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Abstract
Arithmetic offers a compact test of whether
large language models compute or memorize.
We study multi-digit addition in LLaMA-
3-8B-Instruct using linear probes and the
Logit Lens, and find a consistent four-stage,
layer-wise ordering of probe-decodable
signal types across depth: (1) early layers
encode formula structure (operand/operator
layout) while the gold next token is still far
from top-1; (2) mid layers expose digit-wise
sums and carry indicators; (3) deeper layers
express result-level numerical abstractions
that support near-perfect digit decoding
from hidden states; and (4) near the output,
representations align with final sequence gen-
eration, with the correct next token reliably
ranked first. Across experiments, each signal
family becomes linearly decodable with high
accuracy (stage-wise peaks typically ≥95%
on in-domain multi-digit addition, and up to
99%). Taken together, these observations—in
our setting—are consistent with a hierarchical,
computation-first account rather than rote
pattern matching, and help explain why Logit
Lens inspection is most informative mainly in
later layers. Code and data are available at
https://github.com/YaoToolChest/
addition-in-four-movements.git.

1 Introduction

Generalizable reasoning remains a core challenge
for large language models (LLMs). Arithmetic-
and multi-digit addition in particular-offers a con-
trolled probe of whether models execute algorith-
mic procedures or merely match surface patterns
(Nikankin et al., 2024). Humans solve addition
via a well-defined carry algorithm; an LLM could
either approximate this stepwise computation (e.g.,
column-wise summation with carry propagation)
or rely on shortcuts. Consistent, systematic perfor-
mance across inputs is suggestive of internal com-
putation, whereas systematic or context-specific
failures point to superficial heuristics.

“141”

100

40 1
66>75?

75>66?

66=75?

Carry Ones 0 or 1?

Carry tens 0 or 1?

66+75=“141”

141 Token(141)

Token(66),token(+)

,token(75),token(=)

141

Tokenizer

66+75=

Token(141) Tokenizer 141

“141”

100

40 1
66>75?

75>66?

66=75?

Carry Ones 0 or 1?

Carry tens 0 or 1?

66+75=“141”

141 Token(141)

Token(66),token(+)

,token(75),token(=)

141

Tokenizer

66+75=

Token(141) Tokenizer 141

Figure 1: Multi-stage information flow for addi-
tion in LLMs. As depth increases, internal repre-
sentations sequentially expose (1) problem structure
(operand/operator layout), (2) core computations (col-
umn sums and carries), (3) result-level numerical ab-
stractions (digit identities), and (4) output-aligned or-
ganization that drives final token generation. Each sig-
nal type is operationalized via a linear-probe task and
becomes decodable at different depths.

Prior work advances two contrasting views. One
line of evidence reports structured, algorithm-like
behavior: analyses of GPT-style models reveal
components that specialize in partial summation
and carry handling (Yu and Ananiadou, 2024), and
even minimal two-layer encoder-only Transformers
can learn the carry-addition procedure (Kruthoff,
2024). Another line argues that correct answers
often arise from simple heuristics (Nikankin et al.,
2024), citing a “bag of heuristics” in neuron acti-
vations (Zhou et al., 2024) and out-of-distribution
errors such as commutativity violations or symbol
perturbations (Yan et al., 2025). Related analy-
ses report Fourier-like representational structure
that mixes low- and high-frequency features (Zhou
et al., 2024). These disagreements leave open how
mainstream LLMs implement addition.

We focus on LLaMA-3-8B-Instruct (Dubey
et al., 2024) and ask: does it perform multi-digit
addition through structured, algorithmic computa-
tion (e.g., digit-wise summation with carry propa-
gation), or through non-algorithmic pattern extrac-
tion?

Our starting point is a Logit Lens analysis (Yu
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and Ananiadou, 2024). Consistent with observa-
tions that the lens is most informative in later layers
(cf. (Katz et al., 2024)), we find that next-token
probabilities largely reflect compressed late-stage
representations and reveal little about intermediate
processing. Because the Logit Lens is informative
mainly in late layers-i.e., the gold next token tends
to become rank-1 only late in the forward pass-we
hypothesize a hierarchical, multi-stage computa-
tion rather than a simple accumulation of confi-
dence on the correct token. In other words, inter-
mediate layers appear to reorganize information
before output selection, rather than merely ampli-
fying the correct-token probability.

Guided by this observation, we articulate-
without presupposing discrete stage boundaries
or causal transitions-a layer-wise organization of
addition-related signals that become decodable in a
consistent order as depth increases. We make each
signal family explicit and testable:

1. Formula-structure signals: encoding of
operand/operator layout and delimiter posi-
tions; probed by predicting token-category la-
bels and structural spans from hidden states.

2. Core-computation signals: digit-wise sums
and carry indicators; probed by classifiers for
per-column sum mod 10 and carry-bit pres-
ence.

3. Numerical-abstraction signals: result-level
representations enabling accurate digit iden-
tity decoding independent of local context;
probed by position-conditioned digit decoders
and cross-position generalization tests.

4. Output-organization/generation signals:
alignment of representations with sequence
generation that yields reliable top-1 ranking
of the correct next token; assessed by Logit
Lens agreement and calibrated rank metrics.

Using linear probes on LLaMA-3-8B-Instruct,
we observe that these four signal families emerge
in the above order across layers. The ordering
supports a computation-first interpretation in our
setting, reconciles component specialization with
reusable numerical structure, and explains why
Logit Lens inspection is most revealing in later
layers. We emphasize that our analysis is diagnos-
tic rather than interventional: decodability does
not imply necessity, and we do not claim causal

stage transitions; instead, we provide operational
evidence for a structured information-processing
pipeline during addition.

2 Related Work

We organize prior work on LLM arithmetic compe-
tence into three lenses: (i) algorithmic computation,
(ii) heuristic pattern matching, and (iii) abstract nu-
merical representation.

Algorithmic evidence Toy models and mid-
sized LLMs exhibit algorithm-like solutions: at-
tention can implement DFT-style modular addition
(Nanda et al., 2023), and helical/“clock” number
encodings have been proposed for general addi-
tion (Kantamneni and Tegmark, 2025). In larger
models, component specialization persists — carry-
routing heads and layer-wise decompositions into
column summation and carry propagation are re-
ported in 7B-scale GPT/LLaMA variants (Yu and
Ananiadou, 2024; Kruthoff, 2024); causal analy-
ses further identify operand routers and parallel
digit streams (Stolfo et al., 2023; Quirke and Barez,
2024).

Heuristic evidence An opposing view attributes
success to a “bag of heuristics”: neuron-level stud-
ies find sparse, template-like strategies (Nikankin
et al., 2024), and controlled out-of-distribution tests
reveal failures under digit permutations, novel sym-
bols, or simple reorderings (Yan et al., 2025).

Abstract numerical representations Beyond
this dichotomy, pre-trained LLMs appear to su-
perimpose magnitude and parity in a Fourier-like
basis (Zhou et al., 2024); digit values are linearly re-
coverable, suggesting a low-dimensional numerical
subspace (Zhu et al., 2025). Group-structured arith-
metic elicits basis vectors reminiscent of represen-
tation theory (Chughtai et al., 2023), tree-structured
reasoning traces can be reconstructed from hidden
states (Hou et al., 2023), and evidence supports
digit-by-digit encoding with position-specific neu-
ron groups (Levy and Geva, 2025).

Our position We provide a layer-resolved ac-
count of multi-digit addition in LLaMA-3-8B by
combining linear probes (Belinkov, 2022) with
the Logit Lens (nostalgebraist, 2020). The ob-
served four-stage trajectory-from formula recog-
nition, through core computation, to numerical ab-
straction and output generation-bridges component
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specialization with the emergence of reusable nu-
merical structure.

3 Methodology

Overview. We study how internal representa-
tions evolve when LLaMA-3-8B-Instruct performs
multi-digit addition. As illustrated in Fig. 2, for
each input we extract the hidden state of the last in-
put token (the position that predicts the first answer
token) at every layer and apply two complementary
diagnostics: (i) Logit Lens to observe the model’s
layer-wise next-token distribution, and (ii) linear
probes to test whether specific arithmetic attributes
are linearly decodable. This setup allows us to map
where and when structure, intermediate computa-
tions, and result digits emerge across depth.

Indexing convention. We adopt a 0-indexed
convention with layer states l ∈ {0, . . . , 32} for
LLaMA-3-8B-Instruct. Here, l=0 denotes the em-
bedding state (before any Transformer block), and
l=1, . . . , 32 denote the outputs after Transformer
blocks 1-32. Unless otherwise noted, all results are
reported using layer states L0-L32.

3.1 Model, Prompting, and Target
Activations

We use a standardized prompt template
“Calculate: num1+num2 = ” (note the trailing
space), which tokenizes to X = (x1, . . . , xS). The
Transformer yields a sequence of hidden states
H(l) ∈ RS×d at each layer state l ∈ {0, . . . , 32},
with the last-token vector denoted h

(l)
S ∈ Rd.

We focus on h
(l)
S because it conditions the

generation of the first answer token. Among
several open-source LLMs we screened, LLaMA-
3-8B-Instruct offered the most pronounced and
consistent layer-wise probe signals and stable
performance on our addition benchmark (Table 1),
so we use it as our primary subject. Results
for other models, including math-optimized
variants (Mistral-7B-Instruct (Jiang et al., 2023),
Qwen2.5-Math-7B-Instruct (Yang et al., 2024),
AceMath-7B-Instruct (Liu et al., 2025)), are
reported in Appendix D.

3.2 Logit Lens
Given the model’s unembedding matrix WU ∈
R|V|×d, the Logit Lens projects the last-token state
at layer l to layer-specific next-token logits

`(l) = h
(l)
S W>U ∈ R|V|.

Model Accuracy
LLaMA-3-8B-Instruct 93.63%
Mistral-7B-Instruct 92.28%
AceMath-7B-Instruct† 98.02%
Qwen2.5-Math-7B-Instruct† 96.82%

Table 1: Overall accuracy on 1–6 digit addition (exact
match). † denotes math-optimized models. Although
a math-optimized model attains the highest accuracy,
LLaMA-3-8B-Instruct exhibits the clearest and most
consistent layer-wise probe signals (Sections 4–6), so
we focus on it for the mechanistic analyses. See Ap-
pendix A for evaluation details and Appendix D for
per-model probe curves and results on the other mod-
els.

Interpreting softmax(`(l)) as the distribution the
model would produce if layer l were final, we can
track how the rank of the gold next token and the
sharpness of the distribution evolve with depth.

3.3 Linear Probes: Design, Training, and
Evaluation

To assess where arithmetic information becomes
linearly accessible, we train a separate linear clas-
sifier at each layer l for each attribute (e.g., carry
bits at each position, per-digit sums, result digits).
Each probe takes the last-token vector h(l)

S ∈ Rd

as input and produces K logits:

o(l) = W (l)h
(l)
S + b(l), (1)

p̂(l) = softmax
(
o(l)
)
. (2)

Here W (l)∈RK×d and b(l)∈RK . We optimize the
standard cross-entropy over a training set of size
N :

L(l) = − 1

N

N∑

i=1

log p̂
(l)
i,yi

= − 1

N

N∑

i=1

K∑

k=1

1[yi = k] log p̂
(l)
i,k.

(3)

and report accuracy on a held-out test set.1 Layer-
wise accuracy curves reveal where each attribute
becomes reliably decodable.

3.4 Data Handling and Evaluation Protocol
Dataset construction. We construct task-specific
datasets for probe training and testing using the

1Unless otherwise noted, the base model is frozen; probes
are trained for 10 epochs and the checkpoint is selected by val-
idation accuracy. Implementation details are in Appendix B.
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Figure 2: Representation extraction sites and diagnostics for arithmetic reasoning. For an addition prompt
(“Calculate: num1 + num2 = ”),we record the hidden state of the last input token at every layer state (L0–
L32) of LLaMA-3-8B-Instruct. At layer l, we compute (i) a Logit Lens projection of the last-token activation,
`(l) = h

(l)
S W>

U , which gives the next-token logits just before the first answer token is generated; and (ii) a linear
probe over the same vector, o(l) = W (l)h

(l)
S + b(l), trained to decode task-relevant attributes (e.g., carry bits,

digit values). Scanning l localizes where arithmetic information becomes linearly accessible and visualizes how
predictions sharpen across depth.

above prompt template (with minor variants when
stated). Splits are disjoint at the instance level,
near-duplicates are removed, and OOD sets (e.g.,
unseen operand ranges/formats) are included when
applicable.
Preprocessing and sampling. We standardize
spacing and punctuation, control operand distribu-
tions (e.g., uniform within range), balance classes
where relevant, check tokenization artifacts, and fix
random seeds for reproducibility (Appendix B).
Evaluation criteria. For each attribute and layer,
we compute accuracy on held-out data. When accu-
racy is near-perfect and stable across seeds, we treat
the corresponding representation as linearly acces-
sible at that layer. Comparing the onset of high
decodability across attributes yields a layer-wise
ordering that characterizes the flow of arithmetic
information.

Model selection rationale. Our goal is to diag-
nose how models compute, rather than to optimize
leaderboard accuracy. We therefore prioritize a
widely used, instruction-tuned baseline whose in-
ternal signals are clear and reproducible under lin-
ear probes. While math-optimized models (marked
† in Table 1) can achieve slightly higher raw accu-
racy on our benchmark, their specialized training
can introduce confounds for mechanistic attribu-
tion. In contrast, LLaMA-3-8B-Instruct consis-
tently exhibits a clean four-stage ordering across
layers in our probes, making it a suitable primary
case study. Appendix D shows that the same order-

ing largely persists across other models with minor
depth shifts.

4 Experiments and Results

We conduct a series of experiments to diagnose
how arithmetic features are represented within the
LLaMA-3-8B-Instruct model. Across all experi-
ments, diagnostic probes are trained on the hidden
states of all layer states L0–L32 (embedding + 32
Transformer blocks), while the pretrained model pa-
rameters remain frozen. We use a common default
setup for datasets, prompts, preprocessing, and
splits; experiment-specific settings are described in
each subsection.

4.1 Formula structure representation

Arithmetic Structure Recognition Experi-
ments: We ask whether the model encodes the
structure of an addition prompt-independently of
the specific numbers-early in the forward pass. For
each layer l, we extract the last-input-token vector
h
(l)
S and fit a 3-way linear classifier to distinguish
{a+b, b+a, a+a} (with a > b). Training uses
two-digit expressions; evaluation covers a held-out
in-domain two-digit set and out-of-distribution
(OOD) lengths (1-, 3-, and 4-digit). As shown in
Fig. 3, performance starts near the 1/3 random
baseline at shallow layers, increases with depth,
and plateaus at high accuracy in mid-to-late layers.
The narrowing gap between OOD and in-domain
curves suggests that the network progressively
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abstracts operand-order and self-addition patterns
into linearly accessible features before answer
generation.
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Figure 3: Layer-wise decodability of formula struc-
ture (3-way classification: a+b, b+a, a+a with a >
b). At each layer state (L0–L32) of LLaMA-3-8B-
Instruct, we train a linear probe on the last-input-token
state h

(l)
S to predict the equation type. Probes are

trained on two-digit expressions (in-domain) and eval-
uated on a disjoint test split comprising the in-domain
two-digit set and out-of-distribution (OOD) lengths (1-,
3-, and 4-digit). Curves show mean accuracy over five
independent runs; the dashed line marks the random
baseline (1/3). Accuracy rises from near-baseline at
shallow layers to stable, high values in early-to-mid lay-
ers, indicating that structural cues about operand order
and self-addition become increasingly linearly readable
with depth.

4.2 Emergence of core computational
features

Sum-range classification (“arithmetic results”
probes). We localize where the sum becomes lin-
early decodable by training layer-wise probes to
classify problems into contiguous sum bins (e.g.,
500-509), which yields a 10-way task with a 0.10
random baseline. Each class contains 400 sam-
ples; dataset generation and splits are detailed in
Appendix C. As shown in Fig. 4, accuracy is near
baseline in shallow layers (L0-L8), increases grad-
ually from ∼L8, exhibits a sharp rise around L16-
L19, and then plateaus at high accuracy from about
L19 onward, indicating that aggregate result infor-
mation consolidates in mid-to-late layers.

Carry-signal detection. To test when carry in-
formation emerges, we train independent binary
probes (balanced carry/no-carry) for the ones, tens,
and hundreds positions on three-digit addition.
Accuracy rises from near the 0.50 random base-
line in early layers, begins a steady climb around
∼L14, and approaches saturation for all positions
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Figure 4: Sum-range decodability across depth.
Layer-wise linear probes classify addition problems
into contiguous 10-value sum bins (e.g., 500-509, 900-
909). All ranges show a common profile: near-baseline
performance in early layers, a marked transition around
L16-L19, and a stable high-accuracy plateau thereafter
(random baseline = 0.10).

by ∼L19 (Fig. 5). This alignment with the sum-
range transition supports the view that carry compu-
tation is established in mid layers and consolidated
before output formation.
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Figure 5: Carry detection by position (3-digit
addition). Mean probe accuracy by layer for
ones/tens/hundreds positions (5 runs; balanced labels).
Curves rise from the 0.50 random baseline, begin in-
creasing consistently around ∼L14, and approach ceil-
ing by ∼L19, indicating efficient carry processing in
mid-to-late layers.

4.3 Numerical abstraction of results

Digit-wise decoding (numerical abstraction).
We probe when individual result digits become lin-
early accessible by training separate 10-way (dig-
its 0-9) linear classifiers at each layer on the last-
input-token state h(l)

S , one probe per position (ones,
tens, hundreds). This yields a random baseline of
0.10 per task; dataset construction and splits are
detailed in Appendix C.4. As shown in Fig. 6, ac-
curacy rises from near-baseline in shallow layers,
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improves steadily from mid layers, and reaches a
stable high plateau in late layers (e.g., after ∼L28).
The three positions exhibit similar depth profiles,
indicating that digit-level abstractions consolidate
late in the forward pass.
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Figure 6: Digit-wise decodability of 3-digit sums.
Mean probe accuracy (±95% CI over 5 runs) by layer
for predicting the ones, tens, and hundreds digits from
h
(l)
S . All three tasks improve with depth from near the

10-class chance level (0.10) and saturate at high accu-
racy in late layers (e.g., after ∼L28), indicating robust
numerical abstraction across positions.

Cross-operation generalization. To assess
whether these digit representations transfer across
operations, we train the hundreds-digit probe on
addition and evaluate it on held-out subtraction
and multiplication. Fig. 7 shows that generalization
is strongest to subtraction (peaking near ∼0.9) and
somewhat lower to multiplication (peaking near
∼0.8), with both tasks well above the 10-class
chance level (0.10). This pattern suggests a
shared numerical substrate with operation-specific
components that are less aligned for multiplication
than subtraction.

4.4 Logit lens: Organization and generation
of output content

First-correct-token emergence (Logit Lens).
We use the Logit Lens to identify the earliest layer
at which the gold next token (the first digit of the
sum) becomes the model’s top-1 prediction. For
each layer l, we project the last-input-token state
h
(l)
S through the unembedding matrix to obtain log-

its and record the first l where the gold token at-
tains rank 1 (The dataset consists of addition prob-
lems where two 3-digit addends result in a 3-digit
sum; details in Appendix C.5). As shown in Fig. 8,
all test prompts first reach top-1 within late layer
states (L23-L32), with a pronounced peak at L29
(about 22.3% of samples across five runs) and no
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Figure 7: Hundreds-digit probe generalization
across operations. Mean accuracy (±95% CI over
5 runs) by layer when a probe trained on addition is
tested on addition, subtraction, and multiplication. All
curves exceed the 10-class chance level (0.10); subtrac-
tion generalizes more strongly than multiplication.

“never top-1” cases. This indicates that decisive
arithmetic commitment and output selection are
finalized in the concluding third of the network,
consistent with mid-layer transitions seen in sum-
range and carry probes but occurring later in the
computation pipeline.
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Figure 8: Earliest layer where the gold next token be-
comes top-1 (Logit Lens). Histogram over N=1000
three-digit additions showing, for each layer state in
L23–L32, the mean number of samples whose gold to-
ken first becomes top-1. All examples first reach top-
1 in this late-layer range, peaking at L29 (∼22.3% of
samples).

5 Analysis

The experimental results of this study systemati-
cally reveal that when the LLaMA-3-8B-Instruct
large language model processes addition opera-
tions, the evolution of its internal information rep-
resentation presents a clear, sequential trajectory.

Firstly, in the shallower layers of the network
(e.g., in the formula structure recognition experi-
ment, probes trained on two-digit numbers, when
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processing four-digit comparisons, show peak ac-
curacy around layer 14), the model can efficiently
identify the structural type of addition expressions
(such as a+b, b+a, a+a). At this point, the probe
accuracy for decoding these structural features is
high, especially its good generalization to different
operand lengths, indicating that the model can cap-
ture the syntactic and basic semantic composition
of the input arithmetic task at early computational
depths.

Secondly, in the middle layers of the network
(roughly from layer 14 to layer 18), the decodabil-
ity of core arithmetic operation features begins to
become prominent. The decoding accuracy for
the representation of carry signals (whether for
units, tens, or hundreds digits) significantly im-
proves in this interval, reaching a near-perfect level
around layer 19, forming a clear and easily decod-
able representation of the key steps of the operation.
Almost simultaneously (starting with a sharp rise
from layer 16 and stabilizing around layers 17-19),
the prediction accuracy for the overall addition re-
sult (i.e., the "sum") also reaches saturation, sug-
gesting that a stable internal representation of the
result is largely formed by these layers.

Subsequently, in the deeper layers of the network
(especially after layer 25), probe results indicate
that the model appears to focus more on a detailed
numerical abstraction of the operation result. Ex-
periments show that in these deeper layers, the
model can accurately distinguish and represent the
individual digits composing the "sum" (such as
the hundreds digit, tens digit, units digit), linking
the operation result with its specific numerical at-
tributes. Logit Lens analysis further indicates that
the generation of the final answer token primarily
occurs in the final stages of the network (layers 23
to 32, peaking at layer 30). This is sequentially
consistent with the maturation point of internal nu-
merical representations (after layer 25), suggesting
a potential transformation process within the model
from internal numerical concepts to the final text
output.

Furthermore, in the "arithmetic result experi-
ment," the probe accuracy for sums across different
numerical ranges (500-509 to 900-909) shows a
highly consistent trend with increasing layer depth,
all reaching high accuracy at similar levels (around
layers 16-19). This indicates that, from the per-
spective of the evolution pattern of probe accuracy,
these specific numerical range problems do not ex-
hibit a significant difficulty gradient in terms of

"when they become solvable" within the model’s
internal processing.

6 Discussion

The sequential evolution pattern of information rep-
resentation observed in this experiment provides
important clues for understanding how LLMs per-
form arithmetic operations. Several phenomena are
worth further discussion:

Firstly, representations are dynamic, with
their prominence peaking at specific positions in
the processing trajectory, sometimes followed by
a slight decrease in decodability. This ’low-high-
slight decrease’ pattern was observed in several
probe experiments. For instance, in the formula
structure representation task (Fig. 3, focusing on
probes trained on 2-digit addition), the accuracy
for identifying ’2-digit (In-Domain Train)’ patterns
peaks around layer 10 and then shows a gradual
decline. Similarly, the ’4-digit (OOD Test)’ curve
in the same figure peaks around layer 14 before
decreasing. A similar trend is observable in the
carry signal experiment (Fig. 5). For example, the
’hundreds place’ carry detection accuracy sharply
peaks around layer 19-20, then exhibits a notice-
able decrease in subsequent layers before a slight
rebound. The ’tens place’ and ’ones place’ also
show peaks (around layer 19 and 18 respectively)
followed by a dip.

This pattern suggests that initially, accuracy is
low as the specific arithmetic representation has not
yet clearly formed. In intermediate layers, this in-
formation becomes most linearly decodable, and its
representation strength and accessibility reach their
peak. Subsequently, as the model processes this
information or integrates it for subsequent com-
putational stages, it may shift focus. Newly ac-
cumulated representational information from later
layers (via residual connections) or the transforma-
tion of these features for downstream tasks might
slightly interfere with or partially obscure the pre-
viously formed representations that are no longer
central to the immediate next step of computation.
This reflects the dynamic evolutionary nature of
the model’s internal representations, where spe-
cific information (as detected by our probes) is
most clearly and accessibly represented at particu-
lar depths, rather than being monotonically refined.

Secondly,Generalizability of representation.
Generalization experiments on the three-digit num-
ber recognition task show that a probe trained on
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addition generalizes very well to subtraction (peak-
ing near 90% accuracy) and strongly to multipli-
cation (peaking near 80%), and that its generaliza-
tion to subtraction is even stronger than to multi-
plication. The relatively superior generalization
to subtraction (i.e., marginally better performance
at similarly high levels) may indicate that in this
model’s representation learning, subtraction and
addition share more direct or more readily transfer-
able numerical representation elements. Although
multiplication (conceptually a form of repeated ad-
dition, and likewise exhibiting good generalization
here) also achieves a high degree of transfer, it falls
slightly short of subtraction. This suggests that, de-
spite substantial commonality, the computational
mechanism the model learns for multiplication—or
the representations it forms—retain some distinc-
tive aspects that render its transfer a bit less effec-
tive than subtraction. Overall, this shows that the
model’s learned numerical representations combine
a certain level of abstraction and cross-operation
universality with features that are specific to each
arithmetic operation.

Thirdly, the analogical nature of the model’s
"computation" process. The sequential emer-
gence and progressive refinement of features re-
vealed in this study bear resemblance to the cog-
nitive processes humans use to solve arithmetic
problems, which involve breaking down steps and
calculating progressively. From identifying the
structure of the expression, to processing carries,
calculating the sum, and finally confirming and ex-
pressing each digit, the model internally appears
to be executing a structured, computation-like pro-
cess, rather than simple pattern matching or mem-
ory retrieval.

7 Conclusion

Through a series of carefully designed probe exper-
iments on the LLaMA-3-8B-Instruct model, and
with comparative analyses on other representative
models (detailed in Appendix D), this study system-
atically investigated their internal information pro-
cessing mechanisms when performing addition op-
erations. The main conclusions regarding LLaMA-
3-8B-Instruct are as follows:

Sequential Information Processing Trajectory:
Our findings indicate that when LLaMA-3-8B-
Instruct processes addition operations, the decod-
ability of its internal arithmetic features presents a
coherent, sequential evolution pattern, outlining a

multi-step information processing trajectory. Infor-
mation at different levels, such as the recognition
of formula structure, the emergence of features
related to core operations (including carry and sum-
mation), and the numerical abstraction and output
organization of the result, corresponds to represen-
tations that become clearly discernible at different,
sequential depths of the network.

Formation of Explicit Representations: At var-
ious nodes of this processing trajectory (corre-
sponding to different network depths), the model
forms internal representations of specific arithmetic
features (such as carries, sum values, individual dig-
its) that are clear, stable, and easily decodable by
linear probes, and the strength of these representa-
tions changes dynamically as processing proceeds.

Support for "Computation-like" Process over
"Rote Memorization": The observed sequen-
tial emergence of features, the intrinsic connection
between the operation results and their numerical
attributes, the dynamic evolution of representations,
and a certain degree of cross-task generalization
capability collectively constitute strong evidence.
This suggests that when LLaMA-3-8B-Instruct en-
counters simple addition problems within its train-
ing distribution, it is more inclined to perform a
structured, "computation-like" process rather than
primarily relying on large-scale pattern memoriza-
tion.

Furthermore, comparative analyses with
Qwen2.5-Math-7B-Instruct (see D for full details)
revealed that the observed sequential processing
trajectory and computation-like mechanisms
are largely consistent across different model
architectures, though with variations in the
specific layers at which features emerge / certain
model-specific strategies in representing numerical
attributes which helps to contextualize the findings
from LLaMA-3-8B-Instruct and underscores the
broader relevance of these information processing
principles in LLMs.

In summary, the findings of this study deepen
the understanding of the arithmetic capabilities
of LLMs and provide empirical evidence for
their complex internal information processing
mechanisms, particularly revealing an ordered,
computation-like internal information representa-
tion evolution path.

While some math-optimized models achieve
higher raw accuracy on our addition benchmark,
the four-stage trajectory we document is robust
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across architectures (Appendix D) and is most
cleanly expressed in LLaMA-3-8B-Instruct, which
motivates our focus on this model for mechanistic
analysis.

Limitations

Our study offers a first layer-wise picture of how
LLaMA-3-8B-Instruct handles multi-digit addi-
tion, but several caveats temper the strength of our
claims.

Correlation vs. causation. Our analysis uses
correlational tools—linear probes and the Logit
Lens. These reveal that certain attributes are lin-
early decodable from hidden states, but do not
prove that the forward pass uses those attributes,
nor that the model implements a specific carry-
propagation algorithm. Decodability can arise from
distributed or incidental codes, and linear probes
can overfit if not carefully regularized. Establishing
dependence on intermediate computations requires
causal interventions (e.g., activation patching, tar-
geted ablations, or circuit-level surgery), which we
leave to future work.

Task scope. We study in-distribution, base-10
multi-digit addition under short prompts of the
form “Calculate: num1+num2 = ” (with a trail-
ing space) and evaluate 1–6 digits using exact-
match metrics. This choice reflects data real-
ism—decimal numerals dominate pretraining cor-
pora—while avoiding confounds from distribution
shift. We do not evaluate borrowing subtraction,
long multiplication, mixed-base arithmetic, chain-
of-thought prompting, or adversarial perturbations,
and we therefore scope claims to base-10 addition
under short prompts.

Model specificity. Our main analyses focus on
LLaMA-3-8B-Instruct; we additionally report
probe results for several 7B-scale models, includ-
ing math-optimized variants, in Appendix D. While
the four-stage ordering (structure→ carries/sums
→ digit abstractions→ output alignment) recurs
qualitatively, the exact layer indices and effect sizes
vary across architectures and checkpoints. Thus,
our claims concern ordering rather than universal
layer numbers. Broader generalization may be af-
fected by architecture, scale, tokenizer, instruction
tuning, and math-oriented fine-tuning.

Ethical Considerations

This research focuses on investigating the internal
information processing pathways of Large Lan-
guage Models (LLMs) when performing basic
multi-digit addition. The core of the study involves
analyzing internal model activations using tech-
niques like linear probing and Logit Lens to under-
stand their computational mechanisms, rather than
developing new applications or models.

We assess that this specific research work itself
does not present significant ethical risks, for the
following reasons:

1. Benign Nature of the Task: The problem
under investigation (multi-digit addition) is
a fundamental and well-defined arithmetic
task that does not involve sensitive content,
personal data, or socially charged issues that
might introduce bias.

2. Non-sensitive Data: The datasets used in this
study (e.g., prompts of the form "Calculate:
num1+num2 = " and corresponding arithmetic
problems) are synthetically constructed for
the research purpose and do not contain any
personally identifiable information or other
sensitive information.

3. Transparency in Research Aim: This study
aims to enhance the understanding of the inter-
nal workings of LLMs, contributing to model
interpretability and transparency.

While Large Language Models as a broader tech-
nology may raise various ethical considerations
(such as bias, misuse, environmental impact, etc.),
the scope of this research is limited to a mechanistic
investigation of arithmetic capabilities in specific
models (e.g., LLaMA-3-8B-Instruct). It does not
directly engage with these broader ethical issues.
Therefore, we believe the direct ethical risks as-
sociated with the current work are minimal and
manageable.
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A Detailed Model Performance Metrics

This appendix presents a detailed summary of the
performance metrics for the different language
models evaluated in this study. Table 2 offers a
comparative analysis of these models based on their
accuracy in specific numerical prediction tasks.

Each row in the table corresponds to a distinct
language model, identified under the "Model ID"
column. The "Overall Accuracy" column provides
a general measure of each model’s performance
across all evaluated tasks. The subsequent columns,
labeled from "1-digit" through "6-digit," specify
the model’s accuracy in correctly predicting nu-
merical values composed of one to six digits, re-
spectively. All accuracy figures presented in the
table are expressed as percentages. This data pro-
vides insight into the capabilities and limitations of
each model concerning tasks that require numerical
precision and understanding of magnitude.

B General Experimental Setup

B.1 Language Model

All experiments used the LLaMA-3-8B-Instruct
model. Model parameters were kept frozen for
all probing runs. The network has 32 transformer
layers.

B.2 Input Representation for Probes

For each of the 32 layers an independent diag-
nostic probe was trained. The probe input was
the hidden state of the last token of the prompt
Calculate: num1 + num2 = —namely the trail-
ing space after the “=” sign.

B.3 Probe Architecture

Unless otherwise stated (see Appendix C), every
probe consisted of

• a single linear classification layer, followed
by

• a SOFTMAX activation.

This yields a probability distribution over the task-
specific classes.

B.4 Training and Evaluation

• Data splitting: Each dataset was split 80
%/20 % into train/test using stratified sam-
pling to preserve class ratios.

• Replications: All experiments were run five
times with random seeds 42-46; reported
scores are the mean over runs.

C Experiment-Specific Details

C.1 Formula Structure Representation
(Addition-Order Experiments)

Task. Distinguish three expression types for two-
digit integers a, b ∈ [10, 99] with a > b:

1. a+ b (e.g. 45 + 23)

2. b+ a (e.g. 23 + 45)

3. a+ a (e.g. 66 + 66)

Training data.

• Type 1: 5000 random samples

• Type 2: 5000 random samples

• Type 3: 80% of the 90 unique pairs

Generalization tests. Three extra test sets mir-
ror the above but use one-, three-, and four-digit
addends, respectively.

C.2 Emergence of Core Computational
Features (Arithmetic-Results
Experiments)

Task. Predict the exact sum; each class is one
sum value.

Dataset generation.

• 400 examples per class with unconstrained
addends.

• Five groups of sums: 500-509, 600-609, 700-
709, 800-809, 900-909.
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Model ID 1-digit 2-digit 3-digit 4-digit 5-digit 6-digit
AceMath-7B-Instruct 100.00% 100.00% 99.30% 97.40% 97.00% 94.40%
LLaMA-3-8B-Instruct 100.00% 100.00% 99.80% 90.50% 86.90% 84.60%
Mistral-7B-Instruct-v0.3 100.00% 98.90% 95.00% 90.40% 87.80% 81.60%
Qwen2.5-Math-7B-Instruct 98.90% 99.60% 98.20% 96.70% 94.00% 93.50%

Table 2: Overall Model Performance Summary. This table shows the accuracy of different models across various
digit prediction tasks. The target for each group was to collect 4000 samples, though some groups had fewer (for
example, the 1-digit group only contained 55 samples).

C.3 Carry-Signal Experiment

Task. Binary classification—detect a carry in the
units, tens, or hundreds place of three-digit addi-
tions.

Datasets. Three balanced sets of 1 000 problems
each (one per decimal place). A single problem
may appear in several sets if its carries differ by
place.

C.4 Numerical Abstraction of Results

Digit-identification task. Given a sum that is
three digits long, predict its hundreds, tens, and
units digits (10-way classification each). The
dataset contains 1 000 two-addend problems.

Hundreds-digit generalization. A probe
trained on hundreds-digit identification was also
tested on subtraction and multiplication datasets
whose results are mostly three-digit numbers,
generated with the same principles.

C.5 Logit Lens Analysis

Task. Find the earliest transformer layer whose
output distribution ranks the correct sum token at
top-1 (Logit Lens).

Dataset. 1000 randomly generated problems:
two three-digit addends yielding a three-digit sum.

D Model Experiment Results

D.1 Arithmetic Structure Recognition
Experiments
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Figure 9: Mistral-7B-Instruct: Probe trained on a two-
digit addition dataset; accuracy by digit position.
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Figure 10: Qwen2.5-Math-7B: Probe trained on a two-
digit addition dataset; accuracy by digit position.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Layer Index(AceMath)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
Ac

cu
ra

cy

Probe Generalisation Across Digit Lengths (5 Runs)

2-digit (In-Domain Train)
2-digit (OOD Test)
1-digit (OOD Test)
3-digit (OOD Test)
4-digit (OOD Test)
Chance (0.333)

Figure 11: AceMath: Probe trained on a two-digit ad-
dition dataset; accuracy by digit position.

7529



D.2 Arithmetic Results Experiments
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Figure 12: Mistral-7B-Instruct: Layer-wise accuracy
on arithmetic detection across numerical ranges (500–
509 to 900–909). Note the anomaly: for the con-
structed dataset “a + b = 500”, correct samples are
only ∼10% of the total, so results for this slice are not
displayed normally.
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Figure 13: Qwen2.5-Math-7B: Layer-wise accuracy on
arithmetic detection across numerical ranges (500–509
to 900–909). The same anomaly applies for the “a +
b = 500” slice (correct ∼10%).
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Figure 14: AceMath: Layer-wise accuracy on arith-
metic detection across numerical ranges (500–509 to
900–909). The same anomaly applies for the “a+ b =
500” slice (correct ∼10%).

D.3 Carry Signal Experiment
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Figure 15: Mistral-7B-Instruct: Carry detection—
recognition accuracy of ones, tens, and hundreds at
each layer.
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Figure 16: Qwen2.5-Math-7B: Carry detection—
recognition accuracy of ones, tens, and hundreds at
each layer.
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Figure 17: AceMath: Carry detection—recognition ac-
curacy of ones, tens, and hundreds at each layer.
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D.4 Determining Digits of Addition Results
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Figure 18: Mistral-7B-Instruct: Layer-wise recogni-
tion accuracy for ones, tens, and hundreds of the sum.
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Figure 19: Qwen2.5-Math-7B: Layer-wise recognition
accuracy for ones, tens, and hundreds of the sum.
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Figure 20: AceMath: Layer-wise recognition accuracy
for ones, tens, and hundreds of the sum.

D.5 Numerical Abstraction Experiment
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Figure 21: Mistral-7B-Instruct: Hundreds-digit detec-
tion accuracy when applying an addition-trained probe
to addition, multiplication, and subtraction test sets.
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Figure 22: Qwen2.5-Math-7B: Hundreds-digit detec-
tion accuracy when applying an addition-trained probe
to addition, multiplication, and subtraction test sets.
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Figure 23: AceMath: Hundreds-digit detection accu-
racy when applying an addition-trained probe to addi-
tion, multiplication, and subtraction test sets.
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D.6 First-Correct-Token Emergence
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Figure 24: Mistral-7B-Instruct: Logit Lens on layers
23–32; distribution over N=1000 samples where the
correct sum token first becomes top-1.
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Figure 25: Qwen2.5-Math-7B: Logit Lens analysis
(layers 23–32), distribution of first top-1 correct token.
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Figure 26: AceMath: Logit Lens analysis, distribution
of first top-1 correct token across the last 10 layers.
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