level of oxygen saturation in the blood,a movement
sensor and a sensor that captures muscle contractions.

Llama-3.1-8B Claim 1: A device for automatic inflation of a life preserver, comprising:a collar placed around the user’s
neck;an inflatable life preserver (1) internally compressed, said inflatable life preserver being connected to a CO2 cartridge
(2);a solenoid valve (3) connected to the CO2 cartridge (2) for filling the inflatable life preserver (1);a discharge valve (4)
for emptying the inflatable life preserver (1) after use;a sensor (5) associated with a microprocessor (6) programmed with
an algorithm to detect the user’s body functions and determine when the user is unconscious; emission/reception means
between the valve (3) and the microprocessor (6) for sending a signal to the solenoid valve (3) for automatic filling of the
inflatable life preserver (1) when the user is unconscious. Claim 2: The device of claim 1, wherein the sensor (5) includes a
pulse oximeter, a cardiac sensor, a muscle contraction sensor, a movement sensor, and a depth sensor for detecting the user’s
physical condition. Claim 3: The device of claim 1, wherein the sensor (5) is capable of sending external radio signals to be
captured by life guards or emergency services when the user is unconscious. Claim 4: The device of claim 1, wherein the
CO2 cartridge (2) can be replaced by any other means of gas generation, such as decompression of a solid by heat. Claim 5:
The device of claim 1, further comprising a rechargeable battery for powering the electronic elements. Claim 6: The device
of claim 1, wherein the inflatable life preserver (1) is designed to keep the user’s head out of the water at all times, ensuring
breathing can be maintained if the user is unconscious. Claim 7: The device of claim 1, wherein the device is designed for
use in aquatic sports, such as surfing, and is capable of detecting the user’s physical condition, including oxygen saturation,
heart rate, and muscle contractions. Claim 8: The device of claim 1, wherein the device can be used as an alternative for
other sports where there is no specific protection, such as underwater fishing or for children or persons with little mobility.
Claim 9: The device of claim 1, wherein the device has a manual activation cord for the CO2 cartridge (2) in case of need.
Claim 10: The device of claim 1, wherein the inflatable life preserver (1) has a discharge valve (4) for emptying the inflatable
life preserver (1) after use.

Llama-3.1-8B-FT (EPOQO) 1. Device for the protection of a user in aquatic sports, comprising a collar (1) that is placed
around the user’s neck, said collar (1) being inflatable by means of a cartridge (2) that is filled with CO2, said inflatable
collar (1) comprising a solenoid valve (3) in connection with said cartridge (2) that allows its filling, said inflatable collar
(1) also comprising a discharge valve (4) that permits emptying the inflatable collar (1) after its use, said inflatable collar
(1) presenting a sensor (5) associated with a microprocessor (6) programmed with an algorithm that constantly receives
information on the user’s body functions and is capable, through predetermined values, of knowing when the user is
unconscious, said device having emission/reception means between said valve (3) and said microprocessor (6), said sensor
(5) being able to send a signal that alters the threshold of the predetermined value and said microprocessor (6) to send a
signal to the solenoid valve (3) of the cartridge (2) of CO2 for the automatic filling, in such a way that this device keeps the
user’s head out of the water at the time in which the life preserver is used and, therefore, breathing can be maintained if the
user is unconscious. 2. Device according to claim 1, characterised in that it comprises a cord to activate the cartridge of
CO2 manually in case of need. 3. Device according to claim 1, characterised in that it comprises a rechargeable battery
that keeps the electronic elements in operation. 4. Device according to claim 1, characterised in that said microprocessor
(6), programmed with the predetermined algorithm, detects by means of said sensor (5) an altered signal of the information
obtain and sends a signal for the opening of the solenoid valve (3) for the activation of the cartridge (2). 5. Device according
to claim 1, characterised in that said sensor (5) includes a pulse oximeter that detects a low level of oxygen saturation in the
blood, a cardiac sensor that detects an altered heart rate, a sensor that captures muscle contractions, a movement sensor,
in addition to a depth sensor for athletes that practice water sports, in particular, surfing. 6. Device according to claim 1,
characterised in that it comprises a sensor capable of sending external radio signals capable of being captured by life guards
or emergency services when the unconsciousness of the user is detected.

Llama-3.1-8B-FT (USPTO) 1. A device for a life preserver, comprising: a collar composed internally by a compressed
inflatable life preserver, the collar being placed around a user’s neck and being inflated by means of a cartridge filled
with CO2; the inflatable life preserver having a solenoid valve in connection with the cartridge that allows its filling; the
inflatable collar having a discharge valve that permits emptying the inflatable collar after its use; the inflatable collar having a
sensor associated with a microprocessor programmed with an algorithm that constantly receives information on the user’s
body functions and is capable, through predetermined values, of knowing when the user is unconscious; the device having
emission/reception means between the valve and the microprocessor, with this sensor being able to send a signal that alters
the threshold of the predetermined value and the microprocessor to send a signal to the solenoid valve of the cartridge of
CO2 for the automatic filling, in such a way that this device keeps the user’s head out of the water at the time in which the
life preserver is used and, therefore, breathing can be maintained if the user is unconscious.

Continue on next page
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2. The device of claim 1, wherein the device has a cord to activate the cartridge of CO2 manually in case of need. 3. The
device of claim 1, wherein the device has a rechargeable battery that keeps the electronic elements in operation. 4. The device
of claim 1, wherein the microprocessor, programmed with the predetermined algorithm, detects by means of the sensor an
altered signal of the information obtain and sends a signal for the opening of the solenoid valve for the activation of the
cartridge. 5. The device of claim 1, wherein the sensor includes a pulse oximeter that detects a low level of oxygen saturation
in the blood, a cardiac sensor that detects an altered heart rate, a sensor that captures muscle contractions, a movement sensor,
in addition to a depth sensor for athletes that practice water sports, in particular, surfing. 6. The device of claim 1, wherein
the sensor is capable of sending external radio signals capable of being captured by life guards or emergency services when
the unconsciousness of the user is detected. 7. The device of claim 1, wherein the CO2 cartridge can be replaced by any
other means of gas generation, for example decompression of a solid by heat.

Llama-3.1-8B-FT (Mixed) 1. A device for a life preserver, comprising a collar (1) that is placed around the user’s neck,
said collar (1) being inflatable by means of a cartridge (2) of compressed gas, said collar (1) comprising a solenoid valve
(3) in connection with said cartridge (2) for the filling of said collar (1), said collar (1) comprising a discharge valve (4)
for the emptying of said collar (1) after its use, said collar (1) comprising a sensor (5) associated with a microprocessor
(6) programmed with an algorithm that constantly receives information on the user’s body functions and is capable of
determining when the user is unconscious, said device comprising emission/reception means between said valve (3) and
said microprocessor (6), said sensor (5) being able to send a signal that alters the threshold of the predetermined value and
said microprocessor (6) to send a signal to said solenoid valve (3) of said cartridge (2) of compressed gas for the automatic
filling, in such a way that this device keeps the user’s head out of the water at the time in which the life preserver is used and,
therefore, breathing can be maintained if the user is unconscious. 2. The device according to claim 1, characterised in that it
comprises a cord to activate said cartridge (2) of compressed gas manually in case of need. 3. The device according to claim
1 or 2, characterised in that it comprises a rechargeable battery that keeps the electronic elements in operation. 4. The device
according to any of the previous claims, characterised in that said microprocessor (6), programmed with said predetermined
algorithm, detects by means of said sensor (5) an altered signal of the information obtain and sends a signal for the opening
of said solenoid valve (3) for the activation of said cartridge (2). 5. The device according to any of the previous claims,
characterised in that said sensor (5) includes a pulse oximeter that detects a low level of oxygen saturation in the blood, a
cardiac sensor that detects an altered heart rate, a sensor that captures muscle contractions, a movement sensor, in addition to
a depth sensor for athletes that practice water sports, in particular, surfing. 6. The device according to any of the previous
claims, characterised in that it comprises a sensor capable of sending external radio signals capable of being captured by life
guards or emergency services when the unconsciousness of the user is detected.

GPT-40 1. An inflatable life preserver device comprising: - a collar configured to be placed around a user’s neck; - an
inflatable life preserver housed within the collar; - a CO2 cartridge connected to the inflatable life preserver for inflation; - a
solenoid valve operatively connected to the CO2 cartridge to control the release of CO2; - a sensor configured to monitor the
user’s body functions; - a microprocessor programmed with an algorithm to receive data from the sensor and determine
when the user is unconscious; - wherein the microprocessor sends a signal to the solenoid valve to inflate the life preserver
upon detecting unconsciousness, thereby maintaining the user’s head in a safe position above water. 2. The device of claim 1,
wherein the sensor includes: - a pulse oximeter for detecting oxygen saturation levels in the blood; - a cardiac sensor for
monitoring heart rate; - a sensor for detecting muscle contractions; - a movement sensor; - a depth sensor for aquatic sports
applications. 3. The device of claim 1, further comprising: - a manual activation cord for the CO2 cartridge to allow manual
inflation of the life preserver. 4. The device of claim 1, further comprising: - a rechargeable battery to power the electronic
components of the device. 5. The device of claim 1, wherein the sensor is further configured to send external radio signals to
alert lifeguards or emergency services upon detecting the user’s unconsciousness. 6. The device of claim 1, wherein the
CO2 cartridge is replaceable with an alternative gas generation means, such as the decompression of a solid by heat. 7. The
device of claim 1, wherein the collar is designed to be used in various sports, including underwater fishing and surfing, and is
suitable for children or individuals with limited mobility. 8. The device of claim 1, wherein the microprocessor is configured
to adjust the threshold values for detecting unconsciousness based on the sensor data. 9. The device of claim 1, wherein the
inflatable life preserver includes a discharge valve for deflating the collar after use. 10. The device of claim 1, wherein the
microprocessor and sensor are configured to continuously monitor and analyze the user’s physiological data to ensure timely
activation of the life preserver.

Llama-3.1-8B-FT (Mixed-DPO) 1. A device (1, 2, 3, 4, 5, 6) for a user, comprising a collar (1) configured to be placed
around a neck of the user, the collar (1) comprising a compressed inflatable life preserver (1) and a sensor (5) associated with
a microprocessor (6) configured to be programmed with an algorithm, wherein the inflatable life preserver (1) is configured to
be inflated by a cartridge (2) (2) comprising compressed CO2, wherein the inflatable life preserver (1) comprises a solenoid
valve (3) in connection with the cartridge (2) for filling the inflatable life preserver (1) with CO2 from the cartridge (2),
wherein the inflatable life preserver (1) comprises a discharge valve (4) for emptying the inflatable life preserver (1) after
its use, wherein the sensor (5) is configured to constantly receive information on the user’s body functions, wherein the
microprocessor (6) is configured to determine, based on the received information, when the user is unconscious, wherein the
device comprises emission/reception means between the solenoid valve (3) and the microprocessor (6), wherein the sensor
(5) is configured to send a signal to the microprocessor (6) and the microprocessor (6) is configured to send a signal to the
solenoid valve (3) to open the solenoid valve (3) for the automatic filling of the inflatable life preserver (1) with CO2 from
the cartridge (2) when the user is unconscious, wherein the sensor (5) comprises a pulse oximeter configured to detect a low
level of oxygen saturation in the blood,

Continue on next page
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a cardiac sensor configured to detect an altered heart rate, a sensor configured to capture muscle contractions, a movement
sensor and a depth sensor, wherein the sensor (5) is configured to send external radio signals capable of being captured by
life guards or emergency services when the unconsciousness of the user is detected, and wherein the device comprises a
rechargeable battery configured to keep the electronic elements in operation,characterized in that the sensor (5) is configured
to send a signal that alters a threshold of a predetermined value of the algorithm, and in that the microprocessor (6) is
configured to send a signal to the solenoid valve (3) of the cartridge (2) of CO2 for the automatic filling of the inflatable life
preserver (1) with CO2 from the cartridge (2) when the user is unconscious, wherein the microprocessor (6), programmed
with the predetermined algorithm, detects by means of the sensor (5) an altered signal of the information obtained and sends
a signal for the opening of the solenoid valve (3) for the activation of the cartridge (2). 2. The device (1, 2, 3, 4, 5, 6)
according to claim 1, wherein the sensor (5) is configured to send the external radio signals when the user is unconscious.
3. The device (1, 2, 3, 4, 5, 6) according to claim 1, wherein the sensor (5) is configured to send the external radio signals
when the user is unconscious and the sensor (5) is configured to send the external radio signals when the user is in a real
and imminent danger. 4. The device (1, 2, 3, 4, 5, 6) according to claim 1, wherein the sensor (5) is configured to send
the external radio signals when the user is unconscious and the sensor (5) is configured to send the external radio signals
when the user is in a real and imminent danger, wherein the sensor (5) is configured to send the external radio signals when
the user is in a predetermined time under water. 5. The device (1, 2, 3, 4, 5, 6) according to claim 1, wherein the sensor
(5) is configured to send the external radio signals when the user is unconscious and the sensor (5) is configured to send
the external radio signals when the user is in a real and imminent danger, wherein the sensor (5) is configured to send the
external radio signals when the user is in a predetermined time under water, wherein the sensor (5) is configured to send the
external radio signals when the user is in a predetermined depth under water.

Table 12: Example model outputs of patent EP3676170B1.

Instructions:

You will be given the draft claims and the referenced claims of the same patent. Your task is to rate the draft claims on
eight metrics using the referenced claims as the gold standard, and each scored from 1 to 10. Please make sure you read
and understand these instructions carefully. Please keep this document open while reviewing, and refer to it as needed.

Evaluation Criteria:

1. Coverage: Does the candidate claim fully capture all essential technical features described in the referenced claim?

2. Technical Precision: Does the candidate claim provide precise definitions and clear characterizations of technical
features, compared to the referenced claim?

3. Specificity: Does the candidate claim explicitly describe technical features in concrete detail rather than using overly
abstract or generalized language, compared to the referenced claim?

4. Clarity: Is the candidate claim logically coherent, unambiguous, and clearly understandable, compared to the referenced
claim?

5. Dependency Structure: Does the candidate claim exhibit correct hierarchical dependency relationships, compared to the
referenced claim?

6. Legal Terminology: Does the candidate claim correctly and professionally use patent-standard legal terms and
expressions, compared to the referenced claim?

7. Scope of Protection: Does the candidate claim achieve an appropriate scope of protection, compared to the referenced
claim?

Evaluation Steps:

1. Read the referenced claims carefully and assume the referenced claims have scores of 10 in all Evaluation Criteria.
2. Read the draft claims and compare it to the referenced claims.

3. Assign a score from 1 to 10 for each metric based on the Evaluation Criteria. Output the scores ONLY.

Example:

Referenced Claims: «Claims»
Draft Claims: «Claims»
Evaluation Form (scores ONLY):
- Coverage: X,

- Technical Precision: X,

- Specificity: X,

- Clarity: X,

- Conciseness: X,

- Dependency Structure: X,

- Legal Terminology: X,

- Scope of Protection: X.

Table 13: LLM-as-a-judge prompt used for patent claim evaluation.
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