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Abstract

Large Language Models (LLMs) are trained on
diverse and often conflicting knowledge span-
ning multiple domains and time periods. Some
of this knowledge is only valid within spe-
cific temporal contexts, such as answering the
question, “Who is the President of the United
States in 2022?” Ensuring LLMs generate
time-appropriate responses is crucial for main-
taining relevance and accuracy. In this work
we explore activation engineering as a method
for temporally aligning LLMs to improve fac-
tual recall without any training. Activation
engineering has predominantly been used to
steer subjective and qualitative outcomes such
as toxicity or behaviour. Our research is one
of few that uncovers the bounds of activation
engineering on objective outcomes. We ex-
plore an activation engineering technique to
anchor LLaMA 2, LLaMA 3.1, Qwen 2 and
Gemma 2 to specific points in time and ex-
amine the effects of varying injection layers
and prompting strategies. Our experiments
demonstrate up to a 44% and 16% improve-
ment in relative and explicit prompting respec-
tively, achieving comparable performance to
the fine-tuning method proposed by Zhao et al.
(2024). Notably, for LLaMA 2 and LLaMA
3.1 our approach achieves similar results to the
fine-tuning baseline while being significantly
more computationally efficient and requiring
no pre-aligned datasets.

1 Introduction

Large Language Models (LLMs) encode and train
on a large corpus of information that the end user
can query (Petroni et al., 2019; Cohen et al., 2024;
Vaswani et al., 2017). Their training sets can span
a large timeframe leading to overlapping and con-
flicting answers for time sensitive queries such as
“Who is the President of the United States of Amer-
ica?”. Questions like these can have different an-
swers throughout time with the correct answer (Joe
Biden in 2024 and Donald Trump in 2025) being

Figure 1: When asked “Who is the current Prime Min-
ister of Japan” LLaMA2-7b outputs Yoshihide Suga.
Applying activation engineering as temporal alignment
assistance for the year 2022 produces the correct set of
facts for LLaMA-7b.

temporally sensitive; relevant to the time it is asked
(Ge et al., 2024; Dhingra et al., 2022; Luu et al.,
2022).

Temporally sensitive questions require LLMs to
correctly understand the time they are answering
for. Without temporal alignment LLMs are recall-
ing facts based on training distributions leading
to a chaotic sense of time for factual recall (Zhao
et al., 2024). This leads to errors such as GPT2-XL
recalling that the current Prime Minister of Aus-
tralia is Malcolm Turnbull. This is at odds with the
knowledge the LLM has on hand. The model, if
prompted carefully can recall that Scott Morrison
is the serving Prime Minister of Australia in 2022,
a more recent and temporally relevant answer. The
confusion about whom the current Prime Minister
of Australia demonstrates how temporal misalign-
ment can lead to erroneous factual recall (Luu et al.,
2022).

Conflicting answers throughout time can lead to
a range of recall errors. To overcome these errors
many methods aim to overwrite the subject, rela-
tionship, object (SRO) facts held within an LLM
(Geva et al., 2023; Cohen et al., 2024; Petroni et al.,
2019; Yu et al., 2023; Dai et al., 2022); for example,
overwriting the object associated with the President
of the United States of America and altering the
probability of the output tokens to preference Don-
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ald Trump over Joe Biden. These methods fall
under the categories of continual learning (Abel
et al., 2023; Ke et al., 2023; Jin et al., 2022), knowl-
edge editing (De Cao et al., 2021; Yu et al., 2024;
Hartvigsen et al., 2023; Meng et al., 2022, 2023),
and retrieval augmented generation (RAG) (Lewis
et al., 2020), which all strive to provide correct
information to the end user.

However, overwriting SRO fact sets ignores
the opportunity to realign LLMs temporally to re-
call the correct facts already known by the model.
Building on the temporal alignment work of (Zhao
et al., 2024) we explore the capability of injecting
vectors into the residual stream during inference
(activation engineering) as a technique to tempo-
rally align models within their existing knowledge
cut-off timeframe and correct for relative tempo-
ral statements such as “Who is the current Prime
Minister of Japan?”. Figure 1 demonstrates that
when LLaMA2-7b (which has a knowledge cutoff
date of September 2022) is asked this question the
preferred response is Yoshida Suga (who served as
Prime Minister between 2020 and 2021). However,
when temporally aligned to the year 2022, using
activation engineering the preferred response is Fu-
mio Kishida; who was the current serving Prime
Minister of Japan in 2022. The distinction within
this scenario is that we are aligning to knowledge
the model already possesses. While Zhao et al.
(2024) uses fine-tuning to temporally align, we
explore the effectiveness of activation engineer-
ing (AE); reducing the computational requirements
to temporally align, increases the flexibility and
responsiveness for end users, and requires less pre-
aligned data to reference and train.

In this work we hypothesise that AE is a more
efficient method to temporally align models com-
pared to fine-tuning, reducing the amount of train-
ing and data required, whilst providing similar out-
comes to temporal alignment via fine-tuning. We
experiment with the activation methods of Turner
et al. (2023); Rimsky et al. (2024) because of
their effectiveness in reducing toxicity, their ease
of integration into LLMs and efficiency at infer-
ence. While Turner et al. (2023) and Rimsky et al.
(2024)’s research focuses on qualitative aspects of
LLMs such as toxicity and topic fixation, our re-
search on the other hand, aims to understand how
AE can affect time-sensitive factual recall, which
to the best of our knowledge is a new research per-
spective. Furthermore, while Turner et al. (2023)
and Rimsky et al. (2024) look at single layer acti-

vation engineering, we explore the capabilities of
multi-layer vector injections for aligning time for
factual recall.

We apply AE over two datasets, Head of Gov-
ernments (HOG) and Temporal Alignment Ques-
tion Answer (Taqa) (Zhao et al., 2024). The HOG
dataset was created as part of this research to be a
small and domain specific dataset. The Taqa dataset
(Zhao et al., 2024) on the other hand was selected
to test the effectiveness of AE on a larger, more
diverse dataset; exploring the generality of AE on
temporal alignment and providing a benchmark to
compare against.

We run sweep tests throughout LLaMA2-7b, 13b
and 70b models varying the layers of activation and
phrases injected into the residual stream. Next, we
test the effect of AE on a single layer and then
compound the effect by applying AE to multiple
layers. We then compare the results of AE against
explicit prompting (e.g., In 2022 the President of
the United States of America is?), relative prompt-
ing (e.g., The current President of the United States
of America is?) and fine-tuning; following the
methodology of Zhao et al. (2024). We take our
findings from the smaller HOG and Taqa-1000 ex-
periments and scale them to the entire Taqa-9000
testing set where we compare our summary Taqa
results to Zhao et al. (2024) demonstrating a similar
alignment to a specific year, but with less computa-
tional overhead.

2 Related Studies

2.1 Temporal alignment

Temporal alignment (Zhao et al., 2024) is a rela-
tively new field and distinct from temporal reason-
ing which aims to understand and influence how
time is logically treated by LLMs; such as what
date is it from 8 months from now? (Tan et al.,
2023; Yuan et al., 2024). Temporal alignment on
the other hand aims to influence the recall of facts
so that they are referenced from a specific point in
time providing a time sensitive contextually correct
answer.

Zhao et al. (2024) is one of the few papers we
could find that explores temporal alignment of
LLMs. In their research they develop a bench-
mark dataset Temporal Alignment Question An-
swer (Taqa) and explored a fine-tuning method for
aligning LLMs to a specific year using implicit
factual statements. They demonstrate an improve-
ment in alignment and recall of facts from more
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recent periods compared with explicit and relative
prompting. Other methods such as Mend (Mitchell
et al., 2022), Memit (Meng et al., 2023) and Rome
(Meng et al., 2022) are focussed on knowledge edit-
ing (Yin et al., 2024; Ge et al., 2024; Dong et al.,
2022; Li et al., 2024), correcting knowledge via hy-
pernetworks or main network editing. These meth-
ods overlook the opportunity to correct the fact
with minimal intervention via temporal alignment,
which can also be used as a tool to minimise the
amount of overwriting required in the first place.

2.2 Activation Engineering

We are influenced by the AE approach pioneered
by Rimsky et al. (2024) and Turner et al. (2023)
as their method demonstrates efficiency in steering
models towards a desired outcome. Their meth-
ods are different to prior AE techniques (Dathathri
et al., 2019; Hernandez et al., 2024) as they use
feed forward mechanisms without any pre-training
or major model alterations. They demonstrate that
AE is effective in reducing toxicity and creating
topical fixations producing the desired outcome
with minimal intervention.

The AddAct (Turner et al., 2023) method ex-
plores single contrasting pairs to assist in the pref-
erence of topic and LLM perspectives, without any
significant data gathering or processing. Rimsky
et al. (2024) on the other hand uses a sizable set
of crafted contrasting statements which are then
added back into the residual stream. To the best of
our knowledge AE has not been explored to correct
factual information or align time within LLMs.

3 Datasets

A variety of datasets have been developed to ex-
amine the properties and methods pertaining to
LLMs. Recall, biases and reasoning (Thorne et al.,
2018; Zhong et al., 2023) are a few categories of
datasets constructed to address research in these
areas. These datasets typically look at Subject Re-
lationship Object (SRO) mappings, ignoring time
as a factor for those relationships. For temporal re-
search our dataset requires a record of changes over
time for an SRO fact set, expanding the dataset to
one that maps SROT: Subject, Relationship, Object
and Time. Specifically, we require a dataset that
contains consistent time-exclusive answers, where
the answer A is only valid between t ∈ [ts, te], and
A has a consistent set of answers through time.

To the best of our knowledge, there are only

two datasets that meet this requirement (Herel
et al., 2024; Zhao et al., 2024). Other datasets
such as Atoke (Yin et al., 2024), MQuake (Thorne
et al., 2018), ChronoEdit (Ge et al., 2024) con-
tain question-answer sets through time but do not
continuously record the change of answers over
time. These datasets are focussed on knowledge
editing for time sensitive questions typically ex-
ploring one hop knowledge editing effects. For our
experiments we have chosen to first create a smaller
Head of Government (HOG) dataset to provide an
easier measure and more efficient experimentation
feedback loop. Then, to validate our findings are
domain agnostic, we test against Temporal Align-
ment Question Answer (Taqa) (Zhao et al., 2024)
which contains a much wider knowledge domain.
We chose Taqa over Herel et al. (2024) as Taqa is
originally benchmarked against a fine-tuning align-
ment approach which provides a fair baseline for
us to compare against.

3.1 Head of Governments (HOG)
We augment an existing ideologies (Herre, 2022)
dataset to test AE’s effect on large periods of time
with relatively consistent changes. The dataset con-
tains over 175 countries, recording the heads of
government between the years 1945 and 2020 in-
clusive. This set has 175 temporally relevant ques-
tions (Who is the current head of government x?),
and up to 13,125 explicit temporal questions (e.g.,
In the year Y, who is head of government for X?).

3.2 Temporal Alignment Question Answer
(Taqa) Dataset

To further validate our temporal alignment experi-
ments we utilise the Taqa dataset (Zhao et al., 2024).
The Taqa dataset test set contains 9000 temporally
relevant questions (e.g., who is the most recent
winner of the Stanley Cup?) and up to 113,000
explicit temporal questions (In the year 2010, who
was the most recent winner of the nationals skating
championship?).

Whilst Taqa presents a diverse set of question
answer pairs, similarities between answers over
time and a low recall for LLaMA2 models makes
this dataset challenging to work with. A range of
questions have very similar answers with just a sin-
gle token change between the years. These include
questions such as, “What edition of the Producers
Guild of America Awards was last held?”, whereby
the answer is incremented by one in most years.
Similarly, we note a series of false positives asso-
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ciated with using F1 token evaluation leading to
computational inefficiencies and misleading eval-
uation. Questions such as “When was the latest
Awit Awards ceremony held?”, where the correct
answer is a year, such as 2022, leading to any rea-
sonable answer within the 21st century having an
F1 score of approximately 0.5. Furthermore, some
of these questions could be considered challenging
for smaller models such as LLaMA2 7b and 13b
which might not have been trained on an extensive
body of knowledge.

To improve development efficiency and limit the
effect of false positives provided from partial an-
swers we filter for questions that have an F1 Score
above 0.5 when answered relatively by LLaMA2-
7b. We capture questions LLaMA2-7b, 13b and
70b can answer confidently, creating a more sensi-
tive testing dataset and minimise the testing feed-
back loop. The Taqa dataset reduces from 9000
to 2930 question answer pairs. We further reduce
this to the first 1000 question answer pairs within
the 2930 filtered set. This dataset is denoted as
Taqa-1000 whilst the full Taqa dataset is denoted
as Taqa-9000.

4 Methods

As outlined in Algorithm 1 and Figure 2, during the
prediction of an answer for a temporally sensitive
question pu such as, “Who is the current Presi-
dent of the United States of America?”, we inject
a pre-defined steering vector ae that represents the
specific year in to layers l of the model.

These steering vectors are created from run-
ning temporal phrases {p, } such as a year number
through the model and extracting the activation vec-
tors h before a selected layer. Using h, we apply a
positive or negative coefficient c to phrase’s vector
increasing or reducing the influence of the phrase,
and producing ha. Negative coefficients are used
to reduce the influence of a phrase, whilst positive
coefficients are used to increase the influence of a
phrase upon the output of a model.

Having developed a set of vectors h that have
been multiplied by a coefficient, we sum the set of
phrase vectors together to produce a single vector
ae that encapsulates a time period we aim to align
to. We add the alignment vector ae to the residual
stream of query prompt pu at the same layer l the
original activation vectors h were extracted from.
Ultimately, this small vector “nudge” can change
the probability of output tokens, steering the model

to recall information from a specific period of time.

Algorithm 1 Activation engineering
Require: {p, } = steering prompts list
Require: pu = user prompt
Require: {l, } = target layer list
Require: {c, } = coefficient list
Require: a = alignment position (front)
Require: M = pre-trained language model
Ensure: S = steered output

1: mtl = max(len(p) for p in {p, ...}) max to-
ken length

2: for each l in ({l, ...}) do
3: ae = {} empty activation vector
4: for each p, c in ({p, }, {c, }) do
5: (p)← pad right to match mtl
6: h←M.forward(p).activations[l]
7: ha ← h× c
8: ae← ae+ ha
9: end for

10: q ←M.forward(pu).activations[l]
11: S ←M.continue_forward(ae+ q@a)
12: end for

Injection alterations Our method changes how
to inject these vectors into the model, creating a
list of layers to inject into {l, ...}. We perform two
types of injections. Where prior studies (Rimsky
et al., 2024; Turner et al., 2023) have focussed on
single layer activation engineering we explore the
capabilities of multi-layer activation engineering
on factual recall. We hypothesise that small nudges
throughout a model can provide a more stable out-
come for tasks related to factual recall as the vec-
tors are applied to multiple layers providing a more
consistent steering of the model. Single-layer: Ap-
plying the vector to a single layer only. Multi-
layer: Applying vectors additively from layer 4
onwards. e.g., applying vectors to layer 4 and 5, or
applying vectors to layer 4, 5 and 6.

Temporal prompts We alter the prompts {p,}
required to create the steering vectors. Specifically
we alter the prompt in three ways. Year only: Only
the year preferenced for alignment (e.g., 2010). We
test year only as a way to efficiently temporally
align the model, providing a single year number to
see how a basic injection can align the output. A
coefficient c of 4 is applied for single layer and 1
for multi layer. Context phrase: The preference
year with context about the number (e.g., the year
is 2010). Given the prompting experiments con-
ducted by (Zhao et al., 2024), regarding implicit
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Figure 2: Activation Engineering in LLMs. A set of vectors is extracted from layer l, multiplied by a coefficient and
added together. Finally, this vector is added into a temporal question to temporally align the model.

and explicit alignment prompts we broaden our test-
ing to include context about the numbers injected
into the residual stream adding “The year is”. A c
of 4 is applied for single layer and 1 for multi layer.
Contrasting pair: A preference year as a positive,
and “recent” as a negative. e.g., 2021 having a c of
4, and “recent” having a c of -2 for a single layer
and c of 2 and -1 for multi layer.

5 Experiments

5.1 Models and Prompting

We focus on LLaMA2 7b, 13b and 70b, but provide
generalisation experiments across LLaMA3.1-8b,
Qwen2-2b and Gemma2-2b. With regard to set-
ting up the prompts we mimic the setup used by
Zhao et al. (2024). When adding these question
answer examples for relative benchmark tests we
keep the question answer examples generic and re-
move any time from the prompting. For explicit
benchmark tests we use prompts that reference the
year we wish to align to prefixing our question an-
swer examples with the year of interest. Appendix
G demonstrates the prompts used.

5.2 Evaluation Criteria

Similar to (Zhao et al., 2024) and the QA method-
ologies of (Kwiatkowski et al., 2019) we use an
averaged F1 and F1 max score for evaluation. An
average F1 score demonstrates the effectiveness of
aligning on a single year whilst the F1 max score
monitors for a significant loss of information over
the other years. If the F1 max score decreases
drastically compared to benchmark tests, we can
assume the method is having an overall negative
effect on the model’s output. The F1 max score is

calculated between 1945 and 2020 and 2000-2023
for the HOG and Taqa datasets respectively.

5.3 Baselines
We first evaluate three baseline approaches, relative
prompting, explicit prompting and fine-tuning on
the LLaMA models, without involving AE. Fine-
tuning mimics the alignment technique and closely
follows the hyperparameters of Zhao et al. (2024)
and aligns the model to a specific year using im-
plicit factual statements from the Taqa training set.
Whilst we aim to mimic the specific techniques of
Zhao et al. (2024), due to computational limitations
we are only able to apply full parameter fine-tuning
to LLaMA2-7b and 13b models. For LLaMA2-70b
we apply PEFT LoRA (Hu et al., 2021) fine-tuning
and reduced the batch size of all training to 8.

Figure 3, focuses on LLaMA2-7b’s relative and
explicit prompting illustrate that the alignment bias
of relative and explicit prompts. Earlier years gen-
erally produce the worst relative and explicit F1
scores, whilst more recent years exhibit the best F1
scores for the HOG dataset. This isn’t the case for
the Taqa-9000 dataset which demonstrates 2015
being an easier year to align with explicit prompt-
ing. These findings are consistent across 13b and
70b models. The Taqa-9000 dataset illustrates
lower performance for explicit prompting align-
ment for years 2020 to 2022, compared to the gains
experienced from explicit prompting in the year
2015. Furthermore, the marginal gains for 13b and
70b compared to 7b between relative and explicit
prompting (Table 1) most likely stems from the fil-
ter conditions applied to Taqa-1000 which favoured
question answers pairs that LLaMA2-7b could an-
swer with a high F1 score. Using Taqa-9000 (Table
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Figure 3: Left (HOG Dataset), right (Taqa-9000) benchmarking F1 scores for LLaMA2-7b for both relative (checked
line) and explicit prompts.

2) we note larger models produce better F1 Scores
and the gain between explicit and relative scores
scales with the size of the model.

5.4 Results
Table 1 demonstrates our AE method improves re-
sults by up to +10% points compared to relative
prompting and +5% points compared to explicit
prompting. For both the HOG (Appendix B.1) and
Taqa-1000 datasets, we note that multi-layer with
a contrasting pair prompt is an effective technique
for aligning LLaMA2 13b and 70b models whilst
the 7b model benefits from a mixture of alignment
techniques. The F1 max scores for all test cases
are similar to the relative F1 max scores (Appendix
B.1, B.2 and B.3). This suggests that the loss of
information in other time periods is made up by the
correction of information from temporal alignment
via AE. This is in contrast to the explicit prompting
which has a decrease in F1 max score compared to
the relative prompt. Overall, Table 2 demonstrates
that AE and fine-tuning produce very similar scores,
with differences of up to ±1% between the meth-
ods. When examining LLaMA2-70b, we note that
AE can outperform the PEFT LoRA fine-tuning
method and explicit prompting. If PEFT LoRA can
achieve a similar score to AE, we speculate that
full parameter fine-tuning would surpass the best
AE F1 scores.

Time and computational efficiencies Fine-
tuning LLaMA2 models (7b, 13b, 70b) for tem-
poral alignment demands significant time and com-
putational resources, whereas AE achieves simi-
lar results with lower GPU and time requirements.
Generating steering vectors for alignment prompts
takes only 0.05 seconds, enabling AE to quickly

align models. In contrast, fine-tuning requires ex-
tensive data processing and training time (10–15
minutes for 7b and 13b, 30 minutes for 70b with
PEFT LoRA); for 2 epochs, using Zhao et al. (2024)
hyperparameters. Fine-tuning also demands sub-
stantial GPU power, with configurations ranging
from 1xA100-80G (7b), 2xA100-80G (13b) and
3xA100-80G (70b, using PEFT LoRA). AE re-
quires only inference-capable GPUs, with 7b run-
ning on a V100-32G, 13b on 1xA100-80G, and
70b on 2xA100-80G. Overall, AE offers a more ef-
ficient alternative to fine-tuning for temporal align-
ment.

Layer ablation To limit the degrees of freedom
within our problem space we conducted an ablation
study applying AE to individual layers throughout
7b, 13b and 70b parameter models. Specifically
we injected the “year only” vector, testing individ-
ual layers between 4-29 for 7b and 4-39 for 13b
and layers 4-29 for 70b. Layers earlier than 4 or
later than 29 for 7b and 39 for 13b were deemed
inconsequential to test; too low, and the model is
still encoding the input, too high and the model is
only refining the probability of tokens (Geva et al.,
2023).

Figure 4 highlights that single layer injection
only works for lower layers (4-14 for 7b & 13b,
and 9-24 for 70b), with higher layers (14-29 for 7b
& 13b, 24 and beyond for 70b) seemingly ignoring
the activation vector injection. This indicates that
the influence of steering vectors for temporal align-
ment could be capped to first third of LLaMA2
models. The application of AE at higher layers
leads to a reversion to the original relative prompt
preference year (Figure 4). Lower layers for all
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LLaMA 7b LLaMA 13b LLaMA 70b
2021 2022 2021 2022 2021 2022

Benchmark
Relative Prompting 25.0 22.3 20.9 18.5 23.9 20.7
Explicit Prompting 26.5 23.9 23.6 23.1 29.7 27.3
Fine-tuning 27.2 24.4 28.7 24.5 32.9* 29.4*
Single layer
Year only 28.4 (L6) 25.9 (L8) 24.9 (L6) 23.8 (L10) 31.0 (L16) 29.4 (L16)
Context and year 27.9 (L4) 26.0 (L6) 24.5 (L6) 22.9 (L12 30.3 (L4) 28.2 (L4))
Contrasting Pair 28.6 (L6) 26.4 (L6) 21.6 (L6) 23.3 (L8) 31.2 (L16) 29.7 (L16)
Multi-layer
Year only 28.7 (L4-7) 28.2 (L4-7) 25.0 (L4-10) 24.2 (L4-10) 33.8 (L4-20) 31.1 (L4-20)
Context and year 28.6 (L4-8) 26.0 (L4-9) 24.8 (L4-10) 23.5 (L4-13) 33.3 (L4-20) 31.4 (L4-17)
Contrasting Pair 29.0 (L4-10) 26.3 (L4-5) 25.7 (L4-11) 24.4 (L4-11) 34.5 (L4-20) 31.6 (L4-20)

Table 1: F1 scores for single layer and multi-layer experiments for Taqa-1000. ‘L’ denotes which layer(s) the
optimal score came from, and * denotes that the fine-tuning method was PEFT LoRA.

Figure 4: Left (LLaMA2-7b), right (LLaMA2-70b) single layer AE effect on the HOG dataset, using “year only”
prompting aligning to the year 2015. Layers 4-29 are present. Lighter colours denote lower layers (4-11), and darker
colours denote higher layers (12-29). The labels denote the best result and layer.

Figure 5: Left (Single layer), right (Multi layer) alignment to 2022 with AE applied to LLaMA2-70b. AE is applied
to different layers. The Y-axis is the difference in F1 score between our AE method and explicit prompting. Darker
colours denote higher layers. For multi-layer approach, layer 4 is the first layer, and the colour denotes the last layer
included. The maximum layer count in both graphs is 26.
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LLaMA 7b LLaMA 13b LLaMA 70b
2021 2022 2021 2022 2021 2022

Benchmark
Relative Prompting 10.5 9.6 10.7 9.8 14.1 13.0
Explicit Prompting 12.2 11.0 12.2 11.7 16.7 16.0
Fine-tuning 12.7 12.0 14.0 13.7 19.3* 17.7*
Multi-layer
Contrasting Pair 13.1 12.3 13.6 12.9 20.0 19.1

Table 2: F1 scores for multi-layer experiments for Taqa-
9000. * indicates PEFT LoRA fine-tuning.

models provide better steering as evidenced in the
results of sweep tests from aligned years 2010 to
2020 (Appendix A). The loss of influence exhib-
ited by AE in higher layers is most likely due to
a change in layer behaviour (Geva et al., 2023);
early layers attend to the inputs creating seman-
tic representations. The mid-layers attend to those
semantic representations to extract relevant infor-
mation. Higher layers are tasked with refining the
prediction for the next token. For LLaMA2-70b,
the application of AE on layers below layer 9 pro-
duces results that are worse than AE application to
later layers such as 20 and 21. This is most likely
due to the scale of the model, which proportionally
has more layers dedicated to encoding user inputs
(Geva et al., 2023).

Multi layer stability The sweep profiles for sin-
gle layer AE (Figure 4) demonstrate that sensitivity
is only a concern for later layers. From layers 4-
12 there is a reduction of -3 from the F1 score of
the optimal layer. Beyond layer 12 we note a sig-
nificant drop in the F1 score for the preferenced
year 2015. In contrast, Figure 5 highlights how
latter layers using a multi layer strategy produce
some of the best F1 scores. The multi-layer strategy
seemingly reduces the risk of missing the optimal
singular layer to influence and suggests that the
compounding effect of smaller activations on the
residual stream can increase the overall F1 score.

Isolated influence We test the effect of AE on
both numerical (Cobbe et al., 2021) and time invari-
ant datasets (Joshi et al., 2017) using LlaMA2-13b.
For the invariant question sets we see an increase
in F1 scores after applying AE. Numerical scores
have a small drop in performance for exact answers,
however overall AE has minor influence on answer-
ing non-temporal questions. Appendix E

Generalisation We explore the generalisation of
this AE methods across a range of models. We note
that this AE technique is effective for LLaMA2
and LLaMA3.1 models however produces sub-
optimal outcome for Gemma2-2b and Qwen2-7b

(Appendix C). For Gemma 2 and Qwen2, AE ap-
proaches the explicit score and does not surpass
fine-tuning. Applying AE on the instruct variants of
Gemma2 and Qwen2, AE outperforms the explicit
prompt but doesn’t outperform fine-tuning suggest-
ing AE can override generic answers (“this infor-
mation is not available”), encouraging the model
to generate an answer. Whilst the results for these
models are suboptimal we note that the multilayer
approach for AE is still the most effective method
for temporal alignment. We speculate that differ-
ence in architectures, and potentially training data
between these models is a key factor in the effec-
tiveness of AE. Noting the qualitative studies (Rim-
sky et al., 2024; Turner et al., 2023) applying AE
can have a generalisable effect using more com-
plex activation vectors in latter layers, we specu-
late that temporal alignment could potentially be
generalised to other models with more complex
activation vectors.

Activation Engineering assisting fine-tuning
With the surprise reduction in performance across
Gemma 2 and Qwen 2, we explored the idea of AE
as an assistant to fine-tuning. We speculated that
the answers produced from the Gemma 2 and Qwen
2 base models were missing the concise answers
that would lead to an improved F1 scores. Apply-
ing AE to the temporally fine-tuned Gemma 2 and
Qwen 2 models, we note that AE outperforms rela-
tive scores, but is unable to exceed explicit scores
of the temporally fine-tuned model. Appendix F.

6 Conclusion

Temporal alignment can improve the factual re-
call accuracy of models but can currently only be
achieved through fine-tuning, a computational and
time intensive process. We have demonstrated sim-
ilar results to the fine-tuning process using activa-
tion engineering (AE) on LLaMA2-7b, 13b and
70b models. AE can produce similar results to
fine-tuning with less data preparation and less up-
front computation and time requirements. Our ab-
lation studies have shown that AE effects a model’s
perception of time through specific tweaks in the
residual stream of lower layers in an LLM. General-
isation of AE to LLaMA3.1, Qwen2 and Gemma2
models has shown mixed results, with AE being
effective for LLaMA3.1. These results could be
the result of differences in architecture or training
data.
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7 Limitations

In this study, AE has been applied to isolated LLMs
which have no access to external information. The
information produced from our tests are a result of
the model’s pre-training. For LLaMA2-7b, 13b and
70b these models have a knowledge cut off date of
September 2022 limiting our AE experiments to
this timeframe. This study has not investigated the
effect of AE upon external information integration
systems into LLMs, such as RAG and knowledge
editing with hyper networks.

Generalisation of AE to other models Gemma2,
Qwen2, and LLaMA3.1 demonstrates mixed re-
sults that could be attributed to differences in archi-
tecture or training data; as these new models have
been trained on more recent data exhibit strong
alignment to recent information. Attention archi-
tectural differences between the models could be
a factor in how AE is integrated into the residual
stream and feed through layers. Running sweeps
test (of both layers and coefficients) for Gemma2
and Qwen2 produces muted results leading us to
believe that more complex representations feed into
higher layers maybe be required to produces im-
proved outcomes. We however did not explore this
avenue in this study.

In addition, we used the hyperparameters de-
fined by Zhao et al. (2024) when developing our
fine-tuning baseline. We did not optimise these
parameters for any difference in our fine-tuning
dataset that may arise. Furthermore, this study
was limited in its use of larger GPUs to fine tune
LLaMA-70b. Our results for LLaMA2-70b fine-
tuning was derived from PEFT LoRA fine-tuning
which we speculate produced a suboptimal output
compared to full parameter fine-tuning.
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Supplementary material
A Different alignment years

Figure 6: Hog dataset using LLaMA2-7b aligned to different years, left (2010), middle (2015) and right (2020).In-
jecting into lower (lighter coloured) layers proves easier to steer the model towards a preference year. Attempting to
inject activation vectors into higher layers tends to revrt the model to it’s original preference year as defined by the
relative prompt.
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B Results

B.1 Hog Results

LLaMA 7b LLaMA 13b LLaMA 70b
2010 2015 2020 2010 2015 2020 2010 2015 2020

Benchmark
Relative Prompting 18.4 28.9 52.3 18.8 32.1 55.1 20.0 33.7 43.4
Explicit Prompting 46.2 53.2 59.7 45.3 53.2 60.4 55.6 58.9 68.3
Single layer
Year only 50.0 (L8) 54.4 (L10) 58.9 (L4) 51.1 (L8) 57.1 (L4) 65.2 (L4) 63.0 (L13) 62.6 (L12) 65.5 (L8)
Context and year 52.6 (L13) 55.7 (L4) 57.1 (L4) 55.9 (L10) 59.3 (L12) 64.8 (L10) 63.0 (L9) 62.6 (L12) 64.6 (L13)
Year and recent 52.6 (L10) 55.1 (L14) 59.3 (L12) 55.6 (L10) 59.3 (L10) 66.3 (L4) 61.9 (L10) 62.6 (L14) 64.6 (L8)
Multi-layer
Year only 52.4 (L4-11) 53.8 (L4-10) 59.1 (L4-6) 53.1 L(4-12) 59.3 (L4-11) 66.7 (L4-8) 62.6 (L4-29) 62.2 (L4-23) 68.7 (L4-20)
Context and year 43.1 (L4-5) 52.7 (L4-8) 56.1 (L4-6) 52.9 (L4-10) 58.1 (L4-9) 64.8 (L4-5) 63.4 (L4-20) 62.4 (L4-20) 65.5 (L4-29)
year and recent 49.0 (L4-5) 54.9 (L4-5) 60.6 (L4-5) 56.1 (L4-11) 61.4 (L4-13) 67.9 (L4-5) 63.1 (L4-14) 63.3 (L4-11) 69.4 (L4-29)

Table 3: Average F1 score for all HOG Results.

LLaMA 7b LLaMA 13b LLaMA 70b
2010 2015 2020 2010 2015 2020 2010 2015 2020

Benchmark
Relative Prompting 70.2 70.2 70.2 72.9 72.9 72.9 71.4 71.4 71.4
Explicit Prompting 69.5 75.4 71.2 71.4 73.6 71.3 75.5 75.2 74.8
Single Sweep
Year only 74.3 76.4 73.0 74.4 77.3 74.9 75.5 74.9 74.7
Context and year 73.0 76.6 72.2 74.2 74.7 74.1 77.0 75.2 73.5
Year - recent 75.6 74.7 72.4 74.6 75.3 75.9 76.5 75.5 74.0
Compounding
Year only 73.5 75.4 73.2 75.9 77.0 76.0 76.8 75.9 74.8
Context and year 72.1 74.8 71.4 73.8 72.4 72.4 76.3 75.9 74.8
Year - recent 73.7 74.7 72.1 74.6 75.6 76.0 77.5 77.8 74.4

Table 4: F1 max score for HOG dataset.
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B.2 Taqa-1000 results

LLaMA 7b LLaMA 13b LLaMA 70b
2020 2021 2022 2020 2021 2022 2020 2021 2022

Benchmark
Relative Prompting 26.0 25.0 22.3 23.3 20.9 18.5 26.1 23.9 20.7
Explicit Prompting 27.2 26.5 23.9 26.0 23.6 23.1 30.2 29.7 27.3
Fine-Tuning 28.0 27.2 24.4 28.3 27.4 24.5 29.6* 32.9* 29.4*
Single layer
Year only 29.2 (L4) 28.4 (L6) 25.9 (L8) 26.0 (L6) 24.9 (L6) 23.8 (L10) 31.0 (L4) 31.0 (L16) 29.4 (L16)
Context and year 29.1 (L6) 27.9 (L4) 26.0 (L6) 25.2 (L4) 24.5 (L6) 22.9 (L12) 30.5 (L8) 30.3 (L4) 28.2 (L4)
Contrasting Pair 29.3 (L6) 28.6 (L6) 26.5 (L6) 26.3 (L6) 25.2 (L6) 22.3 (L8) 31.2 (L4) 31.2 (L16) 29.7 (L16)
Multi layer
Year only 28.8 (L4-9) 28.7 (L4-7) 28.2 (L4-7) 26.8 (L4-10) 25.0 (L4-10) 24.2 (L4-10) 32.6 (L4-23) 33.8 (L4-20) 31.1 (L4-20)
Context and year 28.9 (L4-5) 28.6 (L4-8) 26.0 (L4-9) 25.2 (L4-8) 24.8 (L4-10) 23.5 (L4-13) 32.2 (L4-32) 33.3 (L4-20) 31.4 (L4-17)
Contrasting Pair 29.0 (L4-11) 29.0 (L4-10) 26.3 (L4-5) 27.2 (L4-12) 25.6 (L4-11) 24.4 (L4-12) 33.2 (L4-20) 34.5 (L4-20) 31.6 (L4-20)

Table 5: Average F1 score for Taqa-1000 dataset. The * denotes PEFT LoRA fine-tuning instead of full parameter
fine-tuning.

LLaMA 7b LLaMA 13b LLaMA 70b
2020 2021 2022 2020 2021 2022 2020 2021 2022

Benchmark
Relative Prompting 83.8 83.8 83.8 59.8 59.8 59.8 65.5 65.5 65.5
Explicit Prompting 70.1 69.2 68.3 56.9 58.2 57.9 59.3 57.7 55.1
Fine-Tuning 76.8 74.5 75.4 64.6 65.0 64.1 71.1* 70.7* 70.2*
Single Sweep
Year Only 76.6 74.5 72.9 57.6 58.4 56.9 64.3 68.4 62.9
Context and Year 76.9 76.6 75.5 58.3 58.7 59.2 65.9 68.0 67.7
Contrasting Pair 76.3 74.4 74.2 58.5 59.2 57.0 68.0 64.7 62.7
Multi layer
Year Only 74.5 75.0 73.4 58.2 58.3 58.1 67.3 66.3 65.0
Context and Year 78.7 74.1 72.8 57.4 57.5 57.4 67.0 66.4 65.7
Contrasting Pair 75.1 74.1 74.7 60.1 59.3 58.1 67.5 65.9 64.9

Table 6: F1 max score for Taqa-1000 dataset. The * denotes PEFT LoRA fine-tuning.
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B.3 Taqa-9000 results

LLaMA 7b LLaMA 13b LLaMA 70b
2020 2021 2022 2020 2021 2022 2020 2021 2022

Benchmark
Relative Prompting 10.9 10.5 9.6 11.6 10.7 9.8 14.9 14.1 13.0
Explicit Prompting 12.2 12.2 11.0 12.8 12.2 11.7 17.4 16.7 16.0
Fine-tuning 13.6 12.7 12.0 14.4 14.0 13.7 17.7* 19.3* 17.7*
Multi layer
Contrasting Pair 13.4 13.1 12.3 13.9 13.6 12.9 19.8 20.0 19.1

Table 7: Average F1 score for Taqa-9000 dataset. The * denotes PEFT LoRA fine-tuning.

LLaMA 7b LLaMA 13b LLaMA 70b
2020 2021 2022 2020 2021 2022 2020 2021 2022

Benchmark
Relative Prompting 38.0 38.0 38.0 34.7 34.7 34.7 43.0 43.0 43.0
Explicit Prompting 35.3 34.6 34.6 33.7 34.0 34.0 37.7 37.0 35.5
Fine-tuning 40.9 41.1 41.0 39.2 40.0 39.0 47.0* 47.1* 46.8*
Multi layer
Contrasting Pair 38.4 38.0 37.9 36 35.9 31.5 44.3 43.9 42.4

Table 8: F1 max score for Taqa-9000 dataset. The * denotes PEFT LoRA fine-tuning.
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C Generalisation

LLaMA3.1-8b Qwen2-7b Gemma2-2b
2020 2021 2022 2020 2021 2022 2020 2021 2022

Benchmark
Relative Prompting 20.66 18.84 17.28 20.48 20.62 18.3 18.91 19.06 17.07
Explicit Prompting 26.09 27.01 26.67 22.53 23.36 20.36 22.72 23.83 22.84
Fine-tuning n/a 28.61 n/a n/a 22.86 n/a n/a 24.02 n/a
Single Sweep
Year Only 26.07 (L8) 27.01 (L4) 27.04 (L4) 21.50 (L8) 20.99 (L4) 19.10 (L8) 21.77 (L4) 20.21 (L8) 21.46 (L10)
Context and Year 25.36 (L10) 26.99 (L10) 26.16 (L4) 21.39 (L4) 21.35 (L8) 19.00 (L8) 22.22 (L4) 22.55 (L8) 21.44 (L4)
Contrasting Pair 25.92 (L7) 27.36 (L7) 27.02 (L9) 21.13 (L4) 20.93 (L4) 19.27 (L16) 21.93 (L4) 22.32 (L8) 21.69 (L8)
Multi layer
Year Only 27.09 (L4-7) 28.88 (L4-5) 26.63 (L4-5) 21.08 (L4-9) 21.11 (L4-11) 18.99 (L4-9) 21.79 (L4-7) 22.50 (L4-7) 21.70 (L4-7)
Context and Year 26.27 (L4-11) 27.83 (L4-10) 26.52 (L4-11) 21.39 (L4-6) 21.89 (L4-10) 19.46 (L4-12) 21.76 (L4-7) 22.50 (L4-12) 21.59 (L4-13)
Contrasting Pair 27.07 (L4-5) 27.44 (L4-9) 26.44 (L4-5) 21.33 (L4-12) 21.36 (L4-9) 19.24 (L4-12) 21.49 (L4-9) 22.74 (L4-7) 22.37 (L4-5)

Table 9: F1 score for Taqa-1000 dataset using alternative models. Fine-tuning was only applied to 2021

LLaMA3.1-8b-Instruct Qwen2-7b-Instruct Gemma2-2b-Instruct
2020 2021 2022 2020 2021 2022 2020 2021 2022

Benchmark
Relative Prompting 13.99 16.29 16.15 12.68 13.6 12.07 13.82 15.9 16.32
Explicit Prompting 19.9 20.99 20.32 12.75 13.67 10.75 14.73 17.82 16.22
Fine-tuning n/a 24.77 n/a n/a 19.85 n/a n/a 22.29 n/a
Single Sweep
Year Only 15.44 (L4) 16.81 (L4) 14.42 (L4) 14.37 (L12) 14.57 (L6) 13.04 (L12) 14.84 (L4) 17.10 (L4) 16.41 (L8)
Context and Year 16.78 (L12) 17.36 (L12) 16.00 (L12) 14.78 (L4) 15.63 (L4) 13.83 (L4) 14.63 (L4) 17.56 (L14) 16.12 (L12)
Contrasting Pair 16.67 (L4) 18.00 (L4) 15.70 (L4) 14.13 (L12) 14.90 (L4) 12.96 (L14) 14.61 (L6) 17.39 (L8) 16.23 (L10)
Multi layer
Year Only 16.42 (L4-12) 17.29 (L4-12) 15.37 (L4-5) 14.00 (L4-5) 14.80 (L4-5) 12.79 (L4-5) 15.03 (L4-12) 17.86 (L4-8) 16.44 (L4-11)
Context and Year 17.54 (L4-12) 17.95 (L4-10) 15.39 (L4-5) 14.98 (L4-5) 16.07 (L4-5) 13.83 (L4-7) 14.63 (L4-10) 17.54 (L4-14) 15.81 (L4-12)
Contrasting Pair 16.96 (L4-8) 17.01 (L4-11) 14.93 (L4-11) 14.12 (L4-5) 14.99 (L4-5) 12.92 (L4-5) 14.90 (L4-10) 17.48 (L4-9) 16.42 (L4-12)

Table 10: F1 score for Taqa-1000 dataset using alternative instruct models

D Efficiency

Investigating efficiencies of AE over fine-tuning we assessed the wall time required for a set of inferences.
We compare relative and AE alignment methods over the use of single layer, and multi layer sweeping to
assess the wall time difference between these techniques. Overall we note that a single layer injection
increases the inference time by 1.2x whilst multi layer injection increases the time by 2.5x. The fine-
tuning process requires a large amount of data to be processed and a large amount of time spent searching
for hyperparameters and fine-tuning the model; our experience indicated at least 5–20 minutes for smaller
models such as LLaMA 7b and 13b and up to 30 minutes for LLaMA2-70b training with PEFT LoRA on
3 H100 94G GPUs.

For 7b and 13b models we conduct our testing on a single A100 80G card. For the 70b model, we
conduct our testing on 2 A100 80G cards. We note that the development of a single vector made of a
contrasting “year and recent” statement is a once off overhead which can be computed on average in under
0.05 seconds. Figure 11 demonstrates the wall time required for the application of this vector into 7b, 13b
and 70b models across a single layer and multi-layer application using the ’contrasting prompt’.

Model Relative Prompt (s) Single Layer (s) Multi Layer (s)
LLaMA2-7b 0.69 0.91 1.86
LLaMA2-13b 0.87 1.05 2.35
LLaMA2-70b 1.95 2.29 4.91

Table 11: Wall time (seconds) required for inference with different activation engineering methods for a statement
with 10 tokens.
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E Isolated effect

Experiment, when conflicted AE has the alignment year 2022, and the prompt has the alignment year
2015 using Taqa-1000.

Invariant F1 Invariant Contains Answer TriviaQA F1 gsm8k exact answer gsm8k F1
No AE 35.0 75.0 43.1 9.4 53.0
AE 21.3 75.1 49.3 10.3 52.0

Table 12: Effect of Activation Engineering (AE) on invariant and TriviaQA datasets.

Experiment F1 (2015) F1_Max
No AE – Explicit prompt for 2015 27.5 58.2
AE – Conflicts 27.5 59.9
AE – Aligns 27.7 59.0

Table 13: Effect of AE alignment and conflict on F1 score for 2015.

F Fine-tuning with AE assistance

llama3.1-8b-Instruct 2020 2021 2022
FT 2021, Activation on year 26.43 26.41 25.99
FT 2021 with relative 22.17 24.77 24.68
FT 2021, with explicit 26.82 26.60 27.73
Gemma2-2b 2020 2021 2022
FT 2021, Activation on year 22.74 24.60 24.09
FT 2021 with relative 21.58 24.07 22.49
FT 2021, with explicit 23.29 24.92 24.54

Table 14: Performance of llama3.1-8b-Instruct and Gemma2-2b temporally fine-tuned to 2021, with scores reflecting
relative, explicit and AE across the years 2020, 2021 and 2022.

G Prompting

The following was used as a preface to illicit relative answers from models:

Answer the following question: What is the capital of France?
The answer is: Paris
Answer the following question: Who wrote Harry Potter?
The answer is: J.K. Rowling
Answer the following question: Where did the Titanic sink?
The answer is: Atlantic Ocean
Answer the following question: What is the gravity of earth?
The answer is: 9.807 m/s2

Answer the following question: Is the speed of light faster than the speed of sound?
The answer is: Yes
Answer the following question: {x}
The answer is:

The following was used as a preface to elicit explicit answers from models. The variable {year} is replaced
with the year of interest, e.g. 2020, 2021, 2022, etc.:

7656



Answer the following question: What is the capital of France?
As of year {year}, the answer is: Paris
Answer the following question: Who wrote Harry Potter?
As of year {year}, the answer is: J.K. Rowling
Answer the following question: Where did the Titanic sink?
As of year {year}, the answer is: Atlantic Ocean
Answer the following question: What is the gravity of earth?
As of year {year}, the answer is: 9.807 m/s2

Answer the following question: Is the speed of light faster than the speed of sound?
As of year {year}, the answer is: Yes
Answer the following question: [x]
As of year {year}, the answer is:
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