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Abstract

We propose Rotate, Clip, and Partition (RCP), a
Quantization-Aware Training (QAT) approach
that first realizes extreme compression of LLMs
with W2A4KV4 (2-bit weight, 4-bit activation,
and 4-bit KV-cache) configuration. RCP inte-
grates recent rotation techniques with a novel
non-uniform weight quantizer design by theo-
retically and empirically analyzing the impact
of rotation on the non-uniformity of weight
distribution. Our weight quantizer, Learnable
Direct Partitioning (LDP), introduces learnable
parameters to directly learn non-uniform in-
tervals jointly with LLM weights. We also
present a GPU kernel supporting GEMV on
non-uniform W2A4 as proof of concept. Exper-
iments show that RCP can compress LLaMA-
2-7B to W2A4KV4 with a loss of only 2.84
WikiText2 PPL and 5.29 times reduced mem-
ory footprint. Furthermore, RCP can quan-
tize challenging mobile-targeted LLaMA-3.2
models and domain-specific WizardCoder-7B
and MetaMath-7B with no critical problems
such as convergence failure and repetition.
Code is available at https://github.com/
songsm921/RCP.

1 Introduction

Large language models (LLMs) have made signifi-
cant advancements, but their growing size and re-
source demands create challenges for deployment
across data centers and mobile devices. To address
these constraints, extensive research efforts have
focused on improving quantization algorithms.

Notably, rotation-based Post-Training Quanti-
zation (PTQ) (Ashkboos et al., 2024b; Liu et al.,
2024b; Lin et al., 2024a) showed remarkable im-
provement on W4A4KV41 quantization, and state-
of-the-art Quantization-Aware Training (QAT) (Du

*indicates equal contribution
†indicates corresponding author
1We call l-bit weight, m-bit activation, and n-bit KV-cache

WlAmKVn like W2A4KV4.
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Figure 1: Bit-Level scaling laws for perplexity for
LLaMA-3 (AI@Meta, 2024) (1B, 3B, 8B).

et al., 2024; Chen et al., 2024) made extreme
weight quantization possible via careful design of
datasets and training procedures.

In this work, we propose Rotate, Clip, and Par-
tition (RCP), a rotation-based QAT algorithm, to
push the boundaries of extremely low-bit compres-
sion. Based on empirical and theoretical analy-
sis, we draw our main insight that rotating LLM
weights has two effects at once: eliminating out-
liers and increasing the non-uniformity of the
weight distribution. The key component of RCP
is Learnable Direct Partitioning (LDP), which is a
fully differentiable non-uniform weight quantizer
working in three steps: 1) quantization range setup
with learnable clipping parameters (Shao et al.,
2024); 2) non-uniform quantization via splitting the
quantization range with learnable partitioning pa-
rameters; 3) non-uniform dequantization that maps
the quantized weights to real-valued grids. RCP
is the first to enable challenging W2A4KV4 and
W3A4KV4 quantization on common LLM mod-
els, significantly outperforming QuaRot (Ashkboos
et al., 2024b) and BitDistiller (Du et al., 2024). Es-
pecially, as we present in Fig. 1, RCP also works
on small and mobile-targeted LLaMA-3.2 mod-
els (AI@Meta, 2024) that are harder to quantize.
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Since there is no available hardware that supports
both LUT inference for non-uniform quantization
and specialized acceleration for 4-bit activation, we
design an accelerated GEMV kernel in CUDA as a
proof of concept. Our kernel can reduce the mem-
ory footprint up to 5.29 times with a latency lower
than the FP16 PyTorch (Paszke et al., 2019) and
INT4 QuaRot implementation.

Our contributions are summarized as follows:

• We provide empirical and theoretical anal-
ysis on how rotation interacts with weight
distribution and poses difficulty on extreme
W2A4KV4 quantization.

• To address this issue, we introduce RCP, a
quantization algorithm that takes the best from
rotation and QAT via LDP, a novel fully learn-
able non-uniform quantizer.

• We provide extensive experiments to show
RCP achieves state-of-the-art W2A4KV4 and
W3A4KV4 quantization for the first time.

2 Preliminaries

2.1 Random Rotation for LLM Quantization

MHA

		𝑋𝑅!

	𝑅!" 	𝑊#

	𝑅!" 	𝑊$

	𝑊% 	𝑅"

	𝑅&" 	𝑊' 	𝑅!

	𝑅!"
	𝑅"#

MLP	𝑅!" 	𝑊()

	𝑅!" 	𝑊!"#$

	𝑅*" 		𝑊!"#$ 	𝑅!	𝑅$

RoPE

	𝑅%

	𝑅%

RoPE

𝒅𝒊𝒎𝑹𝑯 = 𝒉𝒆𝒂𝒅_𝒅𝒊𝒎
𝒅𝒊𝒎𝑹𝑯

" = #	𝒐𝒇	𝒉𝒆𝒂𝒅

𝒅𝒊𝒎𝑹𝟐
𝑻 = 𝒅𝒊𝒎𝑹𝑯×	𝒅𝒊𝒎𝑹𝑯

"

Figure 2: A diagram of the rotation process in a trans-
former decoder layer.

QuaRot (Ashkboos et al., 2024b) proposed to
apply random rotations while keeping the computa-
tional invariance suggested in SliceGPT (Ashkboos
et al., 2024a). Random rotation suppresses activa-
tion outliers and helps quantization, successfully
achieving W4A4KV4 with minimal performance
loss.

As in Fig. 2, R1 rotates each decoder layer’s
inputs and outputs, with its inverse (RT

1 ) fused into
adjacent weights. R2 and R4 are required for on-
line rotation of the MHA and FFN intermediates,
respectively. We factorize R2 into two orthogonal
matrices—RH for the V projection and R′

H for the
self-attention activation—and then apply RT

2 to the
out-projection. Finally, R3 rotates Q and K vectors

after RoPE, enabling compression of the KV cache
without altering attention outputs.

2.2 Asymmetric Integer Quantizer
The commonly used asymmetric integer quantiza-
tion function is defined in Eqn. 1.

Q(W) = clip(⌊W
s
⌉+ z, 0, 2N − 1),

where h = max(W)−min(W), s =
h

2N − 1

z = −⌊min(W)

h
⌉,

(1)

where N is the number of bits, h is the quantiza-
tion range, s is the step size, and z is the zero-
point. This general formulation is applicable to
various settings, including per-tensor, per-channel,
and group-wise quantization, via adapting the com-
putation of h, s, and z.

3 Motivation

In this section, we confirm the difficulty of
W2A4KV4 quantization by empirical evaluations
and justify our key design of non-uniform weight
quantizer (in Section 4.3) through theoretical analy-
sis on the effect of the rotation technique on weight
distribution.

Method R
Language Reasoning

WikiText2↓ Coding↑ Math↑

QuaRot ✓ 12772.03 0 0.002
BitDistiller 17.40 3.5 5.39
BitDistiller ✓ 8.93 6.09 0.16

RCP ✓ 8.31 23.20 40.16

Table 1: Evaluation results on WikiText2, HumanEval,
and GSM8K under W2A4KV4. The evaluations are
conducted using LLaMA-2 7B for WikiText2 (perplex-
ity), WizardCoder 7B for HumanEval (pass@1), and
MetaMath 7B for GSM8K (pass@1). The column R
indicates whether rotation is applied.

Existing algorithms can fail on W2A4KV4 As
shown in Table 1, we first observe that QuaRot
and BitDistiller fail under W2A4KV4, particularly
on language modeling and reasoning tasks. This
demonstrates their limitations: QuaRot effectively
mitigates activation outliers but fails to handle ex-
treme low-bit weight quantization. BitDistiller is
able to address weight quantization but remains
vulnerable to the activation outliers.

Naturally, we conceptualized combining rotation
and QAT approaches and conducted experiments
with all rotation matrices applied to the BitDis-
tiller implementation. As indicated in the "Bit-
Distiller w/ Rotation" rows in Table 1, language
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Figure 3: A two-dimensional histogram comparing the
increase in output activation’s quantization error and
the increase in the averaged group-wise weight kurtosis.
The last down-projection layer of the LLaMA-2-7B
model is used. The bright blue horizontal line indicates
the average increase of the quantization error. We use
mean absolute error QErr(W,X) = |X(Q(W) −
W)| and Wrc follows the definition in Eqn. 6.

modeling performance was recovered to some ex-
tent; however, reasoning capabilities remained non-
deployable.

Relation between rotation and non-uniformity
To explain why such a naive application of rotation
to QAT fails, we first theoretically analyze how ro-
tation affects the excess kurtosis of the weight dis-
tribution. The excess kurtosis is the shifted fourth
standardized moment defined as follows:

Kurt(X) =
µ4

σ4
− 3, (2)

where µ4 is the fourth moment and σ is the stan-
dard deviation. Larger excess kurtosis indicates a
distribution 1) contains numerous outliers and/or
2) is more peaked around its center (i.e., more non-
uniform, which is hard to quantize).

Our claim is that the Hadamard matrix (used as
rotation) increases the excess kurtosis of a platykur-
tic distribution2, which we empirically observed to
be true for most of the LLM weights.

Lemma 1. Let X = (X1, X2, . . . , Xn)
T be a ran-

dom vector whose components are i.i.d. with finite
fourth moment µ4, mean µ, variance σ2, and nega-
tive excess kurtosis (Kurt(Xi) < 0). Let Hn denote
the normalized n × n Hadamard matrix with el-
ements ± 1√

n
. Then, for the transformed vector

2A distribution X is platykurtic when Kurt(X) < 0

Y = HnX, the following holds:

Kurt(Yi) > Kurt(Xi)

for all i ∈ {1, 2, . . . , n}.
Proof. The proof can be found in Appendix A.2.

Since it is well known that the Hadamard matrix
is highly effective at eliminating outliers (Ashk-
boos et al., 2024b; Chee et al., 2024; Tseng et al.,
2024), rotation is increasing the non-uniformity of
the weight distributions. As presented in Fig. 3, we
studied an empirical relation between the increase
in the quantization error of output activation and
the excess kurtosis of weight, after applying rota-
tion. Clearly, the quantization error is generally
enlarged when the excess kurtosis is increased by
rotation. See Appendix A.3 for details and further
discussion.

4 Methodology

Our proposition is a QAT algorithm named Rotate,
Clip, and Partition (RCP) that combines the idea
of random rotation with our novel Learnable Direct
Partitioning (LDP) quantizer.

Overall, RCP is a self-knowledge distilla-
tion (Hinton et al., 2015) algorithm that solves the
following optimization problem:

minimize
ΘS

E(x,y)∼D [DCAKLD(PΘT ||PΘS )] ,

DCAKLD(PΘT ||PΘS ) = αDKL(PΘS ||PΘT )

+(1− α)DKL(PΘT ||PΘS ),

(3)

where ΘT is the frozen full-precision teacher
model, ΘS is the student model quantized with
LDP, PΘ is the logit distribution produced by a
model Θ, D is the training dataset containing pairs
of input text x and label text y. The DCAKLD is
the confidence-aware KL divergence loss adopted
from BitDistiller (Du et al., 2024) with the empiri-
cal confidence α measured on ΘT .

4.1 Rotate: Applying Hadamard Transforms
The first step of our method is to apply (random-
ized) Hadamard transforms to model weights, fol-
lowing rotation-based PTQ algorithms (Ashkboos
et al., 2024b; Liu et al., 2024b; Lin et al., 2024a).
We formulate this procedure as follows:

Wr = RT
frontWRrear, (4)

where RT
front and Rrear are Hadamard matrices

multiplied to the front and rear side of a model
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Figure 4: Illustration of Learnable Direct Partitioning (LDP) with rotation-aware clipping.

weight W, respectively. The choice of RT
front and

Rrear can be identified in Fig. 2.
Note that the Wr is pre-computed before any

optimization to increase memory efficiency and
better QAT performance. For further details and
ablation, see Appendix A.5.

4.2 Clip: Learnable Clipping with
Grid-Search Initialization

Clipping is an essential technique to limit quanti-
zation range via clamping out extreme values from
the maximum and minimum sides of the model
weights (Lin et al., 2024b; Shao et al., 2024; Choi
et al., 2018; Esser et al., 2020).

OmniQuant (Shao et al., 2024) introduces learn-
able weight clipping (LWC) to dynamically deter-
mine the optimal quantization range by modifying
the static quantization range h in Eqn. 1 as follows:

hlwc = σ(γ)max(Wr)− σ(β)min(Wr), (5)

where β and γ are learnable parameters allocated
for each quantization unit and σ is the sigmoid
function.

To enhance stability of RCP, we find the ini-
tial point of the clipping parameters β∗, γ∗ in a
rotation-aware manner, based on the grid-search
strategy (Lin et al., 2024b) that solves the following
problem on a small calibration dataset Dcal:

β∗, γ∗ = argminβ,γ ∥Q(Wrc)Xr −WrcXr∥2,
Wrc = clip(Wr, σ(β)min(Wr), σ(γ)max(Wr)),

(6)

where Q is the quantization function defined in Eqn.
1, Wrc is the rotated and clipped weight, and XR

is the rotated activation. In subsequent procedures,
β and γ are learned via backpropagation, constantly
searching for optimal dynamic quantization range
on given data and updated model weights.

4.3 Partition: Learnable Direct Partitioning
The main goal of this work is to design a method to
realize a non-uniform integer quantizer that learns
from data. Prior arts such as N2UQ (Liu et al.,
2022) and LLT (Wang et al., 2022) combine non-
uniform quantization and uniform dequantization
schemes to benefit from increased representational
capability while being hardware friendly, however,
we find this scheme results in suboptimal perfor-
mance. Instead, LDP performs both steps in a non-
uniform fashion to minimize the impact of errors
from extreme weight quantization.

Non-uniform quantization via partitioning
The core idea of LDP is to partition the dynamic
quantization range in a differentiable way by in-
troducing two learnable parameters s1 and s2 per
quantization unit. By applying sigmoid function to
them, LDP directly splits hlwc into three partitions:

p1 = σ(s1),

p2 = (1− p1)σ(s2),

p3 = (1− p1)(1− σ(s2)),

(7)

where s1 takes the left σ(s1) ∗ 100% of hlwc, s2
takes the left σ(s2) ∗ 100% of the remaining range
(1 − p1)hlwc, and the last partition is determined
trivially.

We set the quantization grid {ti|i ∈
{1, 2, . . . , 2N − 1}} at the center of each
partition as follows:

ti = ti−1 +
pi−1 + pi

2
, where t1 = p1/2. (8)

This obtains the quantization function of LDP as
follows:

QLDP (Wrc) = u(
Wrc

hlwc
−t1)+u(

Wrc

hlwc
−t2)+u(

Wrc

hlwc
−t3),

(9)

where u(x) is the step function.
We rationalize this formulation in three points:

1) the dynamic range hlwc is seamlessly filled out
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since
∑3

i=1 pi = 1 is guaranteed; 2) each partition
is constrained between 0% and 100% as the sig-
moid re-parametrization ensures each pi ∈ [0, 1];
3) no matter how the partitioning parameters are
updated, the ordering of the partitions stays the
same by the construction of pi.

The initialization of s1 and s2 is set to σ−1(1/3)
and σ−1(1/2), respectively (i.e., the dynamic range
is uniformly partitioned at the beginning). Tech-
nically, the grid-search strategy (Lin et al., 2024b)
can also be employed to jointly find the optimal par-
titioning parameters; however, the computational
cost will grow exponentially since we have to iter-
ate over a four-dimensional optimization loop (two
for LWC and two for LDP).

Non-uniform dequantization The overall de-
sign of the quantization function in Eqn. 9 is im-
ported, and the dequantization function of LDP is
given by:

DQLDP (Wrc) =σ(β)min(Wrc)

+hlwc

(
u(

Wrc

hlwc
− t1)(w1 − w0)

+u(
Wrc

hlwc
− t2)(w2 − w1)

+u(
Wrc

hlwc
− t3)(w3 − w2)

)
,

(10)

where the dequantization grid {wi|i ∈ {0, 1, 2, 3}}
is additionally introduced in Eqn. 11.

wi =





0, if i = 0
ti+ti+1

2
, if 0 < i < 3

1, if i = 3.

(11)

This means that the full-precision weight elements
whose normalized value is smaller than the first
quantization grid (i.e., W/hlwc < t1) are mapped
to the minimum possible value in the dynamic
range σ(β)min(Wrc). Likewise, the elements that
satisfy W/hlwc > t3 are mapped to the maximum
value σ(γ)max(Wrc)

3. The others in the middle
are mapped to the center of the second and third
quantization bin, realizing non-uniform dequanti-
zation.

Finally, when computing the loss function in
Eqn. 3, each weight θS ∈ ΘS is fake-quantized by
Eqn. 10 as θS ← DQLDP (θs). We note that dur-
ing the fake quantization, every step function u(·)
is applied with the straight-through estimator so
that every parameter (including LLM weights, clip-
ping, and partitioning parameters) can be updated
via backpropagation.

3Since σ(β)min(Wrc) + hlwc = σ(γ)max(Wrc)

Application of LDP on NF3 format We apply
not only 2-bit integer weight quantization but also
3-bit quantization using the asymmetric NF for-
mat of AFPQ (Zhang et al., 2023) where sepa-
rate scale values are computed for the negative
and positive weights (sneg = max(|Wrc,neg|),
spos = max(Wrc,pos)). Although shown to be
effective, such an NF3 quantizer can lead to sub-
optimal performance when the distribution is not
zero-centered. Therefore, we make a further im-
provement by applying the LDP to this situation.

The idea is to employ the same learnable clip-
ping parameters (β, γ) to obtain the dynamic quan-
tization range hlwc and one partitioning param-
eter s1 to express the learnable center point as
c = σ(β)min(W) + h · σ(s1). Then, the two scale
values are updated as follows:

sneg = |c− σ(β)min(Wrc)|,
spos = |σ(γ)max(Wrc)− c|, (12)

and the quantization process is derived as follows:

Wq =

{
⌊Wrc−c

spos
⌉, if Wrc > c

⌊Wrc−c
sneg

⌉, otherwise.
(13)

The dequantization is done simply by multiplying
the scales to Wq and adding c.

4.4 Look-up Table (LUT) Inference for
Non-uniform W2A4 GEMV

To implement the non-uniform W2A4 inference
on modern GPUs, LUT-based GEMM and GEMV
kernels are designed. The quantized INT2 weights
Wq and the FP16 dequantization LUT Ŵ are pre-
computed from LDP using Eqn. 9 and 10 without
incurring any runtime overhead as follows:

Wq = QLDP (Wrc),

Ŵ = {Ŵ0, Ŵ1, Ŵ2, Ŵ3}
where Ŵi = σ(β)min(Wrc) + hlwc · wi.

(14)

However, designing such kernels poses a big
challenge. First, efficient INT tensor cores cannot
be utilized since accumulating the multiplication re-
sults in INT quantized space makes it impossible to
dequantize the weights back to correct non-uniform
real values in the LUT Ŵ. Second, both weights
and activations must undergo online dequantiza-
tion to support dynamic quantization, which adds a
large amount of computation overhead.

Therefore, we focus on designing GEMV ker-
nel for LUT decoding predominantly bounded by
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memory bandwidth, which is ideal for featuring
the advantage of extreme W2A4KV4 compression.
We report our exploratory results on GEMM design
in Section A.6.

Fast GEMV via Latency Hiding We define the
input channel dimension as C, the output channel
dimension as H, and the number of groups per chan-
nel as N. The quantized activation tensor Xq has a
shape of 1 × C/2 and is INT8, with each element
holding two INT4 activation elements. The activa-
tion scale S is an FP16 scalar. The quantized weight
tensor Wq has a shape of H × C/4 and is INT8, with
each element holding four UINT2 weights. The
dequantization grid Ŵ has a shape of H × N·4 and
is FP16. The output activation O is an FP16 tensor
of shape 1 × H.

As demonstrated in Fig. 5, we store the dequan-
tized input activation sX (1 × C, FP16), the quan-
tized weight tile sWq (BH × C/4, INT8), the corre-
sponding dequantization grid tile sŴ (BH × N·4,
FP16), and a shared output array sO (1 × 8, FP16)
in shared memory.

To make our kernel efficient via latency hiding,
we design a pipelining strategy where a thread
block handles a half of the output elements (BH/2)
and iterates twice. At the beginning, an asyn-
chronous copy of Ŵ and the first Wq chunk (of
size BH/2 × C/4) is issued using cp.async instruc-
tion (1-1 in Fig. 5). Simultaneously, Xq is syn-
chronously loaded from global memory and de-
quantized to be stored into sX (1-2), overlapping
activation dequantization latency with loading the
first weight chunk.

Subsequently, while we bring in the second Wq

chunk using cp.async (2-1), we perform dequanti-

zation, inner product, and warp reduce on the first
Wq chunk at the same time (2-2), thereby hiding
the second chunk loading latency with computa-
tion of the first chunk. Finally, the computation on
the second chunk is performed (3) and the shared
output array is reduced once more if necessary.

Additional details (e.g., dequantization imple-
mentation, shared output) not mentioned here are
provided in Section A.7.

5 Experiments

5.1 Experimental Settings

Models and Tasks We evaluate RCP on LLaMA-
1 (Touvron et al., 2023a) 7B, LLaMA-2 (Touvron
et al., 2023b)(7B, 13B), LLaMA-3 (AI@Meta,
2024)(1B, 3B, 8B). Our evaluation of RCP was
carried out on PIQA (Bisk et al., 2020), Hel-
laSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), ARC-c (Clark et al., 2018),
MMLU (Hendrycks et al., 2020) and Long-
Bench (Bai et al., 2024). We use LLM-
Humaneval-Benchmarks (Chen et al., 2021) and
GSM8K (Cobbe et al., 2021) for reasoning task
evaluation. We also report the perplexity score on
WikiText2 (Merity et al., 2016) for our evaluation.

Training Data For a fair comparison with our
baseline, we use the instruction-tuning data from
Alpaca (Taori et al., 2023) and the training set of
WikiText2 for general language tasks. For un-
derstanding and generating code, we use Evol-
Instruct-Code4. For math reasoning we use Meta-
MathQA (Yu et al., 2023).

4https://github.com/nickrosh/evol-teacher
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#Bits (W-A-KV)
Configuration LLAMA-1 7B LLAMA-2 7B LLAMA-2 13B LLAMA-3 8B LLAMA-3.2 1B LLAMA-3.2 3B

Method Rotation LDP MMLU 0-shot† Wiki↓ MMLU 0-shot† Wiki↓ MMLU 0-shot† Wiki↓ MMLU 0-shot† Wiki↓ MMLU 0-shot† Wiki↓ MMLU 0-shot† Wiki↓

16-16-16 BF16 35.10 68.40 5.68 46.45 61.67 5.47 55.54 63.02 4.88 68.40 72.93 6.10 32.20 58.90 13.40 58.00 65.30 10.70

2-4-16

BitDistiller 25.88 42.56 23.19 26.24 43.36 16.47 26.05 39.66 23.16 23.11 39.46 Inf 25.00 36.82 Inf 24.41 37.89 Inf

BitDistiller ✓ 26.75 52.28 8.79 26.04 51.49 8.93 29.97 48.48 7.55 29.80 50.59 13.68 25.00 41.08 31.32 29.60 45.29 18.79

RCP ✓ ✓ 27.34 52.29 8.28 28.04 51.10 8.18 37.27 51.71 7.27 31.87 50.86 12.48 26.30 41.35 27.46 31.40 45.71 16.96

2-4-4

BitDistiller 24.45 43.08 19.98 26.59 44.93 17.40 24.72 36.73 32.43 23.29 39.75 Inf 24.66 37.55 Inf 24.26 37.26 Inf

BitDistiller ✓ 26.98 52.21 8.92 26.41 51.10 8.93 24.18 43.55 11.45 29.66 49.80 14.05 24.74 40.77 33.86 31.44 44.26 19.58

RCP ✓ ✓ 27.34 52.29 8.28 26.92 51.22 8.31 35.49 48.18 7.95 31.01 50.41 12.69 25.62 41.80 29.30 30.33 45.56 17.52

3-4-16

BitDistiller 26.88 55.68 7.47 31.72 56.15 7.04 42.68 54.59 6.99 42.24 55.39 10.19 26.06 37.53 Inf 25.22 37.32 Inf

BitDistiller ✓ 28.70 58.52 6.44 34.30 59.28 6.25 46.91 58.99 5.62 54.16 61.06 7.92 26.45 47.88 13.75 47.34 55.66 9.82

RCP ✓ ✓ 29.46 59.39 6.39 37.33 59.74 6.23 50.84 60.52 5.49 55.33 61.53 7.80 27.77 48.18 13.68 47.31 55.87 9.74

3-4-4

BitDistiller 27.04 56.05 7.54 30.19 55.51 7.15 40.58 54.57 9.02 40.70 56.35 10.46 25.48 38.75 Inf 25.91 37.27 Inf

BitDistiller ✓ 28.80 58.48 6.45 33.46 58.53 6.36 47.86 58.78 6.06 51.74 59.69 8.04 26.11 47.14 14.58 46.08 55.08 10.05

RCP ✓ ✓ 30.00 58.55 6.39 36.07 59.27 6.33 48.47 58.83 5.57 52.55 61.11 7.95 26.54 47.71 14.44 46.40 55.12 9.99

Table 2: Comparison of the perplexity score on WikiText2, MMLU (5s) and averaged accuracy on four Zero-shot
Common Sense Reasoning tasks. We show the perplexity results >100 by Inf. Full results of Zero-shot tasks are in
the Appendix.

Training Configurations We set the weight
learning rate to 8e-7 for WlA4 and 1e-6 for
WlA4KV4, while the learning rate for LWC and
LDP was set to 1e-5. We set the training sequence
length to 1024 and the evaluation sequence length
to 2048.

5.2 Results

We compare our proposed RCP with the state-of-
the-art QAT method, BitDistiller (Du et al., 2024).
Details on training cost and implementation are
provided in Appendix A.4.

Language Modeling Tasks The results are sum-
marized in Table 2. From the perspective of general
language tasks, our method demonstrates the abil-
ity to quantize activations and KV-cache under the
W2 settings to 4-bit, which was previously unattain-
able using existing QAT methods. The application
of rotation effectively addresses the outlier issues,
a common bottleneck in quantization, enabling sta-
ble performance even in extremely low-bit quan-
tization scenarios. Furthermore, the addition of
LDP improves performance on general language
tasks across the board, and generally enhances the
accuracy of zero/few-shot tasks, which were not ad-
equately addressed by rotation alone. For example,
the addition of LDP contributes to a performance
gain from 11.45 to 7.95 on LLaMA-2 13B, demon-
strating its effectiveness across model scales.

Reasoning Tasks The results of the reasoning
tasks are summarized in Table 3. We evaluate rea-
soning capabilities in the domains of coding and
mathematics.

For the coding domain-specific model, Wizard-

#Bits (W-A-KV) Configuration WizardCoder 7B MetaMath 7B

Method Rotation LDP HumanEval GSM8K

16-16-16 BF16 54.88 66.41

2-4-16
BitDistiller 2.43 0.0
BitDistiller ✓ 14.63 1.25

RCP ✓ ✓ 27.44 41.64

2-4-4
BitDistiller 3.50 5.39
BitDistiller ✓ 6.09 0.16

RCP ✓ ✓ 23.20 40.16

3-4-16
BitDistiller 0.0 0.0
BitDistiller ✓ 39.02 0.0

RCP ✓ ✓ 40.85 54.69

3-4-4
BitDistiller 0.0 0.0
BitDistiller ✓ 41.46 0.0

RCP ✓ ✓ 43.29 52.73

Table 3: Reasoning task results of RCP on domain-
specific LLMs.

Coder (Luo et al., 2023), BitDistiller failed to of-
fer the functional quantized models in both W3
and W2 settings. In our method, applying rotation
alone was not effective in W2 settings and recov-
ered some output quality in W3 settings. By incor-
porating LDP, we achieved up to a threefold im-
provement in performance, with accuracy increas-
ing from 6.09% to 23.20% under the W2A4KV4.
As shown in Fig. 9 with the application of LDP,
we were able to produce logically correct code out-
puts and eliminate repetition of meaningless code
generation.

For the mathematical reasoning model, Meta-
Math (Yu et al., 2023), the baseline BitDistiller
failed to offer functional quantized models while
ours with LDP could produce working quantized
models. These results highlight the critical role of
LDP in enabling proper task performance for rea-
soning models under extreme low-bit quantization.
The output comparison for this task is summarized
in Fig. 10.
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LLaMA-2 7B Method Avg.

Chat-4k
BF16 32.53

BitDistiller 4.37
RCP 19.32

Instruct-32k
BF16 27.13

BitDistiller 5.16
RCP 12.29

Table 4: Comparison of LongBench results of RCP
under W2A4KV4 across different models and methods.

Long-Context Benchmarks We conduct experi-
ments on a subset of the LongBench dataset to eval-
uate the effectiveness of our method under various
context lengths. Specifically, we test both LLaMA-
2 7B-chat-4k and LLaMA-2 7B-Instruct-32k mod-
els across eight benchmark tasks. As shown in
Table 4, our proposed RCP with W2A4KV4 con-
sistently outperforms BitDistiller with W2A4KV4
across all tasks. For instance, on the LLaMA-2
7B-chat-4k model, RCP achieved an average score
of 19.32, significantly higher than BitDistiller’s
4.37. Similarly, on the LLaMA-2 7B-Instruct-32k
model, RCP yields 12.29 compared to BitDistiller’s
5.16, demonstrating robustness to extended context
lengths. These findings further support the effec-
tiveness of RCP-based quantization in preserving
reasoning capability under constrained precision
and longer context. The detailed results for each
benchmark are presented in Table 15 and Table 16.

Layer Size (2048, 2048) (3072, 3072) (4096, 4096)
FP16 0.042 0.047 0.051
QuaRot 0.077 0.057 0.078
QuaRot+FP16Had 0.158 0.210 0.159
QuaRot+FP32Had 0.194 0.238 0.191
RCP 0.028 0.03 0.040
RCP+FP16Had 0.114 0.167 0.110
RCP+FP32Had 0.136 0.204 0.148

Table 5: GEMV latency without activation quantiza-
tion overhead. The layer size is composed as (input
channel, output channel). All latency numbers are in
milliseconds. Full results are in the Appendix.

3.2-1B 3.2-3B 1.2-7B 3-8B 2-13B

FP16 2.47GB 6.43GB 13.48GB 16.06GB 26.03GB

BD W3 0.92GB (2.68x) 1.93GB (3.33x) 3.16GB (4.26x) 4.94GB (3.25x) 5.81GB (4.48x)
RCP W3 1.46GB (1.69x) 2.77GB (2.32x) 3.26GB (4.14x) 5.05GB (3.18x) 6.01GB (4.33x)
BD W2 0.80GB (3.08x) 1.58GB (4.06x) 2.35GB (5.73x) 4.07GB (3.94x) 4.22GB (6.17x)

RCP W2 1.35GB (1.82x) 2.46GB (2.62x) 2.55GB (5.29x) 4.28GB (3.75x) 4.62GB (5.63x)

Table 6: Memory footprint comparison for different
weight precisions. Note that 1.2-7B refers to LLaMA-1
and LLaMA-2.

Inference Table 5 and 6 present the results for
GEMV in terms of latency and memory comsump-
tion. The latency of GEMV, excluding the activa-

tion quantization overhead, is faster compared to
FP16 and QuaRot (Ashkboos et al., 2024b). This
improvement can be attributed to the lower bit pre-
cision, which enhances computational efficiency.
Table 6 measures the peak memory footprint for
W2A4 and W3A4. Although RCP incurs memory
overhead due to additional parameters per quantiza-
tion group beyond the BitDistiller, the performance
gain from RCP compensates for this cost. For
W2A4, a significant reduction on 5.29x in memory
footprint was achieved compared to FP16. Note
that in the LLaMA-3.2 series, it is necessary to
separate the embedding table and head modules
to satisfy the invariance arising from their tying.
Furthermore, as the size of the embedding table
has increased compared to previous models, the
compression ratio has decreased accordingly.

The end-to-end inference latency is also mea-
sured under the W2-only setting, and the results are
presented in Table 7. -BF16 is the original Wizard-
Coder 7B, and -RCP is our model. We report prefill,
decode, and total latency values. The weight-only
version of our GEMV kernel is attached to the Tiny-
Chat engine (Lin et al., 2024b) and several prob-
lems from the HumanEval benchmark where our
RCP model provided correct answers are randomly
chosen. We merged the non-uniform weight de-
quantization part of the W2A4 GEMV and the C++
PyTorch linear kernel (which works in BF16) into
a single CUDA kernel to reduce launch overhead.
The BF16 model used the C++ linear kernel only.
In the prefill stage, RCP is slower than BF16 due
to online dequantization overhead. In the decode
stage, however, 2-bit weight representation with
our efficient non-uniform dequantization greatly
reduces the memory traffic from global to shared
memory, resulting in an average decoding latency
reduced by 30.19%. Combined, RCP can run faster
on decoding-oriented tasks.

Problem #1 #2 #3 #4 #5 #6 #7 Avg.
Prefill-BF16 1.37 0.17 0.18 0.18 0.16 0.16 0.17 0.34
Prefill-RCP 1.29 0.23 0.24 0.25 0.23 0.19 0.22 0.38
Decode-BF16 13.18 13.35 13.45 13.08 13.25 13.83 13.52 13.38
Decode-RCP 9.26 9.32 9.47 9.15 9.08 9.81 9.27 9.34
Total-BF16 14.55 13.52 13.63 13.26 13.41 13.99 13.69 13.72
Total-RCP 10.55 9.55 9.71 9.40 9.31 10.00 9.49 9.72

Table 7: Comparison of end-to-end time per inference
phase across different problems between BF16 and W2-
only (LDP) quantization for WizardCoder 7B. All val-
ues are measured in ms/token.
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Method Metric 1B 3B 7B 8B 13B

BitDistiller

VRAM (GB) 35.1 42.2 32.0 77.4 130.2
Time (h) 64.0 64.8 68.4 93.6 29.6
Epoch 16 8 8 8 8
Batch 4 4 8 4 32

RCP

VRAM (GB) 35.3 42.9 33.1 78.2 132.3
Time (h) 67.2 69.6 73.3 96.8 32.0
Epoch 16 8 8 8 8
Batch 4 4 8 4 32

Table 8: Comparison of VRAM and GPU usage for
BitDistiller and RCP.

Training Cost Table 8 summarizes the training
configurations and training costs. The VRAM
usage denotes the memory consumed on a sin-
gle GPU and the GPU-hours were calculated by
multiplying the training time by the total num-
ber of GPUs used. In our experiments, we con-
ducted experiments on LLaMA-1, LLaMA-2 7B
and LLaMA-3.2 (1B and 3B) on 8 RTX A6000
GPUs (48 GB each). For larger-scale models,
LLaMA-3 8B was trained on 8 A100 GPUs (80GB
each), and LLaMA-2 13B was trained on 8 GPUs
(141GB each) within a DGX H200 system. The
enlarged vocabulary in LLaMA-3 and later models
increases gradient-computation demands, resulting
in higher VRAM usage. To ensure training stability
under these constraints, we set the training batch
size to 4.

Our proposed RCP incurs approximately 10%
additional training cost compared to the baseline.
However, on LLaMA-2 7B, it improves perplexity
from 17.40 to 8.31-nearly a twofold improvement.
Furthermore, for LLaMA-3.2 3B, RCP improves
the PPL by up to 42 times compared to the baseline.
Considering these significant performance gains,
the 10% additional training cost is acceptable.

5.3 Ablation Studies

#Bits Rotation LWC LDP PPL↓

2-4-4
17.40

✓ 8.93
✓ ✓ 8.79
✓ ✓ ✓ 8.31

Table 9: Ablation study on the impact of each compo-
nent of RCP on performance for LLaMA-2 7B.

Impact of RCP Components As shown in Ta-
ble 9, we conducted an ablation study to analyze
the impact of removing each component of RCP
on model performance. In 4-bit activation quanti-
zation, addressing the outliers in activations was

crucial, and this was effectively resolved using ro-
tation, which led to the largest performance gain
compared to the baseline. This demonstrates that
rotation is a viable solution when quantizing ac-
tivations to low bit-width. Learning the clipping
range with LWC (Rotation ✓ and LWC ✓) gives
a small extra reduction in PPL. This shows that
the initial range computed by the grid search algo-
rithm of AWQ is already reasonable, but adjusting
the clipping parameters to better fit the updated
weight can be beneficial for QAT. On top of these
two components, LDP further reduces quantization
error under extremely low bit-width settings.

W2A4KV4 PPL↓

RCP 8.31
-R3 8.48
-[R2,R3] 8.83
-[R3,R4] 12.24
-[R2,R3,R4] 12.76
-[R1,R2,R3,R4] 25.05

Table 10: Ablation study on the impact of rotation con-
figuration for LLaMA-2 7B.

Impact of Rotation Configuration Since the
rotation requires additional processes before and
after inference, we investigated the performance
trend by incrementally adding rotation matrices
(R1,R2,R3,R4) to different components to find an
appropriate balance between accuracy and over-
head. The results are presented in Table 10. The ta-
ble demonstrates that the impact of the rotation was
most significant with R1 and R4. Especially, R1,
which applies rotation matrix to the input weight
and input activation of all modules thereby hav-
ing the largest impact on quantization performance.
Additionally, our analysis revealed that in LLaMA-
2 7B, the input to the down projection layer (of the
MLP) exhibited a significant number of outliers,
which was effectively addressed through R4 online
rotation to activation. Additional ablation results
can be found in Appendix A.5.

6 Conclusion

RCP enables weights to be quantized to extreme
low-bit precision through learnable non-uniform
quantization while harmonizing with rotation to op-
timize both activations and KV-cache to 4-bit. RCP
has achieved the first W2A4KV4 configuration and
implemented optimized kernels for inference, facil-
itating LLM serving even in resource-constrained
environments.
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Limitations

Although our proposed RCP first enables challeng-
ing W2A4KV4 quantization of commonly used
LLM models, we report key limitations of our
work.

First, the online rotation operators (R2 through
R4) inevitably introduce additional latency for
training and evaluation. Custom CUDA kernels
or FlashAttention3 (Shah et al., 2024) can mini-
mize such speed-down, however, it might not be
a viable option for many edge application scenar-
ios where no hardware support for fast Hadamard
transform is available.

Second, RCP requires heavier hyperparameter
tuning than BitDistiller since rotation tends to make
the model weights more sensitive to the choice of
learning rate. This can be prohibitive when a user
is under a strict budget limit.

In future work, we could explore applying an
optimized rotation matrix that achieves comparable
performance to Cayley-optimized rotation matrices
used in SpinQuant (Liu et al., 2024b) while
maintaining similar computational costs to the
Random Hadamard rotation matrices employed in
QuaRot (Ashkboos et al., 2024b).
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A Appendix

A.1 Related Works

PTQ and QAT GPTQ (Frantar et al., 2022) intro-
duced an accurate post-training quantization (PTQ)
method based on approximate second-order in-
formation that enables weight-only quantization
down to 3-4 bits through block-wise reconstruction.
SmoothQuant (Xiao et al., 2023) proposed smooth-
ing activation outliers by offline migrating quantiza-
tion difficulty from activations to weights through
equivalent transformation, enabling accurate 8-bit
weight-activation quantization. AWQ (Lin et al.,
2024b) built upon SmoothQuant’s equivalent trans-
formation concept but introduced activation-aware
channel-wise scaling to protect salient weights dur-
ing weight-only quantization. OmniQuant (Shao
et al., 2024) enhanced quantization by introduc-
ing learnable weight clipping and equivalent trans-
formation parameters that are jointly optimized
through block-wise reconstruction.
LLM-QAT (Liu et al., 2024a) was the first to ex-
plore quantization-aware training (QAT) for LLMs
using data-free knowledge distillation from the full-
precision model to guide low-bit quantization. Bit-
Distiller (Du et al., 2024) improved upon LLM-
QAT by introducing a self-distillation framework
with confidence-aware KL divergence to enable
sub-4-bit quantization while maintaining efficiency.
EfficientQAT (Chen et al., 2024) made QAT more
practical by introducing block-wise training of
all parameters followed by end-to-end training of
quantization parameters.

Rotation QuaRot (Ashkboos et al., 2024b) intro-
duced a rotation-based approach using Hadamard
transforms to eliminate outliers in activations and
KV-cache, enabling end-to-end 4-bit quantization
including weights, activations and KV-cache. Spin-
Quant (Liu et al., 2024b) enhanced this rotation-
based approach by learning optimal rotation matri-
ces instead of using random ones.

Non-uniform Quantization PACT (Choi et al.,
2018) introduced a learnable clipping parameter
for activation quantization during training to help
preserve model accuracy. SqueezeLLM (Kim et al.,
2024) took a different direction by focusing on iden-
tifying and extracting outlier values into a sparse
format while quantizing the remaining dense val-
ues. NU2U (Liu et al., 2022) proposed learning
flexible non-uniform input thresholds while main-
taining uniform output levels to balance quantiza-
tion accuracy with hardware efficiency.

Serving Optimization Atom (Zhao et al., 2024)
first introduced W4A4 quantization for LLM serv-
ing but faced performance challenges from dequan-
tization overhead. QServe (Lin et al., 2024c) ad-
dressed the challenges by introducing W4A8KV4
quantization with progressive group quantization
FLUTE (Guo et al., 2024) focused on developing
efficient GPU kernels for flexible lookup table-
based quantization methods that can support ar-
bitrary bit widths including 3-bit and 4-bit quanti-
zation.

A.2 Proof of Lemma 1

Proof of Lemma 1. The proof follows directly
from Sub-lemmas 1.1–1.4. Specifically, Sub-
lemma 1.4 shows that for all components Yi of
the transformed vector:

Kurt(Yi) =
Kurt(X)

n

Since Kurt(X) < 0 for platykurtic distributions
and n > 1:

Kurt(X)

n
> Kurt(X)

Therefore:

Kurt(Yi) > Kurt(X)

for all i ∈ {1, 2, . . . , n}, which completes the
proof.
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Definition. The n× n normalized Hadamard ma-
trix Hn, where n = 2k for some non-negative
integer k, is defined as:

Hn =
1√
n
H′

n

where H′
n is the unnormalized Hadamard matrix

with elements H ′
ij ∈ {−1, 1} constructed recur-

sively as:

H′
1 = [1], H′

2k+1 =

[
H′

2k
H′

2k

H′
2k
−H′

2k

]

Note that the first row of H′
n consists entirely of 1s,

while every other row contains exactly n/2 entries
of 1 and n/2 entries of −1.

Furthermore, the normalized Hadamard matrix
Hn is orthogonal:

HnH
T
n = In

where In is the n × n identity matrix. For any
random vector X with independent components of
identical variance σ2, the transformed vector Y =
HnX has the same component-wise variance:

Var(Yi) = σ2 for all i ∈ {1, 2, . . . , n} (15)

This follows from the fact that for a covariance
matrix ΣX = σ2In, the transformed covariance is
ΣY = HnΣXHT

n = σ2HnH
T
n = σ2In = ΣX .

Sublemma 1.1. Each component Yi of the trans-
formed vector can be expressed as a linear combi-
nation of the original variables:

Yi =
1√
n

n∑

j=1

H ′
ijXj (16)

where H ′
ij ∈ {−1, 1} are the elements of the un-

normalized Hadamard matrix.

Proof. By definition of matrix multiplication, each
component Yi of the transformed vector Y =
HnX is given by:

Yi =
n∑

j=1

hijXj =
1√
n

n∑

j=1

H ′
ijXj

where hij =
H′

ij√
n

are the elements of the normal-
ized Hadamard matrix.

Sublemma 1.2. If Xi has mean µ and variance σ2,
then Yi has mean µY and variance σ2

Y where:

µY =

{√
nµ if i = 1

0 if i ̸= 1

σ2
Y = σ2

Proof. Let’s calculate the mean of each trans-
formed component Yi:

E[Yi] = E


 1√

n

n∑

j=1

H ′
ijXj




=
1√
n

n∑

j=1

H ′
ijE[Xj ] =

µ√
n

n∑

j=1

H ′
ij

For i = 1, the first row of the unnormalized
Hadamard matrix consists entirely of 1s. There-
fore:

E[Y1] =
µ√
n
· n =

√
nµ

For all other rows i > 1, the Hadamard matrix
has the property that each row contains exactly n

2
entries of 1 and n

2 entries of -1. This gives:

E[Yi] =
µ√
n

(n
2
− n

2

)
= 0 for i > 1

For the variance, assuming independence of Xj :

Var(Yi) = Var


 1√

n

n∑

j=1

H ′
ijXj




=
1

n

n∑

j=1

(H ′
ij)

2 · Var(Xj)

Since (H ′
ij)

2 = 1 for all i, j and all Xj have
variance σ2:

Var(Yi) =
σ2

n
· n = σ2 for all i

Sublemma 1.3 (Relationship Between Fourth Mo-
ments). For a sum of independent random vari-
ables with identical distributions, the standardized
fourth cumulant (excess kurtosis) of the sum relates
to the individual excess kurtosis by:

Kurt


 1√

n

n∑

j=1

ϵjXj


 =

Kurt(X)

n

where ϵj ∈ {−1, 1} and Xj are i.i.d. with the same
distribution as X .
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Proof. Let Z = 1√
n

∑n
j=1 ϵjXj where ϵj ∈

{−1, 1} and Xj are i.i.d. with the same distribution
as X .

The excess kurtosis of a random variable W is
defined as:

Kurt(W ) =
E[(W − E[W ])4]

(Var(W ))2
− 3

For independent random variables, the cumu-
lants of a sum equal the sum of the cumulants. The
fourth cumulant κ4 corresponds to:

κ4(W ) = E[(W − E[W ])4]− 3(E[(W − E[W ])2])2

= Var(W )2 · Kurt(W )

For our sum Z, the fourth cumulant is:

κ4(Z) =

n∑

j=1

κ4

(
ϵjXj√

n

)

Since κ4(αX) = α4κ4(X) for any scalar α:

κ4(Z) =
n∑

j=1

ϵ4j
n2

κ4(Xj) =
1

n2

n∑

j=1

κ4(Xj)

Given that ϵ4j = 1 and all Xj have the same
distribution:

κ4(Z) =
n

n2
κ4(X) =

κ4(X)

n

Since κ4(X) = Var(X)2 · Kurt(X) and
Var(Z) = Var(X) (as shown in Sublemma 1.2):

Var(Z)2 · Kurt(Z) =
Var(X)2 · Kurt(X)

n

Therefore:

Kurt(Z) =
Kurt(X)

n

Sublemma 1.4 (Application to Hadamard Trans-
form). For a random vector with i.i.d. components
having negative excess kurtosis (Kurt(X) < 0), af-
ter applying the normalized Hadamard transform:

Kurt(Yi) =
Kurt(X)

n

Since Kurt(X) < 0 and n > 1, we have Kurt(X)
n >

Kurt(X), which implies Kurt(Yi) > Kurt(X).

Proof. From Sublemma 1.1, each component Yi of
the Hadamard transform can be written as:

Yi =
1√
n

n∑

j=1

H ′
ijXj

This is precisely the form analyzed in Sub-
lemma 1.3, with ϵj = H ′

ij .
For i > 1 (where the mean is 0), applying Sub-

lemma 1.3 directly:

Kurt(Yi) =
Kurt(X)

n

For i = 1, we need to account for the non-zero
mean. We can center the variable:

Y1 − E[Y1] =
1√
n

n∑

j=1

(Xj − µ)

Applying the same cumulant analysis to this cen-
tered variable:

Kurt(Y1) =
Kurt(X)

n

Since we assumed Kurt(X) < 0 for a platykurtic
distribution, and n > 1:

Kurt(X)

n
> Kurt(X)

Therefore, for all components i ∈ {1, 2, . . . , n}:

Kurt(Yi) > Kurt(X)

A.3 Additional Results on the Kurtosis
Analysis

Details on Fig. 3 Let T , C, and H denote the
sequence length of an input, the input channel of
weight, and the output channel of weight, respec-
tively. Since RCP works on group-wise quantiza-
tion, we additionally denote the group size as G and
the number of groups as N so that C = NG. The
input activation X and its rotated version Xr both
have a dimension of (T,C), and the weight W and
its rotated & clipped version Wrc a dimension of
(C,H).

We compute the group-wise excess kurto-
sis Kurtgroup by reshaping the weights into
(N,G,H), and computing the excess kurto-
sis along the second dimension, resulting in a
shape (N,H). For the mean absolute error
QErr(W,X), the shape of the output activation
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XW and the quantized version XQ(W) is (T,H).
Then, we average Kurtgroup along the N dimen-
sion so that the excess kurtosis values of the quan-
tization groups contributing to a single output ac-
tivation element are averaged. The mean absolute
error of the output activation is averaged along
the T dimension to measure the mean increase of
the quantization error in each output activation ele-
ment.

In all two-dimensional histogram plots, the range
is limited to [−1.5σ, 1.5σ] for both axes to prevent
outliers from occupying most of the space.

More Plots and Discussion We repeat the same
experiments as in Section 3 on three different
transformer layers (0, 15, and 31) and three dif-
ferent types of weights (q_proj , o_proj, and
down_proj) and the plots are presented in Fig.
8. In each subplot’s title, we specify the ratio
of quantization groups that are platykurtic (i.e.,
pplaty = Kurt(Wgroup) < 0. When pplaty ≪ 0.5
(Fig. 8d and 8g), the Hadamard transform de-
creases the excess kurtosis, possibly reducing the
average quantization error 8d. When pplaty ≈ 0.5,
the excess kurtosis is increased in almost all cases,
with the average quantization error also enlarged.
This supports our claim in Lemma 1 and Section 3
empirically.

Figure 6: Comparison of training loss curves for
LLaMA-2 7B under W2A4KV4 quantization: BitDis-
tiller + Rotate, BitDistiller + Rotate + LWC, and RCP.

W2A4KV4 Loss Curve Comparison Figure 6
presents the training loss curves of RCP and BitDis-
tiller with rotation, and BitDistiller with rotation
and LWC during W2A4KV4 quantization. While
all methods eventually converge, a notable per-
formance gap originates from the early stages of
training. As highlighted in the magnified region
(≤ 100 steps), BitDistiller with rotation exhibits

pronounced loss spikes, indicating unstable opti-
mization. Even with the addition of LWC, such
loss spikes persist, ultimately leading to subopti-
mal final performance.

In contrast, RCP, which incorporates Learnable
Direct Partitioning (LDP), demonstrates signifi-
cantly more stable loss curve from the beginning
of training. These results provide evidence for the
necessity of LDP when applying extreme low-bit
quantization with rotation and clipping.

A.4 Additional Experimental Results

Tensor Type Sym / Asym Group Quant. Clipping Ratio
Weight Asym Yes (Size=128) LWC
Activation Sym No (Per-token) 0.9
KV-cache Asym Yes (Size=128) 0.95

Table 11: Quantization configurations for each compo-
nent.

Implementation Details All model parameters
are in BF16 format throughout training and eval-
uation since we observe overflow in the hidden
activation of the last two FFNs on several models
set to FP16.

In existing rotation-based PTQ methods (Ashk-
boos et al., 2024b; Liu et al., 2024b), rotations are
done in FP32 to avoid precision issues. However,
this leads to computational overhead due to a large
number of typecasting. When fusing rotations to
model weights, they are temporarily promoted to
FP32, multiplied by an appropriate rotation matrix,
and then demoted back to their original precision.
For online rotations (R2, R3, and R4), all tensors
are processed in BF16.

As shown in Table 11, we apply an asymmetric
LDP with LWC to weights, a symmetric uniform
quantizer to activations, and an asymmetric uni-
form quantizer with a group size of 128 to the
KV-cache, with clipping ratios of 0.9 and 0.95 for
activations and KV-cache, respectively.

Additional GEMV Benchmarks To compare
the gain solely attributed to our non-uniform W2A4
GEMV kernel, we also apply the inefficient quan-
tizer and the online transform to FP16 weights so
that the W16A4 model is simulated, and the mea-
sured latency values are listed in Table 17. Using
online FP16 Hadamard transform, our RCP GEMV
is faster than PyTorch nn.Linear kernel, which
indicates that our GEMV implementation is faster
and can successfully hide its latency to the follow-
ing activation quantization.
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A.5 Additional Ablation Studies

#Bits Factorized Batch Epoch PPL↓

W2
8 8 7.6

✓ 1 64 12.5

Table 12: Comparison of factorized configurations.

Factorized Rotation In our algorithm, rotation
serves as a pre-conditioning tool for reducing out-
liers in activation and KV-cache. All rotations ex-
cept the matrices that should be applied online (R3

and R4) are fused into the corresponding model
weight at the beginning of the QAT process. This
means their orthogonality is not guaranteed during
backpropagation steps with AdamW optimizer.

We investigate the impact of preserving the
orthogonality of the rotations by modifying the
LLaMA-2 model implementation to apply all ro-
tation operators online while freezing the rotation
matrices. Table 12 presents the results. Applying
factorized rotation prevents the fusion of the rota-
tion matrix into the weight tensor, resulting in an
increase in the number of intermediate tensors (ro-
tation matrix and intermediate activation), which
significantly raises VRAM requirements. For in-
stance, applying only R1 needs to reduce the train-
ing batch size from 8 to 1. Under the condition
of maintaining an equal total number of tokens
processed by the model, we compared the perfor-
mance of W2A16KV16 with only R1 applied. The
perplexity of BitDistiller with R1 fused was 7.6,
whereas applying QAT with factorized rotation re-
sulted in a PPL of 12.5. This indicates that perform-
ing weight updates through QAT while preserving
R1 orthogonality hinders QAT optimization. This
is because the factorization constrains the weight
updates to a restricted space defined by the fac-
torized condition, requiring the backpropagation
process to maintain within this space. This limi-
tation reduces the flexibility of optimization, mak-
ing it challenging to efficiently adjust the weights.
Consequently, this leads to suboptimal training dy-
namics and ultimately results in degraded model
performance. Furthermore, extending factorization
to R2 and R4 would lead to an even greater in-
crease in VRAM usage. In contrast, training fused
weight effectively alters only the distribution and
is analogous to standard LLM training, which is
well-known to perform effectively. In summary,
given that resource consumption increases while
performance degrades, we have decided not to ex-

plicitly preserve orthogonality and instead allow
the algorithm to handle this aspect.

Layerwise vs. End-to-end QAT Recent work in-
troduced layerwise QAT (Chen et al., 2024), which
updates one layer at a time while freezing others,
allowing training on a single GPU. We extended
this approach by applying rotation but observed
significant performance degradation. The main is-
sue stemmed from fusing rotation matrices in the
weights; layerwise updates disrupted orthogonality,
preventing the activation space from restoring its
original space, leading to cumulative errors and
reduced accuracy. In contrast, end-to-end meth-
ods like BitDistiller naturally mitigate this issue
during updates. While factorized rotation could
help, its high GPU memory requirements for hold-
ing rotation matrices and intermediate tensors on
GPU memory offsets the advantage. Despite these
challenges, exploring single GPU training using
rotation matrix remains a promising direction for
future work.

A.6 GEMM Kernel Design for Non-uniform
W2A4 Quantization

In our initial GEMM implementation, we at-
tempted to leverage the asynchronous copy to per-
form dequantization and MMA operations while
loading quantized weights and activations, which
resulted in slower performance compared to half-
precision PyTorch kernel (approx. 480µs versus
330µs on a single (4,096 × 4,096) linear layer
with 2,048 tokens as input). We suggest two un-
derlying reasons; 1) dequantization requires mul-
tiple iterations of shifting, masking, and casting
to half-precision instruction, and these are typi-
cally expensive on the GPU, further deepening the
compute-bound nature of the GEMM problem and
2) packing four quantized weights into a single
UINT8 and two quantized activation elements into
a single INT8 reduces the width of per-block global
memory loads, thereby narrowing the chance for
latency hiding. Therefore, we decided to leave
the prefill acceleration as future work and instead
focus on designing a GEMV kernel to accelerate
decoding.

A.7 Details and More Results on GEMV

Block Tiling Each thread block consists of 128
threads (4 warps), and we only tile along the output
dimension and define the tile size as BH. The rea-
son we do not follow the traditional 2-dimensional
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Figure 7: Online dequantization of INT4 activations and
UINT2 weights.

tiling is that both the input tokens and weights
are stored in row-major format and have sub-byte
packing along the column direction, which makes
it hard to efficiently use high-bandwidth memory
that performs best when reading 128B data consec-
utively. Also, global loads with small transactions
and repeated shared stores complicate the pipeline
design for latency hiding and degrade overall per-
formance.

Online Dequantization and Vectorization Fig.
7 illustrates how the activations and weights are
dequantized in our GEMV kernel. For activa-
tions, there are two INT4 elements (Xhi,Xlow) in
a packed INT8 Xq. For Xhi, Xq is copied to an
INT8 register, and the register is right-shifted by 4
bits with sign-filling. For Xlow, Xq is also copied
to an INT8 register, which is left-shifted by 4 bits
first to put the sign bit of Xlow to the MSB and
then right-shifted by 4 bits with sign filling. This
process is shown in Fig. 7a.

For weights, there are four UINT2 elements
(Wq0,Wq1,Wq2,Wq3) in a packed UINT8 Wq. Wq

is copied to 4 UINT8 registers (for each UINT2
element) that are used as indices to look up the
LUT Ŵ. For Wq0, the register is right-shifted by 6
bits. For Wq1, the register is right-shifted by 4 bits,
and a logical AND operation with a bit mask 0x03
is applied to select only two LSBs. For Wq2, the
register is right-shifted by 2 bits and also performs

logical AND with a bit mask 0x03. For Wq3, the
register only does a logical AND with a bit mask
0x03.

The unit dequantization operations can be
vectorized to increase memory throughput so
that each thread writes 16B of data to shared
memory. For activations, 4 Xqs are loaded
from global memory at once by type casting
via reinterpret_cast<char4 *>, which pro-
duces 8 FP16 dequantized activations to be writ-
ten in sX. The dequantization is performed
the same on each Xq in a char4 struct. For
weights, 2 Wqs are loaded from memory via
reinterpret_cast<uint16_t *>. Unlike the ac-
tivation case, the right-shift and logical AND oper-
ation can be naturally iterated 8 times to generate
8 FP16 dequantized weights that are directly multi-
plied to the corresponding activation from sX.

Shared Epilogue As mentioned in Section 4.4, a
shared output can be necessary due to our chunk-
ing strategy. For example, if BH is 4, then two
warps will compute one output element to process
a weight chunk of size BH/2 × C/4, and after warp-
level sum reduction, the reduced values from the
two warps must be summed once again. To imple-
ment this, we allocate a shared output buffer sO
with twice the number of warps.

After the inner product stage for the first weight
chunk, each thread in a block will have an FP32
accumulator with a shape of (4, 32). Applying the
warp-shuffle primitive __shfl_xor_sync 5 times
allows us to sum all accumulations to the first
thread of each warp without any global nor shared
memory access, producing 4 FP32 values to be cast
to FP16 and stored in sO[0 : 4]. The first and the
last two values are summed up as the first and the
second output elements, respectively. Repeating
the same process on the second weight chunk will
produce the next 4 FP32 values for sO[4 : 8] to
compute the third and the fourth output elements
accordingly.

Latency Benchmark Our GEMV kernel is fully
written in CUDA 12.1 and compiled for Nvidia
A100 SXM 40GB model. We build our benchmark-
ing framework upon QuaRot’s (Ashkboos et al.,
2024b) implementation that provides proper Py-
Torch bindings and a basic activation quantizer that
combines a max reduction function written in Py-
Torch and a symmetric INT quantizer with INT4
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sub-byte data handler from CUTLASS5.
Since the reduction part is neither a specialized

implementation nor compiler-optimized, a huge
overhead induced by the QuaRot’s activation quan-
tizer is observed (about 100µs on average). There-
fore in the main results, we assume that the sym-
metric quantization is natively supported by hard-
ware and replace the quantizer with a dummy class
that outputs random quantized activation and scale
tensors. The results with the inefficient quantizer
implementation are listed in Table 19 and 20 for
value and down projection weight, respectively. We
also report the latency values without activation
overhead for the down projection weight in Table
18.

A.8 Reasoning Task Example: HumanEval
We evaluate the capability of the WizardCoder 7B
model to generate solutions for coding problems.
The results are presented in Fig. 9. The orange box
in Fig. 9 represent the model output after applying
rotation and quantizing the weights to W2A4KV4
using a uniform asymmetric quantizer. Under uni-
form quantization, it is evident that the model fails
to perform logical generation tasks even applying
rotation; it merely produces the structural template
of code without generating functionality correct
code. In contrast, the green box shows the results
when the weights are quantized to W2A4KV4 us-
ing LDP. Unlike the uniform quantizer, the LDP ap-
proach yields code that not only adheres faithfully
to the given instructions and generates a functional-
ity correct algorithm, but also provides detailed ex-
planatory comments. While perplexity on standard
language modeling tasks did not reveal significant
differences between the two cases, these findings
suggest that LDP plays a crucial role in enabling
logical reasoning tasks under extreme low-bit quan-
tization.

A.9 Information About Use of AI Assistants
AI assistance was strictly limited to linguistic per-
spectives, such as grammar and spell checking, and
finding synonyms.

5https://github.com/NVIDIA/cutlass
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Figure 8: Additional two-dimensional histogram plots with pplaty = P (Kurt(W) < 0) specified in each title.

[Programming Quiz] 
Write a Python script for the following problem:
def choose_num(x, y):

""" This function takes two positive 
numbers x and y and returns the biggest 
even integer number that is in the range 
[x, y] inclusive. If there's no such 
number, then the function should return 
-1.

For example:
choose_num(12, 15) = 14
choose_num(13, 12) = -1
"""

[Input]: The Python function takes two integers, 
a and b, as input.
[Output]: Print an integer number.

[Sample Input]: 12, 15
[Sample Output]: 14

def choose_num(x, y):
if x >= y:

return x
else:

return -1

def choose_num(x, y):
# Initialize max_even to -1 (default 

return value if no even numbers found)
max_even = -1
# Loop through the range [x, y] to 

find the largest even number
for i in range(x, y + 1):

# Check if the number is even
if i % 2 == 0:

# Update max_even if the 
current number is larger

max_even = max(max_even, i)
# Return the largest even number or 

-1 if none found
return max_even

In: x=12 y=15

Out: -1 Out: 14

In: x=12 y=15

❌ Logical error
❌ Zero understanding on 
the problem

👍 Correct algorithm
👍 Detailed comments
👍 Follows the problem description

Naive
W2 Quantizer

Our Non-uniform 
W2 Quantizer

Figure 9: A reasoning task example from HumanEval (Chen et al., 2021) benchmark, conducted by two differently
quantized WizardCoder 7B (Luo et al., 2023) models. The results in the orange box is from state-of-the-art QAT
method BitDistiller (Du et al., 2024) with applying rotation. In the green box, our proposed RCP is applied. Both
methods employ exactly the same 4-bit quantization setting for activation and KV-cache.
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Model #Bits (W-A-KV)
Configuration

PIQA Hella. Wino. ARC-c Avg.
Method Rotation LDP

1-7B

16-16-16 79.80 76.10 70.10 47.60 68.4

2-4-16
BitDistiller 61.53 35.98 49.25 23.46 43.56
BitDistiller ✓ 70.67 45.86 62.03 30.54 52.28

RCP ✓ ✓ 70.62 46.41 61.48 31.32 52.46

2-4-4
BitDistiller 63.38 34.32 50.82 23.80 43.08
BitDistiller ✓ 71.10 45.91 59.82 32.00 52.21

RCP ✓ ✓ 72.36 45.91 58.64 32.25 52.29

3-4-16
BitDistiller 73.34 50.94 63.61 34.81 55.68
BitDistiller ✓ 76.71 53.96 68.19 35.23 58.52

RCP ✓ ✓ 77.20 53.11 68.43 38.82 59.39

3-4-4
BitDistiller 73.06 50.78 65.03 35.32 56.05
BitDistiller ✓ 76.98 53.12 66.77 37.03 58.48

RCP ✓ ✓ 75.46 53.06 67.88 37.80 58.55

2-7B

16-16-16 77.86 57.14 68.35 43.34 61.67

2-4-16
BitDistiller 62.95 37.33 50.20 22.95 43.36
BitDistiller ✓ 70.13 45.02 60.77 30.03 51.49

RCP ✓ ✓ 69.48 45.22 59.75 29.95 51.10

2-4-4
BitDistiller 62.70 37.18 53.91 25.93 44.93
BitDistiller ✓ 69.53 45.67 59.35 29.86 51.10

RCP ✓ ✓ 69.91 44.58 59.70 30.69 51.22

3-4-16
BitDistiller 74.42 51.36 62.66 36.17 56.15
BitDistiller ✓ 76.06 54.26 66.45 40.35 59.28

RCP ✓ ✓ 76.65 54.25 67.80 40.35 59.74

3-4-4
BitDistiller 72.41 50.51 63.29 35.83 55.51
BitDistiller ✓ 76.55 53.55 65.90 39.33 58.83

RCP ✓ ✓ 76.71 53.88 65.43 41.04 59.27

2-13B

16-16-16 79.16 60.13 72.14 48.12 64.89

2-4-16
BitDistiller 61.86 33.40 53.51 23.46 43.06
BitDistiller ✓ 72.14 44.77 59.67 35.84 53.11

RCP ✓ ✓ 73.55 49.94 63.14 34.64 55.32

2-4-4
BitDistiller 57.45 30.73 50.35 20.39 39.73
BitDistiller ✓ 67.68 41.58 54.62 29.69 48.39

RCP ✓ ✓ 71.65 43.79 57.30 32.68 51.36

3-4-16
BitDistiller 75.29 53.91 62.50 38.56 57.57
BitDistiller ✓ 77.09 56.53 70.24 44.19 62.01

RCP ✓ ✓ 77.69 57.67 70.86 45.56 62.95

3-4-4
BitDistiller 75.68 49.94 64.00 39.50 58.07
BitDistiller ✓ 76.71 57.11 68.03 44.19 61.51

RCP ✓ ✓ 77.42 56.13 69.46 42.66 61.42

Table 13: Complete comparison of accuracy on Zero-shot Common Sense Reasoning tasks on LLaMA models.
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Model #Bits (W-A-KV)
Configuration

PIQA Hella. Wino. ARC-c Avg.
Method Rotation LDP

3.2-1B

16-16-16 75.30 60.70 60.90 38.70 58.90

2-4-16
BitDistiller 51.95 27.41 48.46 19.45 36.82
BitDistiller ✓ 61.15 30.66 50.67 21.84 41.08

RCP ✓ ✓ 61.42 31.55 51.78 20.65 41.08

2-4-4
BitDistiller 55.33 26.62 48.46 19.79 37.55
BitDistiller ✓ 61.75 30.05 51.22 20.05 40.77

RCP ✓ ✓ 60.71 31.54 53.51 21.42 41.80

3-4-16
BitDistiller 53.53 28.35 48.61 19.62 37.53
BitDistiller ✓ 69.53 40.31 55.40 26.27 47.88

RCP ✓ ✓ 69.64 40.57 56.12 26.37 48.18

3-4-4
BitDistiller 54.18 28.26 50.90 21.67 38.75
BitDistiller ✓ 68.98 37.80 55.40 26.36 47.14

RCP ✓ ✓ 68.12 39.30 56.12 26.11 47.41

3.2-3B

16-16-16 76.00 71.00 66.60 47.60 65.30

2-4-16
BitDistiller 54.02 26.80 52.48 18.25 37.89
BitDistiller ✓ 65.99 36.51 52.48 26.19 45.29

RCP ✓ ✓ 65.43 37.35 54.70 25.43 45.71

2-4-4
BitDistiller 51.84 26.70 51.38 19.11 37.26
BitDistiller ✓ 64.30 36.26 51.38 25.08 44.26

RCP ✓ ✓ 65.45 36.66 53.75 26.37 45.56

3-4-16
BitDistiller 52.72 26.66 50.43 19.45 37.32
BitDistiller ✓ 74.04 49.56 63.22 35.83 55.66

RCP ✓ ✓ 73.77 49.52 62.65 37.54 55.87

3-4-4
BitDistiller 53.91 26.82 48.03 20.30 37.27
BitDistiller ✓ 74.31 49.19 60.06 36.77 55.08

RCP ✓ ✓ 73.18 48.87 62.43 36.01 55.12

3-8B

16-16-16 80.70 79.60 73.70 57.70 72.93

2-4-16
BitDistiller 57.23 29.96 49.48 21.16 39.46
BitDistiller ✓ 69.96 44.30 59.43 28.66 50.59

RCP ✓ ✓ 69.16 44.67 59.91 29.69 50.86

2-4-4
BitDistiller 56.42 29.57 52.09 20.90 39.75
BitDistiller ✓ 69.15 43.62 57.85 28.58 49.80

RCP ✓ ✓ 69.97 44.32 59.51 27.82 50.41

3-4-16
BitDistiller 72.47 49.72 62.43 36.94 55.39
BitDistiller ✓ 77.25 55.18 68.90 42.91 61.06

RCP ✓ ✓ 77.64 55.21 69.93 43.34 61.53

3-4-4
BitDistiller 73.32 49.97 64.87 37.45 56.35
BitDistiller ✓ 75.35 53.95 67.64 41.80 59.69

RCP ✓ ✓ 76.16 54.35 71.19 42.75 61.11

Table 14: Complete comparison of accuracy on Zero-shot Common Sense Reasoning tasks on LLaMA models.
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hotpotqa mqa_en triviaqa 2wikimqa musique samsum passage_count Avg.
FP16 30.45 33.76 85.72 26.32 9.74 37.74 4.0 32.53

BitDistiller 2.95 11.09 7.28 4.42 2.03 1.97 0.86 4.37
RCP 10.42 26.73 41.77 17.48 4.12 33.31 1.43 19.32

Table 15: Performance comparison on the LongBench dataset. W2A4KV4 quantization is applied to the LLaMA-2-
7B-chat-4k model.

hotpotqa mqa_en triviaqa 2wikimqa musique samsum passage_count Avg.
FP16 15.74 24.07 84.67 13.8 8.81 42.73 0.07 27.13

BitDisitller 2.18 9.72 11.82 5.18 1.09 5.65 0.48 5.16
RCP 5.97 13.58 33.07 10.81 2.1 19.34 1.13 12.29

Table 16: Performance comparison on the LongBench dataset. W2A4KV4 quantization is applied to the LLaMA-2-
7B-Instruct-32k model.

Layer Size W16A4 W16A4+FP32Had W16A4+FP16Had RCP RCP+FP32Had RCP+FP16Had
(2048, 2048) 0.168 0.274 0.248 0.131 0.248 0.214
(2048, 8192) 0.327 0.387 0.348 0.143 0.240 0.218
(3072, 3072) 0.228 0.483 0.373 0.131 0.295 0.265
(3072, 8192) 0.526 0.773 0.661 0.140 0.294 0.271
(4096, 4096) 0.369 0.510 0.398 0.133 0.250 0.221
(4096, 11008) 0.866 1.014 0.902 0.143 0.250 0.223
(4096, 14336) 1.108 1.255 1.146 0.142 0.247 0.226

Table 17: GEMV latency for the value projection is measured with the overhead from activation quantization. The
layer size is composed as (input channel, output channel). All latency numbers are in milliseconds.

Layer Size FP16 RCP RCP+FP16Had RCP+FP32Had QuaRot QuaRot+FP16Had QuaRot+FP32Had
(2048, 8192) 0.054 0.036 0.110 0.146 0.073 0.155 0.186
(3072, 8192) 0.054 0.035 0.169 0.198 0.074 0.212 0.237
(4096, 11008) 0.077 0.048 0.120 0.148 0.088 0.157 0.186
(4096, 14336) 0.110 0.059 0.121 0.149 0.079 0.157 0.183

Table 18: GEMV latency for the down projection is measured except activation quantization overhead. The layer
size is composed as (input channel, output channel). All latency numbers are in milliseconds.

Layer Size RCP RCP+FP16Had RCP+FP32Had QuaRot QuaRot+FP16Had QuaRot+FP32Had
(2048, 2048) 0.131 0.214 0.248 0.170 0.248 0.276
(3072, 3072) 0.131 0.265 0.295 0.168 0.304 0.331
(4096, 4096) 0.133 0.221 0.250 0.174 0.250 0.282

Table 19: GEMV latency for the value projection is measured including activation quantization overhead. The layer
size is composed as (input channel, output channel). All latency numbers are in milliseconds.

Layer Size RCP RCP+FP16Had RCP+FP32Had QuaRot QuaRot+FP16Had QuaRot+FP32Had
(2048, 8192) 0.143 0.218 0.240 0.186 0.261 0.289
(3072, 8192) 0.140 0.271 0.294 0.177 0.318 0.340
(4096, 11008) 0.143 0.223 0.250 0.177 0.264 0.288
(4096, 14336) 0.142 0.226 0.247 0.177 0.259 0.285

Table 20: GEMV latency for the down projection is measured including activation quantization overhead. The layer
size is composed as (input channel, output channel). All latency numbers are in milliseconds.
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User: Below is an instruction that describes a task. Write a response that appropriately completes the request.

Q. Janet\u2019s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends 
every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars 
does she make every day at the farmers' market?

[BitDistiller + Rotate W2A4KV4]
Answer: Let's think step by step.
The total of the the first 2 * 2 = 20.
The total of the the pes is 20 * 2 = 20.
The total of the the total of the ces is 20 + 20 = 10.
Therefore, the total of the p has 20 * 20 = 100.
Therefore, the total of the pes is 20 * 20 = 100.
Therefore, the value of the les is 20.
The value of the the the total of the p is 20 + 20 = 10.
The value of the the number of the p is 20.
The answer is: 2 [Wrong]

[RCP W2A4KV4]
Answer: Let's think step by step.
Janet's ducks lay 16 eggs per day.
She eats three eggs for breakfast every morning, so she has 16 - 3 = 13 eggs left.
She bakes muffins for her friends every day with four eggs, so she has 13 - 4 = 9 eggs left.
She sells the remainder at the farmers' market daily for $2 per fresh duck egg.
So, she makes 9 * $2 = $18 every day at the farmers' market.
The answer is: 18 [Correct]

Q. Poppy is solving a 1000-piece jigsaw puzzle. She places a quarter of the pieces on the board, then her mom places a 
third of the remaining pieces. How many jigsaw pieces are left to be placed?

[BitDistiller + Rotate W2A4KV4]
Answer: Let's think step by step.
If the total of the number of the first 1000, so the total of the p-1000 * 100 = 10000.
The total of the the total of the f-10000 + 1000 = 10000.
The total of the the total of the the number of the number of the number of the number of the the number of the number of 
the number of the number of the number of the number of the number of the number of the number of the number of the 
number of the number of the number of the number of the number of the number of the number of the number of the the 
number of the number of the number of .. <Repetition> [Wrong]

[RCP W2A4KV4]
Answer: Let's think step by step.
Poppy places a quarter of the pieces on the board, so she places 1000/4 = 250 pieces on the board.
This means there are 1000 - 250 = 750 pieces left to be placed.
Her mom then places a third of the remaining pieces, so she places 750/3 = 250 pieces on the board.
This means there are 750 - 250 = 500 pieces left to be placed.
The answer is: 500 [Correct]

Q. Jade bought a new cell phone with an incredible camera, so she spent all week taking pictures of her daily life. At the 
end of the week, she had taken 210 photos. She wants to upload all her photos on her Instagram. If she uploads 7 photos 
in one batch and she uploads 6 batches each day, how many days will she need to upload all of her photos?

[BitDistiller + Rotate W2A4KV4]
Answer: Let's think step by step.
The total of the first 10 - 10 = 100.
The total of the pes is 100 + 10 = 100.
The total of the the remaining is 100. [Wrong]

[RCP W2A4KV4]
Answer: Let's think step by step.
Jade took 210 photos in total.
She wants to upload all her photos on Instagram.
She uploads 7 photos in one batch.
She uploads 6 batches each day.
So, she needs to upload 210 photos / 7 photos per batch = 3 batches.
Since she uploads 6 batches each day, she will need 3 batches / 6 batches per day = 5 days to upload all of her photos.
The answer is: 5 [Correct]

Figure 10: Comparison of reasoning ouptut on GSM8K using MetaMath 7B under W2A4KV4.
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