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Abstract

Clinical trials are pivotal yet costly processes,
often spanning multiple years and requiring
substantial expenses, motivating predictive
models to identify likely-to-fail drugs early
and save resources. Recent approaches lever-
age deep learning to integrate multimodal data
for clinical outcome prediction; however, they
rely heavily on manually designed modality-
specific encoders, limiting their adaptability to
new modalities and ability to effectively share
information across modalities. To address these
challenges, we propose a multimodal mixture-
of-experts (LIFTED) framework. Specifically,
LIFTED transforms modality-specific data into
natural language descriptions, encoded via
unified, noise-resilient encoders. A sparse
Mixture-of-Experts mechanism then identifies
shared patterns across modalities, extracting
consistent representations. Finally, another
mixture-of-experts module dynamically inte-
grates these modality representations, empha-
sizing critical information. Experiments show
that LIFTED significantly outperforms baseline
methods in predicting clinical trial outcomes
across all phases, highlighting the effectiveness
of our proposed approach.

1 Introduction

The clinical trial is a crucial step in the development
of new treatments to demonstrate the safety and effi-
cacy of the drug. Drugs must pass three trial phases
involving human participants with target diseases
before approval for manufacturing. However, the
clinical trial is time-consuming and experiments
expensive, taking multiple years and costing up
to hundreds of millions of dollars (Martin et al.,
2017). In addition, the success rate of clinical tri-
als is exceedingly low and many drugs fail to pass
these clinical trials (Wu et al., 2022b; Huang et al.,
2020). Therefore, the ability to predict clinical trial
outcomes beforehand, allowing the exclusion of
drugs with a high likelihood of failure, holds the

potential to yield significant cost savings. Given
the increasing accumulation of clinical trial data
over the past decade (e.g., drug descriptions, and
patient criteria), we can now leverage this wealth
of data for the prediction of clinical trial outcomes.

Early attempts aim to improve the clinical trial
outcome prediction results by modeling the com-
ponents of the drugs (e.g., drug toxicity (Gayvert
et al., 2016), modeled the pharmacokinetics (Qi
and Tang, 2019)). Recently, deep learning methods
have been proposed for trial outcome predictions.
For instance, Lo ef al. (2019) predicted drug ap-
provals for 15 different disease groups by incorpo-
rating drug and clinical trial features into machine
learning models. Fu et al. (2022) proposed an in-
teraction network leveraging multimodal data (e.g.,
molecule information, trial documents) to capture
correlations for trial outcome predictions. However,
this approach relies on modal-specific encoders to
extract representations from different modal data,
which require manually designed encoder struc-
tures and limit their extensibility when new modal
data becomes available for use.

To address these issues, we aim to design a uni-
fied encoder to extract representations from various
modalities, but it poses the following challenges:

e How to extract representations from different
modalities with a unified encoder? Different
modalities are represented in various data for-
mats. For instance, molecule information is typ-
ically depicted as graphs, while disease names
rely on relationships between diseases. There-
fore, a unified encoder structure should be capa-
ble of unifying these different formats to effec-
tively extract information.

* How to effectively utilize both the modality-
independent information patterns and the
modality-specific patterns to enhance the ex-
tracted representations? Information across dif-
ferent modalities can be presented in both similar
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Figure 1: An overview of LIFTED. Step 1: Transforming multimodal data into natural language descriptions,
where all modalities are converted into natural language descriptions to facilitate the representation extraction
process of the transformer encoders. Step 2: Extract and combine representations from different modalities, where
representations are extracted by the noise-resilient unified encoders and integrated by a Mixture-of-Experts (MoE)

framework to make the final predictions.

and different forms. For example, descriptions
of a disease and corresponding drugs may men-
tion the same symptoms, which can be extracted
similarly. However, molecules and drug names
represent information differently and should be
extracted using distinct methods. Therefore, a
method to dynamically identify similar informa-
tion patterns across different modalities and di-
rect them to the same encoder is also required.

* How to integrate extracted information from
different modalities? Extracted representations
from different modalities must be integrated for
accurate predictions, yet the importance of each
modality can vary greatly among patients. For
example, one patient’s outcome might heavily de-
pend on a challenging disease like type 2 diabetes
mellitus (Wu et al., 2022a), while another’s out-
come could be primarily influenced by effective
medications. Therefore, automatically weighting
modality-specific representations is essential.

To address those challenges, we propose an
approach called Multimodal Clinical Trial Out-
come Prediction via Large Language Models and
Mixture-of-Experts (LIFTED), which extracts in-
formation from different modalities with a trans-
former based unified encoder, enhances the ex-
tracted features by a Sparse Mixture-of-Experts

(SMoE) framework and integrates multimodal in-
formation with Mixture-of-Experts (MoE). Specifi-
cally, LIFTED unifies diverse multimodal features,
even those in different formats, by converting them
into natural language descriptions. Subsequently,
we build a unified transformer-based encoder to
extract representations from these modal-specific
language descriptions and refine the representa-
tions with an SMoE framework. Here, the repre-
sentations from different modalities are dynami-
cally routed by a noisy top-k gating network to a
portion of shared expert models, facilitating the
extraction of similar information patterns. In ad-
dition, we introduce representation augmentation
to enhance the resilience of transform-based en-
coders and the SMoE framework to potential data
noise introduced during the data collection pro-
cess. Furthermore, LIFTED treats the extracted
representations from various modalities as distinct
experts and utilizes a Mixture-of-Experts module
to dynamically combine these multimodal repre-
sentations for each example. This dynamic com-
bination allows for the automatic assignment of
higher weights to more crucial modalities. Finally,
we evaluate LIFTED on the HINT benchmark (Fu
et al., 2022) and the CTOD benchmark (Gao et al.,
2024) to demonstrate the effectiveness of LIFTED
and the effectiveness of our proposed components.
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2 Multimodal Clinical Trial Outcome
Prediction via Large Language Models
and Mixture-of-Experts

This section introduces our proposed Multimodal
Clinical Trial Outcome Prediction via Large Lan-
guage Models and Mixture-of-Experts (LIFTED)
approach. The objective of LIFTED is to inte-
grate multimodal clinical trial data using natural
language descriptions within a Mixture-of-Experts
(MoE) framework, as illustrated in Figure 1. Our
method involves two main steps: firstly, multi-
modal data is converted into natural language de-
scriptions using a Large Language Model (LLM).
Secondly, these descriptions along with their corre-
sponding labels are utilized to train our predictive
model. Specifically, we employ transformer-based
encoders to derive meaningful representations from
the textual data. To improve the robustness of these
embeddings, we introduce perturbations and ap-
ply a consistency loss. Finally, the representations
from different modalities are integrated through an
MoE framework to produce the predictions. Each
of these components is explained comprehensively
in the following sections.

2.1 Transforming Multimodal Data into
Natural Language Descriptions

To build a unified encoder, the key challenge is
how to unify multimodal data, which often have
different structures for different modalities. For in-
stance, molecule information is typically depicted
as a graph, while disease names rely on relation-
ships between different diseases (Wu et al., 2022a).
In LIFTED, we unify these different modality data
by converting them into natural language descrip-
tions. Specifically, we first format the input fea-
tures into a key-value pair. After that, we use a
prompt coupled with the corresponding key-value
pair to ask an LLM to generate a natural language
description for our input. Subsequently, these de-
scriptions will be fed into a unified tokenizer for
further encoding, except the SMILES string modal-
ity, which is tokenized by a specifically designed
tokenizer to enhance the representation of molecule
information. The first two steps, linearization and
prompting, are detailed below:

Linearization. In linearization, we format each
data point x; ; of trial 7 and modality % into a key-
value pair. In this pair, the key of each element rep-
resents the feature name c; , and the corresponding

Diseases

4 cancer, non-small-cell lung cancer, colorectal cancer,
{ | papillary thyroid cancer, melanoma

Prefix(p): Here is the schema definition of the table:
diseases: list of disease names —
This is a sample from the table:

diseases: [’cancer’, ‘non-small-cell lung
*» cancer’, ’colorectal cancer’, ’papillary
thyroid cancer’, ’melanoma’]

Suffix(s): Please briefly summarize the sample with _|
its value in one sentence...

The sample includes various types of cancer,
such as lung cancer, colorectal cancer, thyroid
cancer, and melanoma.

Figure 2: Processes of the linearization and the prompt-
ing.

value is x; ;. This can be formulated as follows:

Linearize(x; ;) = {cik : Tik}- )

Prompting. As depicted in Figure 2, the prompts
we use to communicate with the LLM consist of
three components: a prefix p to describe the schema
of the input features, the linearization and a suffix
s to instruct the LLM on how to describe the input
data point in natural language. Given the prompts,
the LLM will generate a readable and concise natu-
ral description z; ., which can be formulated as:

zi , = LLM(p, Linearize(x; 1), s). )

For instance, given the linearization of disease
modality, “diseases: [’cancer’, 'non-small-cell lung
cancer’, ’colorectal cancer’, ’papillary thyroid can-
cer’, 'melanoma’]”, the LLM will generate the
natural language description like “The sample in-
cludes various types of cancer, such as lung cancer,
colorectal cancer, thyroid cancer, and melanoma.”
In addition to transforming existing modality
data to natural language descriptions, we also gen-
erate a new summarization modality to provide an
overall description of the whole trial in a similar
way. The only difference for generating the sum-
marization is that we concatenate the linearization
of all modalities as input to provide the information

of the whole trial as
zi,0 = LLM(p, Linearize(z;), s), 3

where Linearize(x;) = {c;x : xi’k}le.

By this, all data is summarized in text format.
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2.2 Representation Learning and Refinement

After transforming multimodal data into natural
language descriptions, we build K + 1 transformer-
based encoders on top of these descriptions. Specif-
ically, each modality description z; j, is tokenized
into a sequence of tokens {z!, }7_; with length T
by a tokenizer 7 and embedded into a sequence
of embeddings {u!, }7_, by a modal-specific em-
bedding layer & ﬁrst, and then they are added
by the position embeddings pos’ and fed into the
correponding modal-specific transformer encoder
Fi, coupled with a learnable token [cls] to get en-
coded representation U; .. The encoding process
can be formulated as follows:

{2 oy = T (zig)
uj = Exl(ziy) (4)
Uik = fk({uik + pos'}o),

where, we define ug e = lcls].

Furthermore, to equip LIFTED with the capa-
bility to dynamically identify similar information
patterns across different modalities and route them
to the same encoder, we employ a Sparse Mixture-
of-Experts (SMoE) framework to further refine the
extracted representations. The encoded representa-
tions U; j, from different modalities will be dynami-
cally routed by a modality-independent noisy top-k
gating network G to a subset of shared expert mod-
els {R"}E | to facilitate the extraction of similar
information patterns, following the original design
of SMoE (Shazeer et al., 2017). The whole process
can be formulated as follows:

G(U; 1) =Softmax(TopK(P(U; ), k))

/P(UZ"k) :Uz‘,k . Wg + ,uSOf’EpluS(UiJ€ . Wnoise)

TopK(v, k),; =
opK (v, k); {—oo,otherwise

4)
where the p is random noise sampled from a stan-
dard normal distribution, W, is a learnable weight
matrix shared through different modalities and
Whoise 18 another learnable noise matrix to con-
trol the amount of noise per component. Subse-
quently, the encoded representations U; 5, will be
routed only to the shared expert models {R"}2
with top-k gating scores generated by the gating
network G. The refined representations Uzk can
then be calculated by combining the encoding re-
sults from the top-k expert models with their corre-
sponding gating scores. The whole process can be

vj,if v; in the top k elements of v

formulated as follows:
k)

Uz k
KR (Uig)

Uik =G(Uiz) - R(
(6)

R 1
- Z G (U,
r=1

2.3 Consistent Representation Augmentation

However, building informative modal-specific en-
coders and the SMoE framework solely from these
modal-specific natural language descriptions re-
mains challenging, primarily due to potential noise
introduced during the data collection process. To
enhance robustness against such noise, we augment
embeddings uf . With small perturbations to obtain
a perturbed repersentation v! , , and introduce a con-
sistency loss, encouraging the encoders and SMoE
framework to produce stable outputs despite minor
data variations.

Representation Augmentation. To perform rep-
resentation augmentation, we begin by considering
each embedding vector u}, € R”, where L rep-
resents the number of elements {m; }~_,. We ran-
domly select a subset of these elements from uf K
with a probability p for perturbation, while leaving
the remaining elements unchanged. For simplic-
ity, we will omit the subscript and superscript for
my specific to the embedding u! ,. Next, we pro-
ceed to sample a small value ai from a uniform
distribution Uniform(—A\, \) for each selected el-
ement. Here, A serves as a hyperparameter that
controls the magnitude of the minor perturbation.
Following this, each selected element is multiplied
by exp(ay) to apply the perturbation. This process
can be expressed as:

m; is selected

o fexplan s m,
1= .
my, otherwise

The perturbed vector is defined as v!, = {ry}~ .

Consistency Loss. After the representation aug-
mentation step, we obtain a sequence of perturbed
embeddings {vfyk}zﬂzl derived from the original
embeddings {u} 1 };. These perturbed embed-
dings are then input into the encoder Fj and the
SMOoE framework to generate the encoded repre-
sentation f/l . In order to ensure the robustness of
the encoded embeddings, we introduce a consis-
tency loss Lo, to control the disparity between the
encoded representation of the original embeddings
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and the augmented embeddings. This consistency
loss can be formulated as follows

1 K N 2
Leon =777 HUl N VZ H ’
N(K +1) kzzo ; S
where f/lk; Zg(%,kz) : R(Vzk)’

Vi =Fr({v ), + pos'}_o),
(3)

where we define vg p = [cls]g.

2.4 Integrating Multimodal Information

After obtaining representations from different
modalities, the model’s ability to integrate these
multimodal representations and discern the patient-
specific importance of each modality becomes cru-
cial for precise predictions. As illustrated in Fig-
ure 1, we employ a Mixture-of-Experts (MoE)
framework to dynamically integrate multimodal
representations. In this framework, we treat the
extracted representations from various modalities
as distinct experts.

Concretely, for each example i, we start by
concatenating the extracted representations from
the selected modalities and then feed them into a
fully connected layer denoted as C to calculate the
modality importance weights W; . for each modal-
ity. In our implementation, we exclusively utilize
the disease modality to generate these importance
weights, as knowing the patient’s disease allows
us to determine which modality should receive em-
phasis. Subsequently, we multiply these weights
by their corresponding representations {U; .}
and aggregate them to obtain the integrated repre-
sentation U;. This can be formulated as follows:

W@k :SoftmaX(C(®jeri7j) * ’Yk)
K
- 9
Ui :Z Wi * Uik, ®
k=0

where the & is the concatenate operation along
the representation dimension and the 7 is the set
of selected modalities. -y is a learnable modal-
specific temperature factor.

Following this, we make the prediction §; by
inputting the integrated representation U; into the
classifier . The classification loss L. is defined
as follows:

1 N

- S U b= 3 (10
Le Nl;f(yz,yz), where ; = H(U;) (10)

where the y; is the ground truth label for sample 7
and the loss term £ is the cross entropy loss.

To ensure that the unimodal representations are
of high quality and consistently contribute to the
final prediction, we introduce an auxiliary loss to
align the representations from different modalities.
Similar to the classification loss L., the auxiliary
loss L4y, 1s calculated as the sum of uni-modal pre-
diction losses, which can be formulated as follows:

Uik =H (Ui 1)

1 & i (11)
:m kz Zg(yzyk, Yi)-

=0 i=1

ECLU(E

Finally, the overall loss £ is defined as:

L= ﬁc + 7/ll‘ccon + 772£aua:; (12)

where 7, and 7o are hyperparameters to balance
these loss terms. The whole algorithm is illustrated
in Appendex B.

3 Experiments

In this section, we evaluate the performance of
LIFTED aiming to answer the following questions:
Q1: Compared to the existing methods with modal-
specific encoders, can LIFTED achieve better per-
formance with the unified transformer encoders?
Q2: Do the key components, including the multi-
modal data integration component and the represen-
tation augmentation component, of LIFTED boost
the performance? Q3: Does the Sparse Mixture-of-
Experts framework route similar information pat-
terns in different modalities to the same expert mod-
els correctly? Q4: Does the Mixture-of-Experts
approach precisely measure the importance of dif-
ferent modalities for each patient?

3.1 Experimental Setup

Dataset Descriptions. We evaluate our method
and other baselines on the HINT dataset (Fu et al.,
2022; Chen et al., 2024b) and CTOD dataset (Gao
et al., 2024), covering Phases I, II and III trials.
More details of the HINT dataset and the CTOD
dataset are shown in Appendix C.

Baselines. We compare LIFTED with both ma-
chine learning methods (Siah et al., 2021; Yi et al.,
2018; Rajpurkar et al., 2020; Fan et al., 2020; Lu,
2018; Chen et al., 2024a) and deep learning mod-
els (Zhang et al., 2020; Gao et al., 2020), such as
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Table 1: The clinical trial outcome performance (%) of LIFTED and baselines on HINT dataset and CTOD dataset.
The results are averaged on 30 independent runs with different random seeds. f: The results of the HINT and
SPOT methods were obtained by running their released codes. The best results and second best results are bold and
underlined, respectively. We observe that LIFTED consistently outperforms all other methods over all three phases.

| HINT | CTOD

| PhaselTrials | PhaseIITrials | PhaseIIl Trials | PhaseITrials | PhaseIlTrials | Phase III Trials
Methed | PR | F1 [ROC | PR | F1 |ROC| PR | F1 |ROC | PR | F1 |ROC | PR | F1 |ROC| PR | F1 | ROC
LR 50.0 | 60.4 | 52.0 | 56.5 | 55.5 | 58.7 | 68.7 | 69.8 | 65.0 | 55.6 | 58.5 | 51.5 | 56.0 | 63.6 | 56.7 | 75.0 | 73.8 | 51.9
RF 51.8 | 62.1| 52.5 | 57.8 | 56.3 | 58.8 | 69.2 | 68.6 | 66.3 | 58.3 | 70.0 | 54.0 | 60.8 | 70.9 | 56.0 | 75.1 | 85.1 | 50.7
XGBoost | 51.3 | 62.1 | 51.8 | 58.6 | 57.0 | 60.0 | 69.7 | 69.6 | 66.7 | 57.4 | 68.0 | 50.5 | 61.2 | 70.6 | 61.3 | 78.7 | 84.9 | 57.1
AdaBoost | 51.9 | 62.2 | 52.6 | 58.6 | 58.3 | 60.3 | 70.1 | 69.5 | 67.0 | 58.8 | 66.7 | 53.5 | 60.2 | 68.9 | 55.2 | 79.5 | 84.6 | 56.9
KNN+RF 53.1 | 62.5 | 53.8 | 59.4 | 59.0 | 59.7 | 70.7 [ 69.8 | 67.8 | 58.4 | 70.3 | 54.7 | 61.2 | 70.9 | 56.6 | 76.8 | 85.2 | 52.5
FFNN 54.7 [ 63.4 | 55.0 | 60.4 [ 59.9 | 61.1 | 74.7 | 74.8 | 68.1 | 55.2| 58.4 | 48.7 | 57.2 | 66.0 | 53.0 | 76.1 | 79.6 | 52.6
MMF (early) | 60.6 | 59.4 | 54.4 | 60.2 | 62.6 | 60.7 | 85.5 | 81.5 | 70.6 | 61.2 | 64.2 | 56.2 | 64.0 | 70.1 | 59.0 | 83.3 | 84.4 | 64.6
MMF (late) | 63.4 | 67.5 | 59.0 | 62.9 | 63.0 | 62.6 | 86.9 | 83.1 | 71.8 | 63.0 | 70.5 | 57.4 | 65.7 | 7T1.4 | 60.3 | 83.5 | 85.2 | 65.8
HINT' 58.4 | 68.2| 62.1 | 59.1 | 63.9 | 62.8 | 85.9 | 80.9 | 70.8 | 63.4 | 71.0 | 57.6 | 64.6 | 71.2 | 60.6 | 81.8 | 85.7 | 60.8
SPOT! 69.8 | 68.4 | 64.6 | 62.6 | 64.3 | 63.0 | 81.7 | 81.0 | 71.0 | 66.8 | 70.0 | 62.3 | 64.5 | 71.8 | 58.8 | 83.2 | 77.6 | 67.5
LIFTED | 70.7 | 71.6 | 64.9 | 69.8 | 66.2 | 65.1 | 88.3 | 83.8 | 73.5 | 69.7 | 71.8 | 63.4 | 67.7 | 72.0 | 63.0 | 86.7 | 85.9 | 69.5

Feedforward Neural Network (FFNN) (Shen et al.,
2023), Multi Modal Fusion (MMF), HINT (Fu
et al., 2022; Wang et al., 2024), SPOT (Wang et al.,
2023b). More details of those baselines are pre-
sented in Appendix B.

Evaluation Metrics. Following Fu ef al. (2022)
and Chen et al. (2024b), we use F1 score, PR-
AUC, and ROC-AUC to measure the performance
of all methods. For all these metrics, higher scores
indicate better performance.

Table 2: The clinical trial outcome prediction perfor-
mance (%) of LIFTED and variants without certain key
component. The best results are bold. LIFTED outper-
forms all variants, showcasing the effectiveness of our
proposed components.

HINT

| PhaseITrials | PhaseIITrials | Phase III Trials
Method | PR | F1 |ROC | PR | F1 |ROC | PR | F1 | ROC
LIFTED-aug | 68.4 | 69.8 | 64.8 | 69.5 | 66.0 | 64.3 | 86.9 | 82.4 | 72.1
LIFTED-aux | 69.0 | 71.2 | 63.7 | 69.6 | 64.5 | 64.6 | 87.4 | 82.8 | 71.1
LIFTED-LLM | 68.5 | 70.8 | 64.0 | 69.7 | 64.9 | 65.0 | 86.7 | 82.7 | 70.8
LIFTED-gating | 69.9 | 71.3 | 64.9 | 69.7 | 655 | 65.0 | 87.0 | 82.7 | 72.4
LIFTED | 70.7 | 71.6 | 64.9 | 69.8 | 66.2 | 65.1 | 88.3 | 83.8 | 73.5

CTOD

| PhaseITrials | PhasellTrials | Phase III Trials
Method | PR | F1 |ROC | PR | F1 | ROC | PR | F1 | ROC
LIFTED-aug | 65.1 | 70.6 | 61.9 | 67.1 | 70.5 | 62.2 | 85.2 | 824 | 67.8
LIFTED-aux | 64.4 | 71.1 | 60.0 | 60.0 | 71.0 | 54.9 | 83.8 | 85.5 | (4.6
LIFTED-LLM | 65.1 | 71.4 | 585 | 66.3 | 71.1 | 61.2 | 83.9 | 85.4 | 65.3
LIFTED-gating | 67.1 | 71.4 | 60.8 | 65.1 | 70.4 | 61.9 | 85.0 | 85.8 | 68.8
LIFTED | 67.7 | 71.6 | 62.3 | 67.7 | 72.0 | 63.0 | 86.7 | 85.9 | 69.5

3.2 Overall Performance

We conduct experiments to evaluate the perfor-
mance of LIFTED on all three phases trails, com-
pared to our baselines. The trial outcome prediction
results of all models are reported in Table 1. We

Table 3: Performance analysis of multimodal data in-
tegration. The best results and second best results are
bold and underlined, respectively.

HINT

| PhaseITrials | PhaseIlTrials | Phase III Trials

| PR | F1 |ROC | PR | F1 |ROC | PR | F1 | ROC
Summarization | 63.2 | 69.9 | 57.8 | 66.1 | 61.2 | 61.2 | 85.1 | 80.7 | 66.6
Drugs 62.1 | 67.2 | 57.9 | 60.5 | 62.3 | 55.8 | 83.8 | 81.7 | 63.8
Disease 65.3 | 67.3 | 59.7 | 68.0 | 59.9 | 62.4 | 86.0 | 80.5 | 69.1
Description | 55.5 | 71.3 | 50.2 | 55.5 | 0.0 | 50.0 | 74.9 | 85.7 | 49.7
SMILES 62.8 | 69.6 | 58.5 | 59.3 | 58.3 | 54.9 | 76.1 | 83.6 | 51.1
Criteria 68.0 | 70.5 | 63.1 | 67.6 | 64.4 | 63.0 | 83.7 | 82.7 | 65.0
All (LIFTED) | 70.7 | 716 | 64.9 | 69.8 | 66.2 | 65.1 | 88.3 | 83.8 | 73.5

CTOD

| PhaseITrials | PhaseIITrials | Phase III Trials

| PR | F1 |ROC | PR | F1 |ROC | PR | F1 | ROC
Summarization | 61.6 | 70.9 | 56.9 | 65.4 | 715 | 61.1 | 84.1 | 84.8 | 64.9
Drugs 60.8 | 70.6 | 57.6 | 58.0 | T1.3 | 53.8 | 77.3 | 85.2 | 545
Disease 65.2 | 70.2 68.3 | 71.1| 62.6 | 85.3 | 85.5 | 68.4
Description 56.6 | 70.7 56.0 | 71.3 | 52.4 | 76.5 | 85.7 | 52.9
SMILES 61.6 | 70.6 580 | 715 | 53.1 | 75.1 | 85.6 | 50.8
Criteria 60.5 | 71.2 59.9 | 71.2 | 53.9 | 75.7 | 846 | 52.5
All (LIFTED) | 67.7 | 71.6 | 62.3 | 67.7 | 72.0 | 63.0 | 86.7 | 85.9 | 69.5

first observed that the deep learning-based methods
and the methods designed for clinical trial outcome
prediction outperform the machine learning based
methods with a significant performance gap, espe-
cially on the HINT dataset, showcasing the power-
ful ability to extract critical information from differ-
ent modalities in various formats of the deep learn-
ing encoders and those encoders specifically de-
signed to extract representation hidden in the clini-
cal trial records. This observation is not surprising,
since the critical information of different modali-
ties is represented in different ways, which is hard
to extract for those traditional machine learning
methods or those deep learning encoders that are
not designed for clinical trial outcome prediction.
Nevertheless, LIFTED consistently outperforms all
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other methods over all three phases, verifying its
effectiveness in unifying different modalities and
dynamically integrating them within the MoE.

3.3 Ablation Study

In this section, we perform comprehensive ablation
studies to demonstrate the effectiveness of our key
components, including the representation augmen-
tation, the auxiliary loss and the modalities used to
generate weights in the Mixture-of-Experts (MoE)
framework.

e LIFTED-aug: In LIFTED-aug, the representa-
tion augmentation component and the consis-
tency loss are removed. Representations from
different modalities are directly fed into the mul-
timodal data integration component without the
constraint of robustness to the noise in data.

e LIFTED-aux: In LIFTED-aux, we remove the
auxiliary loss component. Representations from
different modalities are no longer required to
make consistent predictions with the final rep-
resentation.

e LIFTED-LLM: In LIFTED-LLM, we remove
the transformation preprocessing step and utilize
the linearization, instead of the natural language
description, of each modality as input. In addi-
tion, the summarization modality is also removed,
since it is generated by LLM.

e LIFTED-gating: In LIFTED-gating, we use all
modalities instead of just disease modality to
generate the weights for the multimodal data in-
tegration component.

The results are shown in Table 2, and the results of
LIFTED are also reported for comparison. From
those tables, we observe that: (1) LIFTED outper-
forms all the variants without certain components,
including LIFTED-aug, LIFTED-aux and LIFTED-
LLM, showcasing the effectiveness and comple-
mentary of the representation augmentation com-
ponent, the auxiliary loss component and the LLM
transformation preprocessing step; (2) LIFTED out-
performs its variant, LIFTED-gating, with a slight
advantage in performance. This suggests that de-
termining the modality importance for each trial
based solely on disease information is sufficient.
Including additional modality information, even to
a slight extent, appears to have a negative impact
on performance.
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Figure 3: The SMoE experts’ importance weights of our
model predicting the knee osteoarthritis patient. Experts
6 and 7 play a crucial role in extracting common infor-
mation patterns across modalities, while other experts
specialize in a single specific modality.

3.4 Analysis of Multimodal Data Integration

We further analyze how multimodal data integra-
tion contributes to clinical outcome prediction.
Here, we compare the performance of models us-
ing data from only one modality with LIFTED that
integrates all those modalities. We report the re-
sults in Table 3. The results indicate that LIFTED
outperforms almost all unimodal models, demon-
strating the effectiveness of multimodal integration.
In addition, the results also demonstrate that the
drug description and the criteria modalities are the
least and the most important modality, respectively,
which is expected since the quality of recruited pa-
tients plays a crucial role in trial success (Jin et al.,
2017; Zhang et al., 2021).

3.5 Analysis of Sparse Mixture-of-Experts

In addition, we delve into an analysis of the Sparse
MOoE model to understand the performance en-
hancements obtained by it. Here, we select a knee
osteoarthritis patient case. For each modality, the
SMOoE framework selects top-3 experts from a pool
of 16 experts with the highest weights. The weights
of these selected SMoE experts are visualized in
Figure 3. As expected, certain experts, such as
6 and 7, are consistently chosen across multiple
modalities, indicating their pivotal role in extract-
ing similar information patterns among different
modalities. Furthermore, other experts demonstrate
a more focused expertise, concentrating on one or
two modalities. This demonstrates the effective-
ness of the SMoE framework in both extracting
similar information patterns across different modal-
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Figure 4: The modality importance weights of our
model predicting the type 2 diabetes mellitus patient.
LIFTED pay more attention to the disease modality as
expected, since type 2 diabetes mellitus is hard to cure.

ities and capturing specialized information patterns
within a single modality.

3.6 Case Study

In addition, we conduct a case study to analyze
the contribution of each modality in clinical trial
outcome prediction. Specifically, we analyze the
result of a type 2 diabetes mellitus patient, who was
inadequately controlled with metformin at the max-
imal effective and tolerated dose of metformin for
at least 12 weeks. Since type 2 diabetes mellitus is
hard to cure (Chang et al., 2019), the model should
pay attention to the name of the disease and pre-
dict the trial as failed, which is consistent with the
behavior of our model. The modality importance
weights are shown in Figure 4. As we expected,
the attention weights of the disease modality are
much higher than other modalities, which demon-
strates that our model pays attention to the disease
modality and predicts the trial correctly.

4 Related Works

Clinical Trial Outcome Prediction. Machine
learning methods have been proven efficient on
diverse tabular data prediction tasks, especially the
clinical trial outcome prediction task, resulting in
profound performances (Chen et al., 2023; Yan
et al., 2023). Recently, Fu et al. (2023) proposed
a hierarchical interaction network employing dif-
ferent encoders to fuse multiple modal data and
capture their correlations for trial outcome predic-
tions; Wang et al. (2023b) clustered multi-sourced
trial data into different topics, organizing trial em-
beddings for prediction. Wang et al. (2023a) con-
verted clinical trial data into a format compatible
description for prediction. However, converting all
modalities into a single description poses signifi-
cant challenges. This approach makes it difficult

for the model to distinguish the unique information
of each modality and necessitates external data to
aid in differentiating these modalities. In contrast,
LIFTED extracts representations for each modality
separately and dynamically integrates them, pro-
viding a more effective way to preserve distinct
characteristics of each modality.
Mixture-of-Experts. Mixture-of-Experts (MoE) is
a special type of neural network whose parameters
are partitioned into a series of sub-modules, called
experts, functioning in a conditional computation
fashion (Jacobs et al., 1991; Jordan and Jacobs,
1993). Recently, Shazzer et al. (2017) simplified
the MoE layer by selecting a sparse combination of
the experts, instead of all experts, to process input
data, significantly reducing the computational cost
and improving the training stability. To encour-
age specialization and decrease redundancy among
experts (Chen et al., 2022), Dai et al. (2022) pre-
defined the expert assignment for different input
categories, and Hazimeh et al. (2021) advocated
multiple, diverse router policies, facilitating the in-
triguing goals of SMoE is to divide and conquer
the learning task by solving each piece of the task
with adaptively selected experts (Aoki et al., 2022;
Mittal et al., 2022). To identify similar information
patterns between different modalities and extract
them with the same expert model, LIFTED follows
the design of Sparse Mixture-of-Experts (Shazeer
et al., 2017), routing inputs to a subset of experts,
dynamically selecting the experts instead of using
a pre-defined assignment.

5 Conclusion

We introduce LIFTED, an approach that unifies
multimodal data using natural language descrip-
tions and integrates this information within a
Mixture-of-Experts (MoE) framework for clini-
cal trial outcome prediction. We employ noise-
resilient encoders to extract representations from
each modality, utilize a Sparse MoE framework to
further dig the similar information patterns in dif-
ferent modalities, and introduce an auxiliary loss
to improve the quality of modal-specific represen-
tations. Empirically, our LIFTED method demon-
strates superior performance compared to existing
approaches across all three phases of clinical trials,
underscoring the effectiveness and potent repre-
sentational capacity of natural language and high-
lighting the potential for a unified text modality to
supplant diverse information modalities.
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Limitations

Though LIFTED outperforms the existing models,
there still are several limitations to our work. As we
mentioned in Section 2.1, different modality data
is transformed into natural language descriptions
by LLM, specifically, the GPT-40. However, the
output from LLM is unstable, which may affect the
performance of LIFTED. In addition, since GPT-40
was not trained with clinical trial records specifi-
cally, LIFTED may achieve a better performance
coupled with the natural language descriptions gen-
erated by a new LLM, which is specifically de-
signed for clinical trial outcome prediction.
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A  Prompt Algorithm 1 Training Pipeline of LIFTED

The whole prompt, including the system message,
is demonstrated in Table 4, and some examples are
demonstrated in Table 5.

Table 4: Prompting.

System Message
You are a helpful assistant.

Prompting

Here is the schema definition of the table:
$schema_definition

This is a sample from the table:
$linearization

Please briefly summarize the sample with its
value in one sentence. You should describe
the important values, like drugs and diseases,
instead of just the names of columns in the
table.

A brief summarization of another sample may

Input :Training dataset D = {z;,y;}
step 1. Transforming Multimodal Data into Natural

N
1=1

Language Descriptions for i <— 1 to N do
for k < 1to K do
| ;5 + LLM(p, Linearize(z; x), s)
z;o + LLM(p, Linearize(x;), s)

step 2. Train LIFTED foreach minibatch B in

dataset D do

for i < 1 to batch size b do

for k < 0to K do

ug g, < E(T (2ik))
”f,k — ﬂfk as Equation 7
Ui = Fi({uf . +pos'}oo),
Uik < GUik)  R(Uir),
Vige = Fr({v]  + pos'}o),
Vik < G(Vir) - R(Vik)

Fuse representations with MoE method
as (9)

Compute the losses Leon, Ly Lauz and L
Optimize the parameters 6 of LIFTED

look like:
This study will test the ability of extended-

release nifedipine (Procardia XL), a blood * Random Forest (RF) (Lo et al., 2019; Siah et al.,

pressure medication, to permit a decrease in
the dose of glucocorticoid medication children
take to treat congenital adrenal hyperplasia
(CAH).

Note that the example is not the summariza-
tion of the sample you have to summarize.

Response
$summarization_of_the_sample

2021): similar to logistic regression, the random
forest is also implemented by scikit-learn with
the default hyperparameters (Pedregosa et al.,
2011).

* XGBoost (Rajpurkar et al., 2020; Siah et al.,

2021): An implementation of gradient-boosted
decision trees optimized for speed and perfor-
mance.

¢ Adaptive boosting (AdaBoost) (Fan et al.,

B Algorithm of LIFTED’s training
pipeline

The whole training pipeline of LIFTED is illus-
trated as algorithm 1.

C Baselines

Many methods have been selected as baselines
in our experiments, including both statistical ma-
chine learning and deep learning models. We use
the same setups in Fu et al. (2022) and Wang et
al. (2023b) for most of them.

 Logistic regression (LR) (Lo et al., 2019; Siah

et al.,, 2021): logistic regression with the de-

fault hyperparameters implemented by scikit-
learn (Pedregosa et al., 2011).
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2020): an adaptive boosting-based decision tree
method implemented by scikit-learn (Pedregosa
etal., 2011).

k Nearest Neighbor (kNN) + RF (Lo et al.,
2019): a combined model using KNN to imputate
missing data and predicting by random forests.

Feedforward Neural Network
(FFNN) (Tranchevent et al., 2019): a feedfor-
ward neural network that uses the same feature as
HINT (Fu et al., 2023). The FFNN contains three
fully-connected layers with hidden dimensions
of 500 and 100, as well as a rectified linear unit
(ReLU) activation layer to provide nonlinearity.

Multi-Modal Fusion (MMF): This technique
amalgamates multi-modal data to arrive at a final
prediction, employing both early fusion and late



Table 5: Examples of Prompting.

Linearization

Summarization

phase: phase 1/phase 2; diseases: ['adenocar-
cinoma of the lung’, 'non-small cell lung can-
cer’]; icdcodes: ["[’D02.20°, °D02.21°, °’D02.22°]",
"[’C78.00’,°C78.01°, °C78.02°, °’D14.30°, °’D14.31°,
’D14.32°, °C34.2’]"]; drugs: [erlotinib hydrochlo-
ride’, hsp90 inhibitor auy922’]; criteria: \n Inclu-
sion Criteria:\n - All patients must have pathologic
evidence of advanced lung adenocarcinoma (stage II-
[Bor stage IV) confirmed histologically/cytologically
at NU, MSKCC, or DFCI and EITHER previous
RECIST-defined response . . .

This sample is a phase 1/phase 2 trial for
patients with advanced lung adenocarci-
noma, testing the efficacy of erlotinib hy-
drochloride and hsp90 inhibitor auy922 in
patients who have previously responded to
erlotinib or gefitinib or have a documented
mutation in the EGFR gene. The study has
specific inclusion and exclusion criteria,
and patients must meet certain medical
conditions and have negative pregnancy
tests to be eligible.

phase: phase 2; diseases: ['multiple myeloma’]; icd-
codes: ["[’C90.01°, °C90.02’, *C90.00’]"]; drugs:
[’dexamethasone’, ’thalidomide’, ’lenalidomide’];
criteria: \n Inclusion Criteria:\n\n - Subject must vol-
untarily sign and understand written informed con-
sent.\n\n - Age > 18 years at the time of signing the
consent form.\n\n - Histologically confirmed Salmon-
Durie stage II or III MM. Stage I MM patients will
be\n eligible if they display poor prognostic factors
(B2M > 5.5 mg/L, plasma cell\n proliferation index
> 5%, albumin of less than 3.0, and unfavorable
cytogenetics). . ..

This sample is a phase 2 clinical trial for
patients with relapsed or refractory multi-
ple myeloma, testing the combination of
dexamethasone, thalidomide, and lenalido-
mide as a treatment option. The eligibil-
ity criteria include specific disease stage,
prior treatment history, and certain labora-
tory parameters. Exclusion criteria include
non-secretory MM, prior history of other
malignancies, and certain medical condi-
tions.

phase: phase 3; diseases: ["Alzheimer’s disease"];
icdcodes: ["[’G30.8°, °G30.9°, °G30.0’, *G30.1°]"];
drugs: [’rivastigmine 5 cm”™2 transdermal patch’, ’ri-
vastigmine 10 cm™ transdermal patch’]; criteria:
\n Inclusion Criteria:\n\n - Be at least 50 years of
age;\n\n - Have a diagnosis of probable Alzheimer’s
Disease; \n\n - Have an MMSE score of > 10 and
< 24;\n\n - Must have a caregiver who is able to
attend all study visits;\n\n - Have received continu-
ous treatment with donepezil for at least 6 months
prior to\n screening, and received a stable dose of 5
mg/day or 10 mg/day for at least the last 3\n of these
6 months.\n\n . . .

This sample is a phase 3 clinical trial for
Alzheimer’s disease, testing the efficacy
of rivastigmine transdermal patches in pa-
tients aged 50 and above with a diagnosis
of probable Alzheimer’s disease and an
MMSE score between 10 and 24. The
inclusion criteria also require patients to
have a caregiver who can attend all study
visits and have received continuous treat-
ment with donepezil for at least 6 months
prior to screening. The exclusion criteria
include various medical conditions and dis-
abilities that may interfere with the study.
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fusion strategies. In the early fusion approach,
various modal inputs are first concatenated be-
fore being fed into the prediction model. Con-
versely, in the late fusion variant, multiple predic-
tion models are employed on each modal input,
and the ultimate prediction is derived through fu-
sion techniques, such as voting, which integrates
predictions from each modality.

 HINT (Fu et al., 2022): several key compo-
nents are integrated with HINT, including a drug
molecule encoder utilizing MPNN algorithm, a
disease ontology encoder based on GRAM, a
trial eligibility criteria encoder leveraging BERT,
and also, a drug molecule pharmacokinetic en-
coder, surplus a graph neural network to capture
feature interactions. After the interacted features
are encoded, they are fed into a prediction model
for accurate outcome predictions.

* SPOT (Wang et al., 2023b): SPOT contains sev-
eral steps. Firstly, trial topics are identified to
group the diverse trial data from multiple sources
into relevant trial topics. Subsequently, trial em-
beddings are produced and organized according
to topic and timestamp to construct organized
clinical trial sequences. Finally, each trial se-
quence is treated as a separate task, and a meta-
learning approach is employed to adapt to new
tasks with minimal modifications.

D Dataset Descriptions

Table 6: The statistics of the HINT Dataset and the
CTOD Dataset. The number of Trials is shown by the
split of train/validation/test sets.

HINT
# Trials #Drugs #Diseases # Success  # Failure
Phase I 1,044/116/627 2,020 1,392 1,006 781
Phase I 4,004/445/1,653 5,610 2,824 3,039 3,063
Phase IIl  3,092/344/1,140 4,727 1,619 3,104 1,472
CTOD
# Trials #Drugs # Diseases # Success  # Failure
Phase I 1,012/149/627 1,638 913 1,129 659
Phase I 3,950/501/1,653 5,003 2,254 3,949 2,156
Phase IIl  3,075/363/1,140 3,863 1,533 3,643 941

The HINT dataset (Fu et al., 2022; Chen et al.,
2024b) and CTOD dataset (Gao et al., 2024) in-
clude the information on diseases, the name, de-
scription, and SMILES string of drugs, eligibility
criteria for each clinical trial record, the phase, and
also, the trial outcome labels as success or fail-
ure covering Phases I, IT and III trials. The HINT
dataset contains 17,538 clinical trial records, with

1,787 trials in Phase I, 6,102 trials in Phase II, and
4,576 trials in Phase III (Fu et al., 2021). We utilize
parts of the CTOD dataset to test LIFTED’s perfor-
mance, with 1,788 trials in Phase I, 6,105 trials in
Phase II, and 4,584 trials in Phase III, for a total
of 12,477 trials. (Gao et al., 2024). The detailed
data statistics of the HINT dataset and the CTOD
dataset are shown in Table 6.

In our implementation, we incorporate all modal-
ities, including disease, the name, description and
SMILES string of drugs and criteria, totaling five
modalities. Additionally, we include phase in-
formation when generating the natural language
summarization for samples. The transform-based
encoder for the SMILES string modality is pre-
trained and the corresponding tokenizer is specifi-
cally designed for SMILES string data. However,
all the other modalities are tokenized by a unified
tokenizer and none of the other encoders are pre-
trained.

E Hyperparameter Settings

We follow the settings of most hyperparameters in
HINT (Fu et al., 2022). The models are trained
for a total of 5 epochs using a mini-batch size
of 32 on one NVIDIA 4090 GPUs, which will
take up to 2 hours. We employ the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with a learn-
ing rate of 3 x 10~4, 3 values of (0.9,0.99), and a
weight decay of 1 x 102 with a CosineAnnealing
learning rate scheduler. Besides this, we leverage
the GPT-40 as the LLM model to generate natu-
ral language description for our data during our
prompting stage.

F Detailed Results

The detailed experiments results with variants are
presented in Table 7, 8, 9
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Table 7: The clinical trial outcome performance (%) of LIFTED and baselines on HINT dataset and CTOD dataset.
The mean and standard deviations are calculated from 30 independent runs with different random seeds. f: The
results of the HINT and SPOT methods were obtained by running their released codes. The best results and second
best results are bold and underlined, respectively. We observe that LIFTED consistently outperforms all other
methods over all three phases.

HINT
‘ Phase I Trials ‘ Phase II Trials ‘ Phase III Trials
Method ‘ PR-AUC F1 ROC-AUC ‘ PR-AUC F1 ROC-AUC ‘ PR-AUC F1 ROC-AUC
LR 50.0+0.5 | 60.4+0.5 | 52.0+0.6 | 56.5+0.5 | 55.5+0.6 | 58.7+0.9 | 68.7+0.5 | 69.8+0.5 | 65.0+0.7
RF 51.8+0.5 | 62.1+£0.5 | 52.5+0.6 | 57.8+0.8 | 56.3+0.9 | 58.8+£0.9 | 69.2+0.4 | 68.6+1.0 | 66.3+0.7
XGBoost 51.3+6.0 | 62.1+£0.7 | 51.84+0.6 | 58.6+0.6 | 57.0+£0.9 | 60.0 0.7 | 69.7+0.7 | 69.6 £0.5 | 66.7+0.5
AdaBoost 51.9+0.5 | 62.2+0.7 | 52.6+0.6 | 58.6+0.9 | 58.3+0.8 | 60.3+0.7 | 70.1£0.5 | 69.5+£0.5 | 67.0+04
kKNN+RF 53.1+0.6 | 625+0.7 | 53.8+0.5 | 59.44+0.8 | 59.0+0.6 | 59.7+0.8 | 70.7£0.7 | 69.8+0.8 | 67.8 £ 1.0
FENN 54.7+1.0 | 634+1.5 | 55.0+1.0 | 604+1.0|599+1.2| 61.1+1.1 | 74.7+1.1 | 74.84+0.9 | 68.1+0.8

MMF (early fusion) | 60.6 £2.8 | 59.44+2.3 | 544+24 | 602+19|626+1.4| 60.7+1.3 | 8.5+14 | 81.5+09 | 70.6+1.7
MMF (late fusion) 63.4+3.0 | 67.5£2.2 | 59.0+2.8 | 62.9+2.0|63.0£1.5| 626+1.6 | 86.94+1.6 | 83.1+1.1 | 71.84+2.2

DeepEnroll 56.8+0.7 | 648+ 1.1 | 575413 | 60.0£1.0 | 59.8+0.7 | 62.5+£0.8 | 77.7+0.8 | 786+0.7 | 69.9+0.8
COMPOSE 56.4+0.7 | 658409 | 57.1+1.1 | 60.4+0.7 | 59.7+0.6 | 62.8+0.9 | 782408 | 79.2+0.7 | 70.0+0.7
HINT' 584423 | 682+ 1.7 | 621422 |59.1+1.2|63.9+1.2| 62.8+14 | 859411 | 80.9+08 | 70.8+1.3
SPOT' 69.8+1.7 | 684412 | 64.6+2.1 | 62.6+0.7 | 64.3£0.6 | 63.0+0.6 | 81.7+0.8 | 81.0+04 | 71.0+04
LIFTED (ours) | 70.7+2.3 | 7.6+ 1.4 | 64.9+2.1 | 69.8+18 | 662+ 1.1 | 65.1+14 |883+1.1| 83.8+0.8 | 735+ 16
CTOD
| Phase I Trials | Phase II Trials | Phase III Trials
Method | PR-AUC F1 ROC-AUC | PR-AUC F1 ROC-AUC | PR-AUC F1 ROC-AUC
LR 55.6+23 | 585421 | 51.54+22 | 56.0+1.4|63.6+1.1] 56.7+1.0 | 75.04+22 | 738+ 1.6 | 51.9+2.0
RF 583429 | 70.0£1.6 | 54.0£20 | 608+1.3 | 709408 | 56.0£1.3 | 7514+ 1.6 | 85.1£0.7 | 50.7 +2.2
XGBoost 574435 | 680+19 | 50.5+23 | 61.2+1.5 | 706+1.2| 61.3+£1.3 | 787+ 1.8 | 84.9+0.7 | 57.1+2.0
AdaBoost 58.8+32 | 66.7+£24 | 535423 | 602418 |689+08| 55.2+1.3 | 795+ 1.3 | 84.6+0.8 | 56.9+ 1.9
KNN+RF 584439 | 70.3+20 | 58.7+2.1 | 61.2+1.7| 709409 | 56.6+1.5 | 76.8+22 | 852+ 1.1 | 525+ 1.9
FFNN 552422 | 584414 | 487+1.7 [ 572+15]660+13 | 53.0+41.2 | 76.1+1.4 | 79.6+ 1.1 | 526+ 1.5

MMF (early fusion) | 61.2+2.8 | 642+21 | 56.2+28 | 640+£1.2|70.1£09 | 59.0+1.1 | 83.3+1.4| 84.4+1.0 | 64.6+1.9
MMF (late fusion) 63.0+31 | 705+£1.8 | 57.4+24 | 65.74+2.1 | 71.4+08 | 60.3+£2.6 | 83.5+1.7| 85.2+0.8 | 65.8+1.6

HINT? 63.4+29 | 71.0£1.2 | 576+24 | 64624 | 71.2+£13 | 60.6+20 | 81.84+1.9|85.7+0.7 | 60.8+2.0
SPOT 66.8+1.9 | 70.0£0.9 | 623+1.0 | 645+1.7 | 71.84+0.7| 588+1.4 | 83.2+23 | 77.6+1.0 | 67.56+1.7
LIFTED (ours) ‘ 69.7+3.0 | 71.8+14 | 634+23 | 67.7+2.0 | 720+14 | 63.0+£12 | 86.7+1.2 | 859+1.0 | 69.5+1.8

Table 8: The clinical trial outcome prediction performance (%) of LIFTED and variants without certain key
component. The best results are bold. LIFTED outperforms all variants, showcasing the effectiveness of our
proposed components.

HINT
\ Phase I Trials \ Phase II Trials \ Phase III Trials
Method | PR F1 ROC | PR F1 ROC | PR F1 ROC

LIFTED-aug 684420 |69.8+2.1|648+15|695+1.4|660+1.1|643+08|869+1.7|824+09 |721+1.6
LIFTED-aux 69.0+£29 | 71.2+1.7 | 63.7£1.6 | 69.6 1.6 | 645£15 | 646+1.3 | 874+1.4 |828+1.0 | 71.1£2.2
LIFTED-LLM | 68.5+2.7 | 70.8+1.3 | 64.0+2.3 | 69.7£20 | 649+1.4 | 65.0£1.5 | 8.7+1.0 | 82.7+£1.0| 70.8+1.3
LIFTED-gating | 69.9+23 | 713+ 1.8 | 649+£19 | 69.7+£1.7 | 655+14 | 650+1.6 | 87.0+0.8 | 827+0.8 | 724+ 1.1

LIFTED (ours) | 70.7 +2.3 | 71.6 + 1.4 | 64.9 +:2.1 | 69.8 + 1.8 | 66.2+ 1.1 | 65.1+ 1.4 | 883+ 1.1 | 838+ 0.8 | 73.5+ 1.6
CTOD
\ Phase I Trials \ Phase II Trials \ Phase I1I Trials
Method | PR F1 ROC | PR F1 ROC | PR F1 ROC

LIFTED-aug 65.14+3.7|706+1.7|61.9+24|671£18|705+1.1|622+14|8.2+14|824+1.1]|67.8+1.6
LIFTED-aux 644+33 | 71.1+1.8|60.0£28|600+£1.4|71.0£09 |549+1.0|83.8+1.8|85.5+0.9 |64.6+2.4
LIFTED-LLM | 65.1£2.7 | 71.4+1.6 | 58.5+3.2 | 66.3+19 | 71.1+1.1 | 61.2+£1.5 | 839+13 | 85.4+1.0 | 65.3+£2.0
LIFTED-gating | 67.1 24 | 714+ 18 | 60.8 £25 | 651 £1.4 | 704+13 | 61.9+15 | 850+15 | 858+0.7 | 68.8+1.8

LIFTED (ours) ‘ 69.7+3.0 | 71.8 £14 | 63.4+23 ‘ 67.7 £2.0 ‘ 720+14 | 63.0+1.2 | 867+12|859+1.0|695+18
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Table 9: Performance analysis of multimodal data integration. The best results and second best results are bold and
underlined, respectively.

HINT

| Phase I Trials | Phase II Trials | Phase I Trials

| PRAUC |  F1 | ROC-AUC | PR-AUC | F1 | ROC-AUC | PR-AUC | F1 | ROC-AUC
Summarization | 632424 | 69.9422 | 57.8422 | 66.1+1.3 | 61.2+15| 61.2+£1.0 | 85.1+£1.0 | 80.7+1.0 | 66.6 + 1.6
Drugs 621412 | 672415 | 57.9+1.1 | 60.5+£1.1 | 623+1.5| 558+ 1.1 | 83.8+0.7 | 81.7+1.0 | 63.8+1.3
Disease 653+ 1.1 | 673+ 1.8 | 59.7+1.3 | 68.0£0.5 | 59.9+1.3 | 62.4+0.6 | 86.0+0.8 | 80.5+ 1.1 | 69.1+0.9
Description 555405 | 71.3£0.1 | 5024+ 1.0 | 55.5+0.7 | 0.0+0.0 | 50.0+£1.3 | 74.9+0.6 | 85.7+£0.0 | 49.7+1.3
SMILES 628+0.7 | 69.6+ 1.7 | 58.5+0.9 | 59.3+£0.6 | 58.3+£2.2 | 54.9+0.7 | 76.1+15 | 83.6+£0.5 | 51.1+25
Criteria 680430 | 705419 | 631421 | 67.6+1.1|644+1.0| 63.0+£1.3 | 83.7+1.2 | 82.7+£0.7| 65.0+2.1
All (LIFTED) | 70.7+23 | 716+ 14 | 64.9+21 | 69.8+18|662+11 | 651+14 |883+1.1|838+08] 735+16

CTOD

| Phase I Trials | Phase II Trials | Phase III Trials

| PRAUC | F1 | ROC-AUC | PR-AUC | F1 | ROC-AUC | PR-AUC | F1 | ROC-AUC
Summarization | 61.6+3.2 | 70.94£2.2 | 56.94+26 | 654+1.3 | 7.5+0.9 | 61.1+1.3 | 84.1+£1.3 | 84.8+0.9 | 649+ 1.9
Drugs 608428 | 70.64+1.4 | 57.6+24 | 58.0+£1.8 | 71.3+1.1 | 53.8+£1.2 | 77.3+1.7 | 8524 1.0 | 545+ 1.9
Disease 652420 | 702419 | 613+1.7 | 683415 | 71.1+1.2| 62.6+£1.0 | 853414 | 85.5+0.7 | 68.4+20
Description 56.6+2.6 | 70.7+15 | 523427 | 56.0+1.8 | 71.3+0.8 | 524+1.7 | 76.5+£1.2 | 85.7+£0.7 | 529+ 1.9
SMILES 61.6+28 | 70.64+ 1.7 | 56.0+24 | 58.0+£1.8 | 71.5+1.2 | 53.1+£1.2 | 751416 | 85.6+0.7 | 50.8+2.4
Criteria 605430 | 7124 1.7 | 558 +3.1 | 59.9+2.5 | 712+ 1.2 | 53.94£2.0 | 75.74+20 | 84.6+0.7 | 52.5+2.6

LIFTED (ours) | 69.7 3.0 | 71.8 £ 1.4 | 634 +£23 [ 67.7+£20 | 720+ 14| 63.0+1.2 | 867+ 1.2 |859+1.0 | 69.5+18
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