
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 7707–7733
November 4-9, 2025 ©2025 Association for Computational Linguistics

Learning to Instruct: Fine-Tuning a Task-Aware Instruction Optimizer for
Black-Box LLMs

Yunzhe Qi1, Jinjin Tian2, Tianci Liu3, Ruirui Li2, Tianxin Wei1, Hui Liu2,
Xianfeng Tang2, Monica Cheng2, Jingrui He1

1University of Illinois Urbana-Champaign
2Amazon

3Purdue University
{yunzheq2,jingrui}@illinois.edu, jinjint@amazon.com

Abstract

The performance of Large Language Models
(LLMs) critically depends on designing effec-
tive instructions, which is particularly challeng-
ing for black-box LLMs with inaccessible inter-
nal states. To this end, we introduce Learning
to Instruct, a novel paradigm that formulates
instruction optimization as an LLM fine-tuning
objective for a white-box "instruction engineer"
LLM, leveraging its rich learning capacity and
vast pre-trained knowledge to enable efficient
and effective instruction optimization. Within
this paradigm, we propose Automatic Instruc-
tion Optimizer (AIO), a novel framework that
fine-tunes a white-box LLM into a capable in-
struction engineer. AIO learns to optimize task-
aware, human-comprehensible instructions by
incorporating task nuances and feedback from
the task-solving black-box LLM. To overcome
the challenges of inaccessible black-box gra-
dients and high API costs, AIO introduces a
novel zeroth-order (ZO) gradient approxima-
tion mechanism guided by Thompson Sam-
pling (TS), which reuses informative black-box
LLM feedback for improved query efficiency.
Extensive experiments show that AIO generally
outperforms strong baselines in both effective-
ness and efficiency, establishing Learning to
Instruct as a promising new direction for black-
box LLM instruction optimization.

1 Introduction

Large Language Models (LLMs) have shown re-
markable capabilities. However, their strong per-
formance generally relies on high-quality instruc-
tions that provide clear guidance and relevant con-
text. Crafting such instructions is particularly chal-
lenging for powerful black-box (API-based) LLMs
(Achiam et al., 2023; Anthropic, 2024), due to their
inaccessible internal states. Meanwhile, optimal
instruction strategies can vary significantly across
different LLMs, model versions, and downstream
tasks (Zhou et al., 2022; Khattab et al., 2023, 2022).

Manual instruction crafting, while sometimes ef-
fective, can be costly, labor-intensive, and scales
poorly with increasing task complexity (Brown
et al., 2020; Reynolds and McDonell, 2021; Shin
et al., 2020), highlighting the need for automated
and task-aware mechanisms to optimize black-box
LLM instructions (Sun et al., 2024).

Formally, instruction optimization can be viewed
as a special case of adapting powerful black-box
models to specific downstream tasks, by identify-
ing effective task-specific instructions. To this end,
a line of existing research casts a white-box LLM
into a capable "instruction engineer" to instruct the
black-box model through in-context learning frame-
works (Zhou et al., 2022; Pryzant et al., 2023; Chen
et al., 2024b; Lin et al., 2024). On the other hand,
fine-tuning offers a mechanism for integral adap-
tation of the LLM. The capacity to adjust model
parameters allows for a deeper assimilation of task-
specific nuances and complex patterns (Liu et al.,
2022; Mosbach et al., 2023; Han et al., 2024b).
Such fine-grained adaptability is particularly im-
portant for casting the "instruction engineer" LLM,
where accurately capturing and conveying task re-
quirements is crucial for generating high-quality
instructions, representing a promising yet underex-
plored direction of instruction optimization.

Motivated by these insights, we propose Learn-
ing to Instruct, a novel paradigm that re-frames in-
struction optimization as a fine-tuning objective for
a white-box "instruction engineer" LLM. This for-
mulation helps unlock the full potential of the opti-
mizer by enabling parameter updates through meth-
ods like Parameter-Efficient Fine-Tuning (PEFT)
(Hu et al., 2021a), allowing it to effectively and ef-
ficiently leverage pre-trained knowledge to capture
subtle task nuances. This conceptual shift from
in-context learning to a fine-tuning objective is our
first contribution, offering a principled path to in-
struction optimization.

However, applying the Learning to Instruct

7707

paradigm to black-box LLMs presents a significant
technical hurdle: the inaccessible internal gradi-
ents of the task-solving LLM. This prevents direct,
gradient-based fine-tuning of the white-box instruc-
tion engineer. While zeroth-order (ZO) approxima-
tion methods can bypass the need for direct gradi-
ents (Malladi et al., 2023), their reliance on random
sampling can lead to potentially prohibitive query
complexity, making them impractical given the gen-
erally expensive API costs of powerful black-box
models.

To overcome this challenge and make our
paradigm practical, we introduce the Automatic In-
struction Optimizer (AIO) framework, centered on
a novel and query-efficient ZO fine-tuning pipeline.
Our approach tackles the potentially high cost
of ZO approximation through two synergistic ad-
vances. First, we identify that the ZO approxima-
tion difficulty (e.g., slower convergence) increases
with the number of parameters, i.e., the dimension-
ality of the gradients to be estimated (Chen et al.,
2024a; Qiu and Tong, 2024). In light of this, AIO
proposes to reduce the cost by estimating gradi-
ents only with respect to the output logits of the
white-box LLM (which generate the instruction),
rather than its entire parameter set. This conse-
quently lowers the gradient estimation dimension-
ality, thus reducing the number of queries required.
Second, to maximize the information gained from
each query, AIO reformulates the selection of per-
turbation directions as a Contextual Bandit prob-
lem. It employs a Thompson Sampling (TS)-based
strategy to intelligently reuse feedback from past
queries, prioritizing directions most likely to im-
prove the instruction. This TS-aided ZO method is
our second core contribution, providing a feasible
and efficient mechanism to realize the Learning to
Instruct paradigm for black-box LLMs.

Next, we review related works in Sec. 2 and de-
fine problem formulation in Sec. 3. Sec. 4 details
the AIO framework with TS-aided ZO method.
Experiments showcasing AIO’s effectiveness and
efficiency are in Sec. 5, and we conclude in Sec. 6.

2 Related Works
Instruction Optimization for Black-box LLM.
For black-box LLM instruction optimization, a line
of existing works (Zhou et al., 2022; Prasad et al.,
2022) performs instruction search based on manu-
ally defined criteria. Chen et al. (2024b); Lin et al.
(2024); Hu et al. (2024) also apply an LLM with
frozen parameters to generate instructions for the

black-box LLM, and gradually update the gener-
ated instruction based on Bayesian Optimization
(Frazier, 2018; Wang et al., 2023; Shahriari et al.,
2015), Contextual Bandit approaches (Chu et al.,
2011; Li et al., 2010; Valko et al., 2013; Zhou
et al., 2020; Agrawal and Goyal, 2013; Zhang et al.,
2021), or localized instruction optimization guided
by Gaussian Process (Schulz et al., 2018). To adapt
the vast pre-trained knowledge to the nuances of
instruction generation, we instead fine-tune a white-
box LLM to learn from task information and black-
box LLM feedback for instruction optimization.

LLM-based Instruction Generation. LLM-
based instruction optimization is an emerging re-
search topic (Zhou et al., 2022; Ma et al., 2024;
Schnabel and Neville, 2024), where LLMs are ap-
plied as instruction optimizer and their instruct-
ing strategies are gradually refined based on target
model feedback. In particular, there are a series of
works leveraging meta-prompts, which can be man-
ually designed by humans (Yang et al., 2024), or op-
timized by LLMs (Tang et al., 2024). Meanwhile,
Pryzant et al. (2023) perform in-context "Gradi-
ent Descent" on instructions based on interactions
with an "instruction engineer" LLM. Fernando et al.
(2023); Guo et al. (2024) propose in-context evolu-
tionary algorithms to refine LLM-generated instruc-
tions. AIO alternatively leverages rich learning
capacity of fine-tuned LLMs to model the relation-
ship between task information and black-box LLM
feedback, without relying on human experts.

3 Problem Formulation
Under the proposed Learning to Instruct paradigm,
given a target task T , we involve two LLMs: (1)
A black-box LLM FB(·) is for task-solving, i.e.,
generating answers for task queries. The black-box
LLM is treated as part of learning objective, as we
aim to optimize instructions that enhance its per-
formance. (2) A white-box LLM FW (·;ΘW) with
trainable parameters ΘW will generate and refine
human-comprehensible instructions, with informa-
tion from task T and feedback from FB(·).

Task data and instruction generation. Sup-
pose the target task T is associated with three
separate data collections (i.e., query-answer pairs
(X,Y)): (1) Training data (i.e., task exemplars)
DTrain guides the white-box LLM in generating and
optimizing task-specific instructions; (2) Valida-
tion data DValid is used for performance evaluation
during optimization; (3) Final evaluation is con-
ducted on a separate test set. Let FW (DTrain;ΘW)

7708

Figure 1: AIO Pipeline with information flow: The white-box LLM generates an instruction from exemplars,
evaluated to produce validation score. We then decompose the inaccessible black-box LLM gradients from the main
gradient flow, and approximate them using our proposed Thompson Sampling (TS)-aided zeroth-order (ZO) method.
Finally, we update white-box LLM parameters via Gradient Descent (GD) that is compatible with PEFT.

be the instruction generated by the white-box
LLM, with exemplars DTrain and tunable param-
eters ΘW . Black-box LLM then generates output
FB

(
[FW (DTrain;ΘW);X]

)
for query X , where

[·; ·] operation embeds query X to instruction.
Learning objective. Given exemplars DTrain

and an evaluation function L(·, ·), instruction opti-
mization is framed as a fine-tuning objective. We
aim to find the optimal white-box LLM parameters
ΘW that optimizes task-specific score.

min
ΘW

[
E(X,Y)∼T

[
L
(
FB

(
[ϕ(ΘW);X]

)
, Y

)]]
,

(1)

with a shorthand ϕ(ΘW) := FW (DTrain;ΘW) for
generated instruction. Intuitively, we utilize fine-
tuning to guide how the white-box LLM compre-
hends task exemplars and composes task-specific
instructions, based on task-solver black-box LLM
feedback during optimization.

4 Automatic Instruction Optimizer (AIO)

Given our learning objective (Eq. 1), a straightfor-
ward approach is to update the white-box LLM
parameters ΘW , using gradients computed from
instruction evaluation results. However, the nested
black-box LLM makes direct back-propagation to-
wards ΘW via the chain rule infeasible.

AIO Overview. Shown in Fig. 1, to achieve effi-
cient and effective white-box LLM fine-tuning for
instruction optimization, AIO involves two major
components. (1) Instruction Generation & Evalu-
ation: Given the exemplars DTrain, the white-box
LLM with parameters ΘW generates an instruction
ϕ(ΘW) := FW (DTrain;ΘW) as in Eq. 1. The in-
struction is then evaluated based on the black-box
LLM output, which produces validation score. (2)
White-box "instruction engineer" LLM Fine-tuning:
With the validation score, we decompose the gra-
dient flow towards ΘW into two components: (i)

white-box LLM gradients, which can be obtained
through back-propagation, and (ii) inaccessible
black-box LLM gradients, approximated by our
proposed TS-aided ZO method (Subsec. 4.1.2),
which enables efficient and effective gradient ap-
proximation. Pseudo-code is presented in Alg. 1.

Validation score. Given our optimization ob-
jective in Eq. 1, since a comprehensive overview
of the task distribution T can be inaccessible, we
evaluate the performance of the generated instruc-
tion on the validation data DValid, as per validation
score

LValid
(
ϕ(ΘW)

)
:=

1

|DValid|
∑

(X,Y)∈DValid

L
(
FB

(
[ϕ(ΘW);X]

)
, Y

)
,

(2)

where ϕ(ΘW) is the instruction generated by the
white-box LLM FW (·;ΘW) as in Eq. 1.

4.1 TS-aided ZO Gradient Approximation
To tackle this challenge of inaccessible black-box
LLM gradients, by applying chain rule on Eq. 2,
we can decompose the gradient flow with respect to
white-box LLM parameters ΘW into two compo-
nents: (1) gradients involving the black-box LLM;
(2) and white-box LLM gradients that can be ob-
tained by back-propagation, as

∂
[

1
|DValid|

∑
(X,Y)∈DValid

L
(
FB

(
[ϕ(ΘW);X]), Y

)]

∂ΘW

=
∂
[
LValid(ϕ(ΘW))

]

∂ϕ(ΘW)︸ ︷︷ ︸
Black-box LLM Gradients

× ∂ϕ(ΘW)

∂ΘW
,

︸ ︷︷ ︸
White-box LLM Gradients

(3)

by plugging in the definition of LValid
(
ϕ(ΘW)

)

from Eq. 2. For white-box LLM gradients, we can
also integrate back-propagation with PEFT tech-
niques, such as LoRA (Hu et al., 2021a), to improve

7709

fine-tuning efficiency while preserving strong per-
formance. Meanwhile, recall that directly comput-
ing the first term on the right-hand side via back-
propagation is infeasible, since the parameters and
gradients of the nested black-box LLM FB(·) are
inaccessible. We propose to leverage ZO gradient
approximation to address this challenge.

4.1.1 Zeroth-order (ZO) Black-box LLM
Gradient Approximation

Zeroth-order gradient approximation has been
proved effective and efficient for LLM fine-tuning
(Malladi et al., 2023), achieving satisfactory re-
sults with only forward (inference) passes of LLMs.
This makes the ZO method a promising approach
for approximating black-box LLM gradients.

Analogous to existing ZO approximation works
(e.g., Nesterov and Spokoiny (2017); Ghadimi et al.
(2016); Duchi et al. (2015); Shu et al. (2023); Mal-
ladi et al. (2023)), we can first assume a linear op-
timization landscape around white-box LLM out-
put ϕ. With validation score of Eq. 2, it leads to
LValid(ϕ+z) ≈ [∇ϕLValid(ϕ)]

⊺·z+LValid(ϕ), with
∇ϕLValid(ϕ) := ∂LValid(ϕ)/∂ϕ. Here, z is a small
perturbation applied to the predicted next-token dis-
tribution, for all tokens in the output ϕ, specifically
on LLM-header output logits (i.e., predicted logits
over the vocabulary). We include supplementary
explanations for auto-regressive generation and per-
turbation in Appendix D.1. Due to linearity, this
formulation holds as the gradients ∇ϕLValid(ϕ) re-
main constant for all ϕ within the linear landscape.

Black-box LLM Gradient Approximation.
Next, we propose to impose small token-level per-
turbations to gather information about the opti-
mization landscape, as even slight perturbations
in token-level outputs can effectively influence
the auto-regressive generation process (Han et al.,
2024a). Inspired by Malladi et al. (2023), we can
approximate black-box LLM gradients by

∇ϕ

[
LValid

(
ϕ(ΘW)

)]
≈

LValid
(
ϕ(ΘW) + ϵz

)
− LValid

(
ϕ(ΘW)− ϵz

)

2ϵ
· z
(4)

where we apply LValid(·) as the evaluation function
(Eq. 2), and ϵ ∈ R+ controls the perturbation inten-
sity. Here, z ∼ N (0, I) ∈ Rd stands for a random
Gaussian perturbation vector applied to each token
of the output ϕ, and it preserves the same dimen-
sionality as the token-level output dimensionality.
Consequently, d will correspond to the vocabulary

size of the white-box LLM, and the first term on
the right-hand side of Eq. 3 can be approximated
with only black-box LLM forward passes, without
accessing its internal gradients or parameters.

Remark 4.1 (Gradient Approximation Formula-
tion). We propose to approximate black-box LLM
gradients, rather than using ZO method to directly
estimate whole gradient flow (left-hand side of Eq.
3), as the error of ZO methods can grow along with
target dimensionality (Chen et al., 2024a; Qiu and
Tong, 2024). As the number of white-box LLM
parameters ΘW generally far exceeds its output
dimensionality (i.e., vocabulary size), we only ap-
proximate ∂

[
LValid(ϕ(ΘW))

]
/∂ϕ(ΘW) to reduce

estimation error (ablation study: Appendix C.5).
Here, one potential drawback is that as pertur-

bation vectors z are randomly sampled (Eq. 4),
gradient perturbation directions within the opti-
mization landscape will be random and potentially
inefficient (Cai et al., 2022) (e.g., sampled z being
orthogonal to the target gradient). Thus, we pro-
pose reusing collected feedback, by formulating
above ZO-based gradient approximation process as
a sequential decision-making problem, and utilize
Contextual Bandit techniques to effectively deter-
mine which perturbation directions are beneficial
and worth selecting, in terms of improving instruc-
tion quality and black-box LLM performance.

4.1.2 TS-aided gradient direction selection
Recall that ZO-based gradient approximation meth-
ods (e.g., Nesterov and Spokoiny (2017); Ghadimi
et al. (2016); Duchi et al. (2015); Malladi et al.
(2023)) commonly assume a linear optimization
landscape around the objective, as in Eq. 4.

Leveraging the linear optimization landscape.
In this case, as long as the updated ϕ stays within
the assumed linear landscape, we can intuitively
formulate the ZO approximation into a sequential
decision-making process, and leverage collected
information of the linear landscape to select infor-
mative perturbation directions z for Eq. 4.

Contextual Bandit algorithms (Li et al., 2010;
Agrawal and Goyal, 2013; Qi et al., 2023a, 2024)
are designed to identify the optimal choice among
a set of candidate arms (i.e., actions) based on
arm contextual information, while addressing the
exploitation-exploration dilemma in sequential
decision-making processes (Auer et al., 2002; Qi
et al., 2023b). Under Contextual Bandit settings
and the gradient approximation formulation in
Eq. 4, we define arm reward r =

[
∇ϕLValid(ϕ)

]⊺
z

7710

Figure 2: A linear optimization landscape (as a sphere)
around output ϕ. With vector z ∼ N (0, I), the ex-
pected radius is ϵ

√
d, for the L2 distance of average

token-level output. Updated ϕ′, ϕ′′ can remain within
this landscape, motivating our TS-based ZO method.

for each perturbation direction z ∈ Rd (i.e., a can-
didate arm in Contextual Bandit), such that it can
be approximated by

r ≈ LValid(ϕ+ ϵz)− LValid(ϕ− ϵz)

2ϵ
, (5)

with respect to current white-box LLM output ϕ.
Here, the arm reward quantifies the benefit of

perturbing in direction z (i.e., updating output ϕ
towards direction −z). Given our arm reward for-
mulation within a linear landscape, we employ a lin-
ear Thompson Sampling (TS) model to select per-
turbation directions (i.e., arms) accordingly. The
TS model parameters, with dimensionality d, are
θ ∈ Rd. Analogous to Agrawal and Goyal (2013);
Zhang et al. (2021), we initialize the TS model pa-
rameters with a prior N (0, I), progressively refine
the posterior using collected information.

With our arm reward formulation in Eq. 5 and
the nature of linear TS, TS parameters θ serve as
an estimate of the uniform gradients ∇ϕLValid(ϕ)
within the optimization landscape. This enables
the use of a highly efficient linear TS algorithm
for rapid arm selection and parameter updates, and
we gradually refine our arm selection strategy with
collected black-box LLM feedback.

TS-aided perturbation direction (arm) selec-
tion. We consider a T -round fine-tuning process.
Let pre-trained white-box LLM parameters without
fine-tuning be Θ0 := ΘW , with initial generated
instruction ϕ0 := ϕ(Θ0). We let Θt−1, t ∈ [T] be
white-box LLM parameters before t-th round fine-
tuning. In each round t, we first sample K ∈ N+

candidate arms (i.e., perturbation directions) Zt for
selection from standard Gaussian distribution:

Zt :=
{
zt,1, zt,2, . . . ,zt,K

}
∼ N (0, I), (6)

which helps control the arm context norm magni-
tude, while ensuring the direction randomness. Ini-

tial TS model parameters are instantiated by sam-
pling from the prior θ0 ∼ N (0, I). We also let
θt−1 represent the TS model parameters in round t
before the refinement. We will discuss later how to
update TS parameters using a refined TS parameter
posterior in Eq. 8. Following lines 4-6 of Alg. 1, for
these K candidate arms, we formulate estimated
rewards as the inner product z⊺

t,kθt−1,∀zt,k ∈ Zt,
and select the top-B, B ≪ K, arms with the high-
est estimated rewards to form collection Z̃t ⊂ Zt.
Setting B = 3 is sufficient in our experiments to
achieve satisfactory performance while maintain-
ing query efficiency. The chosen arms Z̃t repre-
sent perturbation directions beneficial for optimiz-
ing the validation score. We empirically compare
against ZO methods with random perturbations in
Appendix E.1, showcasing that our TS-aided ZO
approach is more effective for the optimization.

Querying arm rewards. Next, we query the
black-box LLM (i.e., reward oracle) for validation
score results LValid to obtain rewards for the chosen
arms Z̃t. Using the shorthand ϕt−1 := ϕ(Θt−1),
for each chosen arm zt,k ∈ Z̃t, we calculate its
arm reward by following Eq. 5, leading to

rt,k =
LValid(ϕt−1 + ϵzt,k)− LValid(ϕt−1 − ϵzt,k)

2ϵ
(7)

which measures the benefit of involving direction
(arm) zt,k for gradient approximation.

Fine-tuning White-box LLM. With each cho-
sen arm (perturbation direction), the queried val-
idation score results are also recycled to approxi-
mate the black-box LLM gradients, based on Eq. 4.
Here, analogous to Malladi et al. (2023), estimated
gradient results from the B chosen perturbation
directions (arms) are averaged for a more accurate
approximation. Then, white-box LLM parameters
are updated based on Gradient Descent (GD), with
the gradient flow (Eq. 3) and the estimated black-
box LLM gradients (Eq. 4).

Validating optimization landscape. With the
queried arm rewards (Eq. 7), we then update TS
parameters. Recall that we operate within a linear
optimization landscape, if generated instructions do
not significantly deviate from previous ones. There-
fore, we apply a threshold parameter β > 0 to quan-
tify the landscape. For the optimized instruction ϕt

in round t, we apply condition ∥ϕt − ϕCheck∥ > β
to verify whether the assumed linear landscape re-
mains valid. We set β to a large value in our ex-
periments, allowing TS to sufficiently leverage col-

7711

lected information. The initial checkpoint ϕCheck
is set as the instruction ϕ0. The output distance is
computed as the L2 distance, between the averaged
token-level logits of the current output ϕt and those
of the checkpoint ϕCheck, inspired by Joshi et al.
(2023); Manakul et al. (2023). Collected records
are initialized as an empty set Ω0 ← ∅.

Updating TS parameters θ. In each round
t ∈ [T], we consider two scenarios (lines 9-16, Alg.
1). Scenario (1): If white-box LLM output is far
enough from the checkpoint, s.t. ∥ϕt − ϕCheck∥ >
β, our current knowledge can be invalid because
current white-box LLM output has significantly
deviated from the checkpoint. In this case, we
set the new checkpoint as ϕt, discard collected
records, and reinitialize TS parameters θt from
the prior N (0, I). Scenario (2): Otherwise, if the
distance is small enough s.t., ∥ϕt − ϕCheck∥ ≤ β,
the chosen arms and their true rewards from this
round will be integrated into collected records
Ωt. Afterwards, analogous to existing TS meth-
ods (Agrawal and Goyal, 2013; Zhang et al., 2021),
with exploration variance ν ≥ 0, covariance matrix
Σt := I +

∑
(z,r)∈Ωt

z · z⊺, and reward vector
bt :=

∑
(z,r)∈Ωt

z · r, we update the posterior:

N (Σ−1
t bt, ν ·Σ−1

t). (8)

Finally, we sample updated TS parameters θt from
the posterior.

Remark 4.2 (Reducing Computational Costs). To
reduce computational costs, motivated by Johnson-
Lindenstrauss (JL) Lemma (Johnson and Linden-
strauss, 1984), we adopt random Gaussian pro-
jection to map d-dimensional arm contexts into a
lower-dimensional space (Matoušek, 2008; Larsen
and Nelson, 2017), where we select from candi-
dates Zt with TS. Similar ideas are also applied to
reduce soft prompt dimension (Chen et al., 2024b;
Lin et al., 2024). Meanwhile, for matrix inversion
Σ−1

t (Eq. 8), we apply Sherman-Morrison formula
(Bartlett, 1951; Maponi, 2007), to avoid direct ma-
trix inversions. Details are in Appendix D.2.

4.2 Summary of AIO Workflow
In Algorithm 1, for each round t ∈ [T], we sample
K candidate arms (gradient directions) Zt (line 4).
Our TS model then estimates their rewards (quanti-
fying benefits of perturbation directions). To mini-
mize API costs, only B ≪ K arms Z̃t ⊂ Zt will
be selected (lines 4-5). Next, we query the black-
box LLM to obtain rewards of the chosen arms

Algorithm 1 AIO Workflow
1: Input: T , K,B, β.
2: Init.: θ0 ∼ N (0, I). Θ0 ← ΘW . Checkpoint

ϕCheck ← ϕ(Θ0). TS records Ω0 ← ∅.
3: for each optimization round t ∈ [T] do

▷ TS-aided ZO Direction Selection
4: Sample K directions (arms) Zt (Eq. 6).
5: Z̃t ← argmaxZ̃t⊂Zt,

|Z̃t|=B

[∑
zt,k∈Z̃t

z⊺
t,kθt−1

]
.

▷ White-box LLM Fine-tuning

6: Query reward r for each chosen arm z ∈ Z̃t

(Eq. 7 and Eq. 2).
Only query Z̃t to reduce API cost.

7: Fine-tune white-box LLM parameters to Θt

via gradient flow (Eqs. 3-4).
8: Generate updated instruction ϕt := ϕ(Θt).

▷ Updating Linear TS Model
9: if ∥ϕt − ϕCheck∥ > β then

10: Reset TS priorN (0, I). Reset checkpoint
ϕCheck ← ϕt, and TS records Ωt ← ∅.

11: Sample TS parameters θt ∼ N (0, I).
12: else
13: With chosen arms Z̃t and their rewards,

update Ωt ← Ωt−1 ∪
[⋃

z∈Z̃t
(z, r)

]
.

14: Update posterior N (Σ−1
t bt, νΣ

−1
t).

15: Update θt ∼ N (Σ−1
t bt, νΣ

−1
t).

16: end if
17: end for

(line 6), and perform GD to fine-tune the white-box
LLM parameters with the gradient flow described
in Eqs. 3 and 4 (line 7). If white-box LLM’s output
significantly differs from its checkpoint, we reset
records and the TS parameter distribution (line 10).
Otherwise, the TS parameter posterior is updated
(lines 13-14). Finally, we sample the TS parameters
θt accordingly (lines 11, 15).

5 Experiments
For our experiments, Llama-3-8B-Instruct
(Dubey et al., 2024) is applied as our tunable white-
box LLM FW (·;ΘW), and Claude-3-Sonnet
(Anthropic, 2024) as black-box LLM FB(·). An
outline for our results in main body: (1) zero-shot
instruction induction experiments on 15 tasks are
in Subsec. 5.1; (2) analysis of API token costs and
instruction trajectory is in Subsec. 5.2; (3) a case
study on AIO’s transferability is in Subsec. 5.3.
Due to page limitations, we include detailed experi-
mental settings in Appendix B, and comprehensive

7712

Tasks \Methods

Black-box LLM White-box LLM w/o FT White-box LLM w/ FT (Ours)

APE ProTeGi InstructZero INSTINCT ZOPO AIO + LoRA AIO + LP AIO w/ Full FT

antonyms 0.893 0.861 0.843 0.881 0.853 0.898 0.857 0.901
sentiment 0.911 0.928 0.941 0.920 0.921 0.947 0.967 0.949
larger_animal 0.914 0.932 0.827 0.857 0.842 0.950 0.945 0.912
taxonomy_animal 0.491 0.970 0.598 0.782 0.887 0.935 0.979 0.983
object_counting 0.319 0.550 0.522 0.537 0.503 0.479 0.401 0.543
navigate 0.580 0.624 0.556 0.577 0.604 0.627 0.623 0.644
winowhy 0.022 0.703 0.671 0.725 0.026 0.635 0.646 0.622
implicatures 0.806 0.826 0.816 0.837 0.784 0.849 0.836 0.811
logical_fallacy_detection 0.820 0.826 0.790 0.826 0.829 0.836 0.824 0.868
hyperbaton 0.515 0.499 0.467 0.502 0.512 0.527 0.518 0.538
epistemic_reasoning 0.604 0.459 0.667 0.580 0.678 0.719 0.784 0.766
movie_recommendation 0.348 0.847 0.895 0.866 0.880 0.883 0.857 0.902
timedial 0.532 0.718 0.786 0.712 0.735 0.759 0.734 0.814
presuppositions_as_nli 0.458 0.488 0.503 0.482 0.479 0.493 0.486 0.523
question_selection 0.712 0.667 0.718 0.605 0.656 0.622 0.628 0.648

Average Rank 6.3 4.4 5.0 5.3 5.4 3.1 4.1 2.4

Table 1: Zero-shot instruction induction results. For each task, bold number is the best result, while underlined
number is the second-best one. AIO and its two variants can outperform four baselines on 12 out of a total of 15
tasks. Average rank results of each method across tasks are reported.

complementary experiments in Appendix C.

5.1 Zero-shot Instruction Induction
Analogous to existing instruction optimization
works (Zhou et al., 2022; Chen et al., 2024b; Lin
et al., 2024), our empirical analysis involves 15 dif-
ferent tasks, including instruction induction tasks
from Honovich et al. (2022), and more challeng-
ing reasoning tasks from BigBench (bench authors,
2023). We consider two baselines using black-box
LLMs for instruction optimization: (1) APE (Zhou
et al., 2022) and (2) ProTeGi (Pryzant et al., 2023),
and three baselines utilizing white-box LLMs: (3)
InstructZero (Chen et al., 2024b), (4) INSTINCT
(Lin et al., 2024), (5) ZOPO (Hu et al., 2024).

AIO with PEFT. Recall that our AIO is compat-
ible with many existing PEFT methods for efficient
white-box LLM fine-tuning. Therefore, we include
empirical results of incorporating Linear Probing
(LP) (Kumar et al., 2022) and LoRA (Hu et al.,
2021a) to our proposed AIO, denoted as "AIO +
LP" and "AIO + LoRA" respectively. "AIO + LP"
fine-tunes just ∼ 6.54% and "AIO + LoRA" only
fine-tunes ∼ 0.04% of the white-box LLM param-
eters, highlighting their parameter efficiency.

Main results. In Table 1, our proposed AIO
generally outperforms strong baselines on challeng-
ing reasoning tasks from BigBench (bench authors,
2023), owing to its Learning to Instruct paradigm
and TS-aided ZO fine-tuning process. An abla-
tion study in Appendix C.5 further supports the
effectiveness of AIO’s components. In particular,
our lightweight PEFT variants demonstrate strong
performance while requiring significantly fewer
tunable parameters. "AIO + LoRA", despite its
remarkable parameter efficiency (fine-tuning only
∼ 0.04% of parameters), can generally outperform

Figure 3: Token consumption vs. performance. Token
consumption results are normalized into [0, 1] range.

baselines and deliver impressive performance. This
highlights not only the overall effectiveness of the
AIO framework, but also its excellent efficiency-to-
performance balance. Meanwhile, AIO with LoRA
can also achieve generally stronger performance
and consistently outperforms the baselines for few-
shot induction (Appendix C.2), highlighting AIO’s
capabilities for effective instruction optimization
under different scenarios.

5.2 API Efficiency and Instruction Trajectory

For Claude-3, API query costs are charged on a
token-basis. As shown in Fig. 3, AIO can main-
tain a good balance between token cost and per-
formance, starting from early optimization stages
when small amounts of tokens are consumed. In-
structZero and INSTINCT generally have higher
token consumption than AIO. Applying white-box
LLMs with frozen parameters, they primarily rely
on in-context learning with a tunable soft prompt

7713

Figure 4: [Upper] Two generated instructions for "Sen-
timent" task: w/o FT and after FT. Instructions with FT
generalize to task contexts instead of over-fitting task
exemplars. [Lower] Token consumption vs. best accu-
racy results for certain token consumption levels on four
tasks, with two instruction snippets for "Implicatures".

(vector) within the generation template, which is
selected by a kernel-based learner or a small neural
model. In this case, their in-context learning ca-
pacity can limit full utilization of black-box LLM
feedback, resulting in higher token costs. In con-
trast, AIO leverages white-box LLM fine-tuning to
better exploit black-box LLM feedback for more
efficient instruction optimization.

Meanwhile, in the upper figure of Fig. 4, with-
out fine-tuning, FW can over-fit to specific key-
words, failing to generalize to unseen data. After
fine-tuning, it corrects its misinterpretation of task
exemplars, expanding "positive connotation" into
a broader "sentiment analysis" perspective. We
present additional instruction trajectory results and
examples in Appendix G.

On the other hand, in Fig. 5, the subplots show
smoothed curves of scaled distance ∥ϕ − ϕ0∥ vs.
performance, representing the distribution of in-
struction ϕ. The shaded gray region represents
the standard deviation around the reward-weighted
mean distance. We observe that the best instruction
generally remains within a certain neighborhood
around ϕ0, and performance will not monotonically
increase along with distance. A narrow shaded re-
gion (e.g., "taxonomy_animal") indicates that high-
performance instructions are concentrated within
a localized landscape. Hence, small perturbations
can be applied to enable fine-grained optimization.
In contrast, wide regions (e.g., "object_counting")
suggest AIO can benefit from exploring a larger
search space, to sufficiently distinguish effective
instructions and learn from collected information.

Figure 5: Performance vs. scaled instruction distance
from the original ϕ0. Shaded standard deviation regions
highlight where high-performance instructions are con-
centrated.

5.3 Case Study: Transferability of AIO
We also study the transferability of AIO across
induction and summarization tasks, where each
AIO model is fine-tuned with LoRA on a source
task, and evaluated across target tasks. We also
include a baseline generating instructions with the
pre-trained Llama-3-8B-Instruct w/o FT.

Source \ Target hyperbaton logical implicatures epistemic
Llama w/o FT 0.341 0.753 0.564 0.530

hyperbaton 0.527 0.814 0.826 0.628
logical_fallacy 0.217 0.836 0.846 0.616
implicatures 0.180 0.796 0.849 0.598
epi._reasoning 0.335 0.832 0.831 0.719

Table 2: Transferability of AIO across reasoning tasks.

Source \ Target podcast qmsumm samsum scitldr
Llama w/o FT 0.121 0.268 0.281 0.257
epi._reasoning 0.151 0.254 0.288 0.279
logical_fallacy 0.129 0.329 0.317 0.259
presuppositions 0.111 0.291 0.302 0.304
movie_rec. 0.130 0.289 0.312 0.263

Table 3: Transferability of AIO on SummEdits tasks.

As in Tables 2 and 3, AIO can generally enhance
accuracy on transferred target tasks, demonstrat-
ing the generalization potential of our instruction
optimization strategy. AIO fine-tuned on "logi-
cal_fallacy" transfers well to "implicatures" and
"epistemic_reasoning", indicating shared reason-
ing capabilities and highlighting the potential of
leveraging white-box LLM fine-tuning for trans-
ferable instruction optimization. However, cross-
task generalization to "hyperbaton" is less effective,
likely due to task dissimilarities. Meanwhile, as
each fine-tuned model performs best on its own
source task, this underscores the necessity of our
proposed task-aware fine-tuning strategy, in order

7714

to achieve optimal performance. In addition, we
evaluate transfer performance (with F1 score) on
summarization tasks from the SummEdits data set
(Laban et al., 2023). In Table 3, AIO fine-tuned on
reasoning tasks generalizes well to distinct summa-
rization tasks, highlighting its strong generalizabil-
ity potential across diverse types of target tasks.

6 Conclusion
In this paper, we introduce Learning to Instruct
paradigm for black-box LLM instruction optimiza-
tion, which formulates the instruction optimization
process as an LLM fine-tuning objective, to harness
the representation power of fine-tuned LLMs. We
also propose AIO, a novel framework for optimiz-
ing task-specific black-box LLM instructions. By
fine-tuning a white-box LLM as an instruction opti-
mizer, AIO learns from task nuances and black-box
LLM feedback to achieve adaptive instruction opti-
mization. Given inaccessible black-box LLM gra-
dients, we introduce a novel TS-aided zeroth-order
gradient approximation method, for tractable and
efficient white-box LLM fine-tuning. Extensive
experiments demonstrate AIO’s superiority in both
performance and API token efficiency, with addi-
tional analysis highlighting its properties. Future
extensions of AIO are discussed in Appendix F.

Limitations

We propose a new Learning to Instruct paradigm
to achieve automatic instruction optimization for
black-box LLMs. We also introduce a novel AIO
framework, compatible with both PEFT and full
fine-tuning, to establish Learning to Instruct as a
new promising direction, paving the way for future
developments in instruction optimization. While
this work does not fully explore AIO’s computa-
tional efficiency, fortunately, its design keeps the
overall computational costs manageable. In this
context, we view further improving AIO’s effi-
ciency as a valuable direction and propose to ex-
plore it in our future work. Analogous to many re-
lated works (e.g., (Pryzant et al., 2023; Chen et al.,
2024b; Guo et al., 2024)), we perform our black-
box LLM experiments using a single seed and omit
standard deviation reporting, due to budget con-
straints associated with black-box API usage.

Acknowledgment

This work is supported by Agriculture and Food
Research Initiative (AFRI) grant no. 2020-67021-
32799/project accession no.1024178 from the

USDA National Institute of Food and Agriculture.
The views and conclusions are those of the authors
and should not be interpreted as representing the
official policies of the funding agencies or the gov-
ernment.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Shipra Agrawal and Navin Goyal. 2013. Thompson
sampling for contextual bandits with linear payoffs.
In ICML, pages 127–135. PMLR.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. Technical report, Anthropic.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
2002. Finite-time analysis of the multiarmed ban-
dit problem. Machine learning, 47(2-3):235–256.

Maurice S Bartlett. 1951. An inverse matrix adjust-
ment arising in discriminant analysis. The Annals of
Mathematical Statistics, 22(1):107–111.

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. 2010. A theory of learning from different
domains. Machine learning, 79:151–175.

BIG bench authors. 2023. Beyond the imitation game:
Quantifying and extrapolating the capabilities of lan-
guage models. Transactions on Machine Learning
Research.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877–1901.

HanQin Cai, Daniel McKenzie, Wotao Yin, and Zhen-
liang Zhang. 2022. Zeroth-order regularized opti-
mization (zoro): Approximately sparse gradients and
adaptive sampling. SIAM Journal on Optimization,
32(2):687–714.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Dif-
fenderfer, Konstantinos Parasyris, Jiancheng Liu, Yi-
hua Zhang, Zheng Zhang, Bhavya Kailkhura, and
Sijia Liu. 2024a. Deepzero: Scaling up zeroth-order
optimization for deep model training. In The Twelfth
International Conference on Learning Representa-
tions.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng
Huang, and Tianyi Zhou. 2024b. Instructzero: Ef-
ficient instruction optimization for black-box large
language models. In Forty-first International Confer-
ence on Machine Learning.

7715

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=qBWhjsNPEY
https://openreview.net/forum?id=qBWhjsNPEY

Qi Chen, Changjian Shui, and Mario Marchand.
2021. Generalization bounds for meta-learning: An
information-theoretic analysis. Advances in Neural
Information Processing Systems, 34:25878–25890.

Alexandra Chronopoulou, Matthew E Peters, and Jesse
Dodge. 2022. Efficient hierarchical domain adapta-
tion for pretrained language models. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1336–1351.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire.
2011. Contextual bandits with linear payoff func-
tions. In AISTATS, pages 208–214.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

John C Duchi, Michael I Jordan, Martin J Wainwright,
and Andre Wibisono. 2015. Optimal rates for zero-
order convex optimization: The power of two func-
tion evaluations. IEEE Transactions on Information
Theory, 61(5):2788–2806.

Chrisantha Fernando, Dylan Banarse, Henryk
Michalewski, Simon Osindero, and Tim Rock-
täschel. 2023. Promptbreeder: Self-referential
self-improvement via prompt evolution. arXiv
preprint arXiv:2309.16797.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on ma-
chine learning, pages 1126–1135. PMLR.

Peter I Frazier. 2018. A tutorial on bayesian optimiza-
tion. arXiv preprint arXiv:1807.02811.

Noa Garcia, Chentao Ye, Zihua Liu, Qingtao Hu, Mayu
Otani, Chenhui Chu, Yuta Nakashima, and Teruko
Mitamura. 2020. A dataset and baselines for vi-
sual question answering on art. In Computer Vision–
ECCV 2020 Workshops: Glasgow, UK, August 23–
28, 2020, Proceedings, Part II 16, pages 92–108.
Springer.

Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang.
2016. Mini-batch stochastic approximation meth-
ods for nonconvex stochastic composite optimization.
Mathematical Programming, 155(1):267–305.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu
Yang. 2024. Connecting large language models with

evolutionary algorithms yields powerful prompt opti-
mizers. In The Twelfth International Conference on
Learning Representations.

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai
Sun, Nan Jiang, Tarek Abdelzaher, and Heng Ji.
2024a. Word embeddings are steers for language
models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 16410–16430.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang,
and 1 others. 2024b. Parameter-efficient fine-tuning
for large models: A comprehensive survey. arXiv
preprint arXiv:2403.14608.

Or Honovich, Uri Shaham, Samuel R Bowman, and
Omer Levy. 2022. Instruction induction: From few
examples to natural language task descriptions. arXiv
preprint arXiv:2205.10782.

Yutai Hou, Hongyuan Dong, Xinghao Wang, Bohan Li,
and Wanxiang Che. 2022. Metaprompting: Learning
to learn better prompts. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 3251–3262.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021a. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu,
Xiangqiang Lin, Zhongxiang Dai, See-Kiong Ng,
and Bryan Kian Hsiang Low. 2024. Localized
zeroth-order prompt optimization. arXiv preprint
arXiv:2403.02993.

Yifan Hu, Xin Chen, and Niao He. 2021b. On the
bias-variance-cost tradeoff of stochastic optimization.
Advances in Neural Information Processing Systems,
34:22119–22131.

William B. Johnson and Joram Lindenstrauss. 1984.
Extensions of lipschitz mappings into hilbert space.
Contemporary mathematics, 26:189–206.

Harshit Joshi, José Cambronero Sanchez, Sumit Gul-
wani, Vu Le, Gust Verbruggen, and Ivan Radiček.
2023. Repair is nearly generation: Multilingual pro-
gram repair with llms. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37,
pages 5131–5140.

Omar Khattab, Keshav Santhanam, Xiang Lisa
Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. 2022. Demonstrate-search-
predict: Composing retrieval and language mod-
els for knowledge-intensive NLP. arXiv preprint
arXiv:2212.14024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.

7716

https://api.semanticscholar.org/CorpusID:117819162

Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2023. Dspy: Compiling
declarative language model calls into self-improving
pipelines. arXiv preprint arXiv:2310.03714.

Ananya Kumar, Aditi Raghunathan, Robbie Jones,
Tengyu Ma, and Percy Liang. 2022. Fine-tuning
can distort pretrained features and underperform out-
of-distribution. arXiv preprint arXiv:2202.10054.

Philippe Laban, Wojciech Kryściński, Divyansh Agar-
wal, Alexander R Fabbri, Caiming Xiong, Shafiq
Joty, and Chien-Sheng Wu. 2023. Llms as factual
reasoners: Insights from existing benchmarks and
beyond. arXiv preprint arXiv:2305.14540.

Kasper Green Larsen and Jelani Nelson. 2017. Opti-
mality of the johnson-lindenstrauss lemma. In 2017
IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 633–638. IEEE.

Lihong Li, Wei Chu, John Langford, and Robert E
Schapire. 2010. A contextual-bandit approach to per-
sonalized news article recommendation. In WWW,
pages 661–670.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai,
Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jail-
let, and Bryan Kian Hsiang Low. 2024. Use your
instinct: Instruction optimization for llms using neu-
ral bandits coupled with transformers. In Forty-first
International Conference on Machine Learning.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Ruotian Ma, Xiaolei Wang, Xin Zhou, Jian Li, Nan
Du, Tao Gui, Qi Zhang, and Xuanjing Huang. 2024.
Are large language models good prompt optimizers?
arXiv preprint arXiv:2402.02101.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. 2023. Fine-tuning language models with just
forward passes. arXiv preprint arXiv:2305.17333.

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023.
Selfcheckgpt: Zero-resource black-box hallucina-
tion detection for generative large language models.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9004–9017.

Pierluigi Maponi. 2007. The solution of linear systems
by using the sherman–morrison formula. Linear al-
gebra and its applications, 420(2-3):276–294.

Jiří Matoušek. 2008. On variants of the johnson–
lindenstrauss lemma. Random Structures & Algo-
rithms, 33(2):142–156.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Di-
etrich Klakow, and Yanai Elazar. 2023. Few-shot
fine-tuning vs. in-context learning: A fair comparison
and evaluation. arXiv preprint arXiv:2305.16938.

Yurii Nesterov and Vladimir Spokoiny. 2017. Ran-
dom gradient-free minimization of convex func-
tions. Foundations of Computational Mathematics,
17(2):527–566.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
arXiv preprint arXiv:2203.07281.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with "gradient descent" and
beam search. arXiv preprint arXiv:2305.03495.

Yunzhe Qi, Yikun Ban, Arindam Banerjee, and Jingrui
He. 2024. Robust neural contextual bandit against
adversarial corruptions. Advances in Neural Infor-
mation Processing Systems, 37:19378–19446.

Yunzhe Qi, Yikun Ban, and Jingrui He. 2023a. Graph
neural bandits. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’23, page 1920–1931, New York,
NY, USA. Association for Computing Machinery.

Yunzhe Qi, Yikun Ban, Tianxin Wei, Jiaru Zou, Huaxiu
Yao, and Jingrui He. 2023b. Meta-learning with neu-
ral bandit scheduler. Advances in Neural Information
Processing Systems, 36:63994–64028.

Ruizhong Qiu and Hanghang Tong. 2024. Gradient
compressed sensing: A query-efficient gradient es-
timator for high-dimensional zeroth-order optimiza-
tion. In Forty-first International Conference on Ma-
chine Learning.

Laria Reynolds and Kyle McDonell. 2021. Prompt
programming for large language models: Beyond
the few-shot paradigm. In Extended abstracts of the
2021 CHI conference on human factors in computing
systems, pages 1–7.

Tobias Schnabel and Jennifer Neville. 2024. Prompts
as programs: A structure-aware approach to efficient
compile-time prompt optimization. arXiv preprint
arXiv:2404.02319.

Eric Schulz, Maarten Speekenbrink, and Andreas
Krause. 2018. A tutorial on gaussian process regres-
sion: Modelling, exploring, and exploiting functions.
Journal of mathematical psychology, 85:1–16.

7717

https://doi.org/10.1145/3580305.3599371
https://doi.org/10.1145/3580305.3599371

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando De Freitas. 2015. Taking the
human out of the loop: A review of bayesian opti-
mization. Proceedings of the IEEE, 104(1):148–175.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Yao Shu, Zhongxiang Dai, Weicong Sng, Arun Verma,
Patrick Jaillet, and Bryan Kian Hsiang Low. 2023.
Zeroth-order optimization with trajectory-informed
derivative estimation. In The Eleventh International
Conference on Learning Representations.

James C Spall. 1992. Multivariate stochastic approx-
imation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic con-
trol, 37(3):332–341.

Haotian Sun, Yuchen Zhuang, Wei Wei, Chao Zhang,
and Bo Dai. 2024. Bbox-adapter: Lightweight adapt-
ing for black-box large language models. arXiv
preprint arXiv:2402.08219.

Xinyu Tang, Xiaolei Wang, Wayne Xin Zhao, Siyuan
Lu, Yaliang Li, and Ji-Rong Wen. 2024. Unleashing
the potential of large language models as prompt op-
timizers: An analogical analysis with gradient-based
model optimizers. arXiv preprint arXiv:2402.17564.

Michal Valko, Nathan Korda, Rémi Munos, Ilias
Flaounas, and Nello Cristianini. 2013. Finite-time
analysis of kernelised contextual bandits. In Uncer-
tainty in Artificial Intelligence.

Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus
Olhofer. 2023. Recent advances in bayesian opti-
mization. ACM Computing Surveys, 55(13s):1–36.

Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang,
Tianlong Ma, and Liang He. 2022. A survey of
human-in-the-loop for machine learning. Future
Generation Computer Systems, 135:364–381.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V. Le, Denny Zhou, and Xinyun Chen. 2024.
Large language models as optimizers. Preprint,
arXiv:2309.03409.

Weitong Zhang, Dongruo Zhou, Lihong Li, and Quan-
quan Gu. 2021. Neural thompson sampling. In Inter-
national Conference on Learning Representations.

Dongruo Zhou, Lihong Li, and Quanquan Gu. 2020.
Neural contextual bandits with ucb-based exploration.
In International Conference on Machine Learning,
pages 11492–11502. PMLR.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910.

7718

https://arxiv.org/abs/2309.03409

A Potential Risks

This paper introduces the Learning to Instruct
paradigm and the AIO framework for automat-
ing the optimization of effective and human-
comprehensible instructions for black-box LLMs
using a fine-tuned optimizer, thereby enhancing
LLM performance and user transparency. While
this work aims to improve the systematic and ef-
fective use of LLMs, we do not foresee significant
negative potential risks and societal impacts from
the methodology itself that warrant particular em-
phasis.

B Complementary Details for
Implementation and Experiments

B.1 Descriptions for Tasks Involved in Our
Experiments

For evaluation metrics: we have (1) Exact Match:
the generated answer needs to exactly match the
label; (2) Multiple Choice: task-solver LLM needs
to choose one correct option out of several given
candidate choices; (3) Binary Choice: task-solver
LLM needs to choose one correct option out of two
candidate choices; (4) Exact Set: whether the pre-
dicted set of items (e.g., animals) exactly matches
the label set in both content and size, regardless of
the item order.

B.2 Templates Applied for AIO Instruction
Generation and Black-box LLM
Inference (Zero-shot Induction and
Few-shot Induction)

For zero-shot instruction induction and few-shot
instruction induction, after obtaining generated in-
structions, we follow analogous ideas as in existing
works (Zhou et al., 2022; Chen et al., 2024b; Lin
et al., 2024), when formulating our instruction in-
duction templates.

• Instruction Generation Template:
<examples >
Exemplary data: [EXEMPLARS]
</examples >.

Provide an instruction to infer the
output of the input.

• Evaluation Template:
Instruction: [INSTRUCTION]
Input: [Query INPUT]
Output: [OUTPUT Placeholder]

• Few-shot Instruction Induction Settings:

<examples >
Exemplary data: [Exemplar data ([

DEMO_DATA])]
</examples >.
Instruction: [INSTRUCTION]\n\n
Input: [Query INPUT] Output: [OUTPUT

Placeholder]

• Zero-shot Instruction Induction Settings:

Instruction: [INSTRUCTION]\n\n
Input: [Query INPUT] Output: [OUTPUT

Placeholder]

Obviously, the main difference between these
two templates is that few-shot template will also
involve task exemplars during the inference stage,
which can provide additional reference for the task-
solver black-box LLM.

B.3 Baseline Descriptions.

Recall that we involve four baselines for com-
parison, including two kinds of methods that uti-
lize LLMs for instruction optimization. The first
kind methods leverages black-box LLM for in-
struction generation: (1) APE (Zhou et al., 2022)
which generates instruction using a black-box LLM
with designated templates and instruction search
mechanism; (2) ProTeGi (Pryzant et al., 2023) ap-
plies a black-box LLM for instruction generation,
and optimizes "Gradient Descent" on the gener-
ated instruction by integrating with a black-box
LLM. Meanwhile, we also include (ii) Methods
that utilize white-box LLM for instruction gener-
ation: (3) InstructZero (Chen et al., 2024b) gen-
erates instructions using a white-box LLM, while
controlling the generation process by optimizing
a prefix soft prompt, based on a kernel-based
Bayesian Optimization approach; (4) INSTINCT
(Lin et al., 2024) adopts an analogous approach as
InstructZero, but alternatively applies a neural ban-
dit model in replace of the kernel-based Bayesian
Optimization for soft prompt selection; (5) ZOPO
(Hu et al., 2024) formulates prompt selection as
a discrete maximization problem and employs a
zeroth-order optimization algorithm using a neu-
ral tangent kernel (NTK) surrogate built from a
small neural network, along with fixed embeddings
derived from a frozen white-box LLM. APE and
ProTeGi will use Claude-3-Sonnet for instruction
generation. Meanwhile, Llama-3-8B-Instruct is

7719

Task Metric Descriptions

antonyms Exact Match Find the antonym for the given word.

sentiment Binary Choice Judge the sentiment preference of the given review.

larger_animal Binary Choice Identify which of the input animals is larger.

taxonomy_animal Exact Set Identify all the animal words out of input word sequence

object_counting Exact Match Enumerate objects of different types and output the total number.

navigate Binary Choice
Given a series of navigation instructions,

determine whether one would end up back at the starting point.

winowhy Binary Choice Evaluate the reasoning in answering Winograd Schema Challenge questions.

implicatures Binary Choice Predict whether Speaker 2’s answer to Speaker 1 counts as a yes or as a no.

logical_fallacy_detection Binary Choice Detect informal and formal logical fallacies.

hyperbaton Binary Choice Order adjectives correctly in English sentences.

epistemic_reasoning Binary Choice Determine whether one sentence entails the next.

movie_recommendation Multiple Choice Recommend a movie that is similar to the given list of movies.

timedial Multiple Choice Pick the correct choice for a masked (temporal) span given the dialog context.

presuppositions_as_nli Multiple Choice Determine whether the first sentence entails or contradicts the second.

question_selection Multiple Choice
Given a short answer along with its context,

select the most appropriate question which has the given short answer as its answer.

Table 4: Task descriptions and corresponding metrics.

applied for InstructZero and INSTINCT, same as
AIO. For the fixed embedding LLM of ZOPO, we
follow the settings in the original ZOPO paper by
applying a larger Vicuna-13B model with more pa-
rameters to generate initial instructions for ZOPO.

B.4 Implementation Details

For our zero-shot and few-shot instruction induc-
tion experiments, we consider each task is associ-
ated with 20 task exemplars denoted by DTrain, as
well as 100 validation samples DValid, which will
remain the same for AIO and all other baseline
methods. From the remaining samples (i.e., not
used for training or validation) of task D, we sam-
ple test sets of size |Dtest| = 1

5 |D| (capped at 167),
and compute the final result as the average perfor-
mance over

⌈
1000
|Dtest|

⌉
such test sets. They are shared

across different methods for fair comparison, and
this approach also helps maintain the black-box
LLM cost budget. Analogous to many closely
related works (e.g., (Pryzant et al., 2023; Chen
et al., 2024b; Guo et al., 2024)), we conduct our
black-box LLM experiments using a single seed
and do not report standard deviations, due to our
limited budget for black-box API usage costs. Nev-
ertheless, our experiments span over 15 tasks and
include extensive parameter, ablation and general-
ization results. Combined with AIO’s consistently
strong performance and token efficiency, our re-
sults provide meaningful and significant empirical
evidence for our findings in this paper.

For AIO, when choosing our threshold parame-
ter β, we initially set β as an infinitely large value
to enable all collected black-box LLM feedback to
be reused. Afterwards, we will experiment with
β = O(ϵ

√
d) and choose the constant for O(·) no-

tation with grid search {1, 10, 100}. We perform
the fine-tuning process for T = 10 rounds, as well
as set the exploration variance ν = 0.1 for all
experiments For the perturbation magnitude param-
eter ϵ, we choose its value with grid search from
{10−3, 10−4, 10−5}. In each optimization round,
we will draw K = 10000 arms from N (0, I)
where we choose B = 3 arms for fine-tuning white-
box LLM as well as update the TS model param-
eters. Regarding our TS model, after applying JL-
Lemma and random Gaussian matrix projection
(Matoušek, 2008; Larsen and Nelson, 2017) for di-
mension reduction, we will have the reduced dimen-
sion of TS model to be approximately d′ ≈ 104,
which leads to ∼ 0.4 seconds for selecting chosen
arms Z̃t and ∼ 3 seconds for TS model parame-
ters update in each round t. For "AIO + LoRA",
we set its "intrinsic rank" of low-rank approxima-
tion to 8. As we mentioned in the main body, we
apply Llama-3-8B-Instruct (Dubey et al., 2024)
as our tunable white-box LLM FW (·;ΘW), and
adopt Claude-3-Sonnet (Anthropic, 2024) as our
black-box LLM FB(·). We perform all the ex-
periments on a server with Intel Xeon CPU and
NVIDIA V100 GPUs.

7720

Tasks \Methods

Black-box LLM White-box LLM w/o FT White-box LLM w/ FT (Ours)

APE ProTeGi InstructZero INSTINCT ZOPO AIO + LoRA AIO w/ Full FT

antonyms 0.901 0.889 0.894 0.905 0.882 0.895 0.912
sentiment 0.932 0.944 0.940 0.933 0.937 0.946 0.950
larger_animal 0.939 0.915 0.922 0.874 0.913 0.957 0.961
taxonomy_animal 0.708 0.972 0.835 0.869 0.911 0.976 0.967
object_counting 0.511 0.583 0.520 0.541 0.567 0.473 0.555
navigate 0.734 0.724 0.701 0.757 0.734 0.772 0.776
winowhy 0.563 0.674 0.673 0.682 0.686 0.621 0.628
implicatures 0.846 0.826 0.859 0.847 0.854 0.867 0.836
logical_fallacy_detection 0.850 0.892 0.877 0.881 0.852 0.885 0.880
hyperbaton 0.556 0.595 0.580 0.641 0.634 0.660 0.634
epistemic_reasoning 0.712 0.802 0.622 0.765 0.831 0.884 0.774
movie_recommendation 0.930 0.948 0.955 0.960 0.953 0.963 0.979
timedial 0.760 0.820 0.748 0.784 0.817 0.832 0.779
presuppositions_as_nli 0.557 0.564 0.591 0.598 0.575 0.594 0.619
question_selection 0.879 0.882 0.781 0.822 0.884 0.887 0.916

Average Rank 5.9 4.0 5.1 3.9 4.0 2.5 2.7

Table 5: Few-shot instruction induction results on 15 data sets. For each task (row), bold number refers to the
best result, while underlined number refers to the second-best one. Similar to our zero-shot instruction induction
experiments in Table 1, average rank results across tasks are reported.

C Complementary Experiments

C.1 Complementary Experiments Outline.

Due to strict page limit for the main body, we
choose to include complementary experiments here
in this section. As an outline, we have (1) few-shot
experiments on our 15 tasks located in Subsec. C.2;
(2) Chain-of-Thought (CoT) experiments in Subsec.
C.3; (3) experiments with different combinations of
white-box and black-box LLMs in Subsec. C.4; (4)
an ablation study on AIO components in Subsec.
C.5; (5) Parameter study for β and B in Subsec.
C.6; (6) Empirical results with additional kinds
of white-box LLMs in Subsec. C.7; (7) Effects
of exemplar quantity in Subsec. C.8; (8) Trans-
ferability across black-box LLMs in Subsec. C.9;
(9) Empirical comparison with an additional base-
line EvoPrompt in Subsec. C.10; (10) Experiments
of allowing AIO to leverage additionally available
task prior information in Subsec. C.11; (11) Addi-
tional Experiments with a larger white-box LLM
Qwen-2.5-14B in Subsec. C.12.

C.2 Complementary Experiments with
Few-shot AIO

In this subsection, we include experiment results
that examine AIO performance under few-shot set-
tings, where training samples (or exemplars) will
be provided to black-box LLM for reference. In
this case, generated instructions will need to pro-
vide high-level reference and guidance, to assist the

Data set Method Instruction Accuracy Result

GSM8K
CoT Let’s think carefully step by step 0.724

AIO
Use your math skills and logic to break down

the problem into manageable parts.
0.862

AQUA
CoT Let’s think carefully step by step 0.317

AIO
Think critically and break down the problem

into smaller parts to solve it.
0.410

SVAMP
CoT Let’s think carefully step by step 0.766
AIO Let us think critically and break it down! 0.898

Table 6: Chain-of-Thought (CoT) results.

answer generation of task-solver black-box LLM
in observation of task exemplars. The template
applied is also shown in Subsec. B.2.

The experiment results are shown in Table 5.
Here, we see that under few-shot settings, there ex-
ist performance improvements for most baselines
compared with zero-shot settings, due to the help of
additionally available task exemplars. By leverag-
ing the sufficient representation power of fine-tuned
white-box LLM, AIO can still generally maintain
the best performance compared with baseline meth-
ods. Similar to our zero-shot induction results, AIO
and its PEFT variant (AIO + LoRA) consistently
maintain strong average rankings across tasks.

C.3 Chain-of-Thought (CoT) Results

We also include additional Chain-of-Thought
(CoT) experiments on three data sets including
GSM8K (Cobbe et al., 2021), AQUA (Garcia et al.,
2020), and SVAMP (Patel et al., 2021), where re-
sults are shown in Table 6. For comparison, we
include a baseline instruction "Let’s think carefully

7721

Task White-box LLM Task-solver LLM Best Instruction Accuracy Result

navigate Llama-3-8B-Instruct Llama-3-70B-Instruct
If the instructions are able to return to the starting position
after following all the instructions, then the output is True.

Otherwise, the output is False.
0.567

larger_animal Llama-3-8B-Instruct Llama-3-70B-Instruct

First identify the animals in the input. Then,
sort the animals in descending order based on their average adult body mass.

If there are multiple animals with the same average adult body mass,
sort them in alphabetical order.

Finally, return the first animal in the sorted list as the output.

0.872

Table 7: Applying a white-box LLM (Llama-3-70B-Instruct) as problem-solving LLM.

step by step", which is commonly applied for solv-
ing CoT tasks, following the settings from Chen
et al. (2024b); Lin et al. (2024).

With results in Table 6, we see that AIO can
significantly improve black-box induction perfor-
mance under CoT reasoning settings compared
with the task-agnostic instruction "Let’s think care-
fully step by step", where AIO’s performance im-
provements can be credited to the utilization of task-
aware instructions. For instance, since GSM8K is a
math reasoning task, AIO choose to introduce addi-
tional background information by asking the task-
solver black-box LLM to "use your math skills"
and decompose the target math problem into "man-
ageable parts". This can help the black-box LLM
determine which part of or what kinds of learned
knowledge should be applied for problem solving,
with higher levels of clarity than task-agnostic in-
structions.

C.4 Different Combinations of White-box and
Black-box LLMs

Recall that for our previous experiments, we
have applied Llama-3-8B-Instruct (Dubey et al.,
2024) as our tunable white-box LLM FW (·;ΘW),
and adopt Claude-3-Sonnet (Anthropic, 2024) as
our black-box LLM FB(·). Here, for two tasks
"navigate" and "larger animal", we include ex-
periments with one more recent white-box LLM
Llama-3.1-8B-Instruct, as well as a relatively
light-weight black-box LLM Claude-3-Haiku
for comparisons. Meanwhile, we also in-
clude experiments by substituting our black-
box LLM with a powerful white-box LLM
Llama-3-70B-Instruct for comparisons.

Results are shown in Tables 7 and 8. Here, we
see that using a more recent and capable white-box
LLM can generally lead to slightly better perfor-
mance. However, during our experiments, we also
notice that fine-tuning Llama-3.1-8B-Instruct
can be slightly more time consuming then tuning
Llama-3-8B-Instruct. On the other hand, dur-

Task White-box LLM Black-box LLM Accuracy Result

navigate

Llama-3-8B-Instruct Claude-3-Sonnet 0.644
Llama-3.1-8B-Instruct Claude-3-Sonnet 0.689
Llama-3-8B-Instruct Claude-3-Haiku 0.612

Llama-3.1-8B-Instruct Claude-3-Haiku 0.643

Task White-box LLM Black-box LLM Accuracy Result

larger_animal

Llama-3-8B-Instruct Claude-3-Sonnet 0.912
Llama-3.1-8B-Instruct Claude-3-Sonnet 0.927
Llama-3-8B-Instruct Claude-3-Haiku 0.935
Llama-3.1-8B-Instruct Claude-3-Haiku 0.887

Table 8: Different combinations of white-box LLMs vs
black-box LLMs.

ing our experiments, using a more light-weight
black-box LLM can significantly accelerate the in-
ference speed in terms of answer generation with
relatively less API token costs. It can still achieve
relatively good performance on "larger animal" task
with a slightly inferior performance on "navigate"
task. We also notice that the large white-box LLM
Llama-3-70B-Instruct tends to perform slightly
inferior compared with Claude family black-box
LLMs, when applying AIO for optimization.

C.5 Ablation Study on AIO Components

Recall that AIO has two main components: white-
box LLM back-propagation and TS-aided ZO
black-box LLM gradient approximation, to derive
the gradients for white-box LLM and black-box
LLM respectively, based on the decomposed gra-
dient flow in Eq. 3. Here, we include an ablation
study for these two components for gradient deriva-
tion: (1) the first baseline is "AIO w/ MeZO" which
directly use MeZO (Malladi et al., 2023) for ap-
proximating white-box LLM parameter gradients
instead of our gradient decomposition formulation
(Remark 4.1); (2) the second baseline is "AIO w/o
TS Scheduling" where we do not apply Thomp-
son Sampling for selecting perturbation directions
and use completely random perturbation vectors
z ∼ N (0, I) for white-box gradient approxima-
tion, formulated in Eq. 4.

Experiment results are shown in Table 9. We
can see that our proposed AIO with TS-aided ZO

7722

Methods antonyms sentiment l_animal t_animal navigate implicatures logical_fallacy_detection e_reasoning

AIO 0.901 0.949 0.912 0.983 0.644 0.811 0.868 0.766

AIO w/ MeZO 0.852 0.930 0.847 0.279 0.654 0.675 0.812 0.748
AIO w/o TS Scheduling 0.870 0.929 0.760 0.957 0.604 0.787 0.832 0.742

Table 9: Ablation study on AIO with two variants: (1) "AIO w/ MeZO" directly applies MeZO for fine-tuning white-
box LLM FW , instead of using our proposed gradient flow decomposition and TS-aided ZO gradient approximation;
(2) "AIO w/o TS Scheduling" refers to a variant where perturbation directions z are sampling randomly from
N (0, I), instead of being chosen by our TS model.

Number of chosen arms (directions) B
Task \ B value 1 2 3 4

Larger Animal 0.915 0.931 0.950 0.941
Navigate 0.610 0.632 0.627 0.664
logical_fallacy_detection 0.815 0.824 0.836 0.849
hyperbaton 0.514 0.489 0.527 0.565
epistemic_reasoning 0.685 0.723 0.719 0.755
implicatures 0.804 0.821 0.849 0.846
presuppositions_as_nli 0.437 0.479 0.493 0.512

Threshold parameter β for optimization landscape
Task \ β value 1 10 100 ∞

Larger Animal 0.922 0.915 0.932 0.950
Navigate 0.611 0.634 0.676 0.627
logical_fallacy_detection 0.796 0.832 0.823 0.836
hyperbaton 0.538 0.550 0.527 0.521
epistemic_reasoning 0.677 0.701 0.680 0.719
implicatures 0.794 0.833 0.849 0.827
presuppositions_as_nli 0.450 0.442 0.467 0.493

Table 10: Experiment results with different B values
and β values.

Gradient Approximation can still maintain superior
performance compared with the other two base-
lines with substituted modules. This helps to re-
inforce our claim that our proposed gradient flow
decomposition approach (Eq. 3) as well as the ZO
black-box LLM gradient approximation method
guided by Thompson Sampling are necessary for
AIO to achieve optimal performance. In particular,
the supposed linear optimization landscape enables
us to utilize a linear Thompson Sampling model for
ZO perturbation direction selection, which is effec-
tive and computationally efficient for perturbation
direction selection.

C.6 Parameter Study for β and B

We include additional study for parameters β and
B of AIO. Here, additional experiment results for
zero-shot instruction induction with the LoRA mod-
ule are presented in the table below.

Results are shown in Tables 10. For parame-
ter B, we observe that setting B = 3 can achieve
promising performance, which can help balance
computational (and token) costs with performance.
For parameter β, it is recommended to start the
tuning process with a large β, as suggested in our
Appendix B.4, to effectively leverage past received
records of the optimization landscape. On the other
hand, a sufficiently small threshold β will cause the

White-box LLM \ Task larger animal navigate sentiment movie_recom.
Llama-3-8B-Instruct 0.950 0.627 0.947 0.883
Mistral-7B-Instruct-v0.2 0.890 0.634 0.907 0.874
Qwen2.5-7B-Instruct 0.919 0.682 0.922 0.835

Table 11: Experiment results with different kinds of
white-box LLMs. Claude-3-Sonnet is applied as black-
box task-solving LLM.

Different numbers of exemplars |Dtrain|
Task \ |Dtrain| 5 10 20 30

Larger Animal 0.868 0.921 0.950 0.947
Navigate 0.622 0.634 0.627 0.681

Table 12: Experiment results with different numbers of
exemplars |Dtrain|.

method to degenerate into "AIO w/o TS Schedul-
ing", as in our ablation study (Subsec. C.5). In this
case, the TS model will be excluded from selecting
ZO approximation directions, leading to relatively
inferior performance.

C.7 Combinations of Different White-box
LLMs

We include additional experiments with other types
of white-box LLMs can benefit the audience. We
conduct experiments with the LoRA module on
two additional types of white-box LLMs: Mistral-
7B-Instruct-v0.2 and Qwen2.5-7B-Instruct. With
black-box LLM being Claude-3-Sonnet, we have
zero-shot instruction induction results shown in
Table 11. We see that our proposed AIO framework
achieves promising performance with other types
of white-box LLMs other than the Llama family.
Meanwhile, we also would like to mention that
Llama 3 (Llama-3-8B-Instruct) generally retains
a slight advantage over the other two white-box
LLMs. One possible reason is that Llama 3 consists
of 8 billion parameters, slightly more than the other
two 7-billion-parameter models. This can provide
an advantage in terms of the representation power
to some extent.

7723

Black-box LLM Transferability
Black-box LLM \ Task epi._reasoning logical fallacy hyperbaton movie_recom. navigate implicatures
Claude 3 Sonnet 0.719 0.836 0.527 0.883 0.627 0.849
Claude 3.5 Sonnet 0.844 0.886 0.562 0.924 0.639 0.918
GPT-3.5-Turbo 0.737 0.811 0.556 0.825 0.580 0.855
GPT-4o 0.768 0.854 0.540 0.910 0.594 0.886

Table 13: Experiment results with different kinds of black-box LLMs.

Comparison with EvoPrompt
Method \ Task hyperbaton navigate movie_recom. obj._counting

AIO 0.538 0.644 0.902 0.543
EvoPrompt 0.526 0.627 0.895 0.466

Table 14: Experiment results in comparison with Evo-
Prompt (Guo et al., 2024).

C.8 Different Numbers of Exemplars

As mentioned in our experimental settings (Ap-
pendix Subsec. B.2), we use 20 training exemplars,
a reasonably small amount of training data, as the
reference for the white-box LLM to generate and
optimize instructions. We also include additional
zero-shot instruction induction experiments with
varying exemplar quantities and the LoRA mod-
ule. This is to investigate how the performance
changes when altering the number of exemplars
|DTrain| for AIO, in terms of instruction generation
and optimization.

From the results in Table 12, we observe that the
"larger animal" task can be more sensitive to the
number of exemplars |DTrain|. However, provid-
ing as few as |DTrain| = 10 query-answer pairs as
exemplars, which is a modest quantity, will allow
AIO to achieve relatively promising performance.
Meanwhile, we see that for the "navigate" task, a
small number of |DTrain| = 5 exemplars can lead
to promising results, which shows that it is more
stable under the sparse data settings. Therefore,
when fine-tuning AIO from scratch, the overall per-
formance of AIO can possibly be influenced by
data scarcity, with its impact varying based on the
specific application scenarios of practitioners.

C.9 Transferability of Fine-tuned Instruction
Optimizers across Different Black-box
Task-solving LLMs

In this subsection, we investigate if the optimized
instructions can generalize to different black-box
LLMs. We transfer our optimized white-box LLM
with the LoRA module, which is fine-tuned un-
der the settings of Llama 3 + Claude 3 Sonnet,
to other black-box task-solving LLMs. They in-
clude Claude 3.5 Sonnet and two OpenAI black-

With additional textual task description information
Method \ Task epi._reasoning logical_fallacy hyperbaton movie_recom.

AIO 0.719 0.836 0.527 0.883
AIO w/ Task Info 0.811 0.872 0.639 0.895

Table 15: Experiment results with additional textual task
description information.

box LLMs (GPT-3.5-Turbo and GPT-4o).
The accuracy results in terms of zero-shot in-

struction induction are shown in Table 13. Here,
we can observe that the optimized "instruction en-
gineer" white-box LLM can maintain strong per-
formance when being applied to other black-box
LLMs. Meanwhile, we also notice that the latest
language models (Claude 3.5 and GPT-4o) can gen-
erally outperform the older ones (Claude 3 and
GPT-3.5-Turbo), due to their stronger reasoning
capabilities.

C.10 Additional Baseline: EvoPrompt

In this subsection, we included an additional base-
line EvoPrompt (Guo et al., 2024), which alter-
natively utilizes evolutionary algorithms to refine
LLM-generated instructions in an in-context learn-
ing manner. Different from our original problem
settings, where instructions are generated from
scratch, EvoPrompt requires initial instructions. In
this case, we follow the settings in the original
paper (Guo et al., 2024) and the official source
code of EvoPrompt, by using instructions gener-
ated by APE (Zhou et al., 2022) as the initial in-
structions for EvoPrompt, while AIO does not rely
on such information. We compare AIO with Evo-
Prompt, in terms of zero-shot instruction induction
on four BigBench (bench authors, 2023) tasks, as
BigBench is also applied in Guo et al. (2024).

Based on the results in Table 14, we see that our
proposed AIO can manage to achieve generally bet-
ter performance compared with EvoPrompt. Mean-
while, comparing with the two black-box LLM
baselines: APE (Zhou et al., 2022) and ProTeGi
(Pryzant et al., 2023), EvoPrompt can achieve rel-
atively better performance than them, by utilizing
task prior knowledge provided by initial instruc-
tions as the starting point for optimization.

7724

Experiments with Qwen-2.5-14B
Task \Method ProTeGi INSTINCT AIO AIO+LoRA AIO+LoRA (Qwen-2.5-14B)

object_counting 0.550 0.537 0.543 0.479 0.561
larger_animal 0.932 0.857 0.912 0.950 0.922
winowhy 0.703 0.725 0.622 0.635 0.748
hyperbaton 0.499 0.502 0.538 0.527 0.645
epistemic_reasoning 0.459 0.580 0.766 0.719 0.791

Table 16: Experiments with a larger Qwen-2.5-14B, fine-tuned with LoRA, including five zero-shot instruction
induction and reasoning tasks. We see that integrating AIO with a more powerful white-box LLM can generally
improve downstream black-box LLM performance, by leveraging an enhanced learning capability to capture the
complex correlation between instruction strategies and the black-box LLM performance.

C.11 Additionally Available Task Narrative /
Description

In addition, if task descriptions are provided to
AIO as prior knowledge, we can incorporate this
information into the instruction generation template
(left-hand side of Fig. 1). In this case, the input
to the white-box LLM will include both the task
exemplars and the textual task description. We con-
duct additional experiments in terms of zero-shot
instruction induction on four BigBench tasks with
the LoRA module, incorporating the one-sentence
task descriptions provided by the BigBench data
set into our generation template.

Results are shown in Table 15. We see that in-
volving additional textual task information into the
instruction generation and optimization process can
generally improve performance, particularly for
logical reasoning tasks (e.g., epistemic reasoning,
logical fallacy, hyperbaton), as task descriptions
can help provide extra background information to
prevent potential misinterpretations of exemplars.

C.12 Additional Experiments with
Qwen-2.5-14B

To further demonstrate AIO’s compatibility with
white-box LLMs of different scales, we include
additional experiments aopting a larger Qwen-2.5-
14B model fine-tuned with LoRA for our proposed
AIO. With the results shown in Table 16, our results
indicate that integrating AIO with a more powerful
white-box LLM generally can improve downstream
task performance, by leveraging enhanced learn-
ing capacity to capture the complex correlation
between instruction strategies and black-box LLM
performance. This further highlights the scalability
and adaptability of our AIO framework.

D Supplementary Technical Details

D.1 Details for Auto-regressive Generation
and Perturbation

Analogous to existing works (e.g., Li and Liang
(2021)), we formulate the LLM generation process
of a token sequence x. We begin with an initial
input context x<1 that can be empty or contain spe-
cial tokens like start-of-sequence token. Then, the
language model will sequentially generate each to-
ken in the output, by sampling each generated token
xi from the conditional distribution pΘ(xi | x<i).
In particular, the output logits for the i-th token
will go through a softmax function, after applying
a language model header (with weight Θheader from
language model parameters Θ) to map i-th token
hidden representation to the vocabulary distribu-
tion, as

pΘ(xi | x<i) = softmax(Θheader · hi),

where hi represents the transformer-embedded hid-
den representation of i-th generated token. Each to-
ken xi will be sampled from the vocabulary, based
on pΘ(xi | x<i). The generation process will
complete if special tokens (e.g., an EOS token) is
encountered, or the maximum length is met.

Here, we slightly abuse notation by using the
operations "+" and "−" to apply perturbation z
to the token-level output of each token from ϕ.
Following our gradient approximation formulation
in Eq. 4, with random perturbation vector (gradi-
ent approximation vector) z ∼ N (0, I) and per-
turbation magnitude ϵ > 0, we recall that the
perturbation is imposed on LLM-header output
logits (distributed over the vocabulary) of each i-
th generated token. This leads to the positively
perturbed generation process pΘ(xi | x<i) ←
softmax(Θheader ·hi+ϵz), as well as the negatively
perturbed generation process pΘ(xi | x<i) ←
softmax(Θheader · hi − ϵz). Consequently, the per-

7725

turbation z ∈ Rd will be of the same as the vocab-
ulary dimension d.

D.2 Details for Efficient Covariance Matrix
Inversion Update with
Sherman-Morrison Formula

Recall that in Remark 4.2, for updating covari-
ance matrix inversion Σ−1

t efficiently in each round
t, we apply Sherman-Morrison Formula (Bartlett,
1951; Maponi, 2007) by updating matrix inversion
incrementally. Here, suppose that current white-
box LLM output ϕ is close enough to the check-
point ϕCheck, which means that we can update cur-
rently possessed covariance matrix inversion Σ−1

t−1

to obtain Σ−1
t . Then, we recall that the arm context

covariance matrix in each round t is constructed by
Σt = I+

∑
(z,r)∈Ωt

z ·z⊺ = Σt−1+
∑

z∈Z̃t
z ·z⊺,

where Z̃t refers to the collection of chosen arms in
round t. Since we have each zz⊺ being a rank-one
matrix for every z ∈ Z̃t, we can follow Sherman-
Morrison Formula to perform one-step update

(
Σt−1 + zz⊺)−1

= Σ−1
t−1 −

[
Σ−1

t−1zz
⊺Σ−1

t−1

1 + z⊺Σ−1
t−1z

]
.

In this case, by iteratively repeating this process
for |Z̃t| = B times (since we have B ≪ K cho-
sen arms in each round t, and B is a considerably
small integer), we will have the updated covariance
matrix inverse Σ−1

t . Recall that each covariance
matrix will have a shape of d × d, where d is the
dimensionality of perturbation vector z. We then
have the overall computational costs as approxi-
mately O(Bd2) instead of the naive O(d3), where
we also intuitively have B ≪ d. Moreover, with
dimension reduction approach motivated by JL-
Lemma (Remark 4.2), we can have the projected
context dimension d′ ≪ d, which leads to compu-
tational complexity of O

(
B · (d′)2

)
, instead of the

naive O
(
(d′)3

)
with the direct matrix inversion.

E Complementary discussions

E.1 Motivation of Thompson Sampling and
Bias Associated with This Design

E.1.1 Additional discussion on Motivations
As mentioned in our main body (paragraph below
Remark 4.1), conventional ZO gradient approxi-
mation methods have a potential drawback: the
perturbation vectors z are randomly sampled. Con-
sequently, their gradient approximation directions
in the optimization landscape are random, which

can result in inefficient gradient estimation process.
To overcome this challenge, numerous ZO methods
have been proposed to incorporate guided or cho-
sen directions for gradient optimization, enabling
more efficient estimation of the target gradient (e.g.,
Cai et al. (2022); Qiu and Tong (2024)).

In this work, we propose reusing collected feed-
back by framing the ZO-based fine-tuning process
as a sequential decision-making problem, and ap-
plying Contextual Bandit techniques to effectively
identify beneficial perturbation directions worth
exploring. With the assumed linear optimization
landscape as in existing works (e.g., Spall (1992);
Malladi et al. (2023)), we apply linear Thompson
Sampling to leverage previously collected infor-
mation, which includes arms (previous gradient
approximation directions) and corresponding re-
wards (benefits of going along these directions), to
achieve a more efficient gradient estimation (Sub-
sec. 4.1.2). Within the linear optimization land-
scape, our TS model aids in selecting gradient di-
rections for white-box LLM fine-tuning, by prop-
erly reducing the possibility of choosing low-value
directions (e.g., directions that are orthogonal to
the true gradient, which can provide limited infor-
mation for gradient approximation). This approach
helps optimize the validation score through instruc-
tion generation and ZO approximation direction
selection, aligned with our formulation of the arm
reward (Eq. 7).

Ablation study on AIO components. We also
would like to mention that the effectiveness of our
TS modeling is supported by our ablation study
(Appendix Subsec. C.5), where we compare our
AIO framework with two alternatives: (1) "AIO w/
MeZO", where MeZO (Malladi et al., 2023) is used
directly for approximating white-box LLM param-
eter gradients instead of our gradient decomposi-
tion formulation (Remark 4.1). (2) "AIO w/o TS
Scheduling", where Thompson Sampling is not ap-
plied for selecting perturbation directions, and com-
pletely random perturbation vectors z ∼ N (0, I)
are used for zeroth-order gradient approximation
as in Eq. 4. We observe that our proposed AIO
with TS-aided ZO gradient approximation gener-
ally achieves better performance, compared with
the two baselines with substituted modules.

E.1.2 Bias associated with TS
By balancing exploitation and exploration, TS will
not introduce considerable bias. Under the set-
tings of gradient approximation, our proposed TS-

7726

based zeroth-order gradient approximation method
itself does not inherently introduce considerable
bias in terms of gradient estimation, as Thomp-
son Sampling techniques can naturally tackle the
exploitation-exploration dilemma (Agrawal and
Goyal, 2013; Zhang et al., 2021) by exploring vari-
ous gradient directions instead of greedily exploit-
ing only certain ones. Here, TS model will choose
from sampled candidate approximation directions,
instead of actually altering the direction vector
value. Meanwhile, in the short term, it is possible
that TS may introduce temporary bias if it focuses
on some perturbation directions that can lead to
high rewards (i.e., directions that can help optimize
validation score, Eq. 7). Due to the bias-variance
trade-off (Hu et al., 2021b), the temporary bias can
also be beneficial under our gradient approxima-
tion settings, and we will elaborate on this point
in the next paragraph. On the other hand, with
only a few gradient directions applied for LLM
fine-tuning (Malladi et al., 2023) in each optimiza-
tion round, directly applying conventional unbiased
estimators with randomly sampled directions can
possibly result in high variance in terms of gradient
estimation (Cai et al., 2022), which also reflects the
bias-variance trade-off in terms of zeroth-order
gradient approximation.

We introduce the TS to balance the "bias" and
"variance" trade-off for ZO gradient approxima-
tion, under query-limited scenarios. Here, we
would like to mention that state-of-the-art ZO gra-
dient approximation methods with a guided approx-
imation process (e.g., Qiu and Tong (2024)) can
also introduce temporary bias in terms of gradi-
ent direction selection. However, they have been
shown highly effective and efficient, particularly
under sample-efficient settings, due to their abil-
ity of involving informative gradient approxima-
tion directions to balance "bias" and "variance"
for gradient approximation. As a result, due to
the bias-variance trade-off, it can lead to the case
that no algorithm can serve as a universal solution
to various application scenarios of zeroth-order
approximation. Therefore, practitioners need to tai-
lor solutions to their specific application scenarios.
In our case, by balancing high-reward directions
(exploitation) and sampling TS parameters from
the posterior (exploration), our TS-aided approx-
imation can help stabilize the gradient estimates,
making it advantageous in query-limited scenarios
like ours. In particular, by leveraging a highly ef-
ficient linear TS model, the arm selection process

(∼ 0.4 seconds per round) will be fast, ensuring the
efficiency in terms of gradient direction selection.

Ablation study on TS-aided zeroth-order gra-
dient approximation. The effectiveness of our
modeling is also validated by our ablation study
(Appendix Subsec. C.5), where we include a
variant, "AIO w/o TS Scheduling", for compari-
son. Instead of using TS, "AIO w/o TS Schedul-
ing" applies randomly chosen perturbation vectors
z ∼ N (0, I) for zeroth-order gradient approxima-
tion, as described in Eq. 4. In contrast, our AIO
with TS-aided ZO gradient approximation achieves
better performance by strategically selecting infor-
mative gradient approximation directions, based
on collected information and knowledge from the
optimization landscape.

E.2 Reasoning of Our Choice of Data Sets and
Baselines

Under our problem settings (Section 2), the black-
box LLM is considered as part of the learning ob-
jective rather than the learning model, and we have
no control over its parameters while can only inter-
act with it through the API. Therefore, based on our
problem settings, which align with those of closely
related works (Chen et al., 2024b; Lin et al., 2024),
the learning model will solely be the white-box
LLM, while the black-box LLM will serve as part
of the learning objective.

E.2.1 Choice of data sets.
Different from conventional instruction optimiza-
tion settings, in this work, we address the challenge
of automatically optimizing instructions for a task-
solving black-box LLM in terms of the given target
task. The process requires only a few exemplars as
training data and eliminates the need for human ex-
pert intervention. This is an emerging topic of auto-
matic instruction generation that has been explored
in several related works (e.g., Zhou et al. (2022);
Chen et al. (2024b); Lin et al. (2024)). Unlike exist-
ing approaches, we propose utilizing a white-box
LLM for instruction generation and optimization,
coupled with LLM fine-tuning to effectively learn
optimized instructions for highly complex modern
black-box LLMs.

As discussed in the Introduction and Related
Works sections, the most relevant state-of-the-
art works to this paper are (Chen et al., 2024b;
Lin et al., 2024), where a white-box LLM is
also used as an instruction optimizer to tailor in-
structions specifically for the downstream task-

7727

solving black-box LLM. Therefore, for the data
sets, we follow the most closely related works
(e.g., Zhou et al. (2022); Chen et al. (2024b); Lin
et al. (2024)) by utilizing instruction induction
tasks from (Honovich et al., 2022), reasoning tasks
from BigBench (bench authors, 2023), and Chain-
of-Thought (CoT) data sets (Cobbe et al., 2021;
Garcia et al., 2020; Patel et al., 2021) to bench-
mark our proposed AIO against baselines. These
data sets are both common and widely adopted in
this line of research, particularly in works closely
aligned with ours in terms of problem settings (e.g.,
Zhou et al. (2022); Chen et al. (2024b); Lin et al.
(2024)).

The instruction induction tasks from (Honovich
et al., 2022) and reasoning tasks from BigBench
(bench authors, 2023) are used to evaluate the zero-
shot instruction induction (Subsec. 5.1) and few-
shot instruction induction (Subsec. C.2) quality of
the optimized instructions. In particular, since no
auxiliary task-relevant information is provided to
the task-solving black-box LLM, the zero-shot in-
struction induction results on these data sets (Hon-
ovich et al., 2022; bench authors, 2023) are widely
adopted to assess instruction quality by closely re-
lated works (e.g., Zhou et al. (2022); Chen et al.
(2024b); Lin et al. (2024); Fernando et al. (2023);
Hu et al. (2024)). Additionally, the applied CoT
data sets are also commonly used in the afore-
mentioned related works (e.g., Zhou et al. (2022);
Chen et al. (2024b); Lin et al. (2024)), as they ef-
fectively test the instruction optimizers’ ability to
solve complex reasoning tasks, such as math prob-
lems. Therefore, our data set selections are stan-
dard and widely adopted in closely related works,
in order to demonstrate the effectiveness of AIO
in terms of instructing the task-solving black-box
LLM.

E.2.2 Choice of baselines.
In this paper, we primarily focus on the challenge
of automatically optimizing instructions for a task-
solving black-box LLM given the target task. This
distinguishes our problem settings from those of
conventional instruction optimization works. In
this case, the most relevant works to ours are (Chen
et al., 2024b; Lin et al., 2024), which propose
to deal with an analogous problem. From an in-
context learning perspective instead, they apply
a white-box LLM as an instruction generator to
tailor instructions specifically for the downstream
task-solving black-box LLM. Therefore, we have

included these two works (InstructZero (Chen et al.,
2024b), INSTINCT (Lin et al., 2024)) as our base-
lines to emphasize the advantages of LLM fine-
tuning over their in-context learning approaches
under our instruction optimization settings, given
the superior representation and learning capabili-
ties provided by LLM fine-tuning.

Meanwhile, there is also a line of research (e.g.,
Zhou et al. (2022); Pryzant et al. (2023)) that em-
ploys a black-box LLM instead for instruction gen-
eration, resulting in a pipeline involving two black-
box LLMs. In this setup, the "instruction engineer"
black-box LLM perceives the feedback of the task-
solver black-box LLM, and optimizes its instruct-
ing strategy from an in-context learning perspective.
Since these methods are also commonly adopted
by our closely related works (Chen et al., 2024b;
Lin et al., 2024), we have also included APE (Zhou
et al., 2022) and ProTeGi (Pryzant et al., 2023) as
our baselines. Therefore, our choice of baselines
is standard in this line of research, including state-
of-the-art baselines closely related to this paper, as
well as common baselines adopted by other exist-
ing works in this research direction.

F Generalizing AIO to other application
scenarios

F.1 Involving Domain Experts in the
Optimization of Instructions

As shown in our pipeline illustration (the Gener-
ation Template in Fig. 1), we only need a few
exemplars from the target task as the reference to
the white-box LLM for instruction generation and
optimization. In this case, we do not need specific
human-crafted task context for our AIO, which
avoids the need for human expert intervention. This
emerging topic in automatic instruction generation
has been explored in several related works (e.g.,
Zhou et al. (2022); Chen et al. (2024b); Lin et al.
(2024)). Unlike prior approaches, we propose uti-
lizing a white-box LLM for instruction generation
and optimization, paired with LLM fine-tuning to
efficiently learn optimized instructions for modern,
highly complex black-box LLMs. On the other
hand, if domain experts (e.g., human engineers) or
domain knowledge (e.g., textual task descriptions
or narratives, Subsec. C.11) are available, there are
several ways of integrating them to our instruction
optimization process.

7728

F.1.1 Involving Human experts

When human experts are available, following the
idea of "Human-in-the-loop" (Wu et al., 2022), we
can involve these experts to help AIO in terms of in-
struction optimization and evaluation. For instance,
in terms of instruction improvement for medical
diagnostics, AIO can generate instructions such as
"Please analyze patient symptoms to identify pos-
sible illnesses". Human evaluators could define
metrics emphasizing clarity (e.g., suggesting tools
like "blood test" or "MRI scan") or appropriateness
(e.g., ensuring instructions do not encourage unsafe
practices). This can enhance AIO’s applicability
in sensitive fields where clarity and accuracy are
crucial. Compared to composing instructions from
scratch that requires more efforts, this formulation
can help reduce the workload of human experts.

Meanwhile, human experts can be involved into
the instruction evaluation process. In this case, AIO
can be requested to generate multiple candidate in-
structions after fine-tuning, and then human experts
can proceed to examine which of the candidates is
most appropriate from multiple dimensions, such
as interpretability. This will also help to enhance
AIO’s applicability for real-world scenarios.

F.2 Generalizing Optimized Instruction to
Related Tasks or Domains

Recall that this work focuses on the problem of
automatically optimizing instructions for a task-
solving black-box LLM given the target task. The
instruction generation and optimization require
only a few exemplars as training data and do not
involve human expert intervention. This problem
is an emerging topic in the field of automatic in-
struction generation, with several related works
(e.g., Zhou et al. (2022); Chen et al. (2024b); Lin
et al. (2024); Hu et al. (2024)). Different from ex-
isting works, in this paper, we propose leveraging
a white-box LLM for instruction generation and
optimization, combined with LLM fine-tuning to
effectively learn optimized instructions for modern
black-box LLMs of extreme complexity. However,
while this paper focuses on optimizing instructions
for a given target task, our AIO framework can be
potentially extended to generalize across multiple
related tasks or domains.

Transfer learning and domain adaptation.
First, we can leverage ideas from transfer learning
and domain adaptation to address this issue. Here,
we can consider two related domains (tasks): the

source domain and the target domain. The source
domain will refer to the domain that we train the
original instruction optimizer (white-box LLM),
typically having larger amount of training data (ex-
emplars) than the target domain. Afterwards, to
adapt the trained white-box LLM to the target do-
main, we can apply few-shot domain adaptation
techniques (e.g., Chronopoulou et al. (2022)) to
efficiently fine-tune the white-box LLM parame-
ters for the target domain, even with a relatively
smaller number of samples. In the meantime, in the
context of transfer learning, we can possibly have
additional theoretical insights. This is because the
generalization loss on the target domain can be the-
oretically upper bounded by the empirical loss on
the source domain, the learning power of the neural
model, and the discrepancy between the source and
target domains (Ben-David et al., 2010).

Meta-learning. On the other hand, we can
leverage ideas from meta-learning (Finn et al.,
2017) to develop an instruction "meta-optimizer",
which is capable of abstracting high-level infor-
mation across multiple domains and generating
high-quality meta-instructions (analogous to meta-
prompts (Hou et al., 2022)). Using this approach,
the "meta-optimizer" can be adapted to downstream
tasks with only a few exemplars from the target
task, without significant modifications of the AIO
parameters. The performance of this approach is
expected to depend on the neural model’s learn-
ing capacity and the discrepancy among different
tasks (Chen et al., 2021). With a white-box LLM
as the learning model powered by fine-tuning, pro-
viding sufficient representation power, AIO can
help acquire high-level instruction knowledge us-
ing meta-learning techniques.

G Additional Instruction Optimization
Trajectory results

To provide additional insights for our instruction
optimization process, apart from our instruction
optimization trajectory results from Subsec. 5.2,
we include complementary results on extra tasks, in
terms of how generated instructions evolve over the
fine-tuning process, as well as how their accuracy
results change with the instruction optimization.

G.1 "Sentiment" Task

• Accuracy: 46%

7729

IF the input contains any of the follow-
ing words: "fun", "entertainingly", "splen-
did", "exquisite", "brilliantly", "impecca-
ble", "likeable", "engrossing", "psycholog-
ically", "slyly" THEN output is positive.,
ELSE IF the input contains any of the
following words: "worst", "dislikable",
"backlash", "mess", "pastiche", "warmed"
THEN output is negative.

• Accuracy: 91%

The output is positive if the input contains
words with positive connotations, such
as "fun", "entertainingly", "brilliantly",
"exquisite", "likeable", "gentle", and "en-
grossing".
The output is negative if the input contains
words with negative connotations, such as
"worst", "low", "pretentious", "dislikable",
"mess", "warmed over", and "backlash".

G.2 "Navigate" Task
• Accuracy: 33%

To determine if a robot will return to the
starting point after a series of movements,
follow these steps:
1. Count the total number of steps taken
by the robot.
2. If the robot turns around at any point, it
will change direction. So, count the num-
ber of turns and subtract 2 from the total
number of steps for each turn.
3. If the robot always faces forward, it will
not change direction. So, do not count the
turns.
4. If the total number of steps minus the
adjustments for turns is a multiple of the
initial number of steps, the robot will re-
turn to the starting point. Example: If the
robot takes 10 steps forward and then 5
steps backward, the total number of steps
is 15. If the robot turns around at some
point, adjust the total number of steps by
subtracting 2 for each turn. If the robot
always faces forward, do not adjust the to-
tal number of steps. If the total number of
steps minus the adjustments is a multiple
of the initial number of steps, the robot

will return to the starting point.

• Accuracy: 71%

To determine if a robot will return to its
initial position after a series of instruc-
tions, follow these steps:
1. Initialize the robot’s position and direc-
tion to the starting point.
2. Iterate through the instructions: - If the
instruction is "Turn around", update the
robot’s direction to the opposite direction.
- If the instruction is "Turn right" or "Turn
left", update the robot’s direction accord-
ingly. - If the instruction is "Take x steps",
update the robot’s position by moving x
steps in the current direction.
3. After iterating through all instructions,
check if the robot’s final position is the
same as the initial position.
4. If the final position is the same as the
initial position, the output is True; other-
wise, the output is False.

G.3 "Object Counting" Task

• Accuracy: 27%

To infer the output for a given input, count
the number of items in the input that are
not fruits or vegetables. Then, return the
count. For example, if the input is "I have
a violin, a piano, an accordion, a clar-
inet, an apple, a trumpet, and a banana".,
you would count the number of non-food
items, which are 7 (violin, piano, accor-
dion, clarinet, trumpet), and return 7. If
the input is "I have a yam, a carrot, a cab-
bage, two garlics, a potato, a stalk of cel-
ery, a head of broccoli, and a cauliflower".,
you would count the number of non-food
items, which are 0, and return 0.

• Accuracy: 52%

To infer the output for a given input, fol-
low these steps:
1. Identify the types of items in the input.
For example, if the input contains "vio-
lin", "piano", "accordion", "clarinet", "ap-

7730

ple", "trumpet", and "banana", the types of
items are musical instruments and fruits.
2. Count the number of items of each type.
For example, there is 1 violin, 1 piano, 1
accordion, 1 clarinet, 1 apple, 1 trumpet,
and 1 banana.
3. Add the counts of all types of items
together to get the total number of items.
4. The output is the total number of items.
For example, if the input is "I have a vi-
olin, a piano, an accordion, a clarinet, an
apple, a trumpet, and a banana"., the out-
put would be 7.

G.4 "Taxonomy Animal" Task
• Accuracy: 0%

Sort the input list in descending order
based on the length of the words. Then,
select the words that are animals. Finally,
sort the remaining words in descending
order based on the length of the words.

• Accuracy: 95%

1. First, identify all the words that are not
animals. These words are usually nouns
that are not animals, such as food items,
colors, objects, etc.
2. Sort the remaining animal words in
alphabetical order.
3. The output is the list of animal words
in alphabetical order, excluding the non-
animal words.

G.5 "Larger Animal" Task
• Accuracy: 50%

1. Take the first animal from the input.
2. If the first animal is a predator, compare
it with the second animal.
3. If the first animal is a predator and the
second animal is not a predator, then the
output is the second animal.
4. If the first animal is not a predator, com-
pare it with the second animal.
5. If the first animal is not a predator and
the second animal is a predator, then the
output is the first animal.

6. If neither of the animals is a predator,
compare their sizes.
7. If the first animal is larger than the
second animal, then the output is the first
animal.
8. If the first animal is smaller than the
second animal, then the output is the sec-
ond animal.
9. If the first animal and the second ani-
mal are of the same size, then the output
is the first animal.

• Accuracy: 92%

If the input consists of two animals, com-
pare their sizes. If the first animal is larger,
output the first animal. If the first animal
is smaller, output the second animal. If
both animals have the same size, output
the first animal.

G.6 "Implicatures" Task
• Accuracy: 62%

Given two speakers’ dialogue, analyze
the context and sentiment of the speak-
ers’ statements to determine if the second
speaker is thanking the first speaker (out-
put: ’yes’) or not (output: ’no’). To do
this, consider the following factors:
1. **Gratitude tone**: If the second
speaker’s statement conveys gratitude, ap-
preciation, or a positive sentiment towards
the first speaker, infer ’yes’.
2. **Question-answer format**: If the
first speaker’s statement is a question and
the second speaker’s response is an affir-
mative answer or a statement that implies
agreement, infer ’yes’.
3. **Contrast**: If the first speaker’s
statement is a negative or neutral state-
ment, and the second speaker’s response
is a contrasting positive statement, infer
’yes’.
4. **Contextual understanding**: Con-
sider the context of the conversation and
the speakers’ intentions. If the second
speaker’s statement seems to be respond-
ing to the first speaker’s action or sugges-
tion in a positive manner, infer ’yes’.

7731

When applying these factors, consider the
nuances of language, idioms, and figura-
tive expressions. If the analysis is ambigu-
ous or unclear, default to ’no’.

• Accuracy: 84%

To infer the output for a given input, fol-
low these steps:
1. Identify the speaker’s tone and intention
in the input. Are they expressing gratitude,
surprise, or skepticism?
2. Look for words or phrases that convey
a positive or negative sentiment. If the
sentiment is positive, the output is likely
to be ’yes’. If the sentiment is negative,
the output is likely to be ’no’.
3. Check for words or phrases that indi-
cate a question or a request. If the input
contains a question, the output is likely to
be ’yes’ if the speaker is seeking confir-
mation or agreement. If the input contains
a request, the output is likely to be ’yes’
if the speaker is seeking permission or ap-
proval.
4. Consider the context of the conversa-
tion. Is the speaker discussing a specific
event, situation, or decision? If so, the
output may be influenced by the speaker’s
perspective or attitude towards the topic.
5. Use your judgment and common sense
to make an educated guess about the out-
put. If you’re still unsure, try re-reading
the input and re-evaluating the tone, senti-
ment, and context.
By following these steps, you can make
an informed decision about the output for
a given input.

G.7 "Epistemic Reasoning" Task

• Accuracy: 41%

For each input, check if the premise and
hypothesis are about the same individual
or group of individuals. If they are, the
output is entailment. If they are not, the
output is non-entailment.

• Accuracy: 76%

Given a premise and a hypothesis, de-
termine the entailment relationship be-
tween them. For a premise, identify the
main clause and the subordinate clause (if
present). For the hypothesis, identify the
main clause and the subordinate clause (if
present). If the main clause in the premise
is identical to the main clause in the hy-
pothesis, and the subordinate clause (if
present) is also identical, then the output
is entailment. If the main clause in the
premise is identical to the main clause in
the hypothesis, but the subordinate clause
(if present) is different, then the output
is non-entailment. If the main clause in
the premise is not identical to the main
clause in the hypothesis, then the output
is non-entailment.

G.8 "Timedial" Task
• Accuracy: 41%

1. Read the context carefully and identify
the main idea or topic of the conversation.
2. Identify the speaker and the listener.
3. Determine the purpose of the conversa-
tion.
4. Identify the key information or events
mentioned in the conversation.
5. Analyze the conversation to determine
the relationship between the speakers and
the context.
6. Based on the analysis, infer the output
for the given input.

• Accuracy: 79%

To infer the output for a given input, fol-
low these steps:
1. Identify the context and the entities
mentioned in the input, such as people,
places, and times.
2. Look for keywords and phrases that
indicate the type of information being re-
quested or discussed, such as dates, times,
quantities, or specific events.
3. Analyze the relationships between the
entities and the context, and try to identify
the most relevant and important informa-
tion.

7732

4. If the output is a date or time, check
if it is a specific date or time, or if it is a
range or duration.
5. If the output is a quantity, check if it
is a specific number, or if it is a range or
interval.
6. Finally, use the inferred output to gener-
ate a response that is relevant and accurate
to the input and the context.

G.9 "Question Selection" Task
• Accuracy: 39%

To infer the output for a given input, fol-
low these steps:
1. Identify the context of the input, which
typically consists of a passage of text.
2. Determine the type of question being
asked, which is usually indicated by the
choice options provided.
3. Look for specific keywords or phrases
in the input that are related to the question
being asked.
4. Identify the relevant information in
the input that answers the question, which
may be a specific fact, statistic, or quote.
5. Match the relevant information to the
corresponding choice option in the ques-
tion.
6. Select the choice option that best an-
swers the question based on the informa-
tion provided in the input.

• Accuracy: 64%

To infer the output for a given input, fol-
low these steps:
1. Identify the context of the input, which
is typically a passage of text.
2. Determine the type of question being
asked, which is usually indicated by the
format of the choices provided.
3. Scan the context to identify relevant
information, such as key phrases, names,
and dates.
4. Match the context to the corresponding
choices, considering the question type and
the information gathered.
5. Select the most likely output based on
the context and the choices.

For example, if the input is a passage
about a football game, the output might be
a question about the teams involved, the
score, or the MVP. If the input is a passage
about a historical event, the output might
be a question about the date, location, or
significance of the event.

G.10 "Movie Recommendation" Task
• Accuracy: 48%

1. Identify the most frequent genre or
theme in the given context.
2. Compare the given context with the
choices and find the one that best matches
the identified genre or theme.
3. Output the matching choice.

• Accuracy: 88%

The output is the choice that is most com-
monly associated with the given context,
based on the frequency of co-occurrences
of movies in the input list with each
choice.

7733

