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Abstract
Compositional generalization is one of the im-
portant abilities that large language models
(LLMs) need to have for semantic parsing.
Previous research typically relies on dataset-
specific designs or a large number of samples
in demonstrations to improve the compositional
generalization of LLMs on semantic parsing.
We revisit this issue and find that when the
number of samples in a demonstration is lim-
ited to a lower bound for achieving composi-
tional generalization (minimum-coverage), cur-
rent advanced LLMs cannot arbitrarily achieve
good compositional generalization generically
on different semantic parsing datasets without
dataset-specific designs. To solve this problem,
we propose Multi-level Component Composi-
tion (MC2), a minimum-coverage and dataset-
agnostic framework based on input primitives,
which aims to generically help LLMs achieve
compositional generalization by selecting and
organizing samples from multiple composi-
tional levels that satisfy the primitive cov-
erage. Experiments and analysis show that
MC2 can effectively improve the compositional
generalization of LLMs on different semantic
parsing datasets in the minimum-coverage set-
ting. Data and code are available at https:
//github.com/xzy-xzy/MC2.

1 Introduction

Compositional generalization (Lake et al., 2016)
refers to the ability to correctly handle unseen or
rare combinations formed by known primitives. It
is one of the inherent linguistic abilities of humans
(Hupkes et al., 2020). Due to the potentially infi-
nite number of combinations in languages (Chom-
sky, 1965), language models often encounter new
combinations formed by known primitives in real-
world tasks and require the ability of compositional
generalization to cope with them. Therefore, com-
positional generalization of language models has
been studied on many natural language processing
tasks (Hupkes et al., 2022).

Semantic parsing (Kamath and Das, 2019) is one
of the fields that have received the most attention
in the research on compositional generalization.
Tasks in this field aim to transform natural lan-
guage into a more formal language to express its
meaning more precisely, such as syntactic structure
generation (Kim and Linzen, 2020), text-to-SQL
(Keysers et al., 2020), etc. Since target languages
typically have a strong compositionality, language
models intuitively require the ability of composi-
tional generalization for semantic parsing tasks.

The emergence of large language models
(LLMs) drives the emergence of the in-context
learning (Dong et al., 2024) paradigm for composi-
tional generalization research on semantic parsing.
In this paradigm, LLMs are asked to achieve the
correct processing of test samples containing un-
seen combinations after seeing the demonstrations
formed by samples drawn from the training cor-
pus. Many research works have considered how
compositional generalization of LLMs on semantic
parsing tasks can be improved under the in-context-
learning paradigm (Levy et al., 2023; An et al.,
2023a; Zhou et al., 2023; Drozdov et al., 2023).
Limited by the performance of LLMs at the time,
the methods used for improvement often rely on
task-specific designs or a large number of sam-
ples in demonstrations, and thus have drawbacks
in terms of generalizability or consumption. As the
performance of LLMs improves, the question of
whether LLMs can generically achieve composi-
tional generalization on different semantic parsing
datasets with a rather limited number of samples
in demonstrations and without dataset-specific de-
signs becomes a question worth revisiting.

To revisit this question, we introduce the
minimum-coverage setting. This setting requires
LLMs to achieve compositional generalization on
semantic parsing tasks when the number of sam-
ples in a demonstration is limited to a lower bound
for achieving compositional generalization. We
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Figure 1: An illustration of compositional generaliza-
tion of LLMs on the semantic parsing task in the in-
context learning paradigm.

find that existing advanced LLMs cannot arbitrar-
ily achieve good compositional generalization on
various semantic parsing datasets generically in
the minimum-coverage scenario without dataset-
specific designs. This suggests that despite the con-
tinued development of LLMs, achieving dataset-
agnostic compositional generalization on semantic
parsing in the minimum-coverage setting remains a
challenge currently.

To solve this problem, we propose Multi-
level Component Composition (MC2), which is
a minimum-coverage and dataset-agnostic frame-
work based on input primitives. By three steps
of chunking-matching-ordering, the framework se-
lects samples from multiple compositional levels
for LLMs and organizes the samples in a way
that potentially exhibits compositional paths, while
satisfying the basic requirement of the minimum-
coverage scenario. We show the effectiveness of
the MC2 framework through experiments on a va-
riety of compositional generalization datasets of
different types of semantic parsing tasks in the
minimum-coverage scenario. We also experimen-
tally analyze (1) the importance of introducing
multiple compositional levels, which is the core
idea of the MC2 framework, (2) the effect of steps
in the framework, and (3) the impact of choices
on method components and implementation rules
in the framework. The experiments and analysis
further confirm the design motivation of the MC2

framework and demonstrate the room for improve-
ment of the framework.

2 Preliminaries

In this section, we first introduce the concept of
compositional generalization. Then, we introduce

the minimum-coverage and dataset-agnostic set-
tings, describe the motivation for introducing the
settings, and estimate the difficulty of the settings.

2.1 Compositional Generalization of LLMs
Before the advent of LLMs, compositional gen-
eralization is typically evaluated using the train-
test paradigm (Finegan-Dollak et al., 2018). Re-
searchers construct the training set V and the test
set W with significantly different distributions of
combinations. The model is asked to be trained
(or fine-tuned) on V and its performance on W is
used to evaluate the ability of compositional gen-
eralization. A basic requirement to be met by sets
V and W is that every input primitive appearing
in W also appears in V , since the model needs to
know at least the representation of the input primi-
tive in the target to complete the composition (Lake
and Baroni, 2018). This requirement is known as
primitive coverage of W by V .

The emergence of LLMs introduces the in-
context learning paradigm of compositional gen-
eralization (Levy et al., 2023; An et al., 2023a).
In this paradigm, the demonstration phase of in-
context learning is regarded as the training phase.
For each test sample s in W , a subset V ′ of samples
in V that satisfy the primitive coverage of {s} by
V ′ is provided to the LLM as a demonstration, and
then the LLM is asked to process the test sample.
The testing of each test sample in W is independent.
Figure 1 shows an illustration of compositional gen-
eralization of LLMs on the semantic parsing task
in the in-context learning paradigm.

2.2 Minimum-Coverage
Based on the in-context learning paradigm, we in-
troduce the minimum-coverage setting, which is
a dynamic limit on the size of the subset V ′ (i.e.,
the number of samples in the demonstration). In
the minimum-coverage setting, for a test sample
containing n input primitives, at most n samples
can be included in the demonstration. Even an
ideal model (i.e., one that can achieve composi-
tional generalization as long as the demonstration
satisfies primitive coverage) must, in the extreme
case, be provided with n samples in the demon-
stration to satisfy primitive coverage to achieve
compositional generalization. Thus, the minimum-
coverage setting is a lower bound for achieving
compositional generalization. The main motivation
for introducing minimum-coverage setting is that
this setting minimizes the input consumption of
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Model SCAN1 COGS CFQ1

DeepSeek-2.5 63.8 89.7 63.8
Qwen-plus 62.1 82.4 66.2
GPT-4o 70.2 81.5 73.4
SOTA 99.7 99.2 94.3

Table 1: Results of the pre-experiment. SOTA refers to
state-of-the-art results using methods that have dataset-
specific designs and are not minimum-coverage.

LLMs for compositional generalization.

2.3 Dataset-Agnostic

The dataset-agnostic setting requires the method to
be independent of the dataset. This requirement im-
plies that (1) the method needs to be based on input
primitives only, since the output formal language
is usually dataset-relevant, and (2) the method does
not need to have any prior knowledge of the dataset
beyond the identification of the input primitive (see
Appendix A for details), such as knowledge of the
dataset-specific input syntax. The motivation for
introducing the dataset-agnostic setting is to ensure
that the method can be generalized across different
datasets without additional intervention.

2.4 Difficulty Estimation

To estimate the difficulty of the minimum-coverage
and dataset-agnostic settings, we conduct a pre-
experiment to test the performance of advanced
LLMs DeepSeek-2.5 (DeepSeek-AI et al., 2024),
Qwen-plus-0919 (Qwen et al., 2024) and GPT-4o-
20240806 (OpenAI et al., 2024) The datasets and
metrics of the pre-experiment are consistent with
the main experiment (which we will describe in
detail in Section 4). For a test sample containing
n input primitives, we randomly select for each
primitive a sample that covers it, for a total of n
mutually exclusive samples for the demonstration.

Table 1 shows the results of the pre-experiment.
Near-perfect performance can be achieved using
methods that have dataset-specific designs and are
not minimum-coverage. In contrast, the perfor-
mance of LLMs with randomly selected demonstra-
tion samples in the minimum-coverage setting is far
from perfect. The results provide an estimate of the
challenge of the minimum-coverage and dataset-
agnostic settings, as the LLMs in the minimum-
coverage setting are not yet able to achieve good
compositional generalization on different semantic
parsing datasets without dataset-specific designs
under arbitrary choices for demonstration. This

motivates us to conduct research on improvements.

3 MC2 Framework

In this section, we introduce the Multi-level Com-
ponent Composition (MC2) framework for helping
LLMs achieve compositional generalization on se-
mantic parsing. The core idea of the design is to
(1) compartmentalize the inputs of the test samples
into compositional levels, (2) select the appropri-
ate demonstration samples for the components of
different compositional levels, and (3) demonstrate
the path of thinking from low to high in the com-
positional levels. The design of the framework
satisfies that (1) it is minimum-coverage and task-
agnostic, and (2) it always satisfies the primitive
coverage requirements. The framework consists of
three steps: chunking, matching, and ordering. Fig-
ure 2 shows an illustration of the MC2 framework.

3.1 Chunking

The chunking step aims at obtaining components
from multiple compositional levels of the input and
the relationships between the components as a basis
for subsequent sample selection. In the chunking
step, the input is decomposed compositionally to
form a tree structure. Each node in the tree rep-
resents a component that is decomposed from the
component represented by its parent node. For an
input containing n input primitives, the final tree
will contain n leaf nodes representing the primi-
tives, and up to n− 1 non-leaf nodes. The method
of chunking is flexible, and any task-independent
method capable of tree-like component decomposi-
tion can be chosen. We consider the following two
methods of chunking:

PPL-based chunking. We use a small language
model to compute the perplexity. For the compo-
nent represented by each node, we enumerate the
schemes that slice the component into two parts
L / R and choose the scheme that minimizes the
perplexity of the sentence "Using / to split the sen-
tence {component}. {L} / {R}". According to the
scheme, we split the components and recursively
process the two child nodes formed. The method
always results in binary trees. See Algorithm 1 for
pseudo-code.

Off-the-shelf parser. The task of constituent
parsing (Kitaev and Klein, 2018) aims at obtaining
a tree-like constituent decomposition of the input
sentence with constituent labels, which fits with
the goal of the chunking step. Therefore, we can
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Figure 2: An illustration of the MC2 framework. (1) Chunking: the input is component-wise chunked to form a
tree structure. (2) Matching: each leaf node primitive (in color) corresponds to a non-leaf node, and the non-leaf
node component matches the most similar sample in the training set that covers the corresponding primitive. (3)
Ordering: samples matched by each non-leaf node are arranged in a specific order to form a demonstration.

Algorithm 1 PPL-based Chunking
function: chunking
Input: input primitives p1, p2, ..., pn
Output: root node x of the tree structure

x← new node (p1, p2, ..., pn)
if n = 1 then

return x
end if
m, v ← 0,∞
for i from 1 to n− 1 do

sent← "Using / to split the sentence {p1, p2, ..., pn}.
{p1, p2, ..., pi} / {pi+1, pi+2, ..., pn}"
if PPL (sent) < v then

m, v ← i, PPL (sent)
end if

end for
l← chunking (p1, p2, ..., pm)
r ← chunking (pm, pm+1, ..., pn)
set l, r to be the left and right son nodes of x
return x

use an off-the-shelf constituent parser (based on a
small language model) for the chunking step. The
method may result in multinomial trees.

3.2 Matching

Based on the tree structure obtained from the
chunking step, the matching step aims to select
a total of n mutually exclusive samples from the
training set that are similar to the components of
the different compositional levels and satisfy the
primitive coverage requirement.

For a non-leaf node x, we define the degree Dx

as (the number of child nodes of x)− 1. It always
holds that

∑
Dx = n− 1. After increasing Droot

by 1, we can select Dx samples for each non-leaf
node x to get a total of n samples.

We visit each leaf node y in reverse order of
breadth-first search (BFS). For y, we find the deep-

Algorithm 2 Matching and Ordering
Input: tree structure T , training set V
Output: ordered list of samples L as the demonstration

for all non-leaf node x in T do
Dx ← (the number of child nodes of x) − (x ̸= root)
Lx ← empty list

end for
for all leaf node y in T in inverted BFS order do

p← the primitive represented by y
x′ ← parent node of y
while |Lx′ | = Dx′ do

x′ ← parent node of x′

end while
R← {s | s ∈ V ∧ (∀x, s /∈ Lx) ∧ s covers p}
c← the component represented by x′

Lx′ ← Lx′ + [the sample in R that is most similar to c]
end for
L← empty list
for all non-leaf node x in T in inverted BFS order do

L← L + Lx

end for
return L

est ancestor node x′ of y for which the number
of samples selected is less than Dx′ . Then, from
the samples in the training set that have not been
selected and cover the primitive represented by y,
we will select a sample that is most similar to the
component represented by x′. Finally, we will se-
lect n mutually exclusive samples that satisfy the
primitive coverage requirement.

The method of finding the most similar sample
is flexible and can be chosen from any method
that estimates the text similarity. We consider two
methods: the BM25 (Lù, 2024), and the cosine
similarity of sentence vectors given by the small
language model. See Algorithm 2 for pseudo-code.
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3.3 Ordering

The ordering step aims to order the selected sam-
ples in a way that potentially presents composi-
tional thinking paths. Based on the tree structure,
we simply visit each non-leaf node in inverted BFS
order and list the samples selected for each node in
turn to form the demonstration. The BFS inverted
order is the order of the compositional levels of the
tree nodes from low to high, and to some extent
characterizes the compositional thinking paths that
are progressively from simple to complex compo-
nents. See Algorithm 2 for pseudo-code.

4 Main Experiment

In this section, we conduct the main experiment to
verify the effectiveness of the MC2 framework on
different semantic parsing tasks in the minimum
coverage scenario and to verify the effect of the
core idea of the framework and steps in it.

4.1 Datasets and Metrics

We conduct experiments on three representative
datasets for compositional generalization research
on semantic parsing: SCAN (Lake and Baroni,
2018), COGS (Kim and Linzen, 2020), and CFQ
(Keysers et al., 2020). The three datasets corre-
spond to three different semantic parsing tasks. Ta-
ble 2 shows samples of the datasets.

SCAN. The SCAN dataset corresponds to the
task of simplified natural language to action se-
quence translation. We use the maximum com-
pound divergence (MCD) splits provided by Key-
sers et al. (2020), containing three training-test
splits MCD1~MCD3. The MCD splits achieve
high compositional divergence under similar atom
distributions, which can effectively evaluate the
ability of compositional generalization. The format
follows Zhou et al. (2023).

COGS. The COGS dataset corresponds to the
task of syntactic structure generation for natural
language. We use the original training-test split
containing five categories of compositional gener-
alization. The format follows Ontañón et al. (2022).

CFQ. The CFQ dataset corresponds to the
task of text-to-SPARQL. This dataset contains
realistic natural language questions and corre-
sponding SPARQL queries. We use the original
MCD splits containing the three training-test splits
MCD1~MCD3.

For each split in each dataset, we sample 1,000
samples from the test set for testing. The metric

Dataset: SCAN (action sequence generation)
Input: turn opposite left thrice and run around
right twice
Output: (LEFT LEFT) * 3 (RIGHT RUN
RIGHT RUN RIGHT RUN RIGHT RUN) * 2
Dataset: COGS (syntactic structure generation)
Input: Olivia believed that a donut was drawn
by a girl.
Output: believe (olivia, none, none) ccomp
draw (girl, donut, none)
Dataset: CFQ (text-to-SPARQL)
Input: What female person did M2 ’s employee
and founder influence?
Output: SELECT DISTINCT ?x0 WHERE {
?x0 a person . ?x0 influenced_by ?x1 . ?x0
has_gender female . ?x1 founded M2 . ?x1
employed_by M2 }

Table 2: Samples of the three semantic parsing datasets
used in the experiments.

is the accuracy under exact matching. Since some-
times the correct answer is not unique, we convert
the model output and the standard answer to ensure
correct matching. The details of the conversion are
shown in Appendix B.

4.2 Settings
The small language models we use in our experi-
ments include GPT-2-large (0.8B) (Radford et al.,
2019) for PPL-based chunking, T5-large (0.8B)
(Raffel et al., 2020) as a base model for the off-the-
shelf parser BENEPAR (Kitaev and Klein, 2018),
and all-mpnet-base-v2 (0.1B) (Song et al., 2020)
for generating sentence vectors in the matching
step. To verify the overall effect of the MC2 frame-
work and the effect of steps in it, our main experi-
ment contains the following four settings:

Random. For each input primitive in turn, we
randomly select a sample that is unselected and
covers that primitive, and arrange the samples in
the order of selection to form a demonstration.

Global Matching. Based on the previous setting,
the random selection is replaced by the selection of
the sample that is most similar to the whole input,
using the same similarity estimation method as in
the Matching step.

Chunking + Matching (C + M). The chunk-
ing and matching steps in the framework are used.
The samples are arranged in the order that the cov-
ered primitives are in the input, consistent with the
previous two settings.
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Model Setting SCAN1 SCAN2 SCAN3 COGS CFQ1 CFQ2 CFQ3

DeepSeek

Random 63.8 65.2 55.9 89.7 63.8 68.0 68.7
Global Matching 68.1 79.2 50.1 92.9 77.8 69.9 72.1
C + M 74.1 81.1 51.1 95.4 78.7 75.0 77.3
Complete MC2 76.6 88.4 57.5 95.2 79.8 76.4 77.6

Qwen-plus

Random 62.1 66.7 56.1 82.4 66.2 68.4 69.3
Global Matching 69.4 89.7 59.1 87.8 79.2 72.5 70.7
C + M 73.6 92.0 58.5 88.5 79.8 77.4 74.6
Complete MC2 78.2 94.9 59.4 89.1 79.9 77.5 74.7

GPT-4o

Random 70.2 71.7 64.5 81.5 73.4 71.9 72.7
Global Matching 72.4 84.5 58.9 86.8 80.6 78.3 77.9
C + M 81.9 87.8 64.8 88.7 81.3 81.1 78.9
Complete MC2 82.4 90.8 67.1 89.3 83.3 83.7 80.8

Table 3: Results of the main experiment in the minimum coverage scenario. For SCAN and CFQ, numerical
subscripts indicate the corresponding MCD split.

Complete MC2. The complete MC2 framework
is used, consisting of three steps.

In the main experiment, we fix the use of the
off-the-shelf parser method in the chunking step
and the vector method in the matching step. A
comparative analysis of the different methods will
be shown in Section 5.

4.3 Results
Table 3 shows the results of the main experiment
in the minimum coverage scenario. We analyze
the effect of the core idea of the MC2 framework
and steps in it by comparing the results in different
settings adjacent to each other.

Random vs. Global Matching. Matching using
similarity metrics is intuitively a better selection
strategy than random selection. In most compar-
isons, using Global Matching indeed leads to better
performance than Random. However, we find that
in some cases Global Matching brings a significant
performance degradation (DeepSeek and GPT-4o
on SCAN3). This suggests that global-level selec-
tion based on certain similarity metrics may instead
lead to weaker compositional generalization for
some tasks or models.

Global Matching vs. C + M. Compared to
Global Matching, C + M introduces the idea of mul-
tiple compositional levels. Unlike simply matching
on the global input, C + M decomposes the com-
ponents of different compositional levels with the
help of the chunking step, and then matches the
most similar samples for each component. As can
be seen from the results, this hierarchical matching
improves performance in most cases, and signifi-
cantly in some comparisons. In the only exception

where performance drops (Qwen-plus on SCAN3),
the drop is not significant. Overall, the chunk-
ing and matching steps that introduce the idea of
multiple compositional levels effectively improve
generic compositional generalization.

C + M vs. Complete MC2. The complete
MC2 adds a a final ordering step compared to C +
M, which changes the sample ordering from input
order by matched primitive to order by matched
tree nodes from lower to higher level. The results
are similar to the previous set of comparisons. In
most cases, the added ordering step improves per-
formance, and the improvement is significant in
some comparisons. In the only exception where
performance drops (DeepSeek on COGS), the per-
formance drop is also not significant. The results
indicate that the addition of the ordering step over-
all improves generic compositional generalization.

From the results and analysis, we find that each
step is important for performance improvement.
The core idea of multiple compositional levels,
which serves as the basis for component match-
ing and sample ordering, plays an important role in
generic improvement.

5 Analytical Experiments

In this section, we conduct analytical experiments
on DeepSeek-2.5 and Qwen-plus on choices in the
MC2 framework, including the choice of method
components and the choice of implementation rules.
The purpose of the experiments is to analyze the
impact of various choices on performance and to
provide insight into the room for further improve-
ment of the framework.
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Model Method SCAN1 SCAN2 SCAN3 COGS CFQ1 CFQ2 CFQ3

DeepSeek

PPL + BM25 67.9 84.2 56.4 92.2 79.3 75.7 74.4
PPL + Vector 78.4 93.4 56.5 94.6 76.2 74.6 73.8
Parser + BM25 69.3 83.1 58.4 91.7 78.2 75.7 77.8
Parser + Vector 76.6 88.4 57.5 95.2 79.8 76.4 77.6

Qwen-plus

PPL + BM25 68.4 84.6 57.2 86.6 78.5 75.8 75.5
PPL + Vector 72.3 93.3 56.4 89.5 76.9 75.2 73.7
Parser + BM25 68.5 83.9 57.0 88.1 80.0 76.1 76.2
Parser + Vector 78.2 94.9 59.4 89.1 79.9 77.5 74.7

Table 4: Results of experiments on choice combinations of method components in the minimum coverage scenario.

5.1 Method Components

In the MC2 framework, the method of tree structure
acquisition in the chunking step, and the method of
finding the most similar samples in the matching
step, are components that can be flexibly changed.
As described in Section 3, we consider two meth-
ods, PPL and Parser, in the chunking step, and
two methods, BM25 and Vector, in the matching
step. We conduct experiments on the combination
of method choices for the two steps.

Table 4 shows the results of experiments. Of the
four combinations, Parser + Vector demonstrates
the best performance in most cases, while Parser +
BM25 and PPL + Vector also perform best in some
cases. For different LLMs, the combinations that
show the best performance under the same split of
the same task are different; for the same LLMs, the
combinations that show the best performance under
different tasks are not exactly the same. Overall,
there is no combination that presents an absolute
performance advantage.

For the performance of the framework, the im-
pact of the chosen combination of method com-
ponents is significant in some cases, reflected in
the large performance difference between the best
and worst performing combinations (e.g., SCAN1

and SCAN2). In addition, the performance of the
framework may be limited by the performance of
the method components in a particular case, e.g.,
the performance improvement of DeepSeek using
Parser + Vector on SCAN3 is relatively limited due
to the performance of the Vector method. There-
fore, finding task-independent method components
and combinations that have better generic perfor-
mance is one of the potential room for further per-
formance improvement of the framework.

5.2 Implementation Rules

The MC2 framework contains several implemen-
tation rules with multiple choices without altering
the underlying design purpose. In each of the fol-
lowing implementation rules, we experiment with
a choice different from the one in Section 3.

Visiting rule. In the matching and ordering
steps, we use the BFS inverted order as the vis-
iting order with the purpose of demonstrating the
potential compositional paths. In the choice of vis-
iting rule, any order that potentially demonstrates
compositional paths can be taken into account. We
experiment with the inverse order of depth-first
search (DFS) as the visiting order, which charac-
terizes another typical bottom-up compositional
pattern.

Degree rule. In the matching step, the degree
rule specifies the number of samples Dx matched
by each non-leaf node x. The rule is to satisfy
the requirement that the total number of samples
in the minimum coverage scenario cannot exceed
n. Any positive integer assignment to Dx that
satisfies the sum of n can be used as a degree
rule. We experiment with another rule that con-
centrates Dx on the root. Under this rule, Dx = 1
for non-root and non-leaf nodes x, and Droot =
(n− number of non-root and non-leaf nodes).

Primitive coverage rule. In the matching step,
each sample matched for a non-leaf node must
cover the primitive corresponding to the corre-
sponding leaf node. This rule is to ensure that
each input primitive is covered after the sample
matching is completed. We experiment with the
rule of adding a branch to the original rule: when
the primitive represented by the corresponding leaf
node has already been covered by a sample that
has been selected, the sample selected this time
does not have to cover the primitive. This new rule
still satisfies the primitive coverage requirement,
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Model Rule SCAN1 SCAN2 SCAN3 COGS CFQ1 CFQ2 CFQ3

Original 76.6 88.4 57.5 95.2 79.8 76.4 77.6
* Visiting 77.4 88.7 56.2 95.1 79.4 75.4 78.0
* Degree 76.9 89.0 57.2 95.6 79.5 76.3 77.6

DeepSeek

* Primitive 76.9 87.3 57.7 95.4 80.2 75.9 76.4
Original 78.2 94.9 59.4 89.1 79.9 77.5 74.7
* Visiting 79.2 94.0 60.1 90.5 82.0 77.1 77.8
* Degree 77.9 94.8 59.9 89.6 80.9 76.2 75.1

Qwen-plus

* Primitive 78.2 94.2 59.0 87.7 81.4 77.0 76.9

Table 5: Results of experiments on the choice of implementation rules in the minimum coverage scenario. In the
Rule column, Original indicates that the implementation rules described in Section 3 are used, and other rows with *
indicate that one of the corresponding rules in 5.2 is modified. Compared to Original, the performance improved by
the modification is marked in red, and the performance degraded is marked in blue.

potentially trading a reduction in the number of
primitives in the demonstration for a larger sample
selection space.

Table 5 shows the results of experiments. From
the results, we find that there is no one implemen-
tation rule choice that exhibits an absolute perfor-
mance advantage, similar to the results for method
components. Although LLMs may exhibit some
preference for the choice of implementation rules
(e.g., Qwen-plus prefers the DFS visiting rule), it
does not appear that implementation rules before
and after modification exhibit the same compara-
tive results on all splits of an LLM.

While some of the modifications result in slightly
larger performance changes (e.g., visiting rule on
CFQ3 for Qwen-plus), most of the modifications
result in small performance changes. This implies
that the framework is relatively insensitive to mod-
ifications to a single implementation rule without
changing the underlying design purpose. However,
better choices of implementation rules remain to be
investigated, especially considering that the inter-
nal combinations of implementation rules and their
combinations with other elements of the framework
are still under-explored.

6 Related Work

For compositional generalization of LLMs on se-
mantic parsing in the in-context learning paradigm,
many works have proposed different methods for
improvement. Levy et al. (2023) proposes Cover-
LS. This method first defines the task-specific local
structure that the output has. Then, pairs of (input,
output local structures) in the training set are used
to train a prediction model. Finally, the prediction
model predicts the local structures corresponding to

the test input and selects the demonstration samples
that cover more of the predicted local structures.
An et al. (2023a) consider improvement based on
the parsing tree on COGS. They consider struc-
tural similarity, diversity, and complexity to select
the demonstration samples with the best matching
parsing tree for the test sample. An et al. (2023b)
utilizes dataset-specific examples to enable LLMs
to generate descriptions for sample selection. Droz-
dov et al. (2023) proposes least-to-most prompting
to improve the performance of LLMs on SCAN.
They divide the task into two subproblems, decom-
position and mapping, provide LLMs with man-
ually written samples of decomposition and map-
ping, and then ask LLMs to solve the two subprob-
lems sequentially. On COGS and CFQ, which are
more difficult to decompose subproblems, Droz-
dov et al. (2023) proposes dynamic last-to-most
prompting. They manually write specific decompo-
sition rules and examples for COGS and CFQ, and
ask LLMs to decompose the problem. Then, they
perform the selection of demonstration samples
for the decomposed subproblems and ask LLMs
to solve the subproblems step-by-step. As distinct
from related work, the MC2 framework does not
rely on dataset-specific design such as guidance
from manual annotations, and can always satisfy
the requirement of the minimum-coverage setting.

7 Conclusion

In this work, we revisit the question of whether
LLMs can achieve dataset-agnostic compositional
generalization on semantic parsing in the minimum-
coverage setting, and find that achieving this re-
mains a challenge for current advanced LLMs. We
propose a minimum-coverage and dataset-agnostic
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framework, MC2, to improve the compositional
generalization of LLMs on semantic parsing. We
illustrate the effectiveness and room for improve-
ment of the framework and confirm the validity of
the design ideas through experiments and analysis.

Limitations

This work investigates compositional generaliza-
tion on semantic parsing in minimum-coverage and
dataset-agnostic settings. The settings introduce po-
tential limitations from a practical perspective, as
the use of dataset-specific designs or larger sample
sizes of the demonstration is fully allowed in real-
world scenarios to improve performance. From the
results, even with the MC2 framework, there is still
a gap between the performance demonstrated by
LLMs and the state-of-the-art performance using
methods that have dataset-specific designs and are
not minimum-coverage. This represents a trade-off
between the performance and input consumption
as well as generalizability. Although this work
performs experiments in the minimum-coverage
setting, MC2 can still be applied to looser coverage
conditions (see Appendix C for a discussion).

Another limitation is the problem of data con-
tamination. As LLMs evolve, data contamination
becomes an unavoidable problem when perform-
ing compositional generalization experiments on
already open-source datasets, and it is difficult to
analyze their impact. Our experiments focus on
comparisons of the same model in different settings,
and there are no contamination-induced confidence
issues for cross-model comparisons. However, con-
tamination can still have an impact on the analysis
of the source of improvement of the method on a
given model. We will continue to follow up on
related work on how to deal with the impact of
data contamination on the results of compositional
generalization tests.

Sample selection for compositional generaliza-
tion has two directions of improvement: similarity
and diversity. Our work focuses on improvements
in the similarity direction and does not explore the
diversity direction. A discussion on diversity can
be found in Appendix D.
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A Primitive Identification

For input, we mostly simply use spaces as separa-
tors to identify primitives and ignore cases when
matching primitives. In the following cases, we
perform special identification to avoid redundant or
unusual primitives: (1) articles (e.g., the, a, an) are
not considered as primitives, (2) punctuation marks
are separated from the word and are not considered
as primitives, and (3) for the SCAN dataset, oppo-
site and around, which act as special ideograms, are
combined with the directional adverbs that follow
them to form a single primitive.

B Conversion Details

We match the model outputs and standard answers
after a uniform conversion. The purpose of the
conversion is to unify all possible correct answers
to a unique one, which is consistent with the result
of the conversion of the standard answer. For all
datasets, we ignore redundant spaces and informa-
tion other than answers. For the SCAN dataset, we
expand the parentheses with multipliers by the num-
ber of repetitions shown by the multipliers to get
the only correct answer without parentheses. For
the COGS dataset, we ignore all case issues. For
the CFQ dataset, following Drozdov et al. (2023),
we uniquely orient the bidirectional relation and
perform iterative sorting and normalization to en-
sure the uniqueness of the answer.

C Applying MC2 in Looser Settings

MC2 can simply be applied to settings that are
looser (allow a larger number of demonstration
samples) than the minimum-coverage setting by
simply increasing Dx. For example, when allow-
ing 2n demonstration samples, applying MC2 only
requires that Dx becomes twice as large. Table 6
shows the results of experiments on Qwen-plus in
this looser setting (2n). The application of MC2

still brings some performance improvement com-
pared to random selection. This suggests that MC2

can be somewhat practically useful even if the
trade-off favors performance over input consump-
tion.

D Discussion on Diversity

MC2 is mainly improved based on the similarity
direction. In the diversity direction, we supple-
ment our experiments with a strategy: under the
Global Matching strategy, we select samples with

SCAN1 COGS CFQ1

Random 80.7 90.8 74.9
MC2 85.5 91.8 86.2

Table 6: Results of Qwen-plus when 2n demonstration
samples are allowed.

SCAN1 COGS CFQ1

w/o Diversity 69.4 87.8 79.2
w/ Diversity 68.8 87.1 78.5

Table 7: Results of Qwen-plus without/with increasing
diversity strategy when using Global Matching.

the smallest average similarity to the currently se-
lected samples from the top 10% most similar sam-
ples to improve diversity. The results presented
in Table 7 show that this strategy does not lead to
performance improvement. In addition, we find
a decrease in the average similarity between sam-
ples selected using the MC2 framework compared
to random. How to incorporate diversity into the
framework and bring about performance gains re-
mains to be explored.
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